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Abstract

Instrumental variable (IV) estimates a causal e�ect if the instrument satis�es a mono-

tonicity condition. When this condition is not satis�ed, we only know that IV estimates

the di�erence between the e�ect of the treatment in two groups. This di�erence could be

a very misleading measure of the treatment e�ect: it could be negative, even when the

e�ect is positive in both groups. There are a large number of studies in which monotonic-

ity is implausible. One might then question whether we should trust their estimates. I

show that IV estimates a causal e�ect under a much weaker condition than monotonic-

ity. I outline three criteria applied researchers can use to assess whether this condition is

applicable in their studies. When this weaker condition is applicable, they can credibly

interpret their estimates as causal e�ects. When it is not, they should interpret their

results with caution.
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1 Introduction

Applied economists study di�cult causal questions, including, for example, the e�ect of ju-

venile incarceration on educational attainment, or the e�ect of family size on mothers labor

supply. On that purpose, they often use instruments that a�ect entry into the treatment

being studied, and then estimate a two stage least squares regression (2SLS). But even with

a randomly assigned instrument, the resulting estimate might not capture any causal e�ect.

People's treatment participation can be positively a�ected, una�ected, or negatively a�ected

by the instrument. Those in the �rst group are called compliers, those in the second are

called non-compliers, while those in the third are called de�ers. Non-compliers reduce the

instrument's statistical power as well as the external validity of the e�ect it estimates. But

they do not threaten its internal validity. Indeed, Imbens & Angrist (1994) show that if the

population only bears compliers and non-compliers, 2SLS estimates the average e�ect of the

treatment among compliers, the so-called local average treatment e�ect (LATE). De�ers are

a much more serious concern. If there are de�ers in the population, we only know that 2SLS

captures a weighted di�erence between the e�ect of the treatment among compliers and de�ers

(see Angrist et al., 1996). This di�erence could be a very misleading measure of the treatment

e�ect: it could be negative, even when the e�ect of the treatment is positive in both groups.

De�ers could be present in a large number of studies which have used 2SLS, and I will now

give four examples which illustrate this situation.

First, a number of papers have used randomly assigned judges with di�erent sentencing rates

as an instrument for incarceration (see Aizer & Doyle, 2013 and Kling, 2006), receipt of

disability insurance (see Maestas et al., 2013, French & Song, 2012, and Dahl et al., 2013),

or placement into foster care (see Doyle, 2007). Imbens & Angrist (1994) argue that the

�no-de�ers� condition is likely to be violated in these types of studies. In this context, ruling

out the presence of de�ers would require that a judge with a high average of strictness always

hands down a more severe sentence than that of a judge who is on average more lenient.

Assume judge A only takes into account the severity of the o�ence in her decisions, while

judge B is more lenient towards poor defendants, and more severe with well-o� defendants.

If the pool of defendants bears more poor than rich individuals, B will be on average more

lenient than A, but she will be more severe with rich defendants. Whenever the number of

cases per judge is large enough, the �no-de�ers� condition has a strong testable implication:

the ranking of judges in terms of their average severity should not vary over time or across

subsamples. To my knowledge, this testable implication has never been investigated.

Second, de�ers could be present in randomized controlled trials relying on an encouragement

design, because incentives might crowd-out subjects' intrinsic motivation for treatment. Du�o
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& Saez (2003) measure the e�ect of attending an information meeting on the take-up of a

retirement plan. To encourage the treatment group to attend, subjects were told they would

receive a �nancial incentive upon attendance. Frey & Jegen (2001) review a substantial body

of empirical evidence showing that incentives sometimes reduce intrinsic motivation. In an

encouragement design, paying subjects to get treated might negatively a�ect their perception

of the bene�ts they should expect from treatment: if these bene�ts were high, there would be

no need to pay them to get treated (see Benabou & Tirole, 2003). The incentive, therefore,

could lead some of them to forgo treatment.

Third, de�ers could be present in studies relying upon sibling-sex composition as an instrument

for family size, because some parents are sex-biased. American parents are more likely to have

a third child when their �rst two children are of the same sex. Angrist & Evans (1998) use this

as an instrument to measure the e�ect of family size on mothers labor supply. However, some

parents are biased towards one or the other sex. For example, Dahl & Moretti (2008) show

that American fathers have a preference for boys. Because of sex-bias, some parents might

want two sons, while others might want two daughters; such parents would be de�ers. As I

shall detail later, in Peru a non-negligible fraction of parents declare that the ideal composition

of their family would be to have two sons and no daughters, or two daughters and no sons.

Fourth, de�ers are present in studies that rely on quarter of birth as an instrument for school

entry age, because some parents strategically delay entry to give children born late in the year

more time to mature. In most countries, rules for school entry age should lead children born

in the last quarter to enter at a younger age than those born in the �rst. Angrist & Krueger

(1992) and Bedard & Dhuey (2006) use this as an instrument to measure the e�ect of entry

age on later academic performance. Barua & Lang (2010) show that the distribution of school

entry age of children born in the last quarter does not dominate that of children born in the

�rst quarter, something we should observe if there were no de�ers. This demonstrates that

de�ers are present in these studies. This is because parents are more prone to delaying school

entry for children born late in the year, so-called redshirting. Children redshirted because

they were born in the last quarter are de�ers, as they would have entered school earlier had

they been born in the �rst quarter.

These examples illustrate that de�ers could be present in a number of studies, casting doubt

on their results. This paper therefore addresses the following question: should we still trust

results from a 2SLS study in which de�ers are or could be present? I show that some of

these studies can still be trusted, while others should be interpreted with more caution. I also

provide practitioners with a number of tools to assess in which category their study falls.

On the one hand, I show that 2SLS still estimates a LATE if the �no-de�ers� condition is
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replaced by a weaker �compliers-de�ers� condition. If a subgroup of compliers accounts for

the same percentage of the population as de�ers and has the same LATE, 2SLS estimates the

LATE of the remaining part of compliers. �Compliers-de�ers� is the weakest condition under

which 2SLS estimates a LATE: if it is violated, 2SLS does not estimate a causal e�ect. I now

outline three criteria applied researchers can use to assess whether �compliers-de�ers� (CD) is

likely to hold in their study.

CD is plausible in studies where there is little uncertainty on the sign of the treatment e�ect,

as is the case in Maestas et al. (2013), for example. This study considers the e�ect of disability

insurance on labor market participation. By increasing non-labor income, disability insurance

should unambiguously decrease participation. I show that if the e�ect of the treatment is not

greater than zero for anyone, my CD condition will automatically be satis�ed in this study.

Later in the paper, I argue that similar restrictions are plausible in French & Song (2012) and

Aizer & Doyle (2013), so my CD condition should also be satis�ed in these studies.

CD is also plausible in studies where selection into being a complier or a de�er is not directly

based on gains from treatment, as is the case in Angrist & Evans (1998), for example. The

outcome in this study is binary. With a binary outcome, I show that CD is also automatically

satis�ed if the di�erence between compliers' and de�ers' LATEs is not larger than a quantity

which can be estimated from the data. In Angrist & Evans (1998), this quantity is large. On

the other hand, there is no reason to suspect that de�ers and compliers have utterly di�erent

LATEs: selection into one or the other population is driven by parents preferences for one or

the other sex, not by gains from treatment. Therefore, CD should also hold in this application.

Finally, CD is plausible in studies with large �rst-stage coe�cients, as is the case in Barua

& Lang (2010) or Du�o & Saez (2003), for example. In studies with large �rst stages, com-

pliers largely outnumber de�ers. Therefore, one will be able to �nd a subgroup of compliers

accounting for the same percentage of the population as de�ers and with the same LATE,

unless the e�ect of the treatment is utterly di�erent in the two populations.

On the other hand, there are still instances in which even CD could fail, because none of the

aforementioned criteria is satis�ed. For instance, Doyle (2007) considers the e�ect of placement

into foster care on teen motherhood and juvenile delinquency, and uses the placement rates of

randomly assigned investigators as an instrument. Theory does not suggest that foster care

should impact these outcomes in one speci�c direction. Besides, in this application we do

not know what drives selection into being a complier or a de�er, because we do not observe

the criteria investigators use when making their decisions. If some base their decision on

a variable correlated to the e�ect of the treatment, de�ers and compliers might have very

di�erent treatment e�ects. Finally, placement rates do not greatly vary across investigators,
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so the �rst stage is not very strong in this study.

Overall, estimates from 2SLS studies in which de�ers could be present can still credibly be in-

terpreted as causal e�ects, provided the CD condition I propose in this paper sounds plausible.

Even this weaker condition could sometimes fail, so it should not be taken for granted.

Other papers have studied relaxations of the �no-de�ers� condition. Klein (2010) considers a

model in which a disturbance uncorrelated with treatment e�ects leads some subjects to defy.

By contrast, under my CD condition the factors leading some subjects to defy can be corre-

lated with treatment e�ects. Small & Tan (2007) show that under a stochastic monotonicity

condition, 2SLS estimates a weighted average treatment e�ect. Nevertheless, some of their

weights are greater than one, so their parameter does not capture the e�ect of the treatment

for a well-de�ned subgroup, making it hard to interpret. Moreover, stochastic monotonicity is

a stronger condition than CD. DiNardo & Lee (2011) derive a result similar to Small & Tan

(2007). Huber & Mellace (2012) consider a local monotonicity assumption which requires that

there be only compliers or de�ers conditional on each value of the outcome. My CD condition

allows for both compliers and de�ers conditional on the outcome. Finally, Hoderlein & Gautier

(2012) consider a model where there can be both de�ers and compliers. But they require a

continuous instrument, while my results hold for a binary or multivariate instrument.

The remainder of the paper is organized as follows. In Section 2, I show that 2SLS still

estimates a LATE under the CD condition. In Section 3, I derive easily interpretable conditions

under which CD is satis�ed, and I review various applications. In Section 4, I show that my

CD condition is testable. In Section 5, I show how to draw inference on the various quantities

I suggest to estimate in the paper.1 Section 6 concludes. Proofs are deferred to the Appendix.

For the sake of brevity, I consider a number of extensions in a paper gathering supplementary

material (see de Chaisemartin, 2014). In this paper, I show how one can estimate the mean

of any characteristic (age, sex...) in the population whose LATE is estimated under my CD

assumption, and how my results extend to multivariate treatment and instrument.

2 LATE identi�cation under the �compliers-de�ers� assumption

In this section, I show that with a binary instrument at hand, one can identify the LATE of a

binary treatment on some outcome under a weaker assumption than �no-de�ers�. The results

presented in this section extend to more general settings with covariates, and multivariate

instrument and treatment. These extensions are deferred to the supplementary material.

1A Stata program is available upon request.
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Angrist et al. (1996) study the causal interpretation of the coe�cients of a 2SLS regression

with binary instrument and treatment. Let Z be a binary instrument. Let Dz ∈ {0; 1}
denote a subject's potential treatment when Z = z. Let Ydz denote her potential outcomes

as functions of the treatment and of the instrument. Only Z, D = DZ and Y = YDZ are

observed. Following Imbens & Angrist (1994), let never takers (NT ) be subjects such that

D0 = 0 and D1 = 0, let always takers (AT ) be such that D0 = 1 and D1 = 1, let compliers (C)

be such that D0 = 0 and D1 = 1, and let de�ers (F )2 be such that D0 = 1 and D1 = 0. Let

FS = P (D = 1|Z = 1)−P (D = 1|Z = 0) denote the probability limit of the coe�cient of the

�rst stage regression of D on Z. Let RF = E(Y |Z = 1)−E(Y |Z = 0) denote the probability

limit of the coe�cient of the reduced form regression of Y on Z. Finally, let W = RF
FS denote

the probability limit of the coe�cient of the second stage regression of Y on D.

Angrist et al. (1996) make a number of assumptions. First, they assume that FS > 0.

Under Assumption 1 (see below), this implies that more subjects are compliers than de�ers:

P (C) > P (F ). This is a mere normalization: if it appears from the data that FS < 0, one

can switch the words �de�ers� and �compliers� in what follows.

Second, they assume that the instrument is independent of potential treatments and outcomes.

Assumption 1 (Instrument independence)

(Y00, Y01, Y10, Y11, D0, D1) ⊥⊥ Z.

Third, they assume that the instrument has no direct e�ect on the outcome.

Assumption 2 (Exclusion restriction)

∀d ∈ {0, 1},
Yd0 = Yd1 = Yd.

Last, they assume that there are no de�ers in the population, or that de�ers and compliers

have the same average treatment e�ect.

Assumption 3 (No-de�ers: ND)

P (F ) = 0.

Assumption 4 (Equal LATEs for de�ers and compliers: ELATEs)

E(Y1 − Y0|C) = E(Y1 − Y0|F ).

2In most of the treatment e�ect literature, treatment is denoted by D. To avoid confusion, de�ers are

denoted by the letter F throughout the paper.
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The following proposition summarizes the three main results in Angrist et al. (1996).

LATE Theorems (Angrist et al. (1996))

1. Suppose Assumptions 1 and 2 hold. Then,

FS = P (C)− P (F ) (1)

W =
P (C)E (Y1 − Y0|C)− P (F )E (Y1 − Y0|F )

P (C)− P (F )
. (2)

2. Suppose Assumptions 1, 2, and 3 hold. Then,

FS = P (C) (3)

W = E (Y1 − Y0|C) . (4)

3. Suppose Assumptions 1, 2, and 4 hold. Then,

W = E (Y1 − Y0|C) . (5)

Under random instrument and exclusion restriction alone, W cannot receive a causal interpre-

tation, as it is equal to a weighted di�erence of the LATEs of compliers and de�ers. If there

are no de�ers, (1) and (2) respectively simplify into (3) and (4). W is then equal to the LATE

of compliers, while FS is equal to the percentage of the population they account for. Finally,

when ND does not sound credible, W can still capture the LATE of compliers provided one

is ready to assume that de�ers and compliers have the same LATE, as shown in (5).

In this paper, I substitute the following condition to Assumption 3 or 4.

Assumption 5 (Compliers-de�ers: CD)

There is a subpopulation of compliers CF which satis�es:

P (CF ) = P (F ) (6)

E(Y1 − Y0|CF ) = E(Y1 − Y0|F ). (7)

CD is satis�ed if a subgroup of compliers accounts for the same percentage of the population

as de�ers and has the same LATE. I call this subgroup �compliers-de�ers�, or �com�ers�. The

CD condition is somewhat abstract. In section 3, I derive a number of easily interpretable

conditions under which it is satis�ed. For now, let me just note that CD is weaker than

Assumptions 3 and 4. If there are no de�ers, one can �nd a zero probability subset of compliers

with the same LATE as de�ers. Similarly, if compliers and de�ers have the same LATE, one

can randomly choose P (F )
P (C)% of compliers and call them com�ers: this will yield a subgroup

accounting for the same percentage of the population and with the same LATE as de�ers.

I can now state the main result of this paper.
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Theorem 2.1 Suppose Assumptions 1 and 2 hold.

If a subpopulation of compliers CF satis�es (6) and (7), then CV = C \ CF satis�es

P (CV ) = FS (8)

E (Y1 − Y0|CV ) = W. (9)

Conversely, if a subpopulation of compliers CV satis�es (8) and (9), then CF = C\CV satis�es

(6) and (7).

Proof

⇒
FS = P (C)− P (F ) = P (CV ) + P (CF )− P (F ) = P (CV ).

The �rst equality follows from (1), the last follows from (6). This proves that CV satis�es (8).

Then,

E (Y1 − Y0|C) = P (CV |C)E (Y1 − Y0|CV ) + P (CF |C)E (Y1 − Y0|CF )

=
P (C)− P (F )

P (C)
E (Y1 − Y0|CV ) +

P (F )

P (C)
E (Y1 − Y0|F ) ,

where the last equality follows from (6) and (7). Plugging this into (2) yields

W = E (Y1 − Y0|CV ) .

This proves that CV satis�es (9).

⇐
P (CF ) = P (C)− P (CV ) = P (C)− FS = P (C)− (P (C)− P (F )) = P (F ).

The second step follows from (8), the third follows from (1). This proves that CF satis�es (6).

Then,

E (Y1 − Y0|C) = P (CV |C)E (Y1 − Y0|CV ) + P (CF |C)E (Y1 − Y0|CF )

=
FS

P (C)
W +

P (F )

P (C)
E (Y1 − Y0|CF ) ,

where the last equality follows from (8), (9), and (6). Plugging this Equation into (2) yields

E (Y1 − Y0|F ) = E (Y1 − Y0|CF ) .

This proves that CF satis�es (7).

QED.

The intuition for this result goes as follows. Under CD, com�ers and de�ers cancel one another

out, and the 2SLS coe�cient captures the e�ect of the treatment for the remaining part of
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compliers. I hereafter refer to the CV subpopulation as �compliers-survivors�, or �comvivors�,

as they are compliers who �out-survive� de�ers.

Theorem 2.1 shows that 2SLS captures a LATE under a weaker assumption than ND. Notwith-

standing, this LATE is not the same as the LATE of compliers, as it only applies to a subgroup

of compliers. This raises the question of whether this LATE is an �interesting� parameter.

From most economists' perspective, a su�cient condition for a treatment e�ect parameter to be

deemed interesting is its policy relevance. Some authors do not regard the LATE of compliers

as policy relevant: to decide whether she should give some treatment to her population, a

utilitarian social planner needs to know the average treatment e�ect (ATE), not the LATE

(see e.g. Heckman & Urzúa (2010)). Proponents of the LATE of compliers generally put

forward two reasons why this planner might still care about the LATE. I shall now summarize

these two arguments, and argue that while they apply to the LATE of compliers in a world

without de�ers, they apply to the LATE of comvivors in a world with de�ers.

Sometimes the policy the planner is contemplating is not whether she should give or not

the treatment to her population, but whether she should marginally increase incentives for

treatment. In judges papers, the relevant policy question is probably not whether the planner

should send every defendant to jail, but whether defendants with marginal cases should go to

jail, something the planner can manipulate by hiring marginally more severe or more lenient

judges. In a world without de�ers, compliers are the only subjects a�ected by marginal policy

changes, so they are the relevant population the planner should consider when making this

type of decision (see e.g. Imbens (2010)). In a world with de�ers, compliers are no longer

the only group a�ected by such policies. Marginal increases in incentives for treatment lead

compliers to receive the treatment, and have the opposite e�ect on de�ers. But under the CD

assumption, com�ers and de�ers cancel one another out, so the planner should not take them

into account. The relevant population she should consider are comvivors, because they are

a�ected by her policy, while their LATE is not netted out by that of another population.

Even when the planner contemplates whether she should give the treatment to her population,

Imbens (2010) argues that knowing the LATE of compliers can be useful. As an example, he

considers a randomized evaluation of the e�ect of a drug on survival rate with imperfect com-

pliance. Because of imperfect compliance, the ATE can only be bounded (see Manski, 1990),

and Imbens (2010) assumes that the bounds are
[
− 3

16 ,
5
16

]
. Despite imperfect compliance, one

can also credibly point-identify the LATE of compliers, provided there are no de�ers. Imbens

then argues that one should report the LATE of compliers along with the bounds on the

ATE: �The bounds on the ATE can be consistent with a substantial negative average e�ect

for compliers, lowering survival rates by 1
4 , or with a substantial positive average e�ect for

8



compliers, raising survival rates by 1
4 . One would think that, in the �rst case, a decision maker

would be considerably less likely to implement universal adoption of the treatment than in the

second, and so reporting only the bounds might leave out relevant information.� In a world

with de�ers, this argument is not valid anymore, as the LATE of compliers can no longer be

credibly estimated. But under the CD assumption, one can credibly estimate the LATE of

comvivors. It is this parameter which should be reported along with bounds on the ATE.

3 Su�cient conditions for �compliers-de�ers� to hold

A great appeal of the ND condition is that it is simple to interpret. On the contrary, CD

is an abstract condition. In this section, I try to clarify its meaning by deriving more inter-

pretable conditions under which it is satis�ed. All these conditions point towards the same

interpretation of the CD condition. CD is more likely to hold if there are few de�ers, or if

de�ers and compliers treatment e�ects are not too di�erent. It is also more likely to hold when

the instrument has a stronger �rst stage. Based on these results, I suggest various quantities

practitioners can estimate to assess whether CD is likely to hold in their application.

3.1 Su�cient conditions with a binary outcome

Consider the two following assumptions.

Assumption 6 (Restriction on the sign of the LATE of de�ers)

E(Y1 − Y0|F ) and W have the same sign, or either of these two quantities is equal to 0.

Assumption 7 (Restriction on the di�erence between compliers' and de�ers' LATE)

|E(Y1 − Y0|C)− E(Y1 − Y0|F )| ≤ ∆(P (F )) =
|RF |

FS + P (F )
= |W | FS

FS + P (F )
.

Assumption 6 requires that the LATE of de�ers has the same sign as the 2SLS coe�cient. It

is appealing in applications in which the sign of the treatment e�ect can be assumed to be

known ex-ante, which is often called a monotone treatment response assumption (MTR, see

Manski, 1997). Note that Assumption 6 is weaker than MTR as it only restricts the sign of

the average e�ect for a subgroup.

Assumption 7 is a restriction on the di�erence between de�ers and compliers LATEs. The

upper bound on this di�erence, ∆(P (F )), is decreasing in the share of de�ers, and increasing

in |W | and FS. When P (F ) is low, compliers and de�ers can have di�erent LATEs under

Assumption 7. When P (F ) is large, compliers and de�ers LATEs should be fairly similar.

Assumption 7 is also more credible when the instrument has large �rst and second stages.

When the outcome is binary, Assumptions 6 and 7 are su�cient for CD to hold.
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Theorem 3.1 If Y0 and Y1 are binary, Assumption 7 ⇒ Assumption 6 ⇒ Assumption 5.

The �rst implication follows after some algebra. The second one states that if the LATE of

de�ers has the same sign as the 2SLS coe�cient (or if either of those two quantities is equal

to 0), CD is satis�ed. The intuition for this result goes as follows. With binary potential

outcomes, it follows from (2) that

RF = P (Y1 − Y0 = 1, C)− P (Y1 − Y0 = −1, C)

− (P (Y1 − Y0 = 1, F )− P (Y1 − Y0 = −1, F )) .

To �x ideas, suppose that Assumption 6 is satis�ed with E(Y1 − Y0|F ) and W greater than

0. W ≥ 0 implies RF ≥ 0. RF ≥ 0 combined with the previous equation implies that

P (Y1 − Y0 = 1, C) ≥ P (Y1 − Y0 = 1, F )− P (Y1 − Y0 = −1, F ).

Then, there are su�ciently many compliers with a strictly positive treatment e�ect to extract

from them a subgroup that will compensate de�ers' positive LATE.

Applications of Theorem 3.1

Maestas et al. (2013)

Maestas et al. (2013) study the e�ect of receiving disability insurance (DI) on labor market

participation. They use average allowance rates of randomly assigned examiners as an in-

strument for receipt of DI. Their 2SLS coe�cient is negative, so Assumption 6 will hold if

E(Y1 − Y0|F ) is not greater than 0. A su�cient condition for this to be true is the following

MTR condition: Y1 − Y0 ≤ 0. Theory suggests this is a credible assumption. By increasing

non-labor income, DI should unambiguously diminish labor supply.3

Aizer & Doyle (2013)

Aizer & Doyle (2013) study the e�ect of juvenile incarceration on high school completion. They

use average sentencing rates of randomly assigned judges as an instrument for incarceration.

Their 2SLS coe�cient is negative, so Assumption 6 will hold if E(Y1 − Y0|F ) ≤ 0. This is a

credible condition. Being incarcerated disrupts schooling and increases the chances a youth

form relationships with non-academically oriented peers. This should increase the chances of

drop-out. Prison education programs might have a positive e�ect on taste for schooling, but

it sounds implausible they can o�set schooling disruption and negative peer e�ects. Moreover,

it su�ces that incarceration have on average a negative e�ect among de�ers for CD to hold.

3The instrument used in Maestas et al. (2013) is multivariate. Theorem 3.1 can easily be extended to this

type of setting, assuming that Assumption 6 holds within the sample of cases delt with by each pair of judge.
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Angrist & Evans (1998)

Angrist & Evans (1998) study the e�ect of having a third child on mothers labor supply. Their

2SLS coe�cient is negative, so Assumption 6 will hold if E(Y1 − Y0|F ) is not greater than 0.

Here, theory is ambiguous on this restriction. Giving birth can have two countervailing e�ects

on labor market participation (see e.g. Blau & Robins, 1988). The cost of daycare acts as a

tax on mothers wage. This could reduce their participation. Other child costs (food...) act as

a negative income shock. This could increase participation.

But if there are not too many de�ers and de�ers' and compliers' LATE do not di�er too much,

Assumption 7 will be satis�ed. First, notice that

P (F ) ≤ min(P (D = 1|Z = 0), P (D = 0|Z = 1)) = P (F ). (10)

The share of de�ers must be lower than the percentage of treated observations among those

who do not receive the instrument, as this group includes always takers and de�ers. It must

also be lower than the percentage of untreated observations among those who receive the

instrument, as this group includes never takers and de�ers. In Angrist & Evans (1998),

P̂ (F ) = 37.2%: there cannot be more than 37.2% of de�ers.4 The left axis of Figure 1 shows

the sample counterpart of ∆(P (F )) for all values of P (F ) included between 0 and 37.2%.

The right axis shows the same quantity normalized by the standard deviation of the outcome.

Assumption 7 is satis�ed for values of P (F ) and |E(Y1 − Y0|C) − E(Y1 − Y0|F )| below the

green line. For instance, Assumption 7 holds if there are less than 5% of de�ers and compliers

and de�ers LATEs di�er by less than 7.2 percentage points, or 14.5% of a standard deviation.5

Figure 1: For all values of P (F ) and |E(Y1 − Y0|C) − E(Y1 − Y0|F )| below
the green line, CD is satis�ed in Angrist & Evans (1998).

4In Section 5, I derive a 95% con�dence upper bound for P (F ) and �nd it is equal to 37.4%.
5The 95% con�dence interval of ∆(0.05) is [0.044,0.100]. In Stata, one can use reg3 and nlcom to derive it.
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The very limited evidence available suggests that 5% is a reasonably conservative upper bound

for the share of de�ers in this application. In the 2012 Peruvian wave of the Demographic and

Health Surveys, women were asked their ideal sex sibship composition. Among women whose

�rst two kids is a boy and a girl, 1.8% had 3 children or more and retrospectively declare that

their ideal sex sibship composition would have been two boys and no girl, or no boy and two

girls. These women seem to have been induced to having a third child because their �rst two

children were a boy and a girl. To the best of my knowledge, similar questions have never been

asked in an American survey. There are many reasons why 1.8% could under or overestimate

the share of de�ers in the American population. But this �gure is, as of now, the best piece

of evidence available to make a guess on the percentage of de�ers in Angrist & Evans (1998).

5% therefore sounds like a reasonably conservative upper bound.

15% of a standard deviation also sounds like a reasonably conservative upper bound for

|E(Y1−Y0|C)−E(Y1−Y0|F )| in this application. Compliers are couples with a preference for

diversity, while de�ers are sex-biased couples. Preference for diversity and sex bias are prob-

ably correlated with some of the variables entering into mothers labor market participation

equation (mother's potential wage, preference for leisure...), but they are generally not directly

included into this equation (see e.g. Blau & Robins, 1988). As a result, 15% of a standard

deviation is probably a reasonably conservative upper bound for |E(Y1−Y0|C)−E(Y1−Y0|F )|,
because selection into being a complier or a de�er is not directly based on gains from treatment.

Estimates in Maestas et al. (2013), Aizer & Doyle (2013), and Angrist & Evans (1998) might

not capture the LATE of compliers because of de�ers, but they most probably capture the

LATE of comvivors, because either Assumption 6 or 7 seem likely to hold in these applications.

In other instances, Assumptions 6 and 7 might not sound credible. One might therefore want

to investigate how the results of a study would be a�ected if de�ers do not satisfy either

of these two assumptions. To conclude this section, I conduct a worst-case analysis, and

study the largest possible negative impact de�ers can have on the external validity of 2SLS

estimates. Let C1
V denote the largest subpopulation of compliers with a LATE equal to W .

For any (p, e) ∈ [0, P (F )]× [−1, 1], let

λ(p, e) = min

(
max

(
0, 1 +

p× e
RF

)
, 1

)
.

Theorem 3.2 Assume Y0 and Y1 are binary. If P (F ) ≤ p, and either RF > 0 and E(Y1 −
Y0|F ) ≥ e, or RF < 0 and E(Y1 − Y0|F ) ≤ e,

λ(p, e)× FS ≤ P
(
C1
V

)
.

Application of Theorem 3.2: Du�o & Saez (2003).
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I use Theorem 3.2 to show that results in Du�o & Saez (2003) are very robust to de�ers. This

paper studies the e�ect of attending an information meeting on the take-up of a retirement

plan. The authors �nd F̂S = 23% and Ŵ = 6.1%. If E(Y1−Y0|F ) ≥ 0, it follows from Theo-

rem 3.1 that Ŵ consistently estimates the e�ect of the treatment for a subgroup accounting for

23% of the population. But E(Y1−Y0|F ) ≥ 0 might not sound credible. Here, de�ers are peo-

ple who do not like to do what they are being told, so the meeting might have a negative e�ect

on their participation decision. Now, let p = P̂ (D = 1|Z = 0)× P̂ (D = 0|Z = 1) = 3.5%. p is

a worst case upper bound for the share of de�ers under the assumption that the two potential

treatments are positively correlated. It is only slightly smaller than P̂ (F ), the worst-case

upper bound for the share of de�ers, which is equal to 4.9%. The blue line on Figure 2 plots

the sample counterpart of the lower bound of P
(
C1
V

)
derived in Theorem 3.2 for all possible

values of E(Y1−Y0|F ). The red line on this �gure is at E(Y1−Y0|F ) = −0.13, which is equal

to −50% of the standard deviation of the outcome in this study. The intersection between

these two lines tells us that even if one is only ready to assume that P (F ) ≤ 0.035, and that

E(Y1 − Y0|F ) is greater than -50% of the standard deviation of the outcome, one can still

claim that Ŵ consistently estimates the LATE of a population of compliers accounting for

at least 15.5% of the population. Even for these extreme values of P (F ) and E(Y1 − Y0|F ),

de�ers might at most slightly reduce the external validity of the 2SLS coe�cient.

Figure 2: Lower bound for the size of the population to which results in

Du�o & Saez (2003) apply, as a function of E(Y1 − Y0|F ).

In Du�o & Saez (2003), the reduced form is strong and two-sided imperfect compliance is

close to being one sided. Applications meeting these two requirements are robust to almost

any type of de�ers. If the reduced form is large and, say, positive, λ(p, e) is not decreasing

too quickly when e becomes negative. If two-sided imperfect compliance is close to being one-
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sided, meaning either that few subjects are treated when Z = 0 or that few remain untreated

when Z = 1, there cannot be too many de�ers. Du�o & Saez (2003) is not the only paper

meeting these two requirements. In judges papers, one could rede�ne a binary instrument

equal to 1 if a case was assigned to one of the most severe judges, say to one in the upper

quartile of sentencing rates, and to 0 if it was assigned to one of the least severe judges. This

instrument will have a large �rst stage, and is therefore likely to have a large reduced form.

Imperfect compliance should be close to one-sided: the least severe judges probably have a low

sentencing rate. If this robustness check yields similar results to that of the main speci�cation,

which most often in these papers directly uses sentencing rate as the instrument, this will be

reassuring, as this modi�ed instrument is robust to almost any type of de�ers.

3.2 Su�cient condition with a general outcome

The su�cient conditions I derived thus far only apply to binary outcomes. I now consider a

condition applying to any type of outcome.

Assumption 8 (More compliers than de�ers: MC)

For every δ in the support of Y1 − Y0,

fY1−Y0|F (δ)

fY1−Y0|C(δ)
≤ R(P (F )) = 1 +

FS

P (F )
. (11)

I call this condition the more compliers than de�ers condition. Indeed, it follows from (1) that

R(P (F )) = P (C)
P (F ) . Therefore, (11) is equivalent to

P (F |Y1 − Y0) ≤ P (C|Y1 − Y0). (12)

(12) requires that each subgroup of the population with the same value of Y1 − Y0 comprise

more compliers than de�ers. This condition is weaker but closely related to the stochastic

monotonicity assumption in Small & Tan (2007).

As shown in Angrist et al. (1996), 2SLS captures a LATE if there are no de�ers, or if de�ers

and compliers have the same distribution of Y1 − Y0. These assumptions are �polar cases� of

MC. MC holds when de�ers and compliers have the same distribution of Y1 − Y0, as the left

hand side of (11) is then equal to 1, while its right hand side is greater than 1.6 And MC

also holds when there are no de�ers, as the right hand side of (11) is then equal to +∞. In

between those polar cases, MC holds in many intermediate cases. R(P (F )) is decreasing in

P (F ). If there are many de�ers, Assumption 8 will be satis�ed if the distributions of Y1 − Y0

among compliers and de�ers are not too di�erent. Conversely, if these two distributions are

6I have assumed, as a mere normalization, that FS > 0.
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very di�erent, Assumption 8 can still be satis�ed if there are few de�ers. R(P (F )) is also

increasing in FS: MC is more likely to hold when the instrument has a strong �rst stage.

The next theorem shows that MC is a su�cient condition for CD to hold.

Theorem 3.3 Assumption 8 ⇒ Assumption 5.

To convey the intuition of this Theorem, I consider the example displayed in Figure 3. Y0 and

Y1 are binary. The population bears 20 subjects. 13 of them are compliers, while 7 are de�ers.

Those 20 subjects are scattered over the three Y1 − Y0 cells as shown in Figure 3. MC holds

as there are more compliers than de�ers in each cell.

Y(1)-Y(0) P(Y(1)-Y(0)=.,F) P(Y(1)-Y(0)=,C)

-1 0.1 0.2

0 0.05 0.3

1 0.1 0.25

Y(1)-Y(0) P(Y(1)-Y(0)=.,F) P(Y(1)-Y(0)=.,CF) P(Y(1)-Y(0)=.,CV)

-1 0.1 0.1 0.1

0 0.05 0.05 0.25

1 0.1 0.1 0.15

P(Y(0)=0,Y(1)=0,C)=0.40 P(Y(0)=0,Y(1)=1,C)=0.15

P(Y(0)=0,Y(1)=0,F)=0.05 P(Y(0)=0,Y(1)=1,F)=0.05

P(Y(0)=1,Y(1)=0,C)=0.15 P(Y(0)=1,Y(1)=1,C)=0.05

P(Y(0)=1,Y(1)=0,F)=0.10 P(Y(0)=1,Y(1)=1,F)=0.05

P*(Y(1)=0)=42.4% P*(Y(1)=1)=57.6%

P*(Y(1)=0,C)=3.1% P*(Y(1)=1,C)=2.9%

P*(Y(0)=0)=32.4% P*(Y(0)=0,Y(1)=0)=2.4% P*(Y(0)=0,Y(1)=1)=30%

P*(Y(0)=0,C)=2.4%P*(Y(0)=0,Y(1)=0,C)=2.4% P*(Y(0)=0,Y(1)=1,C)=0%

P*(Y(0)=1)=67.6% P*(Y(0)=1,Y(1)=0)=40% P*(Y(0)=1,Y(1)=1)=27.6%

P*(Y(0)=1,C)=3.6%P*(Y(0)=1,Y(1)=0,C)=0.7% P*(Y(0)=1,Y(1)=1,C)=2.9%

Y(1)-Y(0) Defiers Compliers

-1 f1 f2 c1 c2 c3

0 f3 f4 f5 c4 c5 c6 c7 c8

1 f6 f7 c9 c10 c11 c12 c13

Y(1)-Y(0) Defiers Comfiers Comvivors

-1 f1 f2 c1 c2 c3

0 f3 f4 f5 c4 c5 c6 c7 c8

1 f6 f7 c9 c10 c11 c12 c13

0

1

          Y(1)     

Y(0)
0 1

Figure 3: A population in which MC is satis�ed.

To construct CF , one can merely pick up as many compliers as de�ers in each of the three

Y1 − Y0 strata. The resulting CF and CV populations are displayed in Figure 4. Com�ers

account for the same percentage of the population as de�ers and also have the same LATE.

Y(1)-Y(0) P(Y(1)-Y(0)=.,F) P(Y(1)-Y(0)=,C)

-1 0.1 0.2

0 0.05 0.3

1 0.1 0.25

Y(1)-Y(0) P(Y(1)-Y(0)=.,F) P(Y(1)-Y(0)=.,CF) P(Y(1)-Y(0)=.,CV)

-1 0.1 0.1 0.1

0 0.05 0.05 0.25

1 0.1 0.1 0.15

P(Y(0)=0,Y(1)=0,C)=0.40 P(Y(0)=0,Y(1)=1,C)=0.15

P(Y(0)=0,Y(1)=0,F)=0.05 P(Y(0)=0,Y(1)=1,F)=0.05

P(Y(0)=1,Y(1)=0,C)=0.15 P(Y(0)=1,Y(1)=1,C)=0.05

P(Y(0)=1,Y(1)=0,F)=0.10 P(Y(0)=1,Y(1)=1,F)=0.05

P*(Y(1)=0)=42.4% P*(Y(1)=1)=57.6%

P*(Y(1)=0,C)=3.1% P*(Y(1)=1,C)=2.9%

P*(Y(0)=0)=32.4% P*(Y(0)=0,Y(1)=0)=2.4% P*(Y(0)=0,Y(1)=1)=30%

P*(Y(0)=0,C)=2.4%P*(Y(0)=0,Y(1)=0,C)=2.4% P*(Y(0)=0,Y(1)=1,C)=0%

P*(Y(0)=1)=67.6% P*(Y(0)=1,Y(1)=0)=40% P*(Y(0)=1,Y(1)=1)=27.6%

P*(Y(0)=1,C)=3.6%P*(Y(0)=1,Y(1)=0,C)=0.7% P*(Y(0)=1,Y(1)=1,C)=2.9%

Y(1)-Y(0) Defiers Compliers

-1 f1 f2 c1 c2 c3

0 f3 f4 f5 c4 c5 c6 c7 c8

1 f6 f7 c9 c10 c11 c12 c13

Y(1)-Y(0) Defiers Comfiers Comvivors

-1 f1 f2 c1 c2 c3

0 f3 f4 f5 c4 c5 c6 c7 c8

1 f6 f7 c9 c10 c11 c12 c13

0

1

          Y(1)     

Y(0)
0 1

Figure 4: This population also satis�es CD.

Application of Theorem 3.3: Barua & Lang (2010)

Barua & Lang (2010) argue that using quarter of birth (QOB) as an instrument for school entry

age might produce severely biased estimates of the e�ect of entry age on attainment because

of de�ers. First, they show that the cdf of entry age for children born in the fourth quarter of

1952 does not stochastically dominate that of those born in the �rst quarter. If there were no

de�ers, one should observe dominance (see Angrist & Imbens, 1995). Then, they argue that

compliers and de�ers probably have very di�erent LATEs. De�ers are children redshirted by

their parents; children who bene�t the most from entering late are also the most likely to be

redshirted. Finally, they use an example to illustrate the potential magnitude of the bias.

I now argue that the QOB instrument might still capture a well-de�ned LATE.
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I �rst show that in Barua & Lang (2010), one can identify the share of compliers and de�ers

under a mild assumption. In their data, children born in Q4 enter school at either 3.75, 4.75,

or 5.75 years old. Those born in Q1 enter at either 4.5, 5.5, or 6.5 years old. I assume QOB

can a�ect entry age by one year at most: for instance, a child born in Q1 who entered when

she was 4.5 years old would either have entered at 3.75 or 4.75 years old if she had been born

in Q4. Under this restriction, one can use the distributions of school entry age of children

born in Q4 and Q1 to recover the joint distribution of the two counterfactual entry ages of

the same child if she had been born in Q4 or Q1. Let A0 and A1 denote these counterfactuals.

Table 1 shows their joint distribution. The three groups on the diagonal are compliers: being

born in Q1 induces them to enter three quarters later than if they had been born in Q4. The

two groups below the diagonal are de�ers: being born in Q1 induces them to enter one quarter

sooner. The population therefore bears 65% of compliers and 35% of de�ers.

A0 / A1 4.5 5.5 6.5

3.75 6% 0% 0%

4.75 3% 46% 0%

5.75 0% 32% 13%

Table 1: In Barua & Lang (2010), there are 35% de�ers and 65% compliers.

Compliers outnumber de�ers, and their entry age is more a�ected by the instrument than

de�ers'. As a result, 2SLS can still capture a LATE in this application under a mild �more

compliers than de�ers� assumption. To simplify the discussion, I assume that the e�ect of

entering school at age x + d quarters instead of x does not depend on x and is linear in d:

Y0.25(x+d) − Y0.25x = ∆d = d∆1.
7 Under this assumption, the reduced form regression of

educational attainment on QOB captures a weighted di�erence of the e�ect of entering one

quarter later for compliers and de�ers:

RF = E(∆3|C)P (C)− E(∆1|F )P (F ) = 3E(∆1|C)P (C)− E(∆1|F )P (F ). (13)

If
f∆1|F (δ)

f∆1|C(δ)
≤ 3× P (C)

P (F )
= 5.57, (14)

there is a subgroup of compliers denoted CF such that

E(∆1|CF ) = E(∆1|F )

P (CF ) =
P (F )

3
.

7This assumption simpli�es the exposition without a�ecting the substantive conclusions of the discussion.
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E(∆1|F )P (F ) is netted out by 3E(∆1|CF )P (CF ) in (13), and the 2SLS coe�cient �nally

captures the LATE of comvivors. This almost directly follows from Theorems 2.1 and 3.3.

There is a slight di�erence though, arising from the multivariate nature of the treatment. (13)

includes e�ects of entering school three quarters later for compliers, and only one quarter later

for de�ers. As a result, the right hand side of (14) is three times larger than that of (11).

I now consider a simple parametric model nested in the numerical example of Barua & Lang

in which (14) is satis�ed. Barua & Lang assume that entering school one quarter later al-

ways increases children's educational attainment, and that de�ers and compliers LATEs are

respectively equal to 1.5 and 0.5. I will further assume that entering school one quarter

later cannot increase educational attainment by more than two years, and that treatment

e�ects for compliers and de�ers follow truncated geometric distributions on {0, 1, 2}, with
respective parameters pC and pF . Under this geometric assumption, (14) holds if and only if(

1−pF
1−pC

)2
≤ 5.57. Solving the two moments conditions imposed by Barua & Lang for pC and

pF yields pC = 0.63 and pF = 0.18. For these values of pC and pF , (14) is satis�ed.

There are other models nested in their example in which MC fails. For instance, if all compliers

have a treatment e�ect equal to 0.5 while all de�ers have a treatment e�ect equal to 1.5, both

MC and CD fail to hold. But the geometric example still shows that having many de�ers with

a very di�erent LATE from that of compliers is not su�cient for the QOB instrument to fail

to capture a well-de�ned LATE.

In Barua & Lang (2010), the supports of the treatment variable when Z = 0 and when Z = 1

are disjoint. One can then identify the percentage of de�ers under a mild assumption. In most

applications, this disjoint support condition will fail. For instance, it will never be satis�ed

with a binary treatment. As a result, P (F ) and R(P (F )) are not identi�ed. In such instances,

one can estimate R(P (F )) for plausible values of P (F ) to assess the credibility of the MC

condition. If one does not want to make any assumption on P (F ), one can also derive a worst

case lower bound for R(P (F )). P (F ) ≤ P (F ) indeed implies that

1 +
FS

P (F )
≤ R(P (F )). (15)

4 Testability

In this section, I show that random instrument, exclusion restriction, and CD have a testable

implication. Then, I discuss how the testable implications of random instrument, exclusion

restriction, and ND studied in Huber & Mellace (2012), Kitagawa (2013), and Mouri�e &

Wan (2014) relate to the CD condition.
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For any random variable X, let S(X) denote the support of X. Let Udz be a random variable

uniformly distributed on [0, 1] denoting the rank of an observation in the distribution of

Y |D = d, Z = z. If the distribution of Y |D = d, Z = z is continuous, Udz = FY |D=d,Z=z(Y ).

If the distribution of Y |D = d, Z = z is discrete, one can randomly allocate a rank to tied

observations by setting

Udz = FY |D=d,Z=z(Y
−) +R(FY |D=d,Z=z(Y )− FY |D=d,Z=z(Y

−)),

where R is uniformly distributed on [0, 1] and independent of (Y,D,Z), and Y − = sup{y ∈
S(Y |D = d, Z = z) : y < Y }.8 For every d ∈ {0, 1}, let pd = FS

P (D=d|Z=d) . Notice that both p0

and p1 are included between 0 and 1. Finally, let

L = E(Y |D = 1, Z = 1, U11 ≤ p1)− E(Y |D = 0, Z = 0, U00 ≥ 1− p0)

L = E(Y |D = 1, Z = 1, U11 ≥ 1− p1)− E(Y |D = 0, Z = 0, U00 ≤ p0).

Theorem 4.1 If Assumptions 1, 2, and 5 are satis�ed,

L ≤W ≤ L. (16)

The intuition of this result goes as follows. Under random instrument, exclusion restriction,

and CD, E(Y1 − Y0|CV ) is point identi�ed: following Theorem 2.1, it is equal to W . It

is also partially identi�ed. CV is included in {D = 0, Z = 0}, and it accounts for p0% of

this population. E(Y0|CV ) can therefore not be larger than the mean of Y0 of the p0% of

this population with largest Y0. It can also not be smaller than the mean of Y0 of the p0%

with lowest Y0 (see Horowitz & Manski, 1995). Combining this with a similar reasoning for

E(Y1|CV ) yields worst case bounds for E(Y1−Y0|CV ), L and L. The estimand of E(Y1−Y0|CV )

should lie within its bounds, hence the testable implication.

As pointed out in Balke & Pearl (1997) and Heckman & Vytlacil (2005), random instrument,

exclusion restriction, and ND also have testable implications. Huber & Mellace (2011), Kita-

gawa (2013), and Mouri�e & Wan (2014) have developed statistical tests of these implications.

I now discuss how these tests relate to the CD condition.

The test suggested in Huber & Mellace (2011) is not a test of CD. Huber & Mellace (2011) use

the fact that E(Y0|NT ) and E(Y1|AT ) are both point and partially identi�ed under random

instrument, exclusion restriction, and ND. For instance, E(Y |D = 0, Z = 1) is equal to

E(Y0|NT ) and E(Y |D = 0, Z = 0) is equal to (1− p0)E(Y0|NT ) + p0E(Y0|C). This implies

E(Y |D = 0, Z = 0, U00 ≤ 1− p0) ≤ E(Y |D = 0, Z = 1) ≤ E(Y |D = 0, Z = 0, U00 ≥ p0).

8Y − should be understood as −∞ if Y = inf{S(Y |D = d, Z = z)}.
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But under CD, E(Y |D = 0, Z = 1) is equal to P (NT )
P (NT )+P (F )E(Y0|NT ) + P (F )

P (NT )+P (F )E(Y0|F ),

so the previous implication need not be true anymore.

The test suggested in Kitagawa (2013) and Mouri�e & Wan (2014) is not a test of CD, but it

is a test of the CDM condition introduced hereafter.

Assumption 9 (Compliers-de�ers for marginals: CDM)

There is a subpopulation of C denoted CF which satis�es:

P (CF ) = P (F )

Y0|CF ∼ Y0|F

Y1|CF ∼ Y1|F.

The CDM condition requires that a subgroup of compliers have the same size and the same

marginal distributions of Y0 and Y1 as de�ers. It is stronger than CD. Following the logic

of Theorem 3.3, a su�cient condition for CDM to hold is that there be more compliers than

de�ers in each subgroup with the same value of (Y0, Y1):

P (F |Y0, Y1) ≤ P (C|Y0, Y1).

One can show that under CDM, the marginal distributions of Y0 and Y1 are identi�ed for

comvivors. The estimands are the same as in Imbens & Rubin (1997):

fY0|CV
(y0) =

P (D = 0|Z = 0)fY |D=0,Z=0(y0)− P (D = 0|Z = 1)fY |D=0,Z=1(y0)

P (D = 0|Z = 0)− P (D = 0|Z = 1)

fY1|CV
(y1) =

P (D = 1|Z = 1)fY |D=1,Z=1(y1)− P (D = 1|Z = 0)fY |D=1,Z=0(y1)

P (D = 1|Z = 1)− P (D = 1|Z = 0)
.

The procedures in Kitagawa (2013) and Mouri�e & Wan (2014) test whether the rhs of the

two previous equations are positive everywhere. Under CDM, these quantities are densities

so they must be positive. These procedures are therefore tests of CDM.

5 Inference

I use results from Andrews & Soares (2010) to draw inference on P (F ), R(P (F )), and P
(
C1
V

)
,

and to implement the test of CD described in the previous section.

It follows from Equation (10) that

P (F ) ≤ min(P (D = 1|Z = 0), P (D = 0|Z = 1)).

19



This rewrites as

0 ≤ E (D(1− Z)− P (Z = 0)P (F ))

0 ≤ E ((1−D)Z − P (Z = 1)P (F )) .

This de�nes a moment inequality model with an estimated parameter. Because D is binary,

this model satis�es all the conditions in Andrews & Soares (2010). One can therefore use their

method to derive a uniformly valid con�dence upper bound for P (F ). I apply their procedure

in Angrist & Evans (1998), and �nd that 37.4% is a 95% con�dence upper bound for P (F ).

It follows from Equation (15) that

R(P (F )) ≥ max

(
P (D = 1|Z = 1)

P (D = 1|Z = 0)
,
P (D = 0|Z = 0)

P (D = 0|Z = 1)

)
.

This rewrites as

0 ≤ E (R(P (F ))D(1− Z)P (Z = 1)−DZP (Z = 0))

0 ≤ E (R(P (F ))(1−D)ZP (Z = 0)− (1−D)(1− Z)P (Z = 1)) .

This also de�nes a moment inequality model with a preliminary estimated parameter. Because

Z and D are binary, it satis�es all the technical conditions required in Andrews & Soares

(2010). One can therefore use their method to derive a uniformly valid con�dence lower

bound for R(P (F )). I apply their procedure in Du�o & Saez (2003), and �nd that 4.82 is a

95% con�dence lower bound for R(P (F )).

One can also use Andrews & Soares (2010) to derive a con�dence lower bound for P (C1
V )

when the outcome is binary. Assume RF > 0. If one is ready to assume that P (F ) ≤ p and

E(Y1−Y0|F ) ≥ e for some negative e,9 it follows from Theorem 3.2 that max(0, 1+ pe
RF )FS ≤

P (C1
V ). If RF < 0 and one is ready to assume that P (F ) ≤ p and E(Y1− Y0|F ) ≤ e for some

positive e, max(0, 1 + pe
RF )FS ≤ P (C1

V ). This rewrites as

0 ≤ P (C1
V )

0 ≤ E{1{RF > 0, e ≤ 0}[P (C1
V )× Y (ZP (Z = 0)− (1− Z)P (Z = 1))

− FS × Y (ZP (Z = 0)− (1− Z)P (Z = 1) + pe)]

+ 1{RF < 0, e ≥ 0}[FS × Y (ZP (Z = 0)− (1− Z)P (Z = 1) + pe)

− P (C1
V )× Y (ZP (Z = 0)− (1− Z)P (Z = 1))]}.

This de�nes a moment inequality model with preliminary estimated parameters. Because Z,

D, and Y are binary, this model satis�es all the technical conditions required in Andrews

9For positive e, it follows from Theorem 3.1 that FS ≤ P (C1
V ).
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& Soares (2010). One can therefore use their method to derive a uniformly valid con�dence

lower bound for P (C1
V ).

Finally, I also rely on results from Andrews & Soares (2010) to implement the test described
in the previous section. Let θ satisfy the two following moment inequality conditions:

0 ≤ E
(

Y Z

P (Z = 1)
−
Y (1− Z)

P (Z = 0)
− FS

(
θ +

Y DZ1{U11 ≤ p1}
P (D = 1, Z = 1, U11 ≤ p1)

−
Y (1−D)(1− Z)1{U00 ≥ 1− p0}
P (D = 0, Z = 0, U00 ≥ 1− p0)

))
0 ≤ E

(
FS

(
θ +

Y DZ1{U11 ≥ 1− p1}
P (D = 1, Z = 1, U11 ≥ 1− p1)

−
Y (1−D)(1− Z)1{U00 ≤ p0}
P (D = 0, Z = 0, U00 ≤ p0)

)
−

(
Y Z

P (Z = 1)
−
Y (1− Z)

P (Z = 0)

))
.

This de�nes a moment inequality model with preliminary estimated parameters. This model

satis�es all the technical conditions required in Andrews & Soares (2010) if E(|Y |2+δ) < +∞
for some strictly positive δ, and if P (Z = 0), P (Z = 1), P (D = 1, Z = 1, U11 ≤ p1), P (D =

1, Z = 1, U11 ≥ 1 − p1), P (D = 0, Z = 0, U00 ≤ p0), and P (D = 0, Z = 0, U00 ≥ 1 − p0) are

all bounded by below by some strictly positive constant ε. Under these two mild restrictions,

I can use their result to construct a uniformly valid con�dence interval for θ. (16) is rejected

when 0 does not belong to this con�dence interval.

6 Conclusion

Until now, the causal interpretation of 2SLS coe�cients has relied on a �no-de�ers� assumption.

This assumption is questionable in a large number of studies. When it seems likely to fail, 2SLS

estimates can still be interpreted as causal e�ects provided the CD assumption is satis�ed.

Here are some steps applied researchers can follow to assess its credibility in their application.

When their outcome is binary, CD will be satis�ed if the LATE of de�ers has the same sign

as their 2SLS coe�cient. If theory suggests this is a credible restriction, they can invoke my

results to justify the validity of their estimates. With a binary outcome, CD will also be

satis�ed if the di�erence between compliers and de�ers LATEs is not larger than the absolute

value of their reduced form coe�cient divided by the sum of their �rst stage and of the

percentage of de�ers. They can estimate this quantity for reasonably conservative values of

the percentage of de�ers. If the resulting estimate is large while theory suggests compliers and

de�ers should not have utterly di�erent LATEs, they can also invoke my results. Finally, if

theory suggests de�ers LATE might not have the desired sign and could be very di�erent from

that of compliers, they can perform a worst-case analysis to assess the maximum negative

impact de�ers can have on the external validity of their results.

When they are interested in a non-binary outcome, CD will be satis�ed if the ratio of the

distributions of the treatment e�ect for de�ers and compliers is not larger than the ratio of

the percentages of compliers and de�ers. They can estimate this second ratio for conservative

values of the percentage of de�ers. If the resulting estimate is large while theory suggests
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compliers and de�ers should not have very di�erent distributions of their treatment e�ects,

CD should be satis�ed.

When this is possible, they can also rede�ne their instrument in a way which maximizes its

�rst stage. CD is indeed more likely to be satis�ed when the instrument has a large rather

than a weak �rst stage, so this modi�ed instrument will be very robust to de�ers.

When none of these exercises prove conclusive, they should be more careful when interpreting

their results, as their estimate might fail to capture a causal e�ect.
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A Proofs

In the proofs, I assume the probability distributions of Y1 − Y0, Y1 − Y0|C and Y1 − Y0|F
are all dominated by the same measure λ. Let fY1−Y0 , fY1−Y0|C , and fY1−Y0|F denote the

corresponding densities. I also adopt the convention that 0
0 × 0 = 0.

Lemma A.1 1. A subpopulation of compliers CF satis�es (6) and (7) if and only if there

is a real-valued function g de�ned on S(Y1 − Y0) such that

0 ≤ g(δ) ≤ fY1−Y0|C(δ)P (C) for λ-almost every δ ∈ S(Y1 − Y0) (17)∫
S(Y1−Y0)

g(δ)dλ(δ) = P (F ) (18)∫
S(Y1−Y0)

δ
g(δ)

P (F )
dλ(δ) = E(Y1 − Y0|F ). (19)

2. A subpopulation of compliers CV satis�es (8) and (9) if and only if there is a real-valued

function h de�ned on S(Y1 − Y0) such that

0 ≤ h(δ) ≤ fY1−Y0|C(δ)P (C) for λ-almost every δ ∈ S(Y1 − Y0) (20)∫
S(Y1−Y0)

h(δ)dλ(δ) = FS (21)∫
S(Y1−Y0)

δ
h(δ)

FS
dλ(δ) = W. (22)

Proof of Lemma A.1:

In view of Theorem 2.1, the proof will be complete if I can show the if part of the �rst

statement, the only if part of the second statement, and �nally that if a function h satis�es

(20), (21), and (22), then a function g satis�es (17), (18), and (19).

I start proving the if part of the �rst statement. Assume a function g satis�es (17), (18), and

(19). Densities being uniquely de�ned up to 0 probability sets, I can assume without loss of

generality that those three equations hold everywhere. Let

p(δ) =
g(δ)

fY1−Y0|C(δ)P (C)
1{fY1−Y0|C(δ) > 0}.
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It follows from (17) that p(δ) is always included between 0 and 1. Then, let B be a Bernoulli

random variable such that P (B = 1|C, Y1 − Y0 = δ) = p(δ). Finally, let CF = {C,B = 1}.

P (CF ) = E(P (CF |Y1 − Y0))

= E(P (C|Y1 − Y0)P (B = 1|C, Y1 − Y0))

= E

(
P (C|Y1 − Y0)

g(Y1 − Y0)

fY1−Y0|C(Y1 − Y0)P (C)
1{fY1−Y0|C(Y1 − Y0) > 0}

)
= E

(
g(Y1 − Y0)

fY1−Y0(Y1 − Y0)

)
=

∫
S(Y1−Y0)

g(δ)dλ(δ)

= P (F )

The �rst equality follows from the law of iterated expectations, the second from the de�nition

of CF and Bayes, the third from the de�nition of B, the fourth from the fact that under (17),

fY1−Y0|C(δ)P (C) = 0⇒ g(δ) = 0, and the last from (18). This proves that CF satis�es (6).

Then,

E(Y1 − Y0|CF ) =
E((Y1 − Y0)1{CF })

P (CF )

=
E((Y1 − Y0)P (CF |Y1 − Y0))

P (CF )

=
E
(

(Y1 − Y0) g(Y1−Y0)
fY1−Y0

(Y1−Y0)

)
P (CF )

=

∫
S(Y1−Y0)

δ
g(δ)

P (F )
dλ(δ)

= E(Y1 − Y0|F ).

The fourth equality follows from (6) and the �fth from (19). This proves that CF satis�es (7).

I now prove the only if part of the second statement. Assume a subset of C denoted CV

satis�es (8) and (9). Then h = fY1−Y0|CV
P (CV ) must satisfy (20), otherwise we would not

have CV ⊆ C. It must also satisfy (21) and (22), otherwise CV would not satisfy (8) and (9).

I �nally show the last point. Assume h satis�es (20), (21), and (22). Then, it follows from (1)

and (2) that g = fY1−Y0|CP (C)− h satis�es (17), (18), and (19).

QED.

Proof of Theorem 3.1:

I assume that 0 ≤ RF . The proof is symmetric if RF ≤ 0. I also assume that the data does

not reject Assumption 5, i.e. that Equation (16) is satis�ed. This implies that RF ≤ FS.
I start proving the �rst implication. Rearranging (2) using (1) yields

E(Y1 − Y0|C)− E(Y1 − Y0|F ) =
FS

FS + P (F )
(W − E(Y1 − Y0|F )) .
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Assumption 7 is therefore equivalent to

|W − E(Y1 − Y0|F )| ≤W,

which implies that E(Y1 − Y0|F ) ≥ 0. This proves the �rst implication.

I now prove the second implication. To do so, I show that if Assumption 6 is satis�ed, there is

a function h1 satisfying (20), (21), and (22). In view of Lemma A.1, this will prove the result.

As I have assumed 0 ≤ RF , Assumption 6 rewrites as 0 ≤ E(Y1 − Y0|F ). With binary

outcomes this is equivalent to 0 ≤ P (Y1 − Y0 = 1, F ) − P (Y1 − Y0 = −1, F ). With binary

outcomes, (2) simpli�es to

P (Y1−Y0 = 1, C)−P (Y1−Y0 = −1, C) = RF+P (Y1−Y0 = 1, F )−P (Y1−Y0 = −1, F ). (23)

Once combined with (23), Assumption 6 implies

RF ≤ P (Y1 − Y0 = 1, C). (24)

Then, notice that

FS −RF − P (Y1 − Y0 = 0, C)

= 2P (Y1 − Y0 = −1, C)− (2P (Y1 − Y0 = −1, F ) + P (Y1 − Y0 = 0, F )) (25)

FS +RF − P (Y1 − Y0 = 0, C)

= 2P (Y1 − Y0 = 1, C)− (2P (Y1 − Y0 = 1, F ) + P (Y1 − Y0 = 0, F )). (26)

Now, consider the function h1 de�ned on {−1, 0, 1} and such that

h1(−1) = max

(
0,
FS −RF − P (Y1 − Y0 = 0, C)

2

)
h1(0) = min (P (Y1 − Y0 = 0, C), FS −RF )

h1(1) = max

(
RF,

FS +RF − P (Y1 − Y0 = 0, C)

2

)
.

If FS −RF ≤ P (Y1 − Y0 = 0, C),

h1(−1) = 0

h1(0) = FS −RF

h1(1) = RF.

h1(−1) is trivially included between 0 and P (Y1 − Y0 = −1, C). 0 ≤ h1(0) follows from

Equation (16). By assumption, we also have h1(0) ≤ P (Y1 − Y0 = 0, C) and 0 ≤ h1(1).

h1(1) ≤ P (Y1 − Y0 = 1, C) follows from (24). This proves that h1 satis�es (20). It is easy to

see that it also satis�es (21) and (22).
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If FS −RF > P (Y1 − Y0 = 0, C),

h1(−1) =
FS −RF − P (Y1 − Y0 = 0, C)

2
h1(0) = P (Y1 − Y0 = 0, C)

h1(1) =
FS +RF − P (Y1 − Y0 = 0, C)

2
.

h1(−1) is greater than 0 by assumption. h1(−1) ≤ P (Y1 − Y0 = −1, C) follows from (25).

h1(0) is trivially included between 0 and P (Y1 − Y0 = 0, C). h1(1) is greater than 0 because

it is greater than h1(−1). h1(1) ≤ P (Y1 − Y0 = 1, C) follows from (26). This proves that h1

satis�es (20). It is easy to see that it also satis�es (21) and (22).

QED.

Proof of Theorem 3.2

I only prove the result when RF > 0 (the proof is symmetric when RF < 0). If e ≥ 0, the

result directly follows from Theorem 3.1. If pe ≤ −RF , the result is trivial. Now, let (p, e)

be such that e < 0 and pe > −RF . We then have λ(p, e) = 1 + pe
RF . To prove the result, I

shall show that if P (F ) ≤ p and E(Y1 − Y0|F ) ≥ e, there is a real-valued function h de�ned

on {−1, 0, 1} satisfying (20) and∫
S(Y1−Y0)

h(δ)dλ(δ) = λ(p, e)FS (27)∫
S(Y1−Y0)

δ
h(δ)

λ(p, e)FS
dλ(δ) = W. (28)

This will prove the result, following the logic of Lemma A.1.

P (F ) ≤ p and E(Y1 − Y0|F ) ≥ e implies P (Y1 − Y0 = 1, F ) − P (Y1 − Y0 = −1, F ) ≥ pe.

Combining this with (23) implies

λ(p, e)RF ≤ P (Y1 − Y0 = 1, C). (29)

Now, consider the function h5 = λ(p, e)h1. It follows from (29), (25), and (26) that h5 satis�es

(20). It is easy to see that it also satis�es (27) and (28).

QED.

Proof of Theorem 3.3:

Under Assumption 8, g1 = fY1−Y0|FP (F ) satis�es (17), (18), and (19).

QED.

Proof of Theorem 4.1

Proving that L and L are valid bounds for E(Y1 − Y0|CV ) relies on a similar argument as the

proof of Proposition 1.a in Lee (2009). Due to a concern for brevity, I refer the reader to this

paper for this part of the proof. The testable implication directly follows.

QED.
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