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Abstract

We introduce the class of conditional linear combination tests, which reject
null hypotheses concerning model parameters when a data-dependent convex
combination of two identification-robust statistics is large. These tests control
size under weak identification and have a number of optimality properties in
a conditional problem. We show that the conditional likelihood ratio test of
Moreira (2003) is a conditional linear combination test in models with one en-
dogenous regressor, and that the class of conditional linear combination tests is
equivalent to a class of quasi-conditional likelihood ratio tests. We suggest using
minimax regret conditional linear combination tests and propose a computation-
ally tractable class of tests that plug in an estimator for a nuisance parameter.
These plug-in tests perform well in simulation and have optimal power in many
strongly identified models, thus allowing powerful identification-robust inference
in a wide range of linear and non-linear models without sacrificing efficiency if
identification is strong.
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1 Introduction

Researchers in economics are frequently interested in inference on causal or structural
parameters. Unfortunately, in cases where the data contains only limited information
useful for estimating these parameters, commonly used approaches to estimation and
inference can break down and researchers who rely on such techniques risk drawing
highly misleading inferences. Models where the usual approaches to inference fail due
to limited information about model parameters are referred to as weakly identified.
A large and growing literature develops identification-robust hypothesis tests, which
control size regardless of identification strength and so limit the probability of reject-
ing true hypotheses in weakly identified contexts. The results to date on the power of
identification-robust tests, that is their probability of rejecting false hypotheses, are,
however, quite limited. In this paper we develop powerful identification-robust tests
applicable to a wide range of models. Our approach relies on two innovations. First,
we introduce a novel class of procedures, the class of conditional linear combination
tests, which includes many known robust tests. Second, we suggest choosing condi-
tional linear combination tests that minimize maximum regret, which is an intuitive
optimality criterion not previously applied in this setting.

Our first step is to introduce the class of conditional linear combination (CLC)
tests. These tests depend on a convex combination of the generalized Anderson-Rubin
(S) statistic introduced by Stock and Wright (2000) and the score (K) statistic intro-
duced by Kleibergen (2005) for GMM models (or their analogs for generalized mini-
mum distance, generalized empirical likelihood, or other settings), where the weight
assigned to each depends on a conditioning statistic D also introduced by Kleibergen
(2005). Tests based on S have stable power but are inefficient under strong identifi-
cation, while tests based on K are efficient when identification is strong but can have
low power when identification is weak. In many models D can be viewed as measuring
identification strength, and its behavior governs the performance of tests based on K.
CLC tests use information from D to determine how to weight the S and K statistics,
and select critical values based on D in such a way that all tests in this class have
correct size.

2



The class of conditional linear combination tests is quite large, and includes the
S test of Stock and Wright (2000) and K test of Kleibergen (2005) for GMM and
the conditional likelihood ratio (CLR) test of Moreira (2003) for linear instrumental
variables (IV) models with a single endogenous regressor. More generally, we prove
that the class of CLC tests is equivalent to a suitably defined class of quasi-CLR tests.
CLC tests enjoy a number of optimality properties in a testing problem which arises
after conditioning onD, where we show that they are admissible, locally most powerful
against particular sequences of alternatives, and weighted average power maximizing
for a continuum of different weight functions.

Our second innovation is to use minimax regret CLC tests. This approach selects
CLC tests with power functions as close as possible to the power envelope for this
class in a uniform sense. By construction, these tests minimize the largest margin by
which the power of the test selected could fall short relative to any other CLC test the
researcher might have picked, thus minimizing the extent to which a researcher might
regret their choice. Minimax regret has recently seen use in other areas of economics
and econometrics (see Stoye (2009) for references) but has not to our knowledge been
applied to the problem of selecting powerful tests for weakly identified models. Mini-
max regret tests must be obtained numerically which, while quite straightforward for
some models, can be computationally daunting for others. In contexts where calcu-
lating true minimax regret tests is infeasible, we suggest a class of computationally
simple plug-in minimax regret tests that plug in an estimate for a nuisance parameter.

We show that our plug-in tests perform well in linear IV. Specifically, in linear
IV with homoskedastic Gaussian errors and one endogenous regressor we show that
plug-in minimax regret tests using reasonable plug-in estimators match the near-
optimal performance of the CLR test established by Andrews et al. (2006, henceforth
AMS). Given that much of the data encountered in econometric practice is dependent
(serially or spatially correlated, clustered), heteroskedastic, or both, however, it is of
considerable interest to examine the performance of weak instrument-robust tests more
broadly. To this end we calibrate a simulation to match heteroskedastic time-series
data used by Yogo (2004) and find that our plug-in minimax regret test substantially
outperforms Kleibergen (2005)’s quasi-CLR test for general GMM models. We further
find that our approach offers power competitive with the weighted average power
optimal MM1-SU and MM2-SU tests of Moreira and Moreira (2013, hencefoth MM).

The under-performance of Kleibergen’s quasi-CLR test can be traced to the fact
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that the K statistic may perform especially poorly in non-homoskedastic IV. Kleiber-
gen’s test uses the CLR weight function, which is optimal under homoskedasticity but
does not account for deterioration in the performance of the K statistic when we move
away from the homoskedastic case. In contrast, the plug-in test proposed in this paper
successfully accounts for the covariance structure of the data and delivers powerful,
stable performance in both the homoskedastic and non-homoskedastic cases. As we
might hope given their minimax-regret motivation, the PI tests have smaller power
maximal shortfalls, relative to the other tests considered in our simulations, than do
the MM tests. On the other hand, by construction the MM tests have higher weighted
average power with respect to the MM weights.

To develop intuition and illustrate results, we consider inference on parameters in
linear IV and minimum distance models as recurring examples. Similarly to Mueller
(2011) we assume that certain functions of the data converge in distribution to random
variables in a limit problem and use this limit problem to study the performance
of different procedures. To formally justify this approach we derive a number of
asymptotic results, showing that the asymptotic size and power of CLC tests under the
assumed convergence are simply their size and power in the limit problem. We further
show that a large class of CLC tests control size uniformly in heteroskedastic linear
IV with a single endogenous regressor. Moreover, we give conditions under which
CLC tests, and plug-in minimax regret tests in particular, will be asymptotically
efficient under strong identification, in the sense of being asymptotically uniformly
most powerful in classes of tests depending on (S,K,D). Applying these results to
our examples, we show that the tests we propose are asymptotically efficient in linear
IV and minimum distance models when identification is strong.

Before proceeding it is worth relating the approach taken in this paper to the recent
econometric literature on optimal testing in non-standard models, including Mueller
(2011), Elliott et al. (2012), Olea (2012), and MM. The approaches studied in those
papers apply under a weak convergence condition like the one we assume, and in each
case the authors derive tests maximizing weighted average power. If a researcher has
a well-defined weight function over the alternative with respect to which they want to
maximize average power these approaches deliver optimal tests, either over the class of
all tests or over the class of tests satisfying some auxiliary restrictions, and have a great
deal to recommend them. In general, these tests are not available in closed form and
will depend on the weight function chosen, however, and the nature of this dependence
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in a given context can be quite opaque. Consequently, in cases where the researcher has
no particular weight function in mind, it can be unclear what a given choice of weight
function will imply for the power of the resulting test. Indeed, as MM show in their
linear IV simulations, weighted average power optimal tests may sometimes have low
power over empirically relevant regions of the parameter space. MM address this issue
by restricting attention to classes of locally unbiased tests (their LU and SU tests).1

Here, we take a different approach and adopt a minimax regret perspective which
attempts to pick tests that lie as close as possible to the power envelope for the class of
CLC tests. Relative to the papers discussed above, the approach of this paper greatly
restricts the class of tests considered, first in confining attention to tests that depend
only on S, K, and D, and then in further focusing on CLC tests. While this restriction
reduces the strength of optimality statements, it renders the resulting tests much more
transparent: conditional on D, the procedures discussed in this paper are simply tests
based on a known convex combination of the S and K statistics, making it simple to
understand their behavior. This transparency has other advantages, and it is relatively
straightforward to give conditions under which CLC tests will be efficient under strong
identification. This is particularly true of plug-in minimax regret tests which, while
not generally optimal from a minimax regret perspective, yield easy-to-characterize
behavior under strong-identification asymptotics. In contrast, weighted average power
optimal tests need not be efficient under strong identification: of the tests discussed
above, only Elliott et al. (2012) give results guaranteed to deliver efficient tests under
strong identification in general contexts. Unfortunately, however, implementing their
procedures is extremely computationally costly in many cases of econometric interest,
including linear IV with non-homoskedastic errors and a moderate or large number of
instruments.

In the next section we outline the weak convergence assumption that will form the
basis of our analysis and illustrate this assumption using our IV and minimum distance
examples. In Section 3 we define several statistics including S, K, and D, and discuss
tests which have been proposed based on these statistics. Section 4 defines CLC tests,
shows that CLR tests are CLC tests, and proves the equivalence of the class of CLC
tests and a class of quasi-CLR tests. Section 4.1 then shows that CLC tests are ad-
missible, locally most powerful, and weighted average power maximizing conditional

1A previous version of the paper, Moreira and Moreira (2010), discusses the issue of approximating
weighted average power optimal similar tests of a given size, but don’t discuss the IV example or
consider unbiased tests.
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on D. Section 5 defines minimax regret CLC tests, shows that such tests exist, defines
plug-in tests, and discusses implementation of these procedures. Section 6 shows that
suitably defined plug-in minimax regret tests match the near-optimal performance of
the CLR test under homoskedasticity and compare favorably to existing alternatives
in simulations calibrated to Yogo (2004)’s data. Section 7 derives a number of asymp-
totic results, including uniform size control for CLC tests in heteroskedastic linear IV
and efficiency of plug-in tests in our examples under strong asymptotics. Proofs for
Theorems 1 and 2 are given in the main appendix, while the remaining proofs, as well
as further details on our examples and additional simulation results, may be found
in the supplementary appendix (available on the author’s website). To illustrate the
application of our approach to a non-linear example, in the supplement we apply our
results to a generalized minimum distance approach to inference on new Keynesian
Phillips curve parameters studied in Magnusson and Mavroeidis (2010).

2 Weakly Identified Limit Problems

In this section we describe a class of limit problems that arise in many weakly identified
contexts and illustrate this class with two examples. We assume a sequence of models
indexed by sample size T , where sample T has distribution FT (θ, γ) for θ ∈ Θ a p-
dimensional parameter of interest and γ ∈ Γ an l-dimensional consistently estimable
nuisance parameter. We will be concerned with testing H0 : θ = θ0 and assume we
observe three objects: a k × 1 vector gT (θ0) which will typically be an appropriately
scaled moment vector or distance function, a k × p matrix ∆gT (θ0) which will often
be some transformation of the Jacobian of gT (θ) with respect to θ, and an estimate γ̂
for γ. We assume that for all fixed (θ, γ) ∈ Θ× Γ we have

 gT (θ0)
∆gT (θ0)

→d

 g

∆g

 (1)

and γ̂ →p γ under the sequence of data-generating processes FT (θ, γ), where
 g

vec(∆g)

 ∼ N

 m

vec(µ)

 ,
 I Σgθ

Σθg Σθθ

 , (2)
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and m = m(θ, θ0, γ) ∈M(µ, γ) for a setM (µ, γ) ⊆ Rk which may depend on µ ∈M
and γ. Here we use vec (A) to denote vectorization, which maps the k × p matrix A
to a kp× 1 vector. We further assume that Σθg and Σθθ are continuous functions of γ
and are thus consistently estimable. We will generally suppress the dependence of the
terms in the limit problem on the parameters (θ, γ) when there is no loss of clarity
from doing so, writing simply m, µ, and so forth. We are interested in problems where
the null hypothesis θ = θ0 implies m = 0, and will focus on testing H0 : m = 0, µ ∈M
against H1 : m ∈M(µ)\{0}, µ ∈M.

Limit problems of the form (2) arise in a wide variety of weakly identified models.
In the remainder of this section we show that weakly identified instrumental variables
and minimum distance models generate limit problems of this form, deferring some
derivations to the supplementary appendix. In the supplement we also show that
general weakly identified GMM models give rise to limiting problems of the form (2).

Example I: Weak IV Consider a linear instrumental variables model with a single
endogenous regressor, written in reduced form,

Y = Zπβ + V1

X = Zπ + V2
(3)

for Z a T × k matrix of instruments, X a T × 1 vector of endogenous regressors, Y a
T × 1 vector of outcome variables, and V1 and V2 both T × 1 vectors of residuals. We
are interested in testing a hypothesis H0 : β = β0 about the scalar coefficient β. As
elsewhere in the literature (see e.g. AMS) we can accommodate additional exogenous
regressors, but omit such variables here to simplify the exposition.

The identifying assumption in IV models is that E [V1,tZt] = E [V2,tZt] = 0 for Zt
the transpose of row t of Z, which allows us to view linear IV as a special case of
GMM with moment condition

ft(β) = (Yt −Xtβ)Zt (4)

and identifying assumption Eβ [ft(β)] = 0 (where Eθ [X] denotes the expectation of
X under true parameter value θ). For fixed π 6= 0 it is straightforward to construct
consistent, asymptotically normal GMM estimates based on (4) and to use these esti-
mates to test hypotheses about β. As is now well understood, however, the standard
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asymptotic approximations to the distribution of estimators and test statistics may
be quite poor if π is small relative to the sample size. To derive better approximations
for this weakly identified case, Staiger and Stock (1997) model the first-stage param-
eter π as changing with the sample size, taking πT = c√

T
for a fixed vector c ∈ Rk.

Staiger and Stock show that the (1949) Anderson-Rubin test for H0 : β = β0 con-
trols size under these asymptotics when the data (Yt, Xt, Z

′
t) are independent across t

and the errors (V1,t, V2,t) are homoskedastic, and a large subsequent literature includ-
ing Stock and Wright (2000), Kleibergen (2002), Moreira (2003), Kleibergen (2005),
Olea (2012), Andrews and Cheng (2012), and MM has extended these results to more
general models and alternative identification-robust tests.

To derive the limit problem (2) for this model, define fT (β) = 1
T

∑
ft(β) and let Ω

be the asymptotic variance matrix of
√
T
(
fT (β0)′,− ∂

∂β
fT (β0)′

)′
,

Ω =
 Ωff Ωfβ

Ωβf Ωββ

 = lim
T→∞

V ar

√T
 fT (β0)
− ∂
∂β
fT (β0)

 . (5)

We assume that Ωff is full-rank. For Ω̂ a consistent estimator of Ω, define gT (β) =√
T Ω̂−

1
2

ff fT (β), ∆gT (β) = −
√
T Ω̂−

1
2

ff
∂
∂β
fT (β), and γ̂ = vec

(
Ω̂
)
. For θ = β, Θ = R,

γ = vec (Ω) , and Γ the set of of values γ such that Ω (γ) is symmetric and positive
definite, for all (θ, γ) ∈ Θ× Γ, under mild conditions

 gT (β0)
∆gT (β0)

→d

 g

∆g

 ∼ N

 m

µ

 ,
 I Σgθ

Σθg Σθθ

 (6)

so (1) and (2) hold here with m = Ω−
1
2

ff QZc(β − β0), µ = Ω−
1
2

ff QZc ∈ M = Rk,
Σgθ = Ω−

1
2

ff ΩfβΩ−
1
2

ff , and Σθθ = Ω−
1
2

ff ΩββΩ−
1
2

ff . Note that for any µ, m ∈ M(µ) =
{b · µ : b ∈ R} and m = 0 when β = β0. To derive this limit problem we have imposed
very little structure on the data generating process, and so can easily accommodate
heteroskedastic, clustered, or serially correlated data and other features commonly
encountered in applied work.�

Example II: Minimum Distance A common approach to estimating econometric
models is to choose structural parameters to match some vector of sample moments
or reduced-form parameter estimates. Canova and Sala (2009), for example, discuss
estimation of Dynamic Stochastic General Equilibrium (DSGE) models by matching
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impulse responses. Other papers that apply a minimum distance approach in the
DSGE context include Christiano and Eichenbaum (1992) and Ruge-Murcia (2010).
Minimum distance and moment matching approaches are also common in a wide
range of other applications, and encompass both indirect inference as discussed in
Gourieroux et al. (1993) and simulated method of moments as in McFadden (1989)
and much of the subsequent literature.

In minimum distance or moment-matching models, for θ a p×1 vector of structural
parameters and η a k×1 vector of reduced-form parameters or moments, the model im-
plies that η = f(θ) for some function f . We assume that f(θ) is continuously differen-
tiable and that f(θ) and its Jacobian can be calculated either directly or by simulation.
Suppose we have an estimator η̂ for the reduced-form parameter η that, together with
an estimator Ω̂η for the variance of η̂, satisfies Ω̂−

1
2

η (η̂ − η)→d N (0, I) . Under strong
identification asymptotics, η̂− η = Op

(
1√
T

)
and we have the usual asymptotic distri-

bution for the structural parameter estimates θ̂ = arg minθ (η̂ − f(θ))′ Ω̂−1
η (η̂ − f(θ))

and the standard test statistics. As Canova and Sala (2009) highlight, however, if
there is limited information about the structural parameters θ these approximations
may be quite poor. One way to model such weak identification is to take the vari-
ance of the reduced-form parameter estimates to be constant, with Ω̂η →p Ωη for Ωη

non-degenerate, which implies that η̂ is not consistent for η. Such sequences can often
be justified by modeling the variance of the data generating process as growing with
the sample size. Let gT (θ) = Ω̂−

1
2

η (η̂ − f(θ)), ∆gT (θ) = ∂
∂θ′
gT (θ) = Ω̂−

1
2

η
∂
∂θ′
f(θ), and

γ̂ = vec
(
Ω̂η

)
. For γ = vec (Ωη) and Γ again the set of γ values corresponding to

symmetric positive definite matrices, we have that under (θ, γ) ∈ Θ× Γ, γ̂ →p γ and
 gT (θ0)

∆gT (θ0)

→d

 g

vec(∆g)

 ∼ N

 m

vec(µ)

 ,
 I 0

0 0

 (7)

where m ∈ M =
{

Ω−
1
2

η (f(θ)− f(θ0)) : θ ∈ Θ
}
and µ = Ω−

1
2

η
∂
∂θ′
f(θ0) (see the supple-

mentary appendix for details).�
As these examples highlight, limit problems of the form (2) arise in a wide variety

of econometric models with weak identification. In the supplementary appendix we
show that general GMM models that are weakly identified in the sense of Stock and
Wright (2000) generate limit problems of the form (2), and Example I could be viewed
as a special case of this result. As Example II illustrates, however, the limit problem
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(2) is more general. The supplementary appendix provides another non-GMM exam-
ple, considering a weakly identified generalized minimum distance model studied by
Magnusson and Mavroeidis (2010).2

Since the limit problem (2) appears in a wide range of weakly identified contexts,
for the next several sections we focus on tests in this limit problem. Similar to Mueller
(2011) we consider the problem of testing H0 : m = 0, µ ∈ M against H1 : m ∈
M(µ)\{0}, µ ∈ M with the limiting random variables (g,∆g,γ) observed and seek to
derive tests with good properties. In Section 7 we return to the original problem, and
argue that under mild assumptions results for the limit problem (2) can be viewed as
asymptotic results along sequences of models satisfying (1).

3 Pivotal Statistics Under Weak Identification

As noted in the introduction, under weak identification many commonly used test
statistics are no longer asymptotically pivotal under the null. To address this issue,
much of the literature on identification-robust testing has focused on deriving statistics
that are asymptotically pivotal or conditionally pivotal even when identification is
weak. Many of the statistics proposed in this literature can be written as functions of
the S statistic of Stock and Wright (2000) and the K and D statistics of Kleibergen
(2005), or their analogs in non-GMM settings. In this section we define these statistics,
which will play a central role in the remainder of the paper, and develop some results
concerning their properties.

When testing H0 : m = 0, µ ∈M in (2), a natural statistic is

S = g′g ∼ χ2
k (m′m) . (8)

Under the null S is χ2 distributed with k degrees of freedom, while under the alter-
native it is non-central χ2 distributed with non-centrality parameter m′m = ‖m‖2.
Statistics asymptotically equivalent to (8) for appropriately defined gT have been

2Other examples may be found in Olea (2012), who shows that for appropriately defined gT (θ0)
and ∆gT (θ) convergence of the form (2) holds in several weakly identified extremum estimation
examples, including a probit model with endogenous regressors and a nonlinear regression model.
Guggenberger and Smith (2005, proofs for theorems 4 and 6) show that such convergence also holds
in weakly identified Generalized Empirical Likelihood (GEL) models with independent data, both
with and without strongly identified nuisance parameters. Guggenberger et al. (2012, proofs for
theorems 3.2 and 4.2) extend these results to time series GEL applications, further highlighting the
relevance of the limit problem (2).
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suggested in a number of contexts by a wide range of papers, including Anderson
and Rubin (1949) for linear IV, Stock and Wright (2000) for GMM, Magnusson and
Mavroeidis (2010) for minimum distance models, and Ramalho and Smith (2004),
Guggenberger and Smith (2005), Otsu (2006), Guggenberger and Smith (2008), and
Guggenberger et al. (2012) for generalized empirical likelihood (GEL) models.

While S is a natural statistic for testing H0 : m = 0, µ ∈ M, in some ways it is
not ideal. In particular, under strong identification the limit problem (2) generally
arises when we consider local alternatives to the null hypothesis, in which case ∆g
is typically non-random (so Σθθ = Σgθ = 0) and m = ∆g(θ − θ0).3 Hence, under
strong identification tests based on S test the parametric restriction θ = θ0 together
with the over-identifying restriction m′ (I − P∆g)m = 0, and so are inefficient if we
only want to test θ = θ0. To avoid this problem Moreira (2001) and Kleibergen
(2002) propose a weak identification-robust score statistic for linear IV models which
is efficient under strong identification, and Kleibergen (2005) generalizes this statistic
to GMM. Following Kleibergen (2005) define D as the k × p matrix such that

vec(D) = vec(∆g)− Σθgg

and note that  g

vec(D)

 ∼ N

 m

vec(µD)

 ,
 I 0

0 ΣD


where vec (µD) = vec (µ)−Σθgm, µD ∈MD, ΣD = Σθθ −ΣθgΣgθ, and m ∈MD (µD),

MD (µD) = {m : m ∈M (µ) for vec (µ) = vec (µD) + Σθgm} .

MD plays a role similar to M, defining the set of values m consistent with a given
mean µD forD. The matrixD can be interpreted as the part of ∆g that is uncorrelated
with g which, since D and g are jointly normal, implies that D and g are independent.
In many models D is informative about identification strength: in linear IV (Example
I) for instance, D is a transformation of a particular first-stage parameter estimate.

Kleibergen defines the K statistic as

K = g′D (D′D)−1
D′g = g′PDg. (9)

3For discussion of this point in a GMM context see the supplementary appendix. For a more
extensive analysis see Newey and McFadden (1994), Section 9.
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Since D and g are independent we can see that the distribution of g conditional on
D = d is the same as the unconditional distribution, g|D = d ∼ N(m, I). Hence, if D
is full rank (which we assume holds with probability one for the remainder of the paper)
we can see that under the null the conditional distribution of K is K|D = d ∼ χ2

p.
Thus, under the null K is independent of D and the unconditional distribution of K
is χ2

p as well. In the strongly identified limit problem ∆g = D is non-random and one
can show that tests based on the K statistic are efficient for this case.

Kleibergen (2005) shows that in GMM his K test is a score test based on the
continuous updating GMM objective function, and subsequent work has developed
related statistics in a number of other settings, all of which yield the K statistic (9)
in the appropriately defined limit problem. In particular, Magnusson and Mavroeidis
(2010) propose such a statistic for weakly identified generalized minimum distance
models, while Ramalho and Smith (2004), Guggenberger and Smith (2005), Guggen-
berger and Smith (2008), and Guggenberger et al. (2012) discuss analogs of K for
GEL models.

For the remainder of the paper we will focus on the class of tests that can be
written as functions of the S, K, and D statistics. While, as the discussion above
suggests, this class includes most of the identification-robust procedures proposed in
the literature to date, it does rule out some robust tests. In particular, Andrews
and Cheng (2012) and (2013) derive identification-robust Wald and Quasi-LR tests
that cannot in general be written as functions of (S,K,D) and so fall outside the
class studied in this paper. Likewise, except in special cases weighted average power
optimal tests based on (g,∆g), and in particular the tests proposed by MM for linear
IV, will depend on g through more than just S and K and so fall outside this class.

3.1 Other Asymptotically Pivotal Statistics

A number of other identification-robust test statistics have been created using S, K,
and D. Since some of these will play an important role later in our analysis we briefly
introduce them here.

Kleibergen (2005) defines J as the difference between the S and K statistics

J = S −K = g′
(
I −D (D′D)−1

D
)
g = g′ (I − PD) g
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and notes that under the null J is χ2
k−p distributed and is independent of (K,D)

regardless of the strength of identification. In GMM, one can show that under strong
identification this statistic is asymptotically equivalent to Hansen (1982)’s J statistic
for testing over-identifying restrictions under the null and local alternatives.

Moreira (2003) considers the problem of testing hypotheses on the parameter β in
weak IV (Example I) when the instruments Z are fixed and the errors V are normal
and homoskedastic with known variance. Moreira derives a conditional likelihood
ratio statistic which, for p = 1 and r (D) = D′Σ−1

D D, is

1
2

(
K + J − r(D) +

√
(K + J + r(D))2 − 4J · r(D)

)
. (10)

Under the null the CLR statistic has distribution

1
2

(
χ2
p + χ2

k−p − r(d) +
√(

χ2
p + χ2

k−p + r(d)
)2
− 4χ2

k−p · r(d)
)

(11)

conditional on D = d, where χ2
p and χ2

k−p are independent χ2 random variables with
p and k − p degrees of freedom, respectively. The size α CLR test then rejects when
the CLR statistic (10) exceeds qα(r (D)), the 1− α quantile of (11) for d = D.

Given this definition, it is natural to consider the class of quasi-CLR (QCLR) tests
obtained by using other functions r : D → ∞, where for r (D) = ∞ we define the
QCLR statistic (10), denoted by QCLRr, to equal K. This class nests the quasi-CLR
tests of Kleibergen (2005), Smith (2007), and Guggenberger et al. (2012).

3.2 Distribution of J and K Under Weak Identification

Since the J and K statistics will play a central role in the remainder of the analysis
we discuss their respective properties under weak identification. In particular, note
that conditional on D = d for d full rank, the K and J statistics are independent with
distribution K|D = d ∼ χ2

p(τK (d)) and J |D = d ∼ χ2
k−p (τJ (d)) where

τK(D) = m′PDm, τJ(D) = m′ (I − PD)m. (12)

The K statistic picks out a particular (random) direction corresponding to the
span of D and restricts attention to deviations fromm = 0 along this direction. Under
strong identification, this direction corresponds to parametric alternatives, which is
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why the K test
φK = 1

{
K > χ2

p,1−α

}
(13)

is optimal in this case.4 Under weak identification, however, whether or not it makes
sense to focus on the direction picked out by the K statistic will depend on the
distribution of D and the set MD(µD) of possible values of m. In contrast to the
K statistic, the S statistic treats all deviations from m = 0 equally and its power
depends only on ‖m‖, which may be quite appealing in cases whereMD(µD) imposes
few restrictions on the possible values of m. To give a more concrete sense of the
properties of the K statistic, we return to Examples I and II introduced above.

Example II: Minimum Distance (Continued) We established in (7) that ∆g is
non-random, soD = ∆g = µ = µD. To simplify the exposition, assume for this section
that Ωη = I. Since M = {(f(θ)− f(θ0)) : θ ∈ Θ} we have that under alternative θ
the non-centrality parameters in the J and K statistics are

(τJ(θ), τK(θ)) =
(
(f(θ)− f(θ0))

′
(I − Pµ) (f(θ)− f(θ0)) , (f(θ)− f(θ0))

′
Pµ (f(θ)− f(θ0))

)
.

Since µ = ∂
∂θ′
f(θ0), this means that under alternative θ the non-centrality parameter

τK is the squared length of f(θ)−f(θ0) projected onto the model’s tangent space at the
null parameter value, while τJ is the squared length of the residual from this projection.
Hence if f(θ) is linear so f(θ) = ∂

∂θ′
f(θ0)(θ − θ0) and M =

{
∂
∂θ′
f(θ0) · b : b ∈ Rp

}
,

τJ ≡ 0 and the K test φK will be uniformly most powerful in the class of tests based on
(S,K,D). As argued in Andrews and Mikusheva (2012), under strong identification
minimum distance models are approximately linear, confirming the desirable proper-
ties of the K statistic in this case. Under weak identification, however, non-linearity
of f(θ) may remain important even asymptotically. To take an extreme case, if there
is some θ ∈ Θ such that ||f(θ) − f(θ0)|| > 0 and ∂

∂θ
f(θ0)′ (f (θ)− f (θ0)) = 0, the K

statistic will not help in detecting such an alternative and the optimal test against θ
depends on J alone.�

Example I: Weak IV (Continued) In the limit problem (6) ∆g is random and
may be correlated with g, so D 6= ∆g and µD = µ− Σθgm. Since m = µ(β − β0),

µD = µ− Σθgµ(β − β0) = (I − Σθg(β − β0))µ.
4For φ a (non-randomized) test, we take φ = 1 to denote rejection and φ = 0 failure to reject.
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Note that if µ is proportional to an eigenvector of Σθg corresponding to a non-zero
eigenvalue λ, then for (β − β0) = λ−1 we have that µD = 0. Hence for some (Σθg, µ)
combinations, while µ may be quite large relative to both Σθg and Σθθ there will be
some alternatives β under which µD = 0. When this occurs the direction of the vector
D bears no relation to the direction of m or µ and the K statistic picks a direction
entirely at random and so loses much of its appeal. The well-known non-monotonicity
of the power function for tests based onK alone is a consequence of this fact. A special
case of this phenomenon appears when, as in the homoskedastic model considered by
AMS, Ω as defined in (5) has Kronecker product structure, so Ω = A⊗B for a 2× 2
matrix A and a k × k matrix B. In this case Σgθ = λ · I so when (β − β0) = λ−1,
µD = 0 regardless of the true value µ. This is precisely what occurs at the point βAR
discussed by AMS, where they show that the test

φS = 1
{
S > χ2

k,1−α

}
(14)

is optimal. This is entirely intuitive, since at this point D bears no relation to m and
the best thing we can do is to ignore it entirely and focus on the S statistic.

The case where Ω has Kronecker product structure is extreme in that µD = 0 at
alternative βAR regardless of the true value µ. However, tests based on the K statistic
face other challenges in the non-Kronecker case. In particular, in the Kronecker prod-
uct case µD ∝ µ and so as long as µD 6= 0 the mean of D has the correct direction,
while in contrast µD 6∝ µ in the general (non-Kronecker) case. An extreme version
of this issue arises if there is some value β∗ such that (I − Σθg(β∗ − β0))µ 6= 0 but
µ′ (I − Σθg(β∗ − β0))µ = 0. For this value of β∗ we have that µD 6= 0 but µ′Dm = 0,
and hence the K statistic tends to focus on directions that yield low power against
alternative β∗.�

To summarize, while tests rejecting for large values of the K statistic are efficient
under strong identification, they can have low power when identification is weak. In
contrast, the S test (8) is inefficient under strong identification but has power that
depends only on ||m|| and thus does not suffer from the spurious loss of power that
can affect tests based on K. The question in constructing tests based on (S,K,D)
(or equivalently (J,K,D)) is thus how to use the information contained in D to
combine the S and K statistics to retain the advantages of each while ameliorating
their deficiencies.
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4 Conditional Linear Combination Tests
To flexibly combine the S, K, and D statistics we introduce the class of conditional
linear combination tests. For a weight function a : D → [0, 1] the corresponding
conditional linear combination test, φa(D), rejects when a convex combination of the
S and K statistics weighted by a (D) exceeds a conditional critical value:

φa(D) = 1 {(1− a (D)) ·K + a (D) · S > cα(a(D))} = 1 {K + a(D) · J > cα(a(D))} . (15)

We take the conditional critical value cα(a) to be 1 − α quantile of a χ2
p + a · χ2

k−p

distribution. This choice ensures that φa(D) will be conditionally similar, and thus
similar, for any choice of a(D). Stated formally:

Theorem 1 For any weight function a : D → [0, 1] the test φa(D) defined in (15)
is conditionally similar with Em=0,µD

[
φa(D)|D

]
= α almost surely for all µD ∈ MD.

Hence, Em,µD
[
φa(D)

]
= α for all (m,µD) ∈ H0 and φa(D) is a similar test.

While we could construct a family of CLC tests based on some conditional critical
value function other than cα (a) that does not impose conditional similarity, restricting
attention to conditionally similar tests is a simple way to ensure correct size regardless
of our choice of a(D).

Interestingly, the class of QCLR tests is precisely the same as the class of CLC
tests. Formally, for any function r : D → R+ ∪ {∞} define the quasi-CLR statistic
QCLRr as in (10) and let qα(r(d)) be the 1− α quantile of (11). Then:

Theorem 2 For any function r : D → R+ ∪ {∞} if we take

φQCLRr = 1 {QCLRr > qα(r(D))}

then for ã(D) = qα(r(D))
qα(r(D))+r(D) we have φQCLRr ≡ φã(D). Conversely, for any a : D →

[0, 1] there exists an r̃ : D → R+ ∪ {∞} such that φa(D) ≡ φQCLRr̃ . Hence, the class
of CLC tests for a : D → [0, 1] is precisely the same as the class of QCLR tests for
r : D → R+ ∪ {∞} .

Theorem 2 shows that the QCLR test φQCLRr is a linear combination test with
weight function a (D) = qα(r(D))

qα(r(D))+r(D) . In particular, this result establishes that the
CLR test of Moreira (2003) for linear IV with a single endogenous regressor is a
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CLC test. In the remainder of the paper our exposition focuses on CLC tests but by
Theorem 2 all of our results apply to QCLR tests as well.

4.1 Optimality of CLC Tests in a Conditional Problem

The CLC tests φa(D) represent only one of many ways to combine the S, K, and D
statistics. Nonetheless this class has a number of optimal power properties in the
problem obtained by conditioning on D. In this section we show that CLC tests
are admissible in this conditional problem as well as locally most powerful against
particular sequences of alternatives and weighted average power maximizing for a
continuum of weight functions.

Conditional on D = d (for d full rank), J and K are independent and dis-
tributed χ2

k−p (τJ (d,m)) and χ2
p (τK (d,m)), respectively, for τJ and τK as defined

in (12). Conditional on D = d the non-centrality parameters τJ and τK are fixed,
though unknown, values and our null hypothesis H0 : m = 0, µ ∈ M can be re-
written as H0 : τJ = τK = 0. Our first task is to characterize the set of possible
values for the non-centrality parameters (τJ , τK) under the alternative H1. Let MD(d)
denote the set of values µD ∈ MD such that d is in the support of D.5 Letting
M̃ (d) = ∪µD∈MD(d)M (µD), m may take any value in M̃ (d) and still be consistent
with both m ∈ M (µD) and d lying in the support of D. Hence, the non-centrality
parameters (τJ , τK) may take any value in the set

T (d) = ∪
m∈M̃(d) (τJ (d,m) , τK (d,m)) .

Conditional onD = d our problem becomes one of testingH0 : τJ = τK = 0 against the
alternativeH1 : (τJ , τK) ∈ T (d)\{0} based on observing (J,K) ∼

(
χ2
k−p (τJ) , χ2

p (τK)
)
.

4.1.1 CLC Tests are Admissible in the Conditional Problem

We say that a test φ is admissible if there is no other test φ̃ with size less than or equal
to φ and power greater than or equal to φ at all points and strictly higher power (or
smaller size) at some point (that is, if there is no test φ̃ that dominates φ). A result
from Marden (1982) establishes that the class of admissible tests in the conditional
problem has a simple form when T (d) = R2

+.

5If ΣD is full rank then MD(d) = MD, since the support of D is the same for all µD ∈ MD, but
if ΣD is reduced rank (e.g. ΣD = 0) then we may have MD(d) ⊂MD.
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Theorem 3 (Marden 1982) Conditional on D = d, let J ∼ χ2
k−p(τJ) and K ∼ χ2

p(τK)
be independent and let φ be a test of H0 : τJ = τK = 0 against H1 : (τJ , τK) ∈ R2

+\{0}.
φ is admissible in the conditional problem if and only if it is almost surely equal to
1
{(√

J,
√
K
)
6∈ Cd

}
for some set Cd which is

1. closed and convex

2. monotone decreasing: i.e. x ∈ Cd and yi ≤ xi ∀i implies y ∈ Cd

Thus, a test φ is admissible in the conditional problem if and only if its acceptance
region in

(√
J,
√
K
)
space is almost-everywhere equal to a closed, convex, monotone

decreasing set. Using this result, it is straightforward to show that CLC tests are
admissible in the conditional problem for all a : D → [0, 1] and all d.

Corollary 1 For all weight functions a : D → [0, 1] the CLC test φa(D) is admissible
in the problem conditional on D = d for all d.

4.1.2 Local and Weighted Average Power Optimality of CLC Tests

While the admissibility of CLC tests in the conditional problem is certainly a desirable
property, the class of tests satisfying the conditions of Theorem 3 for all realizations of
D is quite large. Here we show that CLC tests have additional optimality properties
in the conditional problem not shared by these other tests. Specifically, we show that
CLC tests are locally most powerful against sequences of alternatives approaching
(τJ , τK) = 0 linearly and weighted average power maximizing for a continuum of
weight functions in the conditional problem.

Theorem 4 (Monti and Sen (1976), Koziol and Perlman (1978)) Fix a conditional
linear combination test φa(D) and a value d. Let Φα (d) denote the class of tests which
have size α conditional on D = d, E(τJ ,τK)=0 [φ|D = d] = α ∀φ ∈ Φα (d).

1. Let (τJ , τK) = λ ·
(
a (d) k−p

p
, 1
)
. For any test φ ∈ Φα (d) there exists λ̄ > 0 such

that if 0 < λ < λ̄,

E(τJ ,τK) [φ|D = d] ≤ E(τJ ,τK)
[
φa(D)|D = d

]
.
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2. Let FtJ ,tK (τJ , τK) be the distribution function for (τJ , τK) ∼
(
tJ · χ2

k−p, tK · χ2
p

)
.

For any (tJ , tK) with tJ
tK

tK+1
tJ+1 = a (d) the conditional linear combination test

φa(D) solves the conditional weighted average power maximization problem

φa(D) ∈ arg max
φ∈Φa(d)

ˆ
E(τJ ,τK)

[
φa(D)|D = d

]
dFtJ ,tK (τJ , τK).

Theorem 4 follows immediately from results in Monti and Sen (1976) and Koziol
and Perlman (1978) on the optimal combination of independent non-central χ2 statis-
tics. Theorem 4(1) shows that conditional on D = d the CLC test φa(D) is locally
most powerful against sequences of alternatives with τJ/τK = a (d) k−p

p
, in the sense

that it has power at least as good as any other test φ once we come sufficiently close to
the null along this direction. Theorem 4(2) establishes that φa(D) maximizes weighted
average power in the conditional problem for a continuum of different weight functions
corresponding to scaled χ2 distributions.

Together, the results of this section establish that conditional linear combination
tests φa(D) have a number of desirable power properties conditional on D = d, but
that the direction in which these tests have power depends critically on the weight
function a (D). In the next section we discuss how to select this function.

5 Optimal CLC Tests

For any weight function a : D → [0, 1] we can define a CLC test φa(D) for H0 against
H1 using (15). While any such test controls size by Theorem 1, the class of such CLC
tests is large and we would like a systematic way to pick weight functions a yielding
tests with good power properties.

A natural optimality criterion, after restricting attention to CLC tests, is minimax
regret: see Stoye (2009) for an introduction to this approach and extensive discussion
of its recent application in economic theory and econometrics. To define a minimax
regret CLC test, for any (m,µD) ∈ H1, define β∗m,µD = supa∈AEm,µD

[
φa(D)

]
for A the

class of Borel-measurable functions a : D → [0, 1] . β∗m,µD gives the highest attainable
power against alternative (m,µD) in the class of CLC tests and, as we vary (m,µD), de-
fines the power envelope for this class. For a given a ∈ A we can then define the regret
associated with φa(D) against alternative (m,µD) as β∗m,µD−Em,µD

[
φa(D)

]
, which is the

amount by which the power of the test φa(D) falls short of the highest power we might

19



have attained against this alternative by choosing some other CLC test. We can then
define the maximum regret for a test φa(D) as sup(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
,

which is the largest amount by which the power function of φa(D) falls short of the
power envelope for the class of CLC tests or, equivalently, the sup-norm distance be-
tween the power function of φa(D) and the power envelope. A minimax regret choice
of a ∈ A is

aMMR ∈ arg min
a∈A

sup
(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
.

A minimax regret test φMMR = φaMMR(D) is one whose power function is as close as
possible to the power envelope for the class of CLC tests in the sup norm. As an
optimality criterion this is an intuitive choice: having already restricted attention to
the class of CLC tests, focusing on MMR tests minimizes the maximal extent to which
the test we choose could under-perform relative to other CLC tests.

Given the way that MMR tests are defined, it is not obvious that an MMR test
exists, i.e. that infa∈A sup(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
is achieved by any a ∈ A.

Theorem 5 establishes that an MMR test φMMR always exists.

Theorem 5 For any non-empty set of alternatives H1 : m =MD(µD)\{0}, µD ∈MD

in the limit problem (2) there exists a weight function a∗ ∈ A such that

sup
(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa∗(D)

])
= inf

a∈A
sup

(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
.

Example II: Minimum Distance (Continued) Calculating the MMR test in
Example II is straightforward. In particular D = µ is non-random, so rather than
picking a function from D to [0, 1] we are simply picking a number a in [0, 1] .Moreover,
we know that in this example m = m(θ) = Ω−

1
2

η (f (θ)− f (θ0)) and µD = µ =
Ω−

1
2

η
∂
∂θ
f (θ0), so the maximum attainable power against alternative θ is simply β∗θ =

supa∈[0,1]Em(θ),µ [φa] which we can calculate for any value θ. To solve for the MMR
test φMMR, we need only calculate aMMR = arg mina∈[0,1] supθ∈Θ

(
β∗θ − Em(θ),µ [φa]

)
.�

5.1 Plug-in Minimax Regret Tests

While finding the MMR test is straightforward in Example II, Example I is less
tractable in this respect. In this example D is random, so solving for φMMR requires
that we optimize over the set A of functions. In most cases finding even an ap-
proximate solution to this optimization problem is extremely computationally costly,
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rendering φMMR unattractive in many applications. To overcome this difficulty we
suggest a computationally tractable class of plug-in tests.

There are two aspects of Example II which make calculating φMMR straightforward.
First, rather than optimizing over the space of functions A we need only optimize over
numbers in [0, 1] . Second, µ = µD is known so in solving the minimax problem we
need only search over θ ∈ Θ rather than over some potentially higher dimensional
space of values for (m,µD) ∈ H1.

To construct a test for the general case with similarly modest computational re-
quirements, imagine first that µD is known. Let us restrict attention to unconditional
linear combination tests with a(D) ≡ a (µD) ∈ [0, 1] , where we write a as a function of
µD to emphasize its dependence on this parameter. The power envelope for this class
of unconditional linear combination tests is βum,µD = supa∈[0,1]Em,µD [φa]. A minimax
regret unconditional (MMRU) test φMMRU = φaMMRU (µD) then uses

aMMRU(µD) ∈ arg min
a∈[0,1]

sup
m∈MD(µD)

(
βum,µD − Em,µD [φa]

)
.

Just as when we derived φMMR for Example II above, here we need only optimize over
a ∈ [0, 1] and m ∈MD (µD), rather than over a ∈ A and (m,µD) ∈ H1.

In defining φMMRU we assumed that µD was known, which is unlikely to hold in
contexts like Example I where D is random. Note, however, that for any estimator µ̂D
which depends only on D, aMMRU (µ̂D) can be viewed as a particular weight function
a(D) and the plug-in minimax regret (PI) test

φPI = φaPI(D) = 1 {K + aMMRU (µ̂D) · J > cα (aMMRU (µ̂D))}

is a CLC test and so controls size by Theorem 1. Moreover, to calculate this test we
need only solve for aMMRU taking the estimate µ̂D to be the true value, so this test
remains quite computationally tractable.

It is important to note that φPI is not in general a true MMR test. First, φPI
treats the estimated value µ̂D as the true value, and hence does not account for any
uncertainly in the estimation of µD. Second, even taking the value µD as given φPI
restricts attention to unconditional linear combination tests, which represent a strict
subset of the possible functions a ∈ A. Despite these potential shortcomings, we find
that PI tests perform quite well in simulation, and show in Section 7 that PI tests will
be asymptotically optimal under strong identification in our examples.
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To use PI tests in a given context we need only choose the estimator µ̂D. While
the MLE for µD based on D, µ̂D = D, is a natural choice we may be able to do
better in many cases. In particular, in weak IV (Example I) with homoskedastic
errors estimation of µ̂D is related to a problem of non-centrality parameter estimation,
allowing us to use results from that literature.

Example I: Weak IV (Continued) Consider again the case studied by AMS
where Ω = A ⊗ B has Kronecker product structure. Results in AMS show that
(J,K,D′Σ−1

D D) is a maximal invariant under rotations of the instruments, where
D′Σ−1

D D ∼ χ2
k

(
µ′DΣ−1

D µD
)
.6 AMS show that the distribution of (J,K,D′Σ−1

D D) de-
pends on c =

√
TπT only through the non-centrality parameter r = µ′DΣ−1

D µD.
Note that the MLE µ̂D = D for µD based on D implies a severely biased estimator

for r, r̂ = D′Σ−1
D D, with E [r̂] = E

[
D′Σ−1

D D
]

= r + k. The problem of estimating
r relates to the well-studied problem of estimating the non-centrality parameter of a
non-central χ2 distribution, and a number of different estimators have been proposed
for this purpose, including r̂MLE, the MLE for r based on r̂ (which is not available in
closed form) and r̂PP = max {r̂ − k, 0} which is the positive part of the bias corrected
estimator r̂ − k.7 Both r̂MLE and r̂PP are zero for a range of values r̂ > 0 so we also
consider an estimator proposed by Kubokawa et al. (1993),

r̂KRS = r̂ − k + e−
r̂
2

 ∞∑
j=0

(
− r̂2

)j 1
j! (k + 2j)

−1

which is smooth in r̂ and greater than zero whenever r̂ > 0. We show in Section 6
below that estimators µ̂D corresponding to all three non-centrality estimators r̂MLE,

r̂PP , and r̂KRS yield PI tests φPI with good power properties.�

5.2 Implementing MMRU and PI Tests

The weight functions aMMRU(µD) and aPI(D) are not typically available in closed
form, so to implement MMRU and PI tests we need to approximate these weight
functions numerically. Since PI tests are simply MMRU tests that plug in an estimate
for µD, we focus on the problem of evaluating MMRU tests. For details on our

6It suffices to note that (J,K,D′Σ−1
D D) is a one-to-one transformation of Q as defined in AMS.

7r̂PP has been shown to dominate r̂MLE in terms of mean squared error but is itself inadmissible
(Saxena and and Alam, 1982).
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application of this approach to the heteroskedastic linear IV model discussed in the
next section, see the supplementary appendix.

Calculating a good approximation to the weight function aMMRU is straightfor-
ward when MD (µD) is compact. In particular, since µD and ΣD are both known
in the MMRU problem, the only unknown parameter that affects the power of linear
combination tests φa is m. Moreover, it is clear that Em,µD [φa] is continuous in (m, a).
Thus for any compact set of values MD (µD) , for a sufficiently fine grids of values
M ⊂MD (µD) and A ⊂ [0, 1] the approximate value for aMMRU (µD)

a∗MMRU (µD) = arg min
a∈A

sup
m∈M

(
sup
ã∈A

Em,µD [φã]− Em,µD [φa]
)

will have maximum regret arbitrarily close to that of the true MMRU choice

sup
m∈MD(µD)

(
βum,µD − Em,µD

[
φa∗MMRU (µD)

])
≈ min

a∈[0,1]
sup

m∈MD(µD)

(
βum,µD − Em,µD [φa]

)
.

To calculate a∗MMRU (µD) , however, it suffices to evaluate Em,µD [φa] for all (a,m) ∈
A×M , which can be done by simulation.8

Even if the initial set of alternativesMD (µD) is non-compact, it is typically rea-
sonable to restrict attention to some bounded neighborhood of the null, for example
the set of alternatives against which the S test φS attains power less than some pre-
specified level β. This amounts to considering M̃D (µD) = MD (µD) ∩ BC̃ where
BC =

{
m ∈ Rk : ||m||2 < C

}
and C̃ solves Pr

{
χ2
k

(
C̃
)
> χ2

k,1−α

}
= β. Once we re-

strict attention to M̃D (µD) we can approximate aMMRU (µD) as discussed above.

6 Performance of PI Tests in Weak IV

In this section, we examine the performance of PI tests in linear IV with weak in-
struments (Example I). We begin by considering the model studied by AMS, whose
assumptions imply Kronecker product structure for the covariance matrix Ω. Since
data encountered in empirical practice commonly violate this assumption, we then
consider the performance of PI tests in a model calibrated to match the heteroskedas-
tic time-series data used by Yogo in his (2004) study on the effect of weak instruments

8For this step it is helpful to note that Em,µD
[φa] =

´
EτJ (D),τK(D) [φa] dFD, so we can tabulate

EτJ ,τK
[φa] in advance and calculate the integral by simulation.
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on estimation of the elasticity of inter-temporal substitution.

6.1 Homoskedastic Linear IV

AMS consider the linear IV model Example I under the additional restriction that the
errors V are independent of Z, normal, and iid across t with corr(V1,t, V2,t) = ρ. AMS
show that under these restrictions the CLR test of Moreira (2003) is nearly uniformly
most powerful in a class of two-sided tests invariant to rotations of the instruments,
in the sense that the power function of the CLR test is uniformly close to the power
envelope for this class. Mueller (2011) notes that using his Theorems 1 and 2 one can
extend this result to show that the CLR test is nearly asymptotically uniformly most
powerful in the class of all invariant two-sided tests that have correct size under the
weak convergence assumption (6) with the additional restriction that Ω = A⊗B for A
and B symmetric positive-definite matrices of dimension 2×2 and k×k, respectively.
As Mueller notes, matrices Ω of this form arise naturally only for serially uncorrelated
homoskedastic IV models, limiting the applicability of this result. Nonetheless, the
asymptotic optimality of CLR under the assumption that Ω = A ⊗ B provides a
useful benchmark against which to evaluate the performance of φPI . In particular, by
Theorem 2 the CLR test is a CLC test. Hence, if our plug-in minimax regret approach
is to work well in this benchmark case, it should match the near-optimal performance
of the CLR test.

We begin by directly comparing the CLR test’s weight function aCLR(D) to the
weight functions implied by the plug-in MMR approach for the different estimators
for r = µ′DΣ−1

D µD described in Section 5.1. Next, we simulate the power of the various
PI tests considered and show that tests based on reasonable estimators for r match
the near-optimal performance of the CLR test.

6.1.1 Weight Function Comparison

The task of comparing the weight functions implied by PI tests for the various esti-
mators of r is considerably simplified by the following lemma:

Lemma 1 For A and B symmetric positive-definite matrices of dimension 2× 2 and
k× k, respectively, the function aMMRU (µD) in the limit problem (6) with Ω = A⊗B
can be taken to depend on µD only through r = µ′DΣ−1

D µD.
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Figure 1: Weight functions aCLR(r̂) for CLR and aMMRU (r̃ (r̂)) for PI tests with
different estimators r̃ of r discussed in Section 5.1 for linear IV with five instruments
and homoskedastic errors.

Since the weights of both the CLR test and the plug-in approaches discussed in
Section 5.1 depend on r̂ alone, in Figure 1 we plot the values of aCLR (r̂), aMMRU (r̂),
aMMRU (r̂MLE), aMMRU (r̂PP ), and aMMRU (r̂KRS) as functions of r̂ for k = 5. All
the weight functions exhibit similar qualitative behavior, placing large weight on S

for small values of r̂ and increasing the weight on K as r̂ grows, but there are some
notable differences. Perhaps most pronounced, aMMRU (r̂) is lower than any of the
other functions, as is intuitively reasonable given that r̂ tends to overestimate r. As
previously noted both r̂MLE and r̂PP are zero for a range of strictly positive values r̂.
Also notable, we have that aMMRU (0) < 1: this reflects the fact that the MMRU test
down-weights S even when r = 0, due to its higher degrees of freedom.

6.1.2 Power Simulation Results

To study the power of the PI tests, we follow the simulation design of AMS and
consider a homoskedastic normal model with a known reduced-form covariance matrix.
Like AMS we consider models with five instruments, reduced-form error correlation
ρ equal to 0.5 or 0.95, and concentration (identification strength) parameter λ = µ′µ
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CLR PI-r̂ PI-r̂MLE PI-r̂PP PI-r̂KRS AR K
k = 2 1.18% 1.44% 0.72% 0.72% 0.88% 9.40% 29.96%
k = 5 2.14% 5.90% 1.37% 1.07% 2.04% 25.05% 53.71%
k = 10 3.51% 13.21% 2.29% 2.18% 4.00% 30.76% 64.62%

Table 1: Maximal power shortfall relative to other tests considered, in linear IV model
with homoskedastic errors. For each k (number of instruments) we calculate the point-
wise maximal power of the tests studied. For each test, we report the largest margin
by which the power of that test falls short of point-wise maximal power. CLR denotes
the CLR test of Moreira (2003) while PI-r̂, PI-r̂MLE, PI-r̂PP , and PI-r̂KRS denote
the PI tests with weight functions aMMRU (r̂), aMMRU (r̂MLE) , aMMRU (r̂PP ) , and
aMMRU (r̂KRS), respectively. AR is the Anderson Rubin test (equivalent to the S test)
and K is Kleibergen’s (2002) K test.

equal to 5 and 20. To examine the effect of changing the number of instruments, as
in AMS we also consider models with two and ten instruments, in each case fixing
ρ equal to 0.5 and letting λ equal 5 and 20. The resulting power plots (based on
10,000 simulations) are reported in the supplementary appendix. For brevity, here
we report only the maximal power shortfall of each test, measured as the maximal
distance from the power functions of the CLR, PI, AR, and K tests to the power
envelope for the class consisting of these tests alone. These values can be viewed as a
measure of maximum regret relative to this restricted set of tests. As Table 1 makes
clear, the PI tests considered largely match the near-optimal performance of the CLR
test. The one exception is the PI test using the badly biased estimator r̂ for r, which
systematically overweights the K statistic and consequently under-performs relative
to the other tests considered. As these results highlight, in one of the only weakly
identified contexts where a near-UMP test is known, reasonable implementations of
the plug-in testing approach suggested in this paper are near-optimal as well.

6.2 Linear IV with Unrestricted Covariance Matrix

The near-optimal performance of PI tests in linear IV models where Ω has Kronecker
product structure is promising, but is of limited relevance for empirical work. Eco-
nomic data frequently exhibit of heteroskedasticity, serial dependence, clustering, and
other features that render a Kronecker structure assumption for Ω implausible. It is
natural to ask whether PI tests continue to have good power properties in this more
general case. As an alternative CLC test, we consider Kleibergen (2005)’s quasi-CLR
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test, which takes r (D) = D′Σ−1
D D and can be viewed as a heteroskedasticity and

autocorrelation-robust version of the CLR test, as well as the K and Anderson Rubin
(S) tests.

In addition to these CLC tests, we also consider the MM1-SU and MM2-SU tests
of MM. These tests maximize weighted average power, for weights which depend on
the covariance matrix Σ, over a class of similar tests satisfying a sufficient condition
for local unbiasedness (their SU tests). We show in the supplementary appendix that
all conditional linear combination tests are SU tests, and thus that the MM1-SU and
MM2-SU tests have, by construction, weighted average power at least as great as the
other tests considered under their respective weight functions. MM present extensive
simulation results which show that these tests perform very well in models where Ω
has Kronecker structure, as well as in some examples with non-Kronecker structure.

There are a multitude of ways in which Ω may depart from Kronecker structure,
however, and it is far from clear ex-ante how the power of the tests we consider may be
expected to compare under different departures. To assess the relative performance
of all the tests we consider at parameter values relevant for empirical practice, we
calibrate our simulations based on data from Yogo (2004). Yogo considers estimation
of the elasticity of inter-temporal substitution in eleven developed countries using
linear IV and argues that estimation of this parameter appears to suffer from a weak
instruments problem.9 Yogo notes that both the strength of identification and the
degree of heteroskedasticity appears to vary across countries, making his data-set
especially interesting for our purposes since it allows us to explore the behavior of the
tests considered for a range of empirically relevant parameter values.

Unfortunately, unlike in the homoskedastic case above aPI(D) may depend on all
of D, rather than only on the scalar r̂. Consequently visual comparison of aPI(D) to
the weight function aQCLR(D) implied by the QCLR test is impractical and we move
directly to our simulation results.

6.2.1 Power Simulation Results

We simulate the behavior of tests in the weak IV limit problem (6), and so require
estimates for µ and Ω. To obtain these estimates, for each of the 11 countries in Yogo’s

9The countries considered are Australia, Canada, France, Germany, Italy, Japan, the Netherlands,
Sweden, Switzerland, the United Kingdom, and the United States. For comparability we use Yogo’s
quarterly data for all countries, which in each case covers a period beginning in the 1970’s and ending
in the late 1990’s.
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PI QCLR AR K MM1-SU MM2-SU
Australia 0.53% 0.28% 17.85% 0.95% 9.32% 2.46%
Canada 1.73% 1.44% 19.07% 2.22% 4.37% 2.27%
France 1.70% 1.84% 21.33% 1.60% 4.03% 3.55%

Germany 3.64% 3.03% 17.76% 11.09% 2.58% 2.62%
Italy 1.69% 3.81% 14.59% 6.44% 9.26% 3.20%
Japan 8.45% 42.02% 11.23% 85.22% 7.17% 14.84%

Netherlands 1.76% 1.45% 19.07% 7.43% 2.66% 2.20%
Sweden 1.02% 1.13% 18.34% 1.73% 6.36% 0.81%

Switzerland 1.33% 0.44% 17.53% 1.53% 5.16% 4.90%
United Kingdom 7.38% 28.33% 14.09% 38.73% 10.85% 4.82%
United States 2.74% 8.53% 13.84% 11.09% 24.10% 6.54%

Table 2: Maximal point-wise power shortfall relative to other tests considered, for
simulations calibrated to match data in Yogo (2004). QCLR denotes the quasi-CLR
test of Kleibergen (2005) while PI is the plug-in test discussed in Section 6.2. AR is
the Anderson Rubin (or S) test, K is Kleibergen (2005)’s K test, and MM1-SU and
MM2-SU are the weighted average power optimal SU tests of Moreira and Moreira
(2013).

data we calculate µ̂ and Ω̂ based on two-stage least squares estimates for the elasticity
of inter-temporal substitution, where Ω̂ is a Newey-West covariance matrix estimator
using three lags.10 A detailed description of this estimation procedure, together with
the implementation of all tests considered, is given in the supplementary appendix.
In particular, for the PI test we consider an estimator µ̂D which corresponds to the
positive-part non-centrality estimator r̂PP in the homoskedastic case discussed above.
The resulting power curves (based on 10,000 simulations for the non-MM tests, and
5,000 simulations for the MM tests) are plotted in Figures 2-4.11 Since for many
countries the power curves are difficult to distinguish visually, in Table 2 we list the
maximum regret for each test relative to the other tests studied, repeating the same
exercise described above for the homoskedastic case.

Both the figures and the table highlight that while for many of the countries the K,
QCLR, MM, and PI tests all perform well, as in the homoskedastic case there are some
parameter values where the K test suffers from substantial declines in power relative

10While the model assumptions imply that the GMM residuals ft(β) are serially uncorrelated at the
true parameter value, the derivatives of the moment conditions ∂

∂β ft(β) may be serially dependent.
11In implementing the MM tests, we encountered some minor numerical issues which may have a

small effect on the results- see supplementary appendix section D.4 for details.
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to the other tests. In contrast to the homoskedastic case, the QCLR test does not fully
resolve these issues. Instead, in cases where the K test exhibits especially large power
declines, as in the simulations calibrated to match data from Japan and the United
Kingdom, the QCLR test suffers from substantial power loss as well. While the QCLR
test reduces power loss relative to the K test, the PI test does substantially better,
and has the smallest maximal power shortfall of any of the tests considered. While the
power of the AR test is stable, for all countries its maximal power shortfall exceeds
10%. The MM1-SU and MM2-SU tests both have high power in most calibrations,
but in some cases exhibit larger maximal power shortfalls than does the PI test,
with maximal shortfalls of 24.1% and 14.84% respectively, while the maximal power
shortfall of the PI test is 8.45%.

The relatively poor performance of the QCLR test is driven by the fact, discussed
above, that in the non-homoskedastic case the K statistic may focus on directions
yielding low power. Since Kleibergen’s QCLR test uses the CLR weight function,
which is optimal in the homoskedastic case, it does not account for the fact that K
may have worse performance when Σ lacks Kronecker product structure. In contrast,
the PI test takes both the structure of Σ and the estimated value µ̂D into account
when calculating aPI (D), and so performs well in both the homoskedastic and non-
homoskedastic cases.

The relative performance of PI and MM-SU tests is as we might hope given their
derivation. The PI test, while not a true minimax-regret test, is motivated from a
minimax-regret perspective, so it is encouraging that it has a smaller overall maximal
power shortfall than do the MM-SU tests. The power shortfalls of the PI test in
particular calibrations also tend to be smaller, with the PI shortfall smaller than the
MM1-SU shortfall in nine of the eleven countries considered, and smaller than the
MM2-SU shortfall in eight of the eleven.12 By contrast the MM-SU tests are designed
to maximize weighted average power, and simulations in the supplementary appendix
confirm that the MM tests have higher weighted average power than the other tests
considered under their respective weight functions.

Unlike in the homoskedastic case we can see that that none of the tests considered
is even approximately uniformly most powerful, but the PI test nonetheless delivers
powerful, stable performance over the range of parameter values considered.

12Note that even were the PI test a true MMR test this would not be guaranteed, since the class
of SU tests larger than the class of CLC tests.
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7 Asymptotic Properties of CLC Tests

The results of Sections 3-6 treat the limiting random variables (g,∆g, γ) as ob-
served and consider the problem of testing H0 : m = 0, µ ∈ M against H1 : m ∈
M(µ)\{0}, µ ∈ M. In this section, we show that under mild assumptions our results
for the limit problem (2) imply asymptotic results along sequences of models satisfy-
ing (1). We first introduce a useful invariance condition for the weight function a and
then prove results concerning the asymptotic size and power of CLC tests.

7.1 Postmultiplication Invariant Weight Functions

Let us introduce finite-sample analogs ST , DT , KT , and JT to the limiting random
variables S, D, K, and J , where ST = g′TgT and so on. We previously wrote the
weight functions a of CLC tests as functions of D alone, since in the limit problem
the parameter γ is fixed and known. In this section, however, it is helpful to instead
write a(D, γ). Likewise, since the estimator µ̂D used in plug-in tests may depend on
γ, in this section we will write it as µ̂D (D, γ).

Our weak convergence assumption (1), together with the continuous mapping theo-
rem, implies thatDT →d D forD normally distributed, where we assume thatD is full
rank almost surely for all (θ, γ) ∈ Θ× Γ. In many applications such convergence will
only hold if we choose an appropriate normalization when defining ∆gT , which may
seem like an obstacle to applying our approach. In the linear IV model for instance,
the appropriate definition for ∆gT will depend on the strength of identification.

Example I: Weak IV (Continued) In Section 2 we assumed that the instruments
were weak, with πT = c√

T
, and showed that ∆gT =

√
T Ω̂−

1
2

ff
∂
∂β
fT (β0) converged in

distribution. If on the other hand the instruments are strong, πT = π1 and ||π1|| > 0,
then ∂

∂β
fT (β) →p E [XtZt] 6= 0 so

√
T Ω̂−

1
2

ff
∂
∂β
fT (β0) diverges and we should instead

take ∆gT = Ω̂−
1
2

ff
∂
∂β
fT (β0).�

This apparent dependence on normalization is not typically a problem, however,
since many CLC tests are invariant to renormalization of (gT ,∆gT , γ̂). In particular,
for A any full rank p× p matrix consider the transformations

h∆g (∆gT ;A) = ∆gTA
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hΣ (Σ;A) =
 1 0

0 A

⊗ Ik
′Σ

 1 0
0 A

⊗ Ik


and let hγ (γ;A) be the transformation of γ such that Σ (hγ (γ;A)) = hΣ (Σ (γ) ;A) .
Let

h (gT ,∆gT , γ̂;A) = (gT , h∆g (∆gT ;A) , hγ (γ̂;A)) (16)

and note that the statistics JT and KT are invariant to this transformation for all full
rank matrices A, in the sense that their values based on (gT ,∆gT , γ̂) are the same as
those based on h (gT ,∆gT , γ̂;A). Thus if we choose a weight function a(D, γ) which
is invariant, the CLC test φa(DT ,γ̂) will be invariant as well. Formally, we say that
the weight function a(D, γ) is invariant to postmultiplication if for all full-rank p× p
matrices A we have

a(D, γ) = a (h∆g (D;A) , hγ (γ;A)) ,

where we have used the fact thatD calculated using h (g,∆g, γ;A) is equal to h∆g (D;A) .
Invariance to postmultiplication is useful since to obtain results for invariant tests

based on (g̃T ,∆g̃T , γ̃) it suffices that there exist some sequence AT such that

(gT ,∆gT , γ̂) = h (g̃T ,∆g̃T , γ̃;AT )

satisfies the weak convergence assumption (1), without any need to know the correct
sequence AT for a given application. Thus, in the linear IV example discussed above
we can take ∆gT as originally defined and make use of results derived under the
convergence assumption (6) without knowing identification strength in a given context.

The class of postmultiplication-invariant weight functions a is quite large, and
includes all the weight functions discussed above. In particular we can choose the
minimax regret weight function aMMR to be invariant to postmultiplication. Likewise,
provided we take the estimator µ̂D(D, γ) to be equivariant under transformation by
h, so that h∆g (µ̂D(D, γ);A) = µ̂D (h∆g (D;A) , hγ (γ;A)), the plug-in weight function
aPI will be invariant as well.

7.2 Asymptotic Size and Power of CLC Tests

Let F (g,∆g, γ) denote the distribution of (g,∆g, γ) in the limit problem, noting that
the marginal distribution for γ in the limit problem is a point mass. Since we have as-
sumed that D is full rank almost surely, J and K are F -almost-everywhere continuous
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functions of (g,∆g, γ) and the continuous mapping theorem implies

(JT , KT , DT )→d (J,K,D) .

To obtain asymptotic size control for the CLC test

φa(DT ,γ̂) = 1 {(1− a (DT , γ̂)) ·KT + a (DT , γ̂) · ST > cα (a (DT , γ̂))}

all we require is that a be almost-everywhere continuous. Indeed, this test is asymp-
totically conditionally similar in the sense discussed by Jansson and Moreira (2006).

Proposition 1 Assume (gT ,∆gT , γ̂) satisfies the weak convergence assumption (1)
and let a(D, γ) be F (g,∆g, γ)-almost-everywhere continuous for (θ0, γ) ∈ {θ0} × Γ.
Then under (θ0, γ) we have that

lim
T→∞

ET,(θ0,γ)
[
φa(DT ,γ̂)

]
= α. (17)

Moreover, for F the set of bounded functions f(D) which are F (g,∆g, γ)-almost-
everywhere continuous under (θ0, γ),

lim
T→∞

ET,(θ0,γ)
[(
φa(DT ,γ̂) − α

)
f (DT )

]
= 0 ∀f ∈ F . (18)

It is important to note that Proposition 1 only establishes sequential size control,
and depending on the underlying model establishing uniform size control over some
base parameter space may require substantial further restrictions. In Example I,
however, we can use results from Andrews et al. (2011, henceforth ACG) to prove
that a large class of CLC tests based on postmultiplication-invariant weight functions
control size uniformly in heteroskedastic linear IV with a single endogenous regressor.

Example I: Weak IV (Continued) Define Ω̂ and Σ̂ in the usual way (detailed in
the proof of Proposition 2 in the supplementary appendix). Define a parameter space
Λ of null distributions as in ACG Section 3, noting that γ consists of the elements of
(ΩF ,ΓF ,ΣF ) in the notation of ACG. Building on results in ACG it is straightforward
to prove the following proposition:

Proposition 2 Consider the CLC test φa(DT ,γ̂) based on a postmultiplication-invariant
weight function a(D, γ) which is continuous in D and γ at all points with ||D|| > 0
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and satisfies

lim
δ→0

(
sup

(D,γ):||D||>ε,maxeig(ΣD)≤δ
a(D, γ)

)
= lim
δ→0

(
inf

(D,γ):||D||>ε,maxeig(ΣD)≤δ
a(D, γ)

)
= a0 (19)

for some constant a0 ∈ [0, 1], maxeig (A) the maximal eigenvalue of A, and all ε > 0.
The test φa(DT ,γ̂) is uniformly asymptotically similar on Λ:

lim
T→∞

inf
λ∈Λ

ET,λ
[
φa(DT ,γ̂)

]
= lim

T→∞
sup
λ∈Λ

ET,λ
[
φa(DT ,γ̂)

]
= α.

The assumption (19), together with the assumed postmultiplication invariance of
a (D, γ) and the restrictions on the parameter space Λ, ensures that under sequences
with

√
T ||πT || → ∞ we have that a (DT , γ̂)→p a0 asymptotically, and hence that un-

der all strongly identified sequences the test converges to the linear combination test
φa0 . We show in the next section that for a0 = 0 this condition plays an important
role in establishing asymptotic efficiency of CLC tests in linear IV under strong iden-
tification, and will verify this condition for PI tests φPI in linear IV. The conditions
needed to ensure that aPI satisfies the continuity conditions in Proposition 2 are much
less clear, but we can always create a sufficiently continuous weight function ã which
approximates aPI arbitrarily well by calculating aPI on a grid of values for (D, γ) and
taking ã to continuously interpolate between these values.13�

Power results in the limit problem (2) also imply asymptotic power results un-
der (1). In particular, for a (D, γ) almost everywhere continuous with respect to
F (g,∆g, γ), the asymptotic power of φa(DT ,γ̂) is simply the power of φa(D,γ) in the
limit problem.

Proposition 3 Assume (gT ,∆gT , γ̂) satisfies the weak convergence assumption (1)
and let a(D, γ) be F (g,∆g, γ)-almost-everywhere continuous for some (θ, γ) ∈ Θ×Γ.
Then under (θ, γ)

lim
T→∞

ET,(θ,γ)
[
φa(DT ,γ̂)

]
= Em,µD,γ

[
φa(D,γ)

]
where m = m(θ, θ0, γ) and µD are the parameters in the limit problem.

13To ensure that ã is invariant to postmultiplication we can fix ||D|| = 1 in the grid used to calculate
ã and evaluate ã for other values by rescaling the problem to ||D|| = 1 using the transformation (16).
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Thus, under mild continuity conditions on a(D, γ), the asymptotic size and power
of tests under (1) are just their size and power in the limit problem. Moreover,
sufficiently continuous postmultiplication invariant weight functions a(D, γ) which
select a fixed weight a0 under strong identification yield uniformly asymptotically
similar tests in heteroskedastic linear IV.

7.3 Asymptotic Efficiency Under Strong Identification

The power results above concern the asymptotic properties of CLC tests under general
conditions that allow for weak identification, but since the commonly-used non-robust
tests are efficient under strong identification we may particularly want to ensure that
our CLC tests share this property.

As noted in Section 3, under strong identification we typically have that Σθθ =
Σθg = 0, that µ is full rank, and thatM(µ) = {µ · c : c ∈ Rp} .We say that (gT ,∆gT , γ̂)
converges to a Gaussian shift model under (θ, γ) if (gT ,∆gT , γ̂)→d (g,∆g, γ) for

 g

vec(∆g)

 ∼ N

 µ · b
vec(µ)

 ,
 I 0

0 0

 (20)

where µ is full rank and b ∈ Rp. We show in the supplementary appendix that under
strong identification general GMM models parametrized in terms of local alternatives
converge to Gaussian shift models. In many cases strong identification is not necessary
to obtain convergence to (20), however, and sequences of models between the polar
cases of weak and strong identification, like the “semi-strong” case discussed in An-
drews and Cheng (2012), often yield Gaussian shift limit problems under appropriately
defined sequences of local alternatives.

Example I: Weak IV (Continued) Suppose that πT = rT c for c ∈ Rp with
||c|| > 0 for any sequence {rT}∞T=1 such that rT → r as T →∞ and

√
TrT →∞. For

0 < r < ∞ this is the usual, strongly identified case, while for r = 0 this is falls into
the “semi-strong” category of Andrews and Cheng (2012): the first stage converges
to zero, but at a sufficiently slow rate that many standard asymptotic results are pre-
served. Let Ω̃ be a consistent estimator for limT→∞ V ar

((√
TfT (β0)′ , r−1

T fT (β0)′
)′)

and define g̃T (β) =
√
T Ω̃−

1
2

ff fT (β) and γ̃ = vec
(
Ω̃
)
as before. Consider sequences of

local alternatives with βT = β0 + b∗

rT
√
T
and let ∆g̃T = r−1

T Ω̃−
1
2

ff
∂
∂β
fT (β). As T → ∞,
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(g̃T ,∆g̃T , γ̃) converges to the Gaussian shift limit problem (20) with µ = E [ZtZ ′t] c
and b = b∗.�

In the Gaussian shift limit problem (20), the Neyman Pearson Lemma implies
that the uniformly most powerful level α test based on (J,K,D) is φK as defined in
(13). Further, under the weak convergence assumption (1) for (g,∆g) as in (20) the
test φKT = 1

{
KT > χ2

p,1−α

}
is asymptotically efficient in the sense of Mueller (2011)

for a family of elliptically-contoured weight functions.14 Under strong identification
φKT = 1

{
KT > χ2

p,1−α

}
is also generally equivalent to the usual Wald tests, though

we will need conditions beyond (1) to establish this. It is straightforward to show
that a CLC test based on the weight function a (D, γ) will share these properties,
and so be asymptotically efficient under sequences converging to (20), if and only if
a (DT , γ̂)→p 0 under such sequences.

Proposition 4 Denote by Ac the class of weight functions functions a(D, γ) that are
continuous in both D and γ for all full-rank D. Fix (θ, γ) ∈ Θ × Γ with θ 6= θ0 and
suppose that (gT ,∆gT , γ̂) converges weakly to the Gaussian shift limit problem (20)
with b 6= 0. For a (D, γ) almost-everywhere continuous with respect to the limiting
measure F (g,∆g, γ) under (θ, γ),

lim
T→∞

ET,(θ,γ)
[
φa(DT ,γ̂)

]
= sup

ã∈Ac
lim
T→∞

ET,(θ,γ)
[
φã(DT ,γ̂)

]

if and only if a (D, γ) = 0 almost surely with respect to F (g,∆g, γ). Thus

lim
T→∞

ET,(θ,γ) [φKT ] = sup
ã∈Ac

lim
T→∞

ET,(θ,γ)
[
φã(DT ,γ̂)

]
.

Using this proposition, it is easy to see that the condition (19) that we used to
ensure uniformly correct size for CLC tests in linear IV Example I will also ensure
asymptotic efficiency under strong and semi-strong identification provided a0 = 0.

It is straightforward to give conditions under which MMRU tests select a (µD, γ) =
0 asymptotically in sequences of models converging to Gaussian shift experiments:

14Formally, in the limit problem µ = ∆g is known so to derive weighted average power optimal
tests we need only consider weights on b. For any weights G (b) with density g (b) that depends on b
only through ‖µb‖, so that g (b) ∝ g̃ (‖µb‖) , φK is weighted average power maximizing in the limit
problem and by Mueller (2011) φKT

is asymptotically optimal over the class of tests with correct
size under (1) and (20).
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Theorem 6 Suppose that for some pair (µD, γ) ∈ MD × Γ with µD full-rank and
Σθg (γ) = Σθθ (γ) = 0, for all C > 0 and all sequences (µD,n, γn) ∈ MD × Γ such that
(µD,n, γn)→ (µD, γ) we have

dH (MD (µD,n, γn) ∩BC , {µD · b : b ∈ Rp} ∩BC)→ 0

where BC = {m : ||m|| ≤ C} and dH (A1, A2) is the Hausdorff distance between the
sets A1 and A2,

dH (A1, A2) = max
{

sup
x1∈A1

inf
x2∈A2

‖x1 − x2‖ , sup
x2∈A2

inf
x1∈A1

‖x1 − x2‖
}
.

Then for βum,µD,n,γn = supa∈[0,1]Em,µD,n,γn [φa] and all (µD,n, γn)→ (µD, γ) the MMRU
weight

aMMRU (µD,n, γn) = arg min
a∈[0,1]

sup
m∈MD(µD,n,γn)

(
βum,µD,n,γn − Em,µD,n,γn [φa]

)

satisfies aMMRU (µD,n, γn)→ 0.

Using Theorem 6 we can show that PI tests will be efficient under strong and semi-
strong identification in Example I, while MMR tests will be efficient under strong and
semi-strong identification in Example II, where the MMR and MMRU tests coincide.

Example I: Weak IV (Continued) Define (gT ,∆gT , γ̂) as in Section 1, and as
above let πT = rT c for c ∈ Rp with ||c|| > 0. For simplicity we take µ̂D = DT but the
extension to other estimators is straightforward.

Corollary 2 Provided
√
TrT →∞, we have that in the linear IV model aPI (µ̂D, γ̂)→p

0 and thus that the PI test based on (gT ,∆gT , γ̂) is efficient under strong and semi-
strong identification.�

Example II: Minimum Distance (Continued) We can model semi-strong iden-
tification in this example by taking Ωη = rTΩη,0 where rT → 0 and r−1

T Ω̂η →p Ωη,0,
noting that rT = 1

T
is the typical strongly identified case. Again define γ̂ = vec

(
Ω̂η

)
and note thatM (γ̂) =

{
Ω̂−

1
2

η (f (θ)− f (θ0))
}
. Defining gT (θ) = Ω̂−

1
2

η (η̂ − f(θ)) and
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∆gT (θ) = ∂
∂θ
gT (θ) = Ω̂−

1
2

η
∂
∂θ
f(θ) as before, a global identification assumption yields

that PI tests are asymptotically efficient.

Corollary 3 Assume that θ is in the interior of Θ and that for all δ > 0 there exists
ε (δ) > 0 such that ||f(θ̃) − f(θ)|| < ε(δ) implies ||θ̃ − θ|| < δ. Provided rT → 0, the
MMR weight function aMMR satisfies aMMR (γ̂) →p 0 and the MMR test is efficient
under strong and semi-strong identification.�

Hence, in our examples the plug-in test φPI is asymptotically efficient under strong
and semi-strong identification.

8 Conclusion

This paper considers the problem of constructing powerful identification-robust tests
for a broad class of weakly identified models. We define the class of conditional linear
combination (CLC) tests and show that this class is equivalent to an appropriately de-
fined class of quasi-conditional likelihood ratio (quasi-CLR) tests. We show that CLC
tests are admissible, locally most powerful, and weighted average power maximizing
conditional on D. To pick from the class of CLC tests we suggest using minimax regret
(MMR) tests when feasible and plug-in (PI) tests when MMR tests are too difficult
to compute. We show that PI tests match the near-optimal performance of the CLR
test of Moreira (2003) in homoskedastic linear IV, compare favorably to alternative
approaches in simulations calibrated to match an IV model with heteroskedastic time-
series data, and are efficient in linear IV and minimum distance models with strong
instruments.
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Appendix

This appendix proves Theorems 1 and 2. Proofs for all other results, further details
on our examples and simulations, and simulation results in a new Keynesian Phillips
curve model, can be found in the supplementary appendix.
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Proof of Theorem 1

By the independence of J, K, and D under the null, conditional on the event D = d

K + a(D) · J |D = d ∼ χ2
p + a(d) · χ2

k−p.

Hence
Pr {K + a(D) · J > cα (a (D))|D = d} = α

so Em=0,µD

[
φa(D)

∣∣∣D = d
]

= α for all d in the support of D and all values µD.
Em=0,µD

[
φa(D)

]
can then be written as

ˆ
Em=0,µD

[
φa(D)

∣∣∣D = d
]
dFD =

ˆ
αdFD = α

for FD the distribution of D, proving the theorem.

Proof of Theorem 2

We first argue that conditional on D = d the test φQCLRr is exactly equivalent to the
level α test that rejects for large values of the statistic K + qα(r(d))

qα(r(d))+r(d) ·J . This result
is trivial for r (d) = ∞. For r (d) < ∞ and K > 0 or J − r (D) > 0, note first that
for fixed d the QCLR statistic is strictly increasing in (J,K). Further, for any L > 0,
the L level set of the QCLRr statistic is of the form L = K + L

L+r(d) · J so that fixing
D = d,

{
(J,K) ∈ R2

+ : QCLRr = L
}

=
{

(J,K) ∈ R2
+ : L = K + L

L+ r(d) · J
}
.

To verify that this is the case, note that if we plug K = L − L
L+r(d) · J into the

QCLRr statistic and collect terms we have

QCLRr = 1
2

L+ r (d)
L+ r (d) · J − r(d) +

√√√√(L+ r (d) + r (d)
L+ r (d) · J)

)2

− 4J · r(d)

 .
However,

(
L+ r(d) + r (d)

L+ r (d) · J
)2

− 4J · r(d) =
(
L+ r (d)− r (d)

L+ r (d) · J
)2
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and thus for K = L− L
L+r(d) · J ,

QCLR = 1
2

L+ r (d)
L+ r (d) · J − r(d) +

√√√√(L+ r (d)− r (d)
L+ r (d) · J

)2
 .

Since we’ve taken K = L− L
L+r(D) ·J and we know K ≥ 0, we have that J ≤ L+r (d).

Thus L+ r (d)− r(d)
L+r(d) · J ≥ 0 and we can open the square root and collect terms to

obtain QCLRr = L on the set
{

(J,K) ∈ R2
+ : L = K + L

L+r(d) · J
}
, as we claimed.

Conditional on D = d the rejection region of φQCLRr is
{

(J,K) ∈ R2
+ : qα (r(d)) < K + qα (r(d))

qα (r(d)) + r(d) · J
}
.

Since J and K are pivotal under the null,

Prm=0,µD

{
qα (r(d)) < K + qα (r(d))

qα (r(d)) + r(d) · J
∣∣∣∣∣D = d

}
= α,

so since K+ qα(r(d))
qα(r(d))+r(d) ·J is continuously distributed with support equal R+, qα (r(d))

must be the 1− α quantile of this random variable. Hence, if we define the test φã(D)

as in (15) with ã(D) = qα(r(D))
qα(r(D))+r(D) , we can see that cα (ã (d)) = qα (d) and thus that

φQCLRr = φã(d) conditional on D = d. Since this hold for all d, φQCLRr ≡ φã(D). Thus,
for any function r : D → R+ ∪ {∞} there is a function ã : D → [0, 1] such that
φQCLRr ≡ φã(D).

To prove the converse, that for any CLC test φa(D) for a : D → [0, 1] we can
find a function r : D → R+ ∪ {∞} yielding the same test, fix the function a(D) and
note that qα(r(D)) is a continuous function of r(D) which is deceasing in r(D) and
is bounded below by χ2

p,1−α and above by χ2
k,1−α (see Moreira (2003)). Hence for any

value d, as r(d) goes from zero to infinity qα(r(d))
qα(r(d))+r(d) varies continuously between zero

and one, with limr(d)→0
qα(r(d))

qα(r(d))+r(d) = 1 and limr(d)→∞
qα(r(d))

qα(r(d))+r(d) = qα(∞)
qα(∞)+∞ = 0. If

a (d) = 0 define r̃ (d) = ∞. If a (d) > 0, note that there exists a value r∗ < ∞ such
that a(d) > qα(r∗)

qα(r∗)+r∗ , so by the intermediate value theorem we can pick r̃(d) ∈ [0, r∗]
such that a(d) = qα(r̃(d))

qα(r̃(d))+r̃(d) . Repeating this exercise for all values d we can construct
a function r̃ : D → R+ ∪ {∞} such that φa(D) ≡ φQCLRr̃ , completing the proof.
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Supplementary Appendix to

Conditional Linear Combination Tests

for Weakly Identified Models

Isaiah Andrews

October 3, 2014

This supplementary appendix contains material to supplement the paper “Condi-
tional Linear Combination Tests for Weakly Identified Models,” by Isaiah Andrews.
Appendix A provides further details on the derivation of the limit problems discussed
in Section 2 of the paper. Appendix B shows that general nonlinear GMM models
which are weakly identified in the sense of Stock and Wright (2000) give rise to limiting
problems of the form (2). Appendix C collects the proofs for all results save Theorems
1 and 2, for which the proof is included with the paper. Appendix D concerns our lin-
ear IV simulations, and gives power plots for PI tests in linear IV with homoskedastic
errors, provides further information on our simulation design, and discusses our im-
plementation of the MM1-SU, MM2-SU, and PI tests. Finally, Appendix E discusses
simulation results and derivations in a nonlinear new Keynesian Phillips curve model.

Appendix A: Derivation of Limit Problems for Ex-
amples

In this section, we provide additional details on the derivation of the limit problems
in examples I and II.
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Example I: Weak IV Re-writing our moment condition we have that

fT (β0) = fT (β0)− fT (β) + fT (β) = 1
T

∑
(Xtβ −Xtβ0)Zt + fT (β).

Note that the expectation of fT (β) under true parameter value β is zero by our
identifying assumption, so Eβ [fT (β0)] = E

[
1
T

∑
XtZt

]
(β − β0) . Since

E
[ 1
T

∑
XtZt

]
= E

[ 1
T

∑
Zt (Z ′tπ + V2,t)

]
= E

[ 1
T

∑
ZtZ

′
t

]
π,

we can see that provided that 1
T

∑
ZtZ

′
t →p QZ forQZ positive definite and 1√

T

∑
ZtV1,t

and 1√
T

∑
ZtV2,t converge in distribution to jointly normal random vectors, the weak-

instruments sequence πT = c√
T
implies that under true parameter value β,

√
T

 fT (β0)
− ∂
∂β
fT (β0)

→d N

 QZc(β − β0)
QZc

 ,Ω(β0)
 .

Combined with the consistency of Ω̂ff , this immediately yields (6).

Example II: Minimum Distance The identifying assumption for the minimum
distance model imposes η = f(θ). Note, however, that

gT (θ0) = Ω̂−
1
2

η (η̂ − f(θ0)) = Ω̂−
1
2

η (η̂ − f(θ)) + Ω̂−
1
2

η (f(θ)− f(θ0))

where by assumption the first term converges to a N(0, Ik) distribution and the sec-
ond term converges to Ω−

1
2

η (f(θ)− f(θ0)) by the Continuous Mapping Theorem and
the assumed consistency of Ω̂η. The consistency of ∆gT (θ) for Ω− 1

2 ∂
∂θ
f(θ0) follows

similarly, immediately implying (7).

Appendix B: Limit Problem for Weak GMMModels

In this appendix, we prove some additional results for GMM models which are weakly
identified in the sense of Stock and Wright (2000). Suppose we begin with a moment
function ft(ψ) which is differentiable in the parameter ψ and satisfies the usual GMM
identifying assumption that Eψ [ft(ψ)] = 0, and are interested in testing H0 : ψ = ψ0.
Suppose that, much like in Stock and Wright (2000), our parameter vector ψ =
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(ψ1, ψ2) is such that ψ1 is weakly identified while ψ2 is strongly identified, and that
the expectation of ft(ψ0) under alternative ψ is

Eψ [ft(ψ0)] = h̃1(ψ1) + 1√
T
h̃2(ψ1, ψ2)

for h̃1, h̃2 continuously differentiable. Letting ψ denote the true parameter value, for
sample size T let us reparametrize in terms of θ = θT =

(√
T (ψ1 − ψ1,0) , ψ2

)
and note

that the null can now be written H0 : θ = θ0 = (0, θ2,0). This reparameterization is
infeasible as it demands knowledge of the unknown true value ψ1, but this is irrelevant
provided we use a test which is invariant to linear reparameterizations. Let

gt(θ) = f

(
ψ1,0 + θ1√

T
, θ2

)

denote the moment function under this new parametrization, and note that the ex-
pectation of gt(θ0) under alternative θ is

Eθ [gt(θ0)] = h̃1

(
ψ1,0 + θ1√

T

)
+ 1√

T
h̃2

(
ψ1,0 + θ1√

T
, θ2

)

= h̃1

(
ψ1,0 −

θ1√
T

)
+ 1√

T
h̃2

(
ψ1,0 + θ1√

T
, θ2

)

= h̃1 (ψ1,0) + 1√
T

∂

∂ψ′1
h̃1

(
ψ1,0 + θ̄1√

T

)
θ1 + 1√

T
h̃2

(
ψ1,0 + θ1√

T
, θ2

)

where in the last step we have taken a mean value expansion in θ1 with intermedi-
ate value θ̄1. Note, however, that the identifying assumption for GMM implies that
h̃1 (ψ1,0) = 0 while under our continuity assumptions

∂

∂ψ′1
h̃1

(
ψ1,0 + θ̄1√

T

)
→ ∂

∂ψ′1
h̃1 (ψ1,0)

and
h̃2

(
ψ1,0 + θ1√

T
, θ2

)
→ h̃2 (ψ1,0, θ2) .
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Hence, Eθ [gt(θ0)] = h(θ) + o
(

1√
T

)
where

h(θ) = 1√
T

∂

∂ψ′1
h̃1 (ψ1,0) θ1 + 1√

T
h̃2 (ψ1,0, θ2) . (21)

Note that the strongly identified parameters θ1 enter h(θ) linearly while the weakly
identified parameters θ2 may enter non-linearly. Suppose that for our original moment
functions ft(θ), we have that under the sequence of alternatives ψT =

(
ψ1,0 − 1√

T
θ1, ψ2

)

1√
T

 ∑
ft(ψ0)− EψT [ft(ψ0)]

vec
(∑ ∂

∂ψ′
ft(ψ0)− EψT

[
∂
∂ψ′
ft(ψ0)

]) →d N (0,Ωf )

where Ωf is consistently estimable and Ωff , the upper-left block of Ωf , is full rank.
Since alternative θ in the new parametrization corresponds to this sequence of alter-
natives in the original parametrization, this implies that under θ we have

1√
T

 ∑
gt(θ0)− Eθ [gt(θ0)]

vec
(∑ ∂

∂θ′
gt(θ0)− Eθ

[
∂
∂θ′
gt(θ0)

]) →d N (0,Ω)

for Ω =
 Ωgg Ωgθ

Ωθg Ωθθ

 consistently estimable and Ωgg = Ωff full-rank. Letting

gT (θ0) = 1√
T

Ω̂−
1
2

gg

∑
t

gt(θ0)

and
∆gT (θ0) = 1√

T
Ω̂−

1
2

gg

∑
t

∂

∂θ
gt(θ0)

note that  gT (θ0)
∆gT (θ0)

→d N

 m

µ

 ,
 I Σgθ

Σθg Σθθ


where µ = limT→∞Eθ

[
1√
T

∑ ∂
∂θ′
gt(θ0)

]
provided this limit exists and m = h(θ) ∈

M(µ, γ), where M(µ, γ) will depend on the structure of the problem at hand: in
some cases it may be that without additional structure we cannot restrict the set of
possible values m and have M(µ) = Rk while in others, like Example I, we may be
able to obtain further restrictions. Note further, that while we framed the analysis
here using reparameterization in terms of local alternatives for strongly identified
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parameters, we could equivalently have formulated ∆gT using the Jacobian of the
original moment function, ∂

∂ψ′
ft (ψ0), post-multiplied by an appropriate sequence of

normalizing matrices AT , as in Section 7.1.
We can say a bit more regarding the strongly identified parameters θ1. Note that by

the definition of θ, ∂
∂θ′1
gt(θ0) = 1√

T
∂
∂ψ′1

ft(ψ0). Hence, 1√
T

∑ ∂
∂θ′1
gt(θ0) = 1

T

∑ ∂
∂ψ′1

ft(ψ0)
and we can re-write µ as limT→∞Eθ

[
1
T

∑ ∂
∂ψ′1

ft(ψ0) 1√
T

∑ ∂
∂ψ′2

ft(ψ0)
]
. Further, the

central limit theorem we have assumed for 1√
T

∑ ∂
∂ψ′1

ft(ψ0) implies that 1√
T

∑ ∂
∂θ′1
gt(θ0)→p

µ1 = limT→∞Eθ
[

1
T

∑ ∂
∂ψ′1

ft(ψ0)
]
. Together with (21) this implies that under standard

regularity conditions (see e.g. Newey and McFadden (1994)) h(θ1, θ2,0) = µ1 · θ1 and
hence that in the special case where all parameters are strongly identified we obtain
the Gaussian shift limiting problem g

∆g

 ∼ N

 µ · θ
µ

 ,
 I 0

0 0

 .
Appendix C: Proofs

Proof of Corollary 1

Conditional on D = d the CLC test φa(D) fails to reject if and only if K + a(d) · J ≤
cα(a(d)), where a (d) ∈ [0, 1] . Thus, for this test we can define

Cd =
{(√

J,
√
K
)

: K + a(d) · J ≤ cα(a(d))
}
.

This set trivially satisfies requirement (2) of Theorem 3. To verify that it satisfies (1),
note that Cd is closed and if we have two pairs

(√
J1,
√
K1
)
,
(√

J2,
√
K2
)
∈ Cd then

for all λ ∈ [0, 1]
λ
(√

J1,
√
K1

)
+ (1− λ)

(√
J2,

√
K2

)
∈ Cd

since by the convexity of the function f (x) = x2

(
λ
√
J1 + (1− λ)

√
J2

)2
≤ λJ1 + (1− λ) J2

(
λ
√
K1 + (1− λ)

√
K2

)2
≤ λK1 + (1− λ)K2.
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Proof of Theorem 4

(1) follows from results in Monti and Sen (1976) and Koziol and Perlman (1978).
Specifically, both papers note that if (A,B) ∼

(
χ2
k−p (τA) , χ2

p (τB)
)
and (τA, τB) =

λ · (tA, tB) for tA, tB ≥ 0 then for φ any size α test for H0 : τA = τB = 0 based on
(A,B) there exists some λ̄ > 0 such that for 0 < λ < λ̄,

E(τA,τB) [φ] ≤ E(τA,τB)

[
1
{

tA
k − p

A+ tB
p
B > c

}]

for c the 1− α quantile of a tA
k−pχ

2
k−p + tB

p
χ2
p distribution. Statement (1) then follows

immediately by the fact that (J,K) |D = d ∼
(
χ2
k−p (τJ) , χ2

p (τK)
)
.

Establishing statement (2) is similarly straightforward. In particular for FtK ,tJ
as described in Theorem 4, Koziol and Perlman note that we can use the Neyman
Pearson Lemma to establish that the weighted average power maximizing level α test
based on (A,B) ∼

(
χ2
k−p (τA) , χ2

p (τB)
)
is φ∗F = 1

{
tK
tK+1A+ tJ

tJ+1B > c
}
, where c is

the 1− α quantile of a tK
tK+1χ

2
p + tJ

tJ+1χ
2
k−p distribution. In particular, for Φα the class

of level α tests based on (A,B),

φ∗F ∈ arg max
φ∈Φα

ˆ
T (d)

EτA,τB [φ] dF (τA, τB).

Statement (2) again follows from the fact that (J,K) |D = d ∼
(
χ2
k−p (τJ) , χ2

p (τK)
)
.

Proof of Theorem 5

For this proof we assume that D has a density with respect to Lebesgue measure. The
proof for D degenerate follows along the lines. By the definition of the infimum we
know that there exists a sequence of functions {an}∞n=1 ⊂ A such that

lim
n→∞

sup
(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φan(D)

])
= inf

a∈A
sup

(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
.

(22)
Since we have defined A to consist of Borel-measurable functions, by Theorem

A.5.1 in Lehman and Romano (2005) there exists a sub-sequence {ank}
∞
k=1 ⊂ {an}

∞
n=1

and a function a∗ ∈ A such that for ν Lebesgue measure on Rkp+2

ˆ
ank(D)h(J,K,D)dν →

ˆ
a∗(D)h(J,K,D)dν (23)
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for all ν-integrable functions h(J,K,D).
For any value (m,µ) ∈ H1 denote the joint distribution of (J,K,D) under this value

by FJKD(m,µ) with density fJKD (m,µD) with respect to Lebesgue measure ν. Note
that for any bounded, continuous function n of (J,K,D), n (J,K,D) fJKD (m,µD) is
an integrable function with respect to Lebesgue measure ν. Hence, (23) implies that

ˆ
ank(D)n(J,K,D)dFJKD →

ˆ
a∗(D)n(J,K,D)dFJKD

for all bounded continuous functions n. By the Portmanteau Lemma (see Lemma 2.2
in Van der Vaart (2000)) this implies that, viewed as a random variable, (J,K, ank(D))→d

J (, K, a∗(D)). Since cα(a) is a continuous function of a, the Continuous Mapping The-
orem implies that

K + ank (D) · J − cα (ank (D))→d K + a∗ (D) · J − cα (a∗ (D)) .

Since zero is a continuity point of distribution of the random variable on the right
hand side this implies that Em,µ

[
φank (D)

]
→ Em,µ

[
φa∗(D)

]
. This suffices to establish

sup
(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa∗(D)

])
= inf

a∈A
sup

(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
.

To see that this is the case, note that the right hand side is weakly smaller than the
left hand side by construction. If the right hand side is strictly smaller then there
exists some value (m∗, µ∗D) ∈ H1 such that

β∗m∗,µ∗D − Em∗,µ∗D
[
φa∗(D)

]
> inf

a∈A
sup

(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
+ ε

for some ε > 0, which since Em∗,µ∗D
[
φa∗(D)

]
= limn→∞Em∗,µ∗D

[
φan(D)

]
implies that

lim
n→∞

sup
(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φan(D)

])
≥ inf

a∈A
sup

(m,µD)∈H1

(
β∗m,µD − Em,µD

[
φa(D)

])
+ ε

which contradicts (22).
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Proof of Lemma 1

Note that Ω = A ⊗ B implies that Σ =
 1 A12/A11

A12/A11 A22/A11

 ⊗ I. To prove the

result, it is easier to work with the formulation of the problem discussed in AMS. In
particular, consider k×1 random vectors S̃ and T̃ (denoted by S and T in AMS) with

 S̃

T̃

 ∼ N

 cβµπ

dβµπ

 , I
 ,

were cβ ranges over R for different true values of β. AMS (Theorem 1) show that the
maximal invariant to rotations of the instruments is

(
S̃ ′S̃, S̃ ′T̃ , T̃ ′T̃

)
, and note that

the S statistic can be written S = S̃ ′S̃, while the K statistic is K = (S̃′T̃)2

T̃ ′T̃
. Kleibergen

(2007) considers a finite-sample Gaussian IV model with a known covariance matrix
for the structural errors, and his Theorem 3 establishes that (in our notation) T̃ ′T̃ =
D′Σ−1

D D′, where ΣD = I
(
A22
A11
−
(
A12
A11

)2
)
. Hence, in the limit problem (6) with Σ = 1 A12/A11

A12/A11 A22/A11

⊗ I, the maximal invariant under rotations of the instruments(
S̃ ′S̃, S̃ ′T̃ , T̃ ′T̃

)
is a one-to-one transformation of (J,K,D′ΣDD).

By the imposed invariance to rotations of the instruments, it is without loss of
generality to assume that dβµπ = e1 ·

√
r, where e1 ∈ Rk has a one in its first entry

and zeros everywhere else. Hence, T̃ ′T̃ = D′ΣDD ∼ χ2
k (r) . For fixed r, the distribu-

tion of (J,K,D′ΣDD) depends only on cβµπ = ||m||e1 and on consistently estimable
parameters. The value of r imposes no restrictions on the value of ||m||. Hence, the
power of any unconditional linear combination test φa can be written as a function of
||m|| and r, the power envelope for unconditional linear combination tests is defined
by βu||m||,r = supa∈[0,1]E||m||,r [φa], and the maximum regret for any unconditional linear
combination test (taking µD and hence r to be known) is

sup
||m||∈R+

(
βu||m||,r − E||m||,r [φa]

)

which depends only on r. We can thus take the MMRU test φMMRU(µD) to depend
on µD only through r = µ′DΣ−1µD.
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Proof of Proposition 1

The discussion preceding Proposition 1 establishes that under (θ0, γ), (JT , KT , DT )→d

(J,K,D) and γ̂ →p γ. Since we assume that a (D, γ) is almost everywhere continuous
with respect to the limiting distribution F and cα (a) is a continuous function of a,
the Continuous Mapping Theorem establishes that

KT + a (DT , γ̂) JT − cα (a (DT , γ̂))→d K + a (D, γ) J − cα (a (D, γ)) .

Since zero is a point of continuity of the distribution of the right hand side this implies
that

PrT,(θ0,γ) {KT + a (DT , γ̂) JT > cα (a (DT , γ̂))} →
Prm=0,µD {K + a (D, γ) J > cα (a (D, γ))} = α

which proves (17). To prove (18) note that the results above establish that φa(D,γ) is
almost-everywhere continuous with respect to F , and hence for f ∈ F

(
φa(DT ,γ̂) − α

)
f (DT )→d

(
φa(D,γ) − α

)
f (D) .

Since the left hand side is bounded, convergence in distribution implies convergence
in expectation, proving (18).

Proof of Proposition 2

Let us take the estimator Ω̂ to be

Ω̂ =
 Ω̂ff Ω̂fβ

Ω̂βf Ω̂ββ

 =

1
T

∑
t

 ft(β0)− fT (β0)
∂
∂β
ft(β0)− ∂

∂β
fT (β0)

( ft(β0)′ − fT (β0)′ ∂
∂β
ft(β0)′ − ∂

∂β
fT (β0)′

)

and

Σ̂ =
 Ik Ω̂−

1
2

ff Ω̂fβΩ̂−
1
2

ff

Ω̂−
1
2

ff Ω̂βf Ω̂
− 1

2
ff Ω̂−

1
2

ff Ω̂ββΩ̂−
1
2

ff

 .
These choices imply that our ST and KT coincide exactly with AR and LM in ACG,
and that our DT is

√
T Ω̂−

1
2

ff D̂ for D̂ as in ACG. To prove the proposition we will rely
heavily on their results. ACG consider two cases: sequences λT for which

√
T ||πT ||
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converges to a constant and those for which it diverges to infinity.
Let us begin by considering the case where

√
T ||πT || converges. ACG establish

that for this case their (LM,AR, D̂) converges in distribution to
(
χ2

1, χ
2
k−1, D̃

)
where

all three random variables are independent and D̃ has a non-degenerate Gaussian
distribution. Since Ω̂ff →p Ωff which is full-rank by assumption, this proves that
(KT , ST , DT ) →d

(
χ2

1, χ
2
k−1, D

)
where again all the variables on the RHS are mutu-

ally independent and D has a non-degenerate Gaussian distribution. Thus, by the
Continuous Mapping Theorem and consistency of Σ̂θg and Σ̂θθ, which under the null
follows from (6.7) and (6.9) in ACG, we have that

(1− a(DT , γ̂))KT + a(DT , γ̂)ST − cα (a(DT , γ̂))→d

(1− a(D, γ))K + a(D, γ)S − cα (a(D, γ))

which establishes correct asymptotic size under sequences with
√
T ||πT || converging.

Next, consider the case where
√
T ||πT || diverges. Let

(g̃T ,∆g̃T , γ̃) = h
(
gT ,∆gT , γ̂; ||πT ||−1

)
,

and define the random variables D̃T , Σ̃, and Σ̃D accordingly. ACG equation (6.22)
establishes that for this parametrization D̃T →p D

∗ for ||D∗|| > 0, and equations
(6.7) and (6.21) together establish that Σ̃D →p 0. Our assumption on a(D̃T , γ̃) thus
implies that a(D̃T , γ̃) →p a0. Since ACG establish the convergence in distribution of
(LM,AR) under sequences of this type, we have that

(
1− a(D̃T , γ̃)

)
KT + a(DT , ξT )ST − cα (a(DT , ξT ))→d (1− a0)K + a0S − cα (a0)

and thus that the CLC test φa(D̃T ,γ̃) has asymptotic rejection probability equal to α
under these sequences. By the assumed invariance the postmultiplication, however,
this implies that φa(DT ,γ) has asymptotic rejection probability α as well.

To complete the proof, following ACG we can note that the above argument verifies
their Assumption B∗ and that we can thus invoke ACG Corollary 2.1 to establish the
result.

Proof of Proposition 3

Follows by the same argument as the first part of Proposition 1.
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Proof of Proposition 4

As discussed in the text, φK is efficient in the limit problem (20) by the Neyman-
Pearson Lemma, and φKT = φã(DT ,γ̂) for ã (D, γ) ≡ 0, ã ∈ Ac, so

lim
T→∞

ET,(θ,γ) [φKT ] = sup
ã∈Ac

lim
T→∞

ET,(θ,γ)
[
φã(DT ,γ̂)

]

follows from Proposition 3.
If a (D, γ) = 0 almost surely, then we have that limT→∞ET,(θ,γ)

[
φa(DT ,γ̂)

]
=

limT→∞ET,(θ,γ) [φKT ] by Proposition 3. If, on the other hand, Pr {a (D, γ) 6= 0} =
δ > 0, note that D = µ is non-random in the limit problem, so this implies that
a (µ, γ) = a∗ 6= 0. Note, however, that the test φa∗ does not satisfy the necessary con-
dition for a most powerful test given in Theorem 3.2.1 in Lehmann and Romano and
thus has strictly lower power than the test φK in the limit problem, which together
with Proposition 3 implies that limT→∞ET,(θ,γ)

[
φa(DT ,γ̂)

]
< limT→∞ET,(θ,γ) [φKT ].

Proof of Theorem 6

Define ML = {µD · b : b ∈ Rp} . Note that for any ζ > 0, there exists Cζ > 0 such
that

inf
a∈[0,1]

inf
m∈ML:||m||>Cζ

Em,µD,γ [φa] > 1− ζ.

Note further that Cζ → ∞ as ζ → 0. Since the test φK is UMP over the class
of tests depending on (J,K,D) against m ∈ ML for ΣD = 0, we can see that for
βum,µD,γ = supa∈[0,1]Em,µD,γ [φa] we have βum,µD,γ = Em,µD,γ [φK ] ∀m ∈ML. Thus,

sup
m∈ML

(
βum,µD,γ − Em,µD,γ [φa]

)
= sup

m∈ML

(Em,µD,γ [φK ]− Em,µD,γ [φa]) .

Next, note that since as discussed in the proof of Proposition 4 none of the tests
φa : a ∈ (0, 1] satisfy the necessary condition for an optimal test against m ∈ML for
ΣD = 0 given in Lehman and Romano Theorem 3.2.1. Thus if we define

ε(a) = sup
m∈ML

(Em,µD,γ [φK ]− Em,µD,γ [φa])

56



we have that ε(a) > 0 ∀a ∈ (0, 1]. Moreover for all a there is some m∗ ∈ ML such
that

ε(a) = Em∗,µD,γ [φK ]− Em∗,µD,γ [φa] ,

which can be seen by noting that for ζ = ε(a)
2 , BC = {m : ||m|| ≤ C}, and A =

ML ∩BC
Cζ

(for BC
Cζ

the complement of BCζ)

sup
m∈A

(Em,µD,γ [φK ]− Em,µD,γ [φa]) ≤ 1− ε (a)
2

by the definition of Cζ . Thus, for Ã =ML ∩BCζ ,

ε(a) = sup
m∈Ã

(Em,µD,γ [φK ]− Em,µD,γ [φa]) .

Since Ã is compact and Em,µD,γ [φK ] − Em,µD,γ [φa] is continuous in m, the sup must
be attained at some m∗ ∈ Ã.

Since Em,µD,γ [φa] is continuous in a for all m, the fact that

ε (a) = sup
m∈ML

(Em,µD,γ [φK ]− Em,µD,γ [φa])

is achieved implies that ε (a) is continuous in a. We know that ε(0) = 0 by definition,
so 0 is the unique minimizer of ε(a) over [0, 1]. By the compactness of [0, 1], this implies
that for any δ > 0 there exists ε̄ (δ) > 0 such that ε(a) < ε̄ (δ) only if a < δ. Further,
by the intermediate value theorem there exists a(δ) > 0 such that ε (a(δ)) = ε̄(δ)

2 .
To prove Theorem 6 we want to show that under the assumptions of the theorem,

for all ν > 0 there exists N such that n > N implies

arg min
a∈[0,1]

sup
m∈MD(µD,n,γn)

(
βum,µD,n,γn − Em,µD,n,γn [φa∗ ]

)
< ν.

Fixing ν, let ε̄∗ = ε̄ (ν), a∗ = a(ν), for ε̄ (·) and a (·) as defined above. Let ζ∗ = ε̄∗

4 ,
and take C∗ to be such that

inf
m∈Rk:||m||>C∗

Em,µD,γ [φa∗ ] > 1− ζ∗.

Under our assumptions and the continuity of Em,µD,γ [φa] in (m,µD, γ, a), there exists
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some N such that for n > N ,

inf
a∈[ν,1]

sup
m∈MD(µD,n,γn)∩BC∗

(
βum,µD,n,γn − Em,µD,n,γn [φa]

)
> 3ζ∗

while
sup

m∈MD(µD,n,γn)∩BC∗

(
βum,µD,n,γn − Em,µD,n,γn [φa∗ ]

)
< 3ζ∗

and
sup

m∈MD(µD,n,γn)∩BCC∗

(
βum,n − Em,µD,n,γn [φa∗ ]

)
< 2ζ∗.

Thus, for n > N we have

supm∈MD(µD,n,γn)
(
βum,µD,n,γn − Em,µD,n,γn [φa∗ ]

)
<

infa∈[ν,1] supm∈MD(µD,n,γn)∩BC∗
(
βum,µD,n,γn − Em,µD,n,γn [φa]

)
and thus that a (µD,n, γn) < ν since a∗ < ν. Since we can repeat this argument for all
ν > 0 we obtain that a (µD,n, γn)→ 0 as desired.

Proof of Corollary 2

Let (g̃T ,∆g̃T , γ̃) = h
(
gT ,∆gT , γ̂; r−1

T /
√
T
)
for h as defined in (16), and note that

this is the same definition of (g̃T ,∆g̃T , γ̃) given near the beginning of Section 7.3.
By the postmultiplication-invariance of plug-in tests with equivariant µ̂D, tests based
on (g̃T ,∆g̃T , γ̃) with plug-in estimate µ̃D = D̃T will be the same as those based on
(gT ,∆gT , γ̂) with estimate µ̂D = DT . To prove the result we will focus on tests based
on (g̃T ,∆g̃T , γ̃).

As established in the main text, (g̃T ,∆g̃T , γ̃) converges in distribution to (g,∆g, γ)
in a Gaussian shift model with µ = E [ZtZt]′ c and b = b∗. Note that in linear IV we
have

MD (µD, γ) =
{

(I − Σβg · b)−1 µD · b : b ∈ R
}
.

Hence, for any sequence (µD,n, γn) with µD,n → µ, ||µ|| > 0, and Σβg (γn)→ 0 we can
see that for any C > 0

dH (MD (µD,n, γn) ∩BC , {µD · b : b ∈ Rp} ∩BC)→ 0,
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so by Theorem 6 we have that aPI (µD,n, γn) → 0. Note, however, that under our
assumptions (µ̂D, γ̂) →p (µ, γ) with ||µ|| > 0 and Σβg (γ) = ΣD (γ) = 0. Thus, the
Continuous Mapping Theorem yields that aPI (µ̂D, γ̂)→p 0.

Proof of Corollary 3

Note that

M (γ̂) =
{

Ω̂−
1
2

η (f (θ)− f (θ0)) : θ ∈ Θ
}

= r
− 1

2
T

{(
r−1
T Ω̂η

)− 1
2 (f (θ)− f (θ0)) : θ ∈ Θ

}
.

For any sequence r−1
T Ωη,T → Ωη,0 and BC = {m ∈ Rp : ||m|| ≤ C} for C > 0 we have

that

lim
T→∞

dH

({
r
− 1

2
T

(
r−1
T Ωη,T

)− 1
2 (f (θ)− f (θ0)) : θ ∈ Θ

}
∩BC ,

{
r
− 1

2
T Ω−

1
2

η,0 (f (θ)− f (θ0)) : θ ∈ Θ
}
∩BC

)
= 0.

From the definition of differentiability, we know that

lim
θ→θ0

f (θ)− f (θ0)− ∂
∂θ′
f (θ0) (θ − θ0)

||θ − θ0||
= 0.

Thus, for any sequence δT → 0,

lim
δT→0

sup
||θ−θ0||≤δT

1
δT

(
f (θ)− f (θ0)− ∂

∂θ′
f (θ0) (θ − θ0)

)
= 0.

Moreover, by our identifiability assumption on θ0 we know that for any constant
K > 0,

lim
T→∞

sup
θ:r
− 1

2
T ||Ω

− 1
2

η,0 f(θ)−Ω
− 1

2
η,0 f(θ0)||≤K

||θ − θ0|| = 0.

Combined with the previous equation, this implies that

lim
T→∞

sup
θ:r
− 1

2
T ||Ω

− 1
2

η,0 f(θ)−Ω
− 1

2
η,0 f(θ0)||≤K

r
− 1

2
T

∥∥∥∥∥Ω− 1
2

η,0 (f (θ)− f (θ0))− Ω−
1
2

η,0
∂

∂θ′
f (θ0) (θ − θ0)

∥∥∥∥∥ = 0

which in turn shows that for any C > 0, provided θ belongs to the interior of Θ

dH

(
r
− 1

2
T

{
Ω−

1
2

η,0 (f (θ)− f (θ0)) : θ ∈ Θ
}
∩BC , r

− 1
2

T

{
Ω−

1
2

η,0
∂

∂θ′
f (θ0) · b : b ∈ Rp

}
∩BC

)
→ 0.
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Thus, we see that for any r−1
T Ωη,T → Ωη,0 the convergence required by Theorem

6 holds, so for the corresponding sequence {γT}∞T=1 we have that aMMR (γT ) → 0.
Hence, by the Continuous Mapping Theorem we have that under our assumptions
aMMR (γ̂)→p 0.

One can show that sequences of local alternatives of the form θT = θ0 + r
1
2
T b
∗ yield

Gaussian Shift limit problems in this model. The fact that aMMR (γ̂)→p 0 implies, by
Proposition 4, that the MMR test is asymptotically efficient against such sequences,
and hence that the MMR test is asymptotically efficient under strong and semi-strong
identification, as we wanted to prove.

Appendix D: Additional Details of Weak IV Simu-
lation

In Section 6.2 we discuss simulation results in weak IV limit problems calibrated to
match parameters estimated using data from Yogo (2004). This section details the
estimates, simulation design, and implementation of CLR and PI tests underlying
these results.

Appendix D.1: Power Plots for Homoskedastic Model

Figures 5 and 6 plot power curves for the CLR, K, AR, and PI tests in the linear IV
calibrations discussed in Section 6.1 of the paper.

Appendix D.2: Estimation of Parameters for the Limit Prob-
lem

The behavior of (g,∆g) in the weak IV limit problem (6) is determined entirely by
(m,µ,Ω). The set M(µ) of possible values m given µ is M(µ) = {b · µ : b ∈ R}, so
to simulate the power properties of different tests in the limit problem all we require
are values of µ and Ω.

To obtain values for these parameters, as noted in the text we use data from Yogo’s
(2004) paper on weak instrument-robust inference on the elasticity of inter-temporal
substitution. For all countries we use quarterly data for a (country-specific) period
beginning in the 1970’s and ending in the late 1990’s. We focus on estimation based
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on the linear IV moment condition

ft(β) = Zt (Yt −Xtβ)

where Yt is the change in consumption (Yogo’s ∆c), Xt is the real interest rate, and
Zt is a 4×1 vector of instruments which following Yogo we take to be lagged values of
the nominal interest rate, inflation, consumption growth, and the log dividend-price
ratio. We focus on the case with Xt the risk-free rate since this is the case for which
Yogo finds the strongest relationship between the instruments and the endogenous
regressor (see Table 1 of Yogo (2004)). All data is de-meaned prior to beginning the
analysis.

For country i we estimate µ by µ̂i = 1√
T

∑
ZtXt, take β̂i to be the two-step GMM es-

timate of β, and let Ω̂i be the Newey-West covariance estimator for V ar
(

1√
T

∑(
ft(β̂i)′, Z ′tXt

)′)
based on 3 lags of all variables. These estimates will not in general be consistent for
the parameters of the limit problem under weak-instrument asymptotics, but give us
empirically reasonable values for our simulations.

Appendix D.3: Simulation Design

For each country i we consider the problem of testing H0 : β = β0 in the limit problem.
For true parameter value β and µ̃i = Ω̂−

1
2

ff,iµ̂i, in simulation runs b = 1, ..., B we draw
 gb

∆gb

 ∼ N

 µ̃i (β − β0)
µ̃i

 , Σ̂i


where

Σ̂i =
 I Σ̂gθ,i

Σ̂θg,i Σ̂θθ,i

 =
 I Ω̂−

1
2

ff,iΩ̂fβ,iΩ̂
− 1

2
ff,i

Ω̂−
1
2

ff,iΩ̂βf,iΩ̂
− 1

2
ff,i Ω̂−

1
2

ff,iΩ̂ββ,iΩ̂
− 1

2
ff,i

 .
Note that this is the limiting distribution (6) of the normalized moment condition
and Jacobian (gT ,∆gT ) in a weak IV problem with true parameters β, Ω = Ω̂i, and
µ = µ̂i. We then calculate the S and K tests φS,b, φK,b as in (14) and (13). We define
the QCLR test as in Theorem 2 and, following Kleibergen (2005), take r = D′bΣ̂−1

D,iDb

for Σ̂D,i = Σ̂θθ,i − Σ̂θg,iΣ̂gθ,i. Details on the implementation of the MM-SU tests are
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discussed in the next section. Finally, to calculate the PI test we take

µ̂D,b = Db ·

√
max

{
D′bΣ̂−1

D,iDb − k, 0
}

√
D′bΣ̂−1

D,iDb

which is a generalization of the positive-part estimator r̂PP to the non-Kronecker case,
and consider φPI,b = φMMRU(µ̂D,b). Details on calculation of the PI test are given in
the section D.6.

For each value β in a grid we estimate the power of each test against this alternative
by averaging over B, e.g. estimating the power of φK by 1

B

∑
φK,b (where we take

B = 5, 000 for the MM tests and B = 10, 000 for the others), and repeat this exercise
for each of the eleven countries considered.

Appendix D.4: The MM1-SU and MM2-SU Tests

The MM1-SU and MM2-SU procedures of MM maximize weighted average power
against particular weights on (β, µ) over a class of tests satisfying a sufficient con-
dition for local unbiasedness. To relate the results of MM in our context, we can
take (Z ′Z)−1 Z ′Y (in the notation of MM) to equal

(
g ∆g

)
and then derive their

statistics S and T as they describe, noting that S as defined in MM is, up to rotation,
equal to g as defined here. MM calculate their weights using the 2 × 2 and k × k

symmetric positive definite matrices Ω∗ and Φ∗ solving min ‖Σ− Ω⊗ Φ‖F (see MM
for the weights). Thus, since we estimate different covariance matrices for each of the
11 countries in the Yogo data, the MM tests use different weight functions for each
country. For each pair (Ω∗,Φ∗) MM consider two different weight functions, which
they label MM1 and MM2 respectively. Each of these weight functions features a
tuning parameter (which MM call σ and ζ for the MM1 and MM2 weights, respec-
tively). Following the choice made by MM in their simulations we set σ = ζ = 1 for
the simulations reported in the paper.

MM consider several different tests based on their weights. They find in simula-
tion that weighted average power optimal conditionally similar tests can have some
undesirable power properties in non-homoskedastic linear IV models, in particular ex-
hibiting substantial bias. To remedy this they impose further restrictions on the class
of tests, considering first locally unbiased (LU) tests, which satisfy ∂

∂β
Eβ0,µ [φ] = 0 for

all µ ∈M. They then consider the class of strongly unbiased (SU) tests which satisfy
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the condition Eβ0,µ [φg] = 0 for all µ ∈M, and which they show are a subset of the LU
tests. They find that weighted average power optimal tests within this class (based
on the MM1 and MM2 weights) have good power in their simulations, and it is these
tests which we consider here.

As noted in the main text, the class of CLC tests is a subset of the SU tests. To
see this, note that (for fixed D) S and K are both invariant to switching the sign of
g. Since g ∼ N (0, Ik) conditional on D = d under β = β0, we can see that for any
conditional linear combination test φa(D),

Eβ0,µ

[
φa(D)g|D = d

]
= Eβ0,µ

[
−φa(D)g|D = d

]
= 0

and thus that all CLC tests satisfy Eβ0,µ

[
φa(D)g

]
= 0 and are SU tests. Since the

MM1-SU and MM2-SU tests are weighted average power optimal in the class of SU
tests, it follows that their weighted average power must be at least as high as that of
any CLC test (for their respective weights).

The MM-SU tests are not available in closed form. However, as discussed in
the supplementary appendix to MM, approximating these tests numerically is fairly
straightforward. We implement the MM-SU tests using the linear programing ap-
proach discussed by MM, using 5,000 draws for S (J = 5, 000 in MM’s notation).
Evaluating the MM-SU tests also involves an integral over a function of β, which we
likewise approximate via Monte-carlo (based on 1,000 draws). One issue we encoun-
tered at this stage is that some of the matrices used in the construction of the MM
weights are near-degenerate, leading to negative eigenvalues when evaluated numer-
ically. The issue appears to be purely numerical, but despite extensive exploration,
as well as consultation with Marcelo Moreira, we have not succeeded in fully elim-
inating this issue. It seems unlikely to have a substantial impact on the simulated
performance of the MM procedures, but it is possible it could have some effect.

To complement the power simulation results in the main text (which consider the
power of the MM-SU and CLC tests at parameter values estimated from the data
used by Yogo (2004)), Tables 3 and 4 report the weighted average power of the CLC
and MM-SU tests under the MM1 and MM2 weights, respectively (the CLC tests
considered here are the same as in Section 6.2), based on the covariance matrices Σ
estimated from the data. Table 3 shows that the MM1-SU test has power substantially
greater that the PI, QCLR, S and K tests under the MM1 weights, as expected.
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MM1-SU PI QCLR AR K
Australia 16.10% 14.33% 14.58% 10.40% 14.37%
Canada 17.02% 16.50% 16.78% 12.49% 16.18%
France 16.08% 15.63% 15.11% 12.31% 15.43%

Germany 19.42% 18.57% 17.98% 16.90% 16.84%
Italy 15.80% 14.37% 13.98% 10.29% 14.38%
Japan 15.54% 13.91% 13.89% 11.07% 13.72%

Netherlands 18.25% 17.23% 17.12% 14.69% 16.39%
Sweden 17.33% 16.46% 15.90% 11.06% 16.52%

Switzerland 15.10% 14.48% 14.55% 11.76% 14.09%
United Kingdom 15.95% 13.55% 13.26% 9.13% 13.73%
United States 16.41% 15.47% 14.53% 11.26% 15.47%

Table 3: Weighted average power of tests under MM1 weights of Moreira and Mor-
eira (2013), with covariance Σ calibrated to data from Yogo (2004). Based on 5,000
simulations.

Likewise, Table 4 shows that the MM2-SU test has power greater that the PI, QCLR,
S and K tests under the MM2 weights, up to simulation error (the power of the
MM2-SU test appears lower than that of the PI and QCLR tests in the calibration to
German data, but the difference is statistically insignificant even at the 10% level).

Appendix D.5: Implementation of PI Test

To implement the PI test, we need to calculate the MMRU test

φMMRU(µ̂D,b) = 1
{(

1− aMMRU(µ̂D,b)
)
Kr + aMMRU(µ̂D,b)Sr ≥ cα

(
aMMRU(µ̂D,b)

)}

so the critical task is evaluating aMMRU(µ̂D,b). As discussed in Section 5 above,
aMMRU(µ̂D,b) solves a minimization problem which depends on µ̂D,b and on Σ̂i.

We approximate aMMRU by considering grids of values in a and β. We first simulate
the critical values cα (a) for linear combination tests based on K + a · J for a ∈ A =
{0, 0.01, ..., 1}, which are simply the 1−α quantiles of χ2

p + a ·χ2
k−p distributions, and

store these values for later use. To speed up power simulations, for each a ∈ A and
(τJ , τK) values in a grid we calculate

Pr
{
χ2
p (τK) + a · χ2

p (τJ) > cα(a)
}
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MM2-SU PI QCLR AR K
Australia 37.93% 35.70% 35.33% 31.33% 32.73%
Canada 17.87% 17.22% 16.20% 15.56% 15.04%
France 15.93% 14.63% 14.39% 12.98% 13.35%

Germany 8.59% 8.77% 8.83% 8.01% 8.24%
Italy 36.35% 34.43% 33.89% 30.24% 30.75%
Japan 20.94% 17.97% 18.25% 15.83% 16.12%

Netherlands 12.57% 12.19% 12.25% 11.52% 10.95%
Sweden 34.23% 32.91% 33.36% 29.87% 28.89%

Switzerland 18.99% 16.78% 16.45% 14.94% 15.21%
United Kingdom 35.59% 31.20% 30.49% 27.38% 28.35%
United States 38.21% 36.82% 36.51% 32.36% 32.84%

Table 4: Weighted average power of tests under MM2 weights of Moreira and Mor-
eira (2013), with covariance Σ calibrated to data from Yogo (2004). Based on 5,000
simulations.

based on 106 simulations and store the results as well.
We next consider a grid B of 41 values for the alternative βh. For each value βh

we solve for
µ̂b,h =

(
I − Σ̂θg,i (βh − β0)

)−1
µ̂D,b

which gives us the value µ for which D would have mean µ̂D,b under alternative βh.
Note that the mean m of g under βh is then mb,h = µ̂b,h (βh − β0). We take draws
l = 1, ..., L = 10, 000 from

Db,l ∼ N
(
µ̂D,b, Σ̂D,i

)
and for each (h, l) pair we calculate τK,b,h,l = m′b,hPD̃b,lmb,h and τJ,b,h,l = m′b,hMD̃b,l

mb,h.
We could estimate the power of the linear combination test with weight a against

alternative βh by

Ê [φa|β = βh] = 1
L

∑
Pr

{
χ2
p (τK,b,h,l) + a · χ2

p (τJ,b,h,l) > cα(a)
}
.

Instead, to reduce the amount of required computation we note that for (b, h) fixed,
τK,b,h,l+τJ,b,h,l = m′b,hmb,h and thus for fixed (b, h) the power of the linear combination
test with weight a can be written as a function of τK,b,h,l alone. Using this observation,
we group the ten smallest values of τK,b,h,l, the next ten smallest, etc. and assign each
cell the (τK , τJ) values given the by average of its endpoints. This gives us pairs

67



(τ̄K,q, τ̄J,q) for q ∈ {1, ..., 1000}, and we estimate

Ê [φa|β = βh] = 1
1000

∑
Pr

{
χ2
p (τ̄K,q) + a · χ2

p (τ̄J,q) > cα(a)
}

where by using (τ̄K,q, τ̄J,q) we need only calculate power 1000 times rather than 10000.
To further speed computation, we approximate Pr

{
χ2
p (τ̄K,q) + a · χ2

p (τ̄J,q) > cα(a)
}

by interpolating using our stored values for Pr
{
χ2
p (τK) + a · χ2

p (τJ) > cα(a)
}
.

For each a ∈ A we estimate the maximum regret by

sup
βh∈B

(
max
ã∈A

Ê [φã|β = βh]− Ê [φa|β = βh]
)

and pick aMMRU (µ̂D,b) as the largest value a ∈ A which comes within 10−5 of minimiz-
ing this quantity- we do this instead of taking aMMRU (µ̂D,b) to be the true minimizing
value in order to slightly reduce simulation noise in aMMRU (µ̂D,b) .

Appendix E:

E.1 Simulation: Inference on the New Keynesian
Phillips Curve

To illustrate the application of PI tests to a nonlinear example, we study the perfor-
mance of robust minimum distance inference on new Keynesian Phillips curve (NKPC)
parameters. There is considerable evidence that some NKPC parameters are weakly
identified: Mavroeidis et al. (2014) review the empirical literature on the role of ex-
pectations in the NKPC and find that parameter estimates are extremely sensitive to
model specification and, conditional on correct specification, suffer from weak identifi-
cation. To address these weak identification issues Magnusson and Mavroeidis (2010)
(henceforth MM) propose identification-robust S and K statistics for testing hypothe-
ses on NKPC parameters using a minimum distance approach. These statistics will
form the basis for our analysis.

MM study a simple new Keynesian Phillips curve model

πt = (1− ν)2

ν (1 + ρ)xt + 1
1 + ρ

E [πt+1| It] + ρ

1 + ρ
πt−1 + εt (24)
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where πt is inflation, xt is a measure of marginal costs, E [ ·| It] denotes an expec-
tation conditional on information available at time t, εt is an exogenous shock with
E [εt+1| It] = 0, and the parameters ν and ρ denote the degree of price stickiness and
price indexation, respectively. Following Sbordone (2005), MM further assume that
(πt, xt) follows a nth order vector auto-regressive (VAR) process, which can be written
in companion form as

zt = A(ϕ)zt−1 + εt

where zt = (πt, xt, ..., πt−n+1, xt−n+1)′ is a 2n × 1 vector, A (ϕ) is a 2n × 2n matrix,
ϕ is the vector of 4n unknown VAR parameters, and εt are VAR innovations with
E [εt+1| It] = 0. For eπ and ex unit vectors such that e′πzt = πt, e′xzt = xt and
θ = (ν, ρ) , define the 2n-dimensional distance function f(ϕ, θ) as

f(ϕ, θ) = A (ϕ)′
{[
I − 1

1 + ρ
A (ϕ)′

]
eπ −

(1− ν)2

ν (1 + ρ)ex
}
− ρ

1 + ρ
eπ.

MM show that the NKPC model (24) implies that the true parameter values ϕ and
θ satisfy f(ϕ, θ) = 0, and propose testing H0 : θ = θ0 using an identification-robust
minimum distance approach.

To model weak identification in this context, suppose the data is generated by
a sequence of models with drifting true VAR coefficients ϕT = ϕ + 1√

T
cϕ + o

(
1√
T

)
.

We assume that the usual OLS estimates for the VAR coefficients are consistent and
asymptotically normal √

T (ϕ̂− ϕT )→d N (0,Σϕϕ)

where we have a consistent estimator Σ̂ϕϕ for Σϕϕ. The ∆-method (Theorem 3.1 in
Van der Vaart (2000)) then yields that

√
T (f(ϕ̂, θ)− f(ϕT , θ))→d N

(
0, ∂

∂ϕ′
f(ϕ, θ)Σϕϕ

∂

∂ϕ′
f(ϕ, θ)′

)
.

To model weak identification in this context MM assume that ∂
∂θ′
f(ϕT , θ) = 1√

T
C

for a fixed matrix C, with the result that
√
T ∂
∂θ′
f(ϕT , θ) is constant across T . This

leads to the usual issues associated with weak identification, including nonstandard
limiting distributions for non-robust test statistics. Here, we will take a more flexible
approach and assume only that ∂

∂θ′
f(ϕT , θ) drifts towards some, potentially reduced-

rank, matrix as the sample size grows.
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To apply our robust testing approach in this context, define

Ω̂ff = ∂

∂ϕ′
f(ϕ̂, θ0)Σ̂ϕϕ

∂

∂ϕ′
f(ϕ̂, θ0)′

which is a consistent, ∆-method-based estimator for Ωff = limT→∞ T ·V ar (f(ϕ̂, θ0)′) .
We can then define

gT (θ) =
√
T Ω̂−

1
2

ff f(ϕ̂, θ)

∆gT (θ) = Ω̂−
1
2

ff

∂

∂θ′
f(ϕ̂, θ)AT .

for AT a sequence of full-rank normalizing matrices which may depend on the sequence
of true VAR parameters ϕT . Under sequences of true parameter values θT such that
gT (θ0) converges in distribution, corresponding to local alternatives for strongly iden-
tified parameters and fixed alternatives for weakly identified ones, arguments discussed
in section E.3 below yield the weak convergence gT (θ0)

∆gT (θ0)

→d

 g

∆g

 ∼ N

 m

µ

 ,
 I Σgθ

Σθg Σθθ

 . (25)

where ∆g is full rank almost surely, m ∈M (µ, γ) forM (µ, γ) appropriately defined,
Σ is consistently estimable, and details on all terms may be found below. Hence,
this model falls into the class considered in the paper. While ∆gT depends on the
(generally unknown) sequence of normalizing matrices AT , provided we restrict at-
tention to postmultiplication-invariant CLC tests we can instead conduct tests based
on the feasible statistics (g̃T ,∆g̃T , γ̃) = h

(
gT ,∆gT , γ̂;A−1

T

)
. For γ̂ as defined below

the statistics ST and KT based on (g̃T ,∆g̃T , γ̃) are equivalent to the MD − AR and
MD −K statistics discussed in MM.

E.2 Coverage Simulations

After assuming that (πt, xt) follows a VAR(3), MM apply their approach to create
confidence sets for the parameter θ based on quarterly US data from 1984 to 2008
and show that their robust minimum distance approach yields smaller confidence sets
than an identification-robust GMM approach. MM suggested using S and JK tests

70



PI JK S K
Size 9.34% 10.52% 12.28% 8.74%

Table 5: Size of nominal 5% tests in NKPC simulation example based on 10,000
simulations. PI is plug-in test, while JK, S, and K are MD-KJ, MD-AR, and MD-K
tests of Magnusson and Mavroeidis (2010), respectively.

φST = 1
{
ST > χ2

6,1−α

}
and

φJKT = max
{

1
{
KT > χ2

2,1−αK

}
, 1
{
JT > χ2

4,1−αJ

}}
,

where αK = 0.8 ·α and αJ = 0.2 ·α. They use the JK test rather than the K test φKT
to address spurious power declines for the K test. We take these tests, together with
the K test φKT , as the benchmarks against which we compare the performance of the
PI test. In particular, we consider the plug-in test

φPIT = 1 {(1− aPI (DT , γ̃)) ·KT + aPI (DT , γ̃) · ST > cα(aPI(DT , γ̃))}

where as before

aPI(D, γ) = arg min
a∈[0,1]

sup
m∈MD(µ̂D,γ)

(βum − Em,µ̂D,γ [φa])

and for simplicity we take µ̂D = D.

To compare the performance of the PI test to the tests discussed by MM, we cali-
brate a simulation example based on the empirical application of MM. In particular,
we estimate structural and reduced-form parameters using the data studied by MM
and generate samples of 100 observations based on these estimates together with the
assumption of Gaussian errors εt (see below for details).15 We calculate the true size
of nominal 5% tests, based on 10,000 simulations, and report the results in Table 5.
We find that all the tests over-reject, which is unsurprising given the non-linearity of
the model together with the small sample size, but that only the JK and S tests has
true size exceeding 10%.

Next, we simulate false coverage probabilities for confidence sets formed by invert-
ing these tests. In particular we calculate the rejection rates for PI, JK, S, and K

15We simulate samples of size 100 because MM use a dataset with 99 observations in their empirical
application.
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PI JK S K
PI * 3.0% 4.2% 1.0%
JK 6.4% * 2.0% 6.0%
S 31.2% 26.6% * 30.0%
K 17.6% 17.6% 17.4% *

Table 6: Maximal point-wise differences in false coverage probability of nominal 5%
tests in NKPC example. The entry in row i, column j lists the maximum extent to
which the rejection probability of test i falls short of the rejection probability of test
j. For example, the largest margin by which the simulated rejection probability of
the PI test fall short relative to the JK test is 3%. Based on 500 simulations. PI is
plug-in test, while JK, S, and K are MD-KJ, MD-AR, and MD-K tests of Magnusson
and Mavroeidis (2010), respectively.

tests of hypotheses H0 : θ = θ0 for θ0 not equal to the true parameter value.16 Table
6 reports the maximal difference in point-wise false coverage probability across tests,
based on 500 simulations. For each test we report the largest margin by which the
rejection probability of that test falls short relative to that of the other tests consid-
ered over θ0 ∈ (0, 1)2, which is the parameter space for the model.17 For example, the
second entry of the first row of Table 6 reports

sup
θ0∈(0,1)2

Eθ̃ [φJKT ,θ0 − φPIT ,θ0 ]

where φPIT ,θ0 and φJKT ,θ0 denote the PI and JK tests of H0 : θ = θ0, respectively,
and θ̃ = (ν̃, ρ̃) = (0.96, 0.48) is the true parameter value in the simulations. As these
results make clear, the PI test outperforms the other tests studied and has the smallest
maximal rejection rate shortfall. The JK test also performs reasonably well, with a
much smaller maximal rejection rate shortfall than the S and K tests. Interpreting
these results is complicated by the fact that, while all the tests considered have correct
asymptotic size under weak identification, their finite sample size differs substantially.
To account for such size differences, Table 7 reports results analogous to those of Table

16We focus on calculating false coverage probabilities rather than power because there are many
reduced-form parameter values ϕ compatible with a given structural parameter value θ∗, and the
power of tests of H0 : θ = θ0 against θ∗ will generally depend on ϕ. Hence, to simulate the power
function we must either adopt some rule to pick ϕ based on θ∗ or calculate power on a 12-dimensional
space, whereas to calculate false coverage probabilities it suffices to consider a 2-dimensional space
of values θ.

17For computational reasons, our simulations use a discretized version of this parameter space- see
below.
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PI JK S K
PI * 1.6% 2.0% 8.2%
JK 11.4% * 1.4% 16.4%
S 42.0% 33.2% * 46.0%
K 20.4% 21.6% 21.8% *

Table 7: Maximal point-wise differences in false coverage probability of size cor-
rected 5% tests in NKPC example. The entry in row i, column j lists the maximum
extent to which the rejection probability of test i falls short of the rejection probability
of test j. For example, the largest margin by which the simulated rejection probability
of the PI test fall short relative to the JK test is 1.6%. Based on 500 simulations. PI is
plug-in test, while JK, S, and K are MD-KJ, MD-AR, and MD-K tests of Magnusson
and Mavroeidis (2010), respectively.

PI JK S K
Expected Area: feasible confidence sets 0.084 0.0873 0.110 0.094
Expected Area: corrected confidence sets 0.131 0.141 0.169 0.138

Table 8: Expected area of 95% confidence sets formed by inverting tests in NKPC
example, based on 500 simulations. PI is plug-in test, while JK, S, and K are MD-KJ,
MD-AR, and MD-K tests of Magnusson and Mavroeidis (2010), respectively.

6 based on (infeasible) size-corrected versions of all four tests. As in Table 6, we can
see that the PI test offers the best performance, followed by the JK test.18

After simulating false coverage probabilities, it is easy to calculate the expected
area of confidence sets obtained by inverting the PI, JK, S, and K tests. The expected
area for confidence sets formed by inverting both the feasible and size-corrected tests
is reported in Table 8. As we can see, using size-corrected tests increases the area of
all confidence sets. In each case the PI test produces confidence sets with the smallest
expected area, while the S test yields confidence sets with the largest expected area.
The feasible JK test yields smaller confidence sets than the feasible K test, but size

18To size-correct the S and K tests, we simply take their critical values to be the 95th percentiles
of their respective distributions for testing H0 : θ = θ̃. To size-correct the PI test we consider

φ∗PIT
= 1 {(1− aPI (DT , γ̃)) ·KT + aPI (DT , γ̃) · ST − cα(aPI(DT , γ̃)) > c∗}

where c∗ is chosen to give correct size when testing H0 : θ = θ̃. Likewise, the size-corrected JK test
is

φ∗JKT
= 1

{
max

{
KT − χ2

2,1−αK
, JT − χ2

4,1−αJ

}
> c∗

}
for c∗ chosen to ensure correct size for testing H0 : θ = θ̃. Note that if we instead take c∗ = 0, these
coincide with the non-size-corrected PI and JK tests.
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correction reveals that this is due in part to finite-sample size distortions for the
JK test: when we invert size-corrected tests, we find that JK confidence sets have
higher expected area than K confidence sets. A further advantage of the PI-test-
based confidence sets is that, like K-test-based confidence sets, they are non-empty in
all 500 simulations, whereas confidence sets formed by inverting the JK and S tests
are empty in 3.2% and 4.8% of simulations, respectively.19 These results confirm that
the PI test outperforms the other tests considered.

E.3 Details of NKPC Example

Define the infeasible estimator Ω̂ by

Ω̂ =
 Ω̂ff Ω̂fθ

Ω̂θf Ω̂θθ

 =

 ∂
∂ϕ′
f(ϕ̂, θ0)Σ̂ϕϕ

∂
∂ϕ′
f(ϕ̂, θ0)′

∂
∂ϕ′
vec

(
∂
∂θ′
f(ϕ̂, θ0)AT/

√
T
)

Σ̂ϕϕ
∂
∂ϕ′
f(ϕ̂, θ)′

...

∂
∂ϕ′
f(ϕ̂, θ0)Σ̂ϕϕ

∂
∂ϕ′
vec

(
∂
∂θ′
f(ϕ̂, θ0)AT/

√
T
)′

∂
∂ϕ′
vec

(
∂
∂θ′
f(ϕ̂, θ0)AT/

√
T
)

Σ̂ϕϕ
∂
∂ϕ′
vec

(
∂
∂θ′
f(ϕ̂, θ0)AT/

√
T
)′


and note that given our assumptions this will be consistent for

Ω = lim
T→∞

V ar

(√
Tf(ϕ̂, θ0)′, vec

(
∂

∂θ′
f(ϕ̂, θ0)AT

)′)
.

To derive the weak convergence (25), as well as the form of the matrices AT , note
that since we have assumed ϕT → ϕ and

√
T (ϕ̂− ϕT )→d N (0,Σϕϕ) , the ∆-method

(Theorem 3.1 in Van der Vaart (2000)) yields that

√
T (fT (ϕ̂, θ0)− fT (ϕT , θ0))→d N

(
0, ∂

∂ϕ′
f(ϕ, θ0)Σϕϕ

∂

∂ϕ′
f(ϕ, θ0)′

)

√
T · vec

(
∂
∂θ′
f(ϕ̂, θ0)− ∂

∂θ′
f(ϕT , θ0)

)
→d

∂
∂ϕ′

(
vec

(
∂
∂θ′
f(ϕ̂, θ0)

))
Σϕϕ

∂
∂ϕ′

(
vec

(
∂
∂θ′
f(ϕ̂, θ0)

))′
.

19Note that there is no guarantee that confidence sets formed by inverting the PI test will be
non-empty.
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We can see that the assumed convergence of gT (θ0) =
√
T Ω̂−

1
2

gg f(ϕ̂, θ0) thus holds only
if
√
Tf(ϕT , θ0) converges. To obtain convergence in distribution for ∆gT (θ0) , we will

need to choose an appropriate sequence of normalizing matrices AT , which may in
turn depend on the sequence of true VAR parameters ϕT . To examine this issue in
more detail, in the next subsection we briefly discuss two ways in which identification
could fail in this model, one resulting in weak identification for ν and the other in
weak identification for ρ.

E.3.1 Possible Sources of Weak Identification

Since we have assumed that (πt, zt) follow a VAR(3), we have that ϕ is 12-dimensional
and can take

A(ϕ) =



ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16

ϕ21 ϕ22 ϕ23 ϕ24 ϕ25 ϕ26

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


.

Note that eπ = (1, 0, 0, 0, 0, 0)′ and ex = (0, 1, 0, 0, 0, 0)′.
Fix a true parameter value θ. Identification of ν fails if ϕ2i = 0 for all i ∈ {1, ..., 6}.

In this case we have that A(ϕ)′ex = 0, with the consequence that ν does not enter
the distance function f (ϕ, θ) and ∂

∂ν
f (ϕ, θ) = 0. To model ν as weakly identified,

fix ϕ1i,T = ϕ1i for i ∈ {1, ..., 6} at values such that f (ϕT , θ) = 0 when ϕ2i = 0
for i ∈ {1, ..., 6}. We can take sequences of true VAR parameter values ϕT such that
ϕ1i,T = 1√

T
c1,i+o

(
1√
T

)
,ϕ2i,T = 1√

T
c2,i+o

(
1√
T

)
and f (ϕT , θ) = 0 ∀T , which will imply

that
√
T ∂
∂ν
f (ϕT , θ) → Cν for a 6 × 1 vector Cν . Thus, if we take AT =

 √T 0
0 1


we will have that the first column of ∂

∂θ′
f(ϕ̂, θ)AT converges in distribution to a non-

degenerate random vector. Provided the values ϕ1i,T are such that ∂
∂ρ
f (ϕT , θ) → Cρ

for a non-zero vector Cρ, then Ω̂−
1
2

gg
∂
∂θ′
f(ϕ̂, θ)AT →d ∆g for a matrix ∆g which is full

rank almost surely, as we assumed.
The parameter ρ may also be weakly identified. In particular, note that

∂

∂ρ
f(ϕ, θ) = A (ϕ)′

{[
1

(1+ρ)2A (ϕ)′
]
eπ + (1−ν)2

ν(1+ρ)2 ex
}
− 1

(1+ρ)2 eπ
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so if (
I − A (ϕ)′A (ϕ)′

)
eπ = A (ϕ)′ ex

(1− ν)2

ν

then ∂
∂ρ
f(ϕ, θ) = 0 for all values of ρ, so ρ is unidentified. In the same manner as

above, for any pair (ϕ, ν) satisfying this restriction we can take ν fixed and construct
a sequence ϕT converging to ϕ at a

√
T rate such that Ω−

1
2

gg
∂
∂θ′
f(ϕ̂, θ)AT →d ∆g for

∆g full rank almost-surely with AT =
 1 0

0
√
T

 .
E.3.2 Derivation of the Limit Problem

To derive the form of the limit problem (25) we need to understand the behavior of
gT and ∆gT under alternatives. Note that for alternative θT and true reduced-form
parameter value ϕT , we have that since f(ϕT , θT ) = 0,

f(ϕT , θ0) = f(ϕT , θ0)− f(ϕT , θT ).

Define

m(ϕT , θT ) = f(ϕT , θ0)− f(ϕT , θT ) =
A (ϕT )′

{(
1

1+ρT −
1

1+ρ0

)
A (ϕT )′ eπ +

(
(1−νT )2

νT (1+ρT ) −
(1−ν0)2

ν0(1+ρ0)

)
ex
}

+
(

ρT
1+ρT −

ρ0
1+ρ0

)
eπ,

and note that the assumed convergence for gT implies that
√
Tm(ϕT , θT ) converges

to m. To determine the form of the setM (µ), which characterizes the behavior of m
under various alternatives, note that

∂

∂θ
f(ϕT , θ0) =

[
A (ϕT )′

( 1−ν2
0

ν2
0 (1+ρ0)

)
ex A (ϕT )′

{[
1

(1+ρ0)2A (ϕT )′
]
eπ + (1−ν0)2

ν0(1+ρ0)2 ex
}
− 1

(1+ρ0)2 eπ
]

and hence

A (ϕT ) ex =
(

1− ν2
0

ν2
0 (1 + ρ0)

)−1 [
∂

∂θ′
f(ϕT , θ0)

]
1

=

h1(θ0)
[
∂

∂θ′
f(ϕT , θ0)

]
1
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for h1 (θ0) =
( 1−ν2

0
ν2

0 (1+ρ0)

)−1
, and

A (ϕT )′A (ϕT )′ eπ = (1 + ρ0)2
[
∂

∂θ′
f(ϕT , θ0)

]
2
− (1− ν0)2

ν0
A (ϕT )′ ex + eπ =

h2(θ0)
[
∂

∂θ′
f(ϕT , θ0)

]
2
− h3(θ0)h1(θ0)

[
∂

∂θ′
f(ϕT , θ0)

]
1

+ eπ,

for h2 (θ0) = (1 + ρ0)2 and h3 (θ0) = (1−ν0)2

ν0
. For m (ϕT , θT ) as defined above, this

implies that

m (ϕT , θT ) =(
1

1+ρT −
1

1+ρ0

) (
h2(θ0)

[
∂
∂θ′
f(ϕT , θ0)

]
2
− h3(θ0)h1(θ0)

[
∂
∂θ′
f(ϕT , θ0)

]
1

+ eπ
)

+(
(1−νT )2

νT (1+ρT ) −
(1−ν0)2

ν0(1+ρ0)

)
h1(θ0)

[
∂
∂θ′
f(ϕT , θ0)

]
1

+
(

ρT
1+ρT −

ρ0
1+ρ0

)
eπ =

h4(θ0, θT )
[
∂
∂θ′
f(ϕT , θ0)

]
1

+ h5(θ0, θT )
[
∂
∂θ′
f(ϕT , θ0)

]
2

for

h4 (θ0, θT ) = −
(

1
1 + ρT

− 1
1 + ρ0

)
h3(θ0)h1(θ0) +

(
(1− νT )2

νT (1 + ρT ) −
(1− ν0)2

ν0 (1 + ρ0)

)
h1(θ0)

and
h5 (θ0, θT ) =

(
1

1 + ρT
− 1

1 + ρ0

)
h2(θ0).

Thus, knowledge of ∂
∂θ′
f(ϕT , θ0) suffices to let us calculate m(ϕT , θ) for any alter-

native θ in the sample of size T . Consequently, in each sample size T , an estimate of
µT = ∂

∂θ′
f(ϕT , θ0)AT implies a corresponding setMT (µT ) =

{√
Tm(ϕT , θ) : θ ∈ Θ

}
.

For a given convergent sequence ϕT , we can then define M in the limit problem as
M(µ) = limT (MT (µ) ∩ C) for any compact set C: the restriction to the set C ensures
convergence, and has the effect of restricting attention to a particular neighborhood of
fixed alternatives for weakly identified parameters and local alternatives for strongly
identified parameters. Note that in any given sample size we need not know AT to
calculateMT (µT ) once given an estimate of ∂

∂θ′
f(ϕT , θ0), so if we just treat ∂

∂θ′
f(ϕ̂, θ0)

as a Gaussian random matrix with mean ∂
∂θ′
f(ϕT , θ0) and proceed accordingly, this

will (asymptotically) correspond to using the correctM(µ) under all sequences yield-
ing limit problems in this class. Indeed, this is the approach we adopt to calculate
plug-in tests in our simulations.
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E.3.3 NKPC Simulation Details

The assumption that (πt, xt) follows a 3rd order VAR means that, once we make a
distributional assumption on the driving shocks εt, we can simulate data from the
NKPC model discussed above for any combination of parameters (ϕ, θ) such that
f (ϕ, θ) = 0. For ϕ̂ the VAR coefficients estimated from the data used by MM with
estimated variance matrix Σ̂ϕϕ, we find the coefficients

(
ϕ̃, θ̃

)
solving

(
ϕ̃, θ̃

)
= arg min

(ϕ,θ):f(ϕ,θ)=0
(ϕ̂− ϕ)′ Σ̂−1

ϕϕ (ϕ̂− ϕ) .

This yields the pair of reduced form and structural coefficients consistent with the
NKPC model which, in a covariance-weighted sense, are as close as possible to the
estimated VAR coefficient ϕ̂. Using the residuals ε̂t from calculating the VAR coeffi-
cients ϕ̂, we estimate the covariance matrix of the driving shocks by

V̂ε = 1
T

T∑
t=1

(
ε̂t −

1
T

T∑
s=1

ε̂s

)(
ε̂t −

1
T

T∑
s=1

ε̂s

)′
.

Taking εt to be normally distributed, to conduct our simulations we then generate
samples of 100 observations from the the model with true parameter values

(
ϕ̃, θ̃

)
and true covariance matrix V̂ε for εt.

For computational purposes, when calculating PI tests and simulating coverage
probabilities we discretize the parameter space, considering grids of values in both ν
and ρ. For both parameters we consider grids ranging from 0.005 to 0.995, with grid
points spaced 0.03 apart.
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