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Abstract

We present an estimated DSGE model of stock market bubbles and business cycles using

Bayesian methods. Bubbles emerge through a positive feedback loop mechanism supported by

self-fulfilling beliefs. We identify a sentiment shock which drives the movements of bubbles and

is transmitted to the real economy through endogenous credit constraints. This shock explains

most of the stock market fluctuations and sizable fractions of the variations in real quantities.

It generates the comovement between stock prices and the real economy and is the dominant

force behind the internet bubbles and the Great Recession.
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1. Introduction

The U.S. stock market is volatile relative to fundamentals as is evident from Figure 1, which presents

the monthly data of the real Standard and Poor’s Composite Stock Price Index from January 1871

to January 2011, and the corresponding series of real earnings. Two recent boom-bust episodes are

remarkable. Starting from January 1995, the stock market rose persistently and peaked in August

2000. During this period, the stock market rose by about 1.8 times. This boom is often attributed

to the internet bubble. Following the peak in August 2000, the stock market crashed, reaching the

bottom in February 2003. The stock market lost about 47 percent. Then the stock market went

up again and reached the peak in October 2007. This stock market runup is often attributed to

the housing market bubble. Following the burst of the bubble, the U.S. economy entered the Great

Recession, with the stock market dropping 52 percent from October 2007 through March 2009.

S&
P 

Pr
ice

 In
de

x

1860 1880 1900 1920 1940 1960 1980 2000 2020
0

300

600

900

1200

1500

1800

2100

2400

1860 1880 1900 1920 1940 1960 1980 2000 2020
0

50

100

150

200

250

300

350

400

Ea
rni

ng

Figure 1: Real stock price indexes and real earnings. Source: Robert Shiller’s website:
http://www.econ.yale.edu/shiller/data.htm.

The U.S. stock market comoves with macroeconomic quantities. The boom phase is often

associated with strong output, consumption, investment, and hours worked, while the bust phase

is often associated with economic downturns. Stock prices, consumption, investment, and hours

worked are procyclical, i.e., they exhibit a positive contemporaneous correlation with output (see

Table 3 presented later).

The preceding observations raise several questions. What are the key forces driving the boom-

bust episodes? Are they driven by economic fundamentals, or are they bubbles? What explains

the comovement between the stock market and the macroeconomic quantities? These questions

are challenging for macroeconomists. Standard macroeconomic models treat the stock market as a

sideshow. In particular, after solving for macroeconomic quantities in a social planner’s problem,

one can derive the stock price that supports these quantities in a competitive equilibrium. Much

attention has been devoted to the equity premium puzzle (Hansen and Singleton (1983) and Mehra

and Prescott (1988)). However, the preceding questions have remained underexplored.
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The goal of this paper is to provide an estimated dynamic stochastic general equilibrium (DSGE)

model to address these questions. To the best of our knowledge, this paper provides the first es-

timated DSGE model of stock market bubbles using Bayesian methods. Our model-based, full-

information econometric methodology has several advantages over the single-equation or the vector

autoregression (VAR) approach used in the early literature to identify bubbles.1 First, because

neither bubbles nor fundamentals are observable, the literature fails to differentiate between mis-

specified fundamentals and bubbles (see Gurkaynak (2008) for a recent survey). By contrast, we

treat bubbles as a latent variable in a DSGE model. The state space representation of the DSGE

model allows us to conduct Bayesian inference of the latent variables by using observable data. We

can answer the question of whether bubbles are important by comparing the marginal likelihoods

of a DSGE model with bubbles and an alternative DSGE model without bubbles. Second, the

single-equation or the VAR approach does not produce a time series of the bubble component and

the shock behind the variation in bubbles. Thus, it is difficult to evaluate whether the properties

of bubbles are in line with our daily-life experience. By contrast, we can simulate our model based

on the estimated parameters and shocks to generate a time series of bubbles. Third, because our

model is structural, we can do counterfactual analysis to examine the role of bubbles in generating

fluctuations in macroeconomic quantities.

We set up a real business cycle (RBC) model with three standard elements: habit formation,

investment adjustment costs, and variable capacity utilization. The novel element of our model

is the assumption that firms are subject to idiosyncratic investment efficiency shocks and face

endogenous credit constraints as in Miao and Wang (2011a,b, 2012a,b), and Miao, Wang, and Xu

(2012). Under this assumption, a stock market bubble can exist through a positive feedback loop

mechanism supported by self-fulfilling beliefs. The intuition is as follows. Suppose that households

have optimistic beliefs about the stock market value of a firm. The firm uses its assets as collateral

to borrow from the lender. If both the lender and the firm believe that firm assets have high value,

then the firm can borrow more and make more investment. This makes firm value indeed high,

supporting people’s initial optimistic beliefs. Bubbles can burst if people believe they can. By no

arbitrage, if a bubble in an asset bursts, a new one in the same asset cannot emerge. To facilitate

recurrent bubbles in the model, we introduce exogenous entry and exit. New entrants bring new

bubbles to the economy, making the total bubble in the economy stationary. We show that the

aggregate stock market value is equal to the capital value (Tobin’s marginal Q times the capital

stock) plus a bubble (or speculative) component.

We introduce a sentiment shock which drives the fluctuations in the bubble and hence the stock

price. This shock reflects households’ beliefs about the relative size of the old bubble to the new

bubble. This shock is transmitted to the real economy through credit constraints. Its movements

affect the tightness of the credit constraints and hence a firm’s borrowing capacity. This in turn

affects a firm’s investment decisions and hence output.2 In addition to this shock, we incorporate five

1See Phillpis and Yu (2011) for a recent econometric test for bubbles.
2Chirinko and Schaller (2001), Goyal and Yamada (2004), and Gilchrist, Himmelberg, and Huberman (2005) find
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other shocks often studied in the literature: permanent and transitory labor-augmenting technology

(or TFP) shocks, the permanent investment-specific technology (IST) shock, the labor supply shock,

and the financial shock (a shock to the external financing constraint). We estimate our model using

Bayesian methods to fit six U.S. time series data of consumption, investment, hours, the relative

price of investment goods, stock prices, and the Chicago Fed’s National Financial Conditions Index

(NFCI). Our full-information, model-based empirical strategy for identifying the sentiment shock

exploits the fact that in the theoretical model the observable variables react differently to different

types of shocks. We then use our estimated model to address the questions raised earlier. We also

use our model to shed light on two major bubble and crash episodes: (i) the internet bubble during

the late 1990s and its subsequent crash, and (ii) the recent stock market bubble caused by the

housing bubble and the subsequent Great Recession.

Our baseline estimation results show that the sentiment shock explains most of the fluctuations

in the stock price at the business cycle frequency. It also explains a sizable fraction of the variations

in investment, consumption, and output. Consistent with the RBC literature, the two TFP shocks

together explain most of the variations in these quantities. Historical decomposition of shocks shows

that the sentiment shock explains almost all of the stock market booms and busts. In addition,

it is the dominant driving force behind the movements in investment during the internet bubble

and crash and the recent stock market bubble and the subsequent Great Recession. The sentiment

shock also accounts for a large share of the fall in consumption during the Great Recession. But it

is not a dominant driver behind the consumption movements during the internet bubble and crash.

For both boom-bust episodes, the labor supply shock, instead of the sentiment shock, is the major

driving force behind the movements in labor hours.

To examine the robustness of our findings, we study two model variations. First, we incorporate

the consumer sentiment index (CSI) data from the University of Michigan in the estimation since

this index is highly correlated with the smoothed sentiment shock. We introduce measurement

errors into the measurement equation for this data. We also allow SCI to be correlated with

business cycles and allow the sentiment shock to be correlated with other shocks in the model.

Second, we follow Ireland (2004) and estimate a hybrid model that combines the DSGE framework

with the VAR model. We remove all shocks from the baseline model except for the sentiment shock.

We then formulate the measurement equations into a VAR system. We find that our results in the

baseline model are robust to the two model variations, although the impact of the sentiment shock

is weakened. As a conservative estimate, the sentiment shock explains about 73, 17, 10, and 20

percent of the fluctuations in the stock market, output, investment, and consumption, respectively.

The transmission mechanism for the comovement between the stock market and the real econ-

omy is as follows. In response to a positive sentiment shock, the bubble and the stock price rise.

This relaxes firms’ credit constraints and raises their investments. Importantly, the rise in the

empirical evidence that investment responds to the stock market value beyond the fundamentals. See Gan (2007)
and Chaney, Sraer, and Thesmar (2009) for empirical evidence on the relation between collateral constraints and
investment.
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bubble has a capital reallocation effect, making resources move to more productive firms. This

makes investment more efficient. Tobin’s marginal Q falls as the capital stock rises, causing the

capacity utilization rate to rise. This induces the labor demand to rise. The wealth effect due to

the rise in stock prices causes consumption to rise and the labor supply to fall. It turns out that

the rise in the labor demand dominates the fall in the labor supply, and hence labor hours increase.

The increased hours and capacity utilization together raise output.

The sentiment shock in our model is similar to the financial shock in that the impact of both

shocks is transmitted to the real economy through the credit constraints. One difference is that,

unlike the sentiment shock, the financial shock cannot generate the comovement among stock prices,

investment, and consumption as well as the excessive volatility in the stock market. Another

difference is that the sentiment shock directly affects stock prices. Without using the stock price

data in the estimation, the financial shock is important, while the sentiment shock is not. However,

when the stock price data is included in the estimation, the sentiment shock displaces the financial

shock, making the impact of the latter much smaller.

We emphasize that the sentiment shock is not simply a residual used to explain the stock market

volatility. When we shut down this shock and introduce measurement errors into the measurement

equation for the stock price data, we find that the measurement errors explain most of the variation

in the stock prices. But this model cannot explain the comovement between the stock market and

the real economy.

It is challenging for standard DSGE models to explain this comovement and the stock market

booms and busts. In these models, the stock market value is equal to Tobin’s marginal Q times

the capital stock. One often needs a large investment adjustment cost parameter to make Tobin’s

marginal Q highly volatile. In addition, one also has to introduce other sources of shocks to drive

the comovement between the marginal Q and real quantities because many shocks studied in the

literature fail to generate either the right comovement or the right relative volatility in the data.

For example, the TFP shock cannot generate large volatility of the stock price, while the IST shock

generates counterfactual comovements of the marginal Q (hence stock prices) and the relative

price of investment goods if both series are used as observable data. The financial shock typically

makes investment and consumption move in opposite directions and causes stock prices to move

countercyclically.

Our finding that the usual macroeconomic risks such as the TFP and IST shocks do not explain

much the variations in the stock market is consistent with that in Li, Li, and Yu (2013). Without

incorporating the stock price data, Li, Li, and Yu (2013) estimate the DSGE model of Christiano,

Trabandt and Walentin (2011) using Bayesian methods and extract the TFP, IST, and monetary

policy shocks from this model. They find that these shocks predict the future stock returns with

the adjusted R-squares ranging from 0.02 to 0.03 for one-month horizon, from 0.02 to 0.04 for one-

quarter horizon, and from 0.07 to 0.13 for one-year horizon. They also show that this predictability

outperforms other studies in the literature.
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Recently, two types of shocks have drawn wide attention: the news shock and the risk (or uncer-

tainty) shock. The news shock cannot generate the comovement in a standard RBC model (Barro

and King (1984) and Wang (2012)). To generate the comovements, Beaudry and Portier (2004)

incorporate multisectoral adjustment costs, Christiano et al. (2008) introduce nominal rigidities

and inflation-targeting monetary policy, and Jaimovich and Rebelo (2009) consider preferences that

exhibit a weak short-run wealth effect on the labor supply. These three papers study calibrated

DSGE models and do not examine the empirical importance of the news shock.3 Fujiwara, Hi-

rose, and Shintani (2011) and Schmitt-Grohe and Uribe (2012) study this issue using the Bayesian

DSGE approach. Most Bayesian DSGE models do not incorporate stock prices as observable data

for estimation. As Schmitt-Grohe and Uribe (2012) point out, “as is well known, the neoclassical

model does not provide a fully adequate explanation of asset price movements.”4

By incorporating the stock price data, Christiano, Motto, Rostagno (2010, 2012) argue that the

risk shock, related to that in Bloom (2009), displaces the marginal efficiency of investment shock

and is the most important shock driving business cycles.5 They also introduce a news shock to the

risk shock, instead of TFP. Their models are based on Bernanke, Gertler and Gilchrist (1999) and

identify the credit constrained entrepreneurs’ net worth as the stock market value in the data. By

contrast, we use the aggregate market value of the firms in the model as the stock price index in

the data, which is more consistent with the conventional measurement.

As in Carlstrom and Fuerst (1997), Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist

(1999), Jermann and Quadrini (2012), and Liu, Wang and Zha (2013), financial frictions play an

important role in our model. Unlike in these papers and in Christiano, Motto, Rostagno (2010,

2012), firms in our model are not financially constrained in the aggregate. Our model features firm

heterogeneity. Some firms are financially constrained, while others are not. In the aggregate, firms

can be self-financing. This feature is consistent with the empirical evidence documented by Chari,

Christiano, and Kehoe (2008) and Ohanian (2010). Unlike the representative firm setup, there is a

capital reallocation channel for the financial frictions to impact the real economy.

Our paper is closely related to the literature on rational bubbles (Tirole (1982), Weil (1987),

and Santos and Woodford (1997)). The recent Great Recession has generated renewed interest

in this literature. Recent important contributions include Kocherlakota (2009), Farhi and Tirole

(2010), Hirano and Yanagawa (2010), Martin and Ventura (2011a,b), Wang and Wen (2011), Miao

and Wang (2011a,b, 2012a,b), and Miao, Wang and Xu (2012). Most papers in this literature

are theoretical, while Wang and Wen (2011) provide some calibration exercises. Except for Miao

and Wang (2011a,b, 2012a,b) and Miao, Wang, and Xu (2012), all other papers study bubbles in

intrinsically useless assets or assets with exogenously given payoffs.

3Beaudry and Portier (2006) study the empirical implications of the news shock using the VAR approach.
4In Section 6.8 of their paper, Schmitt-Grohe and Uribe (2012) discuss briefly how the share of unconditional

variance explained by anticipated shocks will change when stock prices are included as observable data. But they do
not include stock prices in their baseline estimation.

5It is difficult for shocks to the TFP shock’s variance (uncertainty shocks) to generate comovements among
investment, consumption, hours, and stock prices in standard DSGE models (see, e.g., Basu and Bundick (2011)).
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Our paper is also related to Farmer (2012a,b), which argue that multiple equilibria supported

by self-fulfilling beliefs can help understand the recent Great Recession. Farmer provides a search

model and replaces the Nash bargaining equation for the wage determination with an equation to

determine the expected stock future price. In particular, he assumes that the expected future stock

price relative to the price level or the real wage is determined by an exogenously given variable

representing beliefs. The evolution of this variable is determined by a belief function. Unlike

Farmer’s approach, we model beliefs as a sentiment shock to the relative size of the old bubble to

the new bubble. We then derive a no-arbitrage equation for the bubble in equilibrium. No extra

equation is imposed exogenously.

The remainder of the paper proceeds as follows. Section 2 presents the baseline model. Section

3 estimates model parameters using Bayesian methods. Section 4 analyzes the estimated model’s

economic implications. Section 5 conducts a sensitivity analysis by estimating four alternative

models. Section 6 concludes. Technical details are relegated to appendices.

2. The Baseline Model

We consider an infinite-horizon economy that consists of households, firms, capital goods producers,

and financial intermediaries. Households supply labor to firms, deposit funds in competitive finan-

cial intermediaries, and trade firm shares in a stock market. Firms produce final goods that are

used for consumption and investment. Capital goods producers produce investment goods subject

to adjustment costs. Firms purchase investment goods from capital goods producers subject to

credit constraints. Firms finance investment using internal funds, new equity issuance, and exter-

nal borrowing. Firms and households can save in competitive financial intermediaries (or banks),

which make one-period loans to borrowers. As a starting point, we assume that there is no friction

in financial intermediaries so that we treat them as a veil. In addition, we do not consider money

or monetary policy and study a real model of business cycles.

2.1. Households

There is a continuum of identical households of measure unity. Each household derives utility from

consumption and leisure according to the following expected utility function:

E
∞∑

t=0

βt [ln(Ct − hCt−1)− ψtNt] , (1)

where β ∈ (0, 1) is the subjective discount factor, h ∈ (0, 1) is the habit persistence parameter,

Ct denotes consumption, Nt denotes labor, and ψt represents a labor supply shock. This shock

accounts for the labor wedge and may proxy for a variety of labor market frictions that could be

important in the real world. Assume that lnψt follows an AR(1) process. The specification of

linear disutility of labor reflects indivisible labor in the RBC literature and helps generate large
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fluctuations in hours worked relative to productivity.

The representative household’s budget constraint is given by

Ct + P st st+1 +
dt+1

Rdt
=WtNt +Πt + (Dt + P st )st + dt, s0 = 1, d0 = 0, (2)

where st, P
s
t , dt, Rdt, Wt, Πt, and Dt denote share holdings, the aggregate stock price of all final

goods firms, deposits in the financial intermediaries, the deposit rate, the wage rate, the profit

from capital goods producers, and the aggregate dividend, respectively. The household is subject

to a borrowing constraint, dt+1 ≥ 0. Without a borrowing constraint, a bubble cannot exist (e.g.,

Kocherlakota (1992, 2009)). In equilibrium, st = 1. The household’s first-order conditions are given

by

ΛtWt = ψt, (3)

Λt =
1

Ct − hCt−1
− βEt

h

Ct+1 − hCt
, (4)

1

Rdt
≥ β(1− δe)Et

Λt+1

Λt
, with equality when dt+1 > 0, (5)

where Λt represents the marginal utility of consumption.

2.2. Firms

There is a continuum of final goods firms of measure unity. Suppose that households believe that

each firm’s stock may contain a bubble. They also believe that the bubble may burst with some

probability. By rational expectations, a bubble cannot reemerge in the same firm after bursting.

Otherwise there would be an arbitrage opportunity. This means that none of the firms would

contain any bubble once all bubbles have bursted if no new firms enter the economy. As a result,

we follow Carlstrom and Fuerst (1997), Bernanke, Gertler and Gilchrist (1999), and Gertler and

Kiyotaki (2011), and assume exogenous entry and exit, for simplicity. A firm may die with an

exogenously given probability δe each period. After death, its value is zero and a new firm enters

the economy without costs so that the total measure of firms is fixed at unity in each period. A

new firm entering at date t starts with an initial capital stock K0t and then operates in the same

way as an incumbent firm. The new firm may bring a new bubble into the economy.6

An incumbent firm j ∈ [0, 1] combines capital Kj
t and labor N j

t to produce final goods Y j
t using

the following production function:7

Y j
t = (ujtK

j
t )
α
(

AtN
j
t

)1−α
, (6)

where α ∈ (0, 1), ujt denotes the capacity utilization rate, and At denotes the labor-augmenting

6See Martin and Ventura (2011b) for a related overlapping generations model with recurrent bubbles.
7A firm can be identified by its age. Hence, we may use the notation Kt,τ to denote firm j’s capital stock Kj

t if
its age is τ. Because we want to emphasize the special role of bubbles, we only use such a notation for the bubble.
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technology shock. Given the Cobb-Douglas production function, we may also refer to At as a total

factor productivity (TFP) shock. For a new firm entering at date t, we set Kj
t = K0t. Assume that

At is composed of a permanent component Apt and a transitory (mean-reverting) component Amt

such that At = AptA
m
t , where lnλat ≡ ln

(
Apt /A

p
t−1

)
and lnAmt follow independent AR(1) processes.

Assume that the capital depreciation rate between period t and period t + 1 is given by δjt =

δ(ujt ), where δ is a twice continuously differentiable convex function that maps a positive number

into [0, 1]. We do not need to parameterize the function δ since we use the log-linearization solution

method. We only need it to be such that the steady-state capacity utilization rate is normalized to

1. The capital stock evolves according to

Kj
t+1 = (1− δjt)K

j
t + εjtI

j
t , (7)

where Ijt denotes investment and εjt measures the efficiency of the investment. Assume that in-

vestment is irreversible at the firm level so that Ijt ≥ 0. Assume that εjt is IID across firms and

over time and is drawn from the fixed cumulative distribution Φ over [εmin, εmax] ⊂ (0,∞) with

mean 1 and the probability density function φ. This shock induces firm heterogeneity in the model.

For tractability, assume that the capacity utilization decision is made before the observation of

investment efficiency shock εjt . Consequently, the optimal capacity utilization does not depend on

the idiosyncratic shock εjt .

Given the wage rate wt and the capacity utilization rate ujt , the firm chooses labor demand N j
t

to solve the following problem:

Rtu
j
tK

j
t = max

Nj
t

(ujtK
j
t )
α(AtN

j
t )

1−α −WtN
j
t , (8)

where

Rt ≡ α

[
(1− α)At

Wt

] 1−α
α

. (9)

In each period t, firm j can make investment Ijt by purchasing investment goods from capital

producers at the price Pt. Its flow-of-funds constraint is given by

Dj
t + Ljt + PtI

j
t = ujtRtK

j
t +

Ljt+1

Rft
, (10)

where Ljt+1 > 0(< 0) represents borrowing (savings), Rft represents the interest rate, and Dj
t >

0(< 0) represents dividends (new equity issuance). Assume that external financial markets are

imperfect so that firms are subject to the following constraint on new equity issuance:

Dj
t ≥ −ηtK

j
t , (11)

where ηt is an exogenous stochastic shock to equity issuance. In addition, external borrowing is
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subject to a credit constraint:

Et
βΛt+1

Λt
V̄t+1,τ+1(K

j
t+1, L

j
t+1) ≥ Et

βΛt+1

Λt
V̄t+1,τ+1(K

j
t+1, 0)− Et

βΛt+1

Λt
V̄t+1,τ+1(ξtK

j
t , 0), (12)

where Vt,τ (k, l, ε) represents the cum-dividends stock market value of the firm with assets k,

debt l, and idiosyncratic investment efficiency shock ε at time t with age τ , and V̄t,τ (kt, lt) ≡
∫
Vt,τ (kt, lt, ε) dΦ (ε) represents the ex ante value after integrating out ε. Here, ξt represents a col-

lateral shock that reflects the friction in the credit market as in Jermann and Quadrini (2011) and

Liu, Wang, Zha (LWZ for short) (2013). Note that τ represents the age of firm j. We will show

below that equity value depends on the age because it contains a bubble component which is age

dependent.

Following Miao and Wang (2011a), we can interpret (12) as an incentive constraint in a con-

tracting problem between the firm and the lender when the firm has limited commitment.8 In

any period t, firm j chooses to borrow Ljt+1/Rft. It may default on debt Ljt+1 at the beginning

of period t + 1 before the realization of the idiosyncratic investment efficiency shock and con-

ditional on its surviving in period t + 1. If it does not default, it obtains continuation value

β(1 − δe)Et
Λt+1

Λt
V̄t+1,τ+1(K

j
t+1, L

j
t+1). If it defaults, debt is renegotiated and the repayment is re-

lieved. The lender can seize the collateralized asset ξtK
j
t and keep the firm running with these assets

by reorganizing the firm.9 Thus the threat value to the lender is β(1− δe)Et
Λt+1

Λt
V̄t+1,τ+1(ξtK

j
t , 0).

Following Jermann and Quadrini (2012), assume that the firm has a full bargaining power. Then

the expression on the right-hand side of (12) is the value of the firm if it chooses to default. Thus,

constraint (12) ensures firm j has no incentive to default in equilibrium.10

2.3. Decision Problem

We describe firm j’s decision problem by dynamic programming:

Vt,τ

(

Kj
t , L

j
t , ε

j
t

)

= max
Ijt ,u

j
t ,L

j
t+1

Rtu
j
tK

j
t − PtI

j
t − Ljt +

Ljt+1

Rft

+(1− δe)Et
βΛt+1

Λt
Vt+1,τ+1

(

Kj
t+1, L

j
t+1, ε

j
t+1

)

,

subject to (7), (12), and

0 ≤ PtI
j
t ≤ ujtRtK

j
t + ηtK

j
t − Ljt +

Ljt+1

Rft
, (13)

8Miao and Wang (2011a) show that other types of credit constraints such as self-enforcing debt constraints can
also generate bubbles.

9Using ξtK
j
t+1 as collateral does not change our key insight, but makes the analysis slightly more complicated (see

Miao and Wang (2011a)).
10Miao and Wang (2011a) discuss other forms of credit constraints under which a bubble can exist. The key idea

is that a bubble helps relax credit constraints.
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where we have used equations (10) and (11). We conjecture that the value function takes the

following form:

Vt,τ (K
j
t , L

j
t , ε

j
t) = vt(ε

j
t )K

j
t + bt,τ (ε

j
t)− vLt(ε

j
t )L

j
t , (14)

where vt(ε
j
t ), bt,τ (ε

j
t) ≥ 0, and vLt(ε

j
t) depend only on idiosyncratic shock εjt and aggregate state

variables. The form in (14) is intuitive following Hayashi (1982). Since we assume competitive mar-

kets with constant-returns-to-scale technology, it is natural that firm value takes a linear functional

form. However, in the presence of credit constraints (12), firm value may contain a speculative

component, bt,τ (ε
j
t ). Either bt,τ (ε

j
t) = 0 or bt,τ (ε

j
t) > 0 can be an equilibrium solution depending on

agents’ beliefs (note that the preceding dynamic programming problem does not give a contraction

mapping). As in Miao and Wang (2011a), we may interpret this component as a bubble.

Define the date-t ex-dividend stock price of the firm of age τ as

P s,jt,τ = (1− δe)Et
βΛt+1

Λt
V̄t+1,τ+1(K

j
t+1, L

j
t+1).

Given the above conjectured form in (14), we have

P s,jt,τ = QtK
j
t+1 +Bt,τ −

1

Rft
Ljt+1, (15)

where we define

Qt = (1− δe)Et
βΛt+1

Λt
vt+1(ε

j
t+1), Bt,τ = (1− δe)Et

βΛt+1

Λt
bt+1,τ+1

(

εjt+1

)

. (16)

Note that Qt and Bt,τ do not depend on idiosyncratic shocks because they are integrated out.

We interpret Qt and Bt,τ as the (shadow) price of installed capital (Tobin’s marginal Q) and the

average bubble of the firm, respectively. Note that marginal Q and the investment goods price Pt

are different in our model due to financial frictions and idiosyncratic investment efficiency shocks.

In addition, marginal Q is not equal to average Q in our model because of the existence of a bubble.

Given the conjectured value function (15), the credit constraint (12) becomes

1

Rft
Ljt+1 ≤ QtξtK

j
t +Bt,τ . (17)

We then have the following proposition:

Proposition 1 (i) The optimal investment level Ijt of firm j with a bubble satisfies

PtI
j
t =

{

utRtK
j
t + ηtK

j
t +QtξtK

j
t +Bt,τ − Ljt if εjt ≥

Pt

Qt

0 otherwise
. (18)
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(ii) Each firm chooses the same capacity utilization rate ut satisfying

Rt(1 +Gt) = Qtδ
′(ut), (19)

where

Gt =

∫

ε≥Pt/Qt

(Qt/Ptε− 1)dΦ (ε) . (20)

(iii) The bubble, the price of installed capital, and the lending rate satisfy

Bt,τ = β(1− δe)Et
Λt+1

Λt
Bt+1,τ+1 (1 +Gt+1) , (21)

Qt = β(1− δe)Et
Λt+1

Λt

[
ut+1Rt+1 +Qt+1(1− δt+1) + (ut+1Rt+1 + ξt+1Qt+1 + ηt+1)Gt+1

]
, (22)

1

Rft
= β(1− δe)Et

Λt+1

Λt
(1 +Gt+1) , (23)

where δt = δ (ut) .

The intuition behind the investment rule given in equation (18) is the following. The cost of one

unit of investment is the purchasing price Pt. The associated benefit is the marginal Q multiplied

by the investment efficiency εjt . If the benefit exceeds the cost Qtε
j
t ≥ Pt, the firm will invest.

Otherwise, the firm makes zero investment. This investment rule implies that firm-level investment

is lumpy, which is similar to the case with fixed adjustment costs. Equation (18) shows that the

investment rate increases with cash flows Rt, marginal Q, Qt, and the bubble, Bt,τ .

Equation (17) shows that the existence of a bubble Bt,τ relaxes the credit constraint, and hence

allows the firm to make more investment. Thus, the bubble term Bt,τ enters the investment rule

in (18). In addition, the existence of a bubble in the aggregate economy affects the equilibrium Qt

and Pt and hence the investment threshold ε∗t ≡ Pt/Qt. This also implies that the bubble has an

extensive margin effect by affecting the number of investing firms. We call this effect of the bubble

the capital reallocation effect.

The bubble must satisfy the no-arbitrage condition given in (21). Having a bubble at time t

costs Bt,τ dollars. The benefit consists of two components: (i) The bubble has the value Bt+1,τ+1

at t+1. (ii) The bubble can help the firm generate dividends Bt+1,τ+1Gt+1. The intuition is that a

dollar of the bubble increases the borrowing capacity by one dollar as revealed by (17). This allows

the firm to make more investment, generating additional dividends (εQt/Pt − 1) for the efficiency

shock ε ≥ Pt/Qt. The expected investment benefit is given by (20). Thus, Bt+1,τ+1 (1 +Gt+1)

represents the sum of “dividends” and the reselling value of the bubble. Using the stochastic

discount factor βΛt+1/Λt and considering the possibility of firm death, equation (21) says that the

cost of having the bubble is equal to the expected benefit.

Note that the bubble Bt,τ is non-predetermined. Clearly, Bt,τ = Bt+1,τ+1 = 0 is a solution to

(21). If no one believes in a bubble, then a bubble cannot exist. We shall show below an equilibrium
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with bubble Bt,τ > 0 exists. Both types of equilibria are self-fulfilling. Note that the transversality

condition cannot rule out a bubble because of the additional benefit Gt+1 generated by the bubble.

The right-hand side of equation (19) gives the tradeoff between the cost and the benefit of a unit

increase in the capacity utilization rate for a unit of capital. A high utilization rate makes capital

depreciate faster. But it can generate additional profits and also additional investment benefits.

Equation (22) is an asset pricing equation of marginal Q. The dividends from capital consist of

the rental rate ut+1Rt+1 in efficiency units and the investment benefit (ut+1Rt+1+ξt+1Qt+1)Gt+1 of

an additional unit increase in capital. The reselling value of undepreciated capital isQt+1 (1− δt+1) .

Equation (23) is an asset pricing equation for the interest rate. For firms that decide not to

invest and save (buying the bonds issued by other firms). For every one dollar saved today, the

firm will earn Rft in the next period. The firm may receive a favorable investment shock in the

next period and invest Rft to generate additional dividends (εQt+1/Pt+1 − 1) in the next period.

Hence the total return on saving will be Rft (1 +Gt+1).

2.4. Sentiment Shock

To model households’ beliefs about the movements of the bubble, we introduce a sentiment shock.

Suppose that households believe that the new firm in period t may contain a bubble of size Bt,0 =

b∗t > 0 with probability ω. Then the total new bubble is given by ωδeb
∗
t .

Suppose that households believe that the relative size of the bubbles at date t+ τ for any two

firms born at date t and t+ 1 is given by θt, i.e.,

Bt+τ ,τ
Bt+τ ,τ−1

= θt, t ≥ 0, τ ≥ 1, (24)

where θt follows an exogenously given process:

ln θt = (1− ρθ) θ̄ + ρθ ln θt−1 + εθ,t, (25)

where θ̄ is the mean, ρθ ∈ (−1, 1) is the persistence parameter, and εθ,t is an IID normal random

variable with mean zero and variance σ2θ. We interpret this process as a sentiment shock, which

reflects household beliefs about the fluctuations in bubbles.11 These beliefs may change randomly

over time. It follows from (24) that

Bt,0 = b∗t , Bt,1 = θt−1b
∗
t , Bt,2 = θt−1θt−2b

∗
t , ..., t ≥ 0. (26)

This equation implies that the sizes of new bubbles and old bubbles are linked by the sentiment

shock. The sentiment shock changes the relative sizes. Note that the growth rate Bt+1,τ+1/Bt,τ of

11In a different formulation available upon request, we may interpret θt as the probability that the bubble survives
in the next period. This formulation is isomorphic to the present model. In particular, mt in equation (32) can be
interpreted as the mass of firms having bubbles. Equation (34) is the asset pricing equation for the bubble Ba

t /mt.
The advantage of the present setup is that we allow θt to be greater than 1.
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the bubble in the same firm born at any given date t − τ must satisfy the equilibrium restriction

derived in equation (21).

2.5. Capital Producers

Capital goods producers create new investment goods using input of final output subject to ad-

justment costs, as in Gertler and Kiyotaki (2011). They sell new investment goods to firms with

investing opportunities at the price Pt. The objective function of a capital producer is to choose

{It} to solve:

max
{It}

E

∞∑

t=0

βt
Λt
Λ0

{

PtIt −

[

1 +
Ω

2

(
It
It−1

− λ̄I

)2
]

It
Zt

}

,

where λ̄I is the steady-state growth rate of aggregate investment, Ω > 0 is the adjustment cost

parameter, and Zt represents an IST shock as in Greenwood, Hercowitz and Krusell (1997). The

growth rate λ̄I will be determined in Section 3. Following Justiniano, Primiceri, and Tambalotti

(2011), we assume that Zt = Zt−1λzt, where lnλzt follows an AR(1) process. The optimal level of

investment goods satisfies the first-order condition:

ZtPt = 1 +
Ω

2

(
It
It−1

− λ̄I

)2

+Ω

(
It
It−1

− λ̄I

)
It
It−1

(27)

−βEt
Λt+1

Λt
Ω

(
It+1

It
− λ̄I

)
Zt
Zt+1

(
It+1

It

)2

.

2.6. Aggregation and Equilibrium

Let Kt =
∫
Kj
t dj denote the aggregate capital stock of all firms in the end of period t − 1 before

the realization of the death shock. Let Xt denote the aggregate capital stock after the realization

of the death shock, but before new investment and depreciation take place. Then

Xt = (1− δe)Kt + δeK0t, (28)

where we have included the capital stock brought by new entrants.

Define aggregate output and aggregate labor as Yt =
∫ 1
0 Y

j
t dj and Nt =

∫ 1
0 Y

j
t dj. By Proposition

1, all firms choose the same capacity utilization rate. Thus, all firms have the same capital-labor

ratio. By the linear homogeneity property of the production function, we can then show that

Yt = (utXt)
α (AtNt)

1−α . (29)

As a result, the wage rate is given by

Wt =
(1− α)Yt

Nt
, (30)
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Let Ba
t denote the total bubble in period t. Adding up the bubble of the firms of all ages and

using (26) yield:

Ba
t =

t∑

τ=0

(1− δe)
τδeωBt,τ ≡ mtb

∗
t , (31)

where mt satisfies the recursion,

mt = mt−1(1− δe)θt−1 + δeω, m0 = δeω. (32)

The process {mt} is stationary in the neighborhood of the steady state as long as (1− δe)θ̄ < 1.

By equations (26) and (21),

b∗t = β(1− δe)θtEt
Λt+1

Λt
b∗t+1 (1 +Gt+1) . (33)

This equation gives an equilibrium restriction on the size of the new bubble. Substituting (31) into

the above equation yields:

Ba
t = β(1− δe)θtEt

Λt+1

Λt

mt

mt+1
Ba
t+1 (1 +Gt+1) . (34)

This equation gives an equilibrium restriction on the value of the total bubble in the economy. The

above two equations prevent any arbitrage opportunities for old and new bubbles. Equations (32)

and (34) reveal that a sentiment shock affects the relative size mt and hence the aggregate bubble

Ba
t .

Aggregating all firm value in (15), we obtain the aggregate stock market value of the firm:

P st = QtKt+1 +Ba
t .

This equation reveals that the aggregate stock price consists of two components: the fundamental

QtKt+1 and the bubble Ba
t .

Competitive financial intermediaries implies that the deposit rate is equal to the lending rate

so that Rdt = Rft (1− δe) , where we have taken into account that firms die with probability δe. It

follows from (23) and Gt+1 > 0 that

1

Rdt
=

1

(1− δe)Rft
= βEt

Λt+1

Λt
(1 +Gt+1) > βEt

Λt+1

Λt
. (35)

Thus, households prefer to borrow until their borrowing constraints bind, i.e., dt+1 = 0. Without

borrowing constraints, no arbitrage implies that Gt+1 = 0. Equation (21) and the transversality

condition will rule out bubbles.

By the market-clearing conditions for bank loans, Lt =
∫
Ljtdj = dt = 0 for all t ≥ 0. This

means that firms with high investment efficiency shocks borrow and invest, while all other firms

14



save and lend.

Let It =
∫
Ijt dj denote aggregate investment. Using Proposition 1 and adding up (18) for firms

of all ages, we can use a law of large numbers to drive aggregate investment as

PtIt = [(utRt + ξtQt + ηt)Xt +Ba
t − Lt]

∫

ε>
Pt
Qt

dΦ (ε)

= [(utRt + ξtQt + ηt)Xt +Ba
t ]

∫

ε>
Pt
Qt

dΦ (ε) , (36)

where in the second line we have used the fact that Lt = 0. Similarly, the aggregate capital stock

evolves according to

Kt+1 = (1− δt)Xt +

∫

Ijt ε
j
tdj

= (1− δt)Xt + It

∫

ε>
Pt
Qt

εdΦ (ε)
∫

ε>
Pt
Qt

dΦ (ε)
, (37)

where we have used a law of large numbers and the fact that Ijt and εjt are independent by Propo-

sition 1.

The total capacity of external financing is given by

ηtKt
︸︷︷︸

new equity

+ ξtQtKt +Ba
t

︸ ︷︷ ︸

debt

, (38)

where we have used equations (11) and (17) to conduct aggregation. Then the fluctuation in this

capacity reflects the overall financial market conditions. We can use a single shock defined as

ζt ≡ ηt/Qt + ξt, (39)

to capture the disturbance to the degree of the overall financial constraints and rewrite the total

capacity of external financing as ζtQtKt +Ba
t . Assume that ln ζt follows an AR(1) process. Using

(39), equations (22) and (36) become

Qt = β(1− δe)Et
Λt+1

Λt

[
ut+1Rt+1 +Qt+1(1− δt+1) + (ut+1Rt+1 + ζt+1Qt+1)Gt+1

]
, (40)

PtIt = [(utRt + ζtQt)Xt +Ba
t ]

∫

ε>
Pt
Qt

dΦ (ε) . (41)

In Section 4, we shall estimate the shock ζt instead of its two components ηt and ξt.
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The resource constraint is given by

Ct +

[

1 +
Ω

2

(
It
It−1

− λ̄I

)2
]

It
Zt

= Yt. (42)

A competitive equilibrium consists of stochastic processes of 15 aggregate endogenous variables,

{Ct, It, Yt, Nt, Kt, ut, Qt, Xt, Wt, Rt, Pt, mt, B
a
t , Rft, Λt} such that 15 equations (42), (41), (29),

(3), (37), (19), (40), (28), (30), (9), (27), (32), (34), (23) and (4) hold, where Gt satisfies (20) and

δt = δ(ut).

There may exist two types of equilibrium: bubbly equilibrium in which Ba
t > 0 for all t and

bubbleless equilibrium in which Ba
t = 0 for all t. A bubbly equilibrium can be supported by the

belief that a new firm may bring a new bubble with a positive probability ω > 0. A sentiment shock

θt can generate fluctuations in the aggregate bubble Ba
t because households believe that the size

of the old bubble relative to that of the new bubble fluctuates randomly over time. A bubbleless

equilibrium can be supported by the belief that either old or new firms do not contain any bubble

(ω = θt = mt = 0). In the next section, we characterize the steady-state existence conditions for

these two types of equilibria.

3. Bayesian Estimation

Since the model has two unit roots, one in the investment-specific technology shock and the other

in the TFP shock, we have to appropriately transform the equilibrium system into a stationary

one. In Appendix B, we present the transformed equilibrium system and in Appendix C we show

that the transformed equilibrium system has a nonstochastic steady state in which all the above

transformed variables are constant over time. We solve the transformed system numerically by

log-linearizing around the nonstochastic steady state. We seek saddle-path stable solutions. We

shall focus on the bubbly equilibrium as our benchmark.

3.1. Shocks and Data

We use Bayesian methods to fit the log-linearized model to the U.S. data. Our model has six orthog-

onal shocks: persistent and transitory TFP shocks (λat, A
m
t ) , the investment-specific technology

shock Zt, the labor supply shock ψt, the financial shock ζt, and the sentiment shock θt.We need six

data series to identify these shocks. We choose the following five quarterly U.S. time series data:

the relative price of investment (Pt), real per capita consumption (Ct), real per capita investment

in consumption units (It/Zt) , per capita hours (Nt), and real per capita stock price index (defined

as P st = QtKt+1+B
a
t in the model). The first four series are taken from LWZ (2013), and the stock

price data is the S&P composite index downloaded from Robert Shiller’s website. We normalize

it by the price index for non-durable goods and population. The sample period covers the first

quarter of 1975 through the fourth quarter of 2010. More details about the data construction can
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be found in Appendix A in LWZ (2013).

The sixth data series is the Chicago Fed’s National Financial Conditions Index (NFCI), which

is used to identify the financial shock ζt. In Section 4.2 we will show that without including the

NFCI data, the estimation would produce a counter-intuitive smoothed financial shock series. The

NFCI is a comprehensive index on U.S. financial conditions in money markets, debt and equity

markets, as well as the traditional and shadow banking systems. The NFCI is normalized to have

mean zero and standard deviation of one over a sample period extending back to 1973. A positive

(negative) number means tight (loose) financial conditions. The data extends back to 1973 and is

available at quarterly frequency.12 We have also tried several subindices of NFCI (other variation

of the NFCI index) and the results are similar.

Besides the standard measurement equations, we include the following measurement equation:

NFCIt = −f1ζ̂t − f2Q̂t − f3

(

B̂a
t − K̂t

)

, (43)

where f1 > 0, f2 > 0, f3 > 0, ζ̂t denotes log-deviation from the steady state, and Q̂t, B̂
a
t , and K̂t

denote the log-deviations from the steady state for the corresponding detrended variables. This

equation is motivated from (38) and (39). The total capacity of external financing is ζtQtKt +Ba
t

and its fluctuation depends on financial market conditions, represented by the NFCI. The preced-

ing measurement equation relates the NFCI to the log-linearized expression of finacing capacity

normalized by capital Kt. The intuition is that an increase in either one of ζ̂t, Q̂t, or B̂
a
t − K̂t

will reduce the NFCI and hence reduce the tightness in the overall financial market as revealed in

equation (38).

In principle, one could use the credit market data such as total debt to identify the credit

shock ξt and use the equity market data such as aggregate new equity issuance to identify the

equity issuance shock ηt. We have not followed this approach because aggregate debt is zero in

our model, but firms can borrow and save among themselves. Our model is consistent with the

empirical evidence documented by Chari, Christiano, and Kehoe (2008) and Ohanian (2010). They

find that the corporate sector typically has substantial cash reserves and thus can be largely self-

financing. In addition, our modeling of using one shock to describe the financial market conditions

is parsimonious. Our purpose is not to identify all shocks that drive the financial market conditions,

but to study how the sentiment shock and a single reduced-form financial shock to the financial

market conditions affect the real economy.

3.2. Parameter Estimates

As in Section 3, we focus on the steady state for the stationary equilibrium in which the capacity

utilization rate and the investment goods price are both equal to 1. Due to the log-linearization

12See Brave and Butter (2011) for a detailed description on the construction of the NFCI index at
http://qa.chicagofed.org/digital assets/publications/economic perspectives/2011/1qtr2011 part2 brave butters.pdf
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solution method, we do not need to parameterize the depreciation function δ (·) and the distribution

function Φ (·) . As shown in Appendices C and D, we only need to know the steady-state values of

δ (1) , δ′ (1) , δ′′ (1) , Φ (ε∗) , and µ ≡ φ(ε∗)ε∗

1−Φ(ε∗) , where ε
∗ is the steady-state investment threshold for

the shock εt. We treat these values as parameters to be either estimated or calibrated.

We partition the model parameters into three subsets. The first subset of parameters includes

the structural parameters, which are calibrated using the steady-state relations. This set of pa-

rameters is collected in Ψ1 = {β, α, δ (1) , δ′ (1) , δe, ψ̄, Φ (ε∗) , gγ , λ̄z, K0/K̃, θ̄, ω}, where ψ̄ is the

mean labor supply shock, gγ is the steady-state gross growth rate of output, λ̄z is the steady-state

gross growth rate of IST, K0 is the detrended capital stock endowed by the new entrants, and K̃

is the detrended steady-state aggregate capital stock. Note that the parameter ω does not affect

the steady-state bubble-output ratio by Proposition 2 in Appendix C. In addition, as Appendix D

shows, it does not affect the log-linearized dynamic system. Thus, it can take any positive value,

say, ω = 0.5.

As is standard in the literature, we fix the discount factor β at 0.99, the capital share parameter

α at 0.3, and the steady-state depreciation rate δ (1) at 0.025. Using (C.20), we can pin down δ′ (1)

to ensure that the steady-state capacity utilization rate is equal to one. We choose ψ̄ such that the

steady-state average hours are 0.25 as in the data. Using data from the U.S. Bureau of the Census,

we compute the exit rate as the ratio of the number of closed original establishments with non-zero

employment to the number of total establishments with non-zero employment. The average annual

exit rate from 1990 to 2007 is 7.8 percent, implying about 2 percent of quarterly exit rate. Thus,

we set the exit rate δe at 0.02.
13 This number is consistent with the literature. For instance, Bilbiie,

Ghironi and Melitz (2012) set the quarterly firm exit rate to be 0.025, Bernard, Redding and Schott

(2010) find an quarterly 2.2 percent minimum production destruction rate. Using (C.27) in the

appendix, we can pin down Φ (ε∗) by targeting the steady-state investment-output ratio (Ĩ/Ỹ ) at

0.20 as in the data, given that we know the other parameter values. We set the growth rate of per

capita output gγ = 1.0042 and the growth rate of the investment-specific technology λ̄z = 1.0121

as in the data reported by LWZ (2013). Using equation (B.6), we can then pin down the average

growth rate of TFP, λ̄a. Dunne, Roberts and Samuelson (1988) document that the average relative

size of entrants to all firms in the period 1972-1982 is about 0.20. We thus set the ratio of the

initial capital stock of new entry firms to the average capital stock K0/K̃ to 0.20. By (23) and

(34), the growth rate of bubbles of the surviving firms in the steady state is given by θ̄ = Rf/gγ .

We use this equation to pin down θ̄, the calibrated value is 0.9975.14 In summary, Table 1 presents

the values assigned to the calibrated parameters in Ψ1.

The second subset of parameters Ψ2 =
{

h, Ω, δ′′/δ
′

(1) , ζ, µ
}

includes the habit forma-

tion parameter h, the investment-adjustment cost parameter Ω, the capacity utilization parameter

δ′′/δ
′

(1), the mean value of the financial shock ζ, and the elasticity of the probability of undertaking

13Our results are not sensitive to this number.
14In particular, we use the 3-month treasury bill rates from 1975Q2-2010Q4 adjusted by the expected inflation rate

(from the University of Michigan’s survey of consumer) and take the average to obtain the steady state Rf of 1.0017.
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Table 1. Calibrated Parameters

Parameter Value Description

β 0.99 Subjective discounting factor
α 0.3 Capital share in production
δ(1) 0.025 Steady-state depreciation rate
δe 0.020 Exit rate
N 0.25 Steady-state hours
gγ 1.0042 Steady-state gross growth rate of output
λ̄z 1.0121 Steady-state gross growth rate of investment-specific technology
u 1 Steady-state capacity utilization rate

Ĩ/Ỹ 0.2 Steady-state investment-output ratio

K0/K̃ 0.20 Ratio of capital endowment for an entrant to total capital stock

θ 0.9975 Relative size of the old bubble to the new bubble
ω 0.5 Fraction of entrants with bubbles

investment at the steady-state cut-off µ ≡ φ(ε∗)ε∗

1−Φ(ε∗) . These parameter values are estimated by the

Bayesian method.

Following LWZ (2013), we assume that the prior of h follows the beta distribution with mean

0.3333 and standard deviation 0.235. This prior implies that the two shape parameters in the Beta

distribution are given by 1 and 2. The prior density declines linearly as h increases from 0 to 1.

The 90 percent interval of this prior density covers most calibrated values for the habit formation

parameter used in the literature (e.g., Boldrin, Christiano, and Fisher (2001) and Christiano,

Eichenbaum and Evans (2005)).

Following LWZ (2013), we assume that the prior for Ω follows the gamma distribution with

mean 2 and standard deviation 2. The 90 percent interval of this prior ranges from 0.1 to 6, which

covers most values used in the DSGE literature (e.g., Christiano, Eichenbaum, and Evans (2005),

Smets and Wouters (2007), Liu, Waggoner, and Zha (2012), and LWZ (2013)).

For δ′′/δ′ (1) , we assume that the prior follows the gamma distribution with mean 1 and standard

deviation 1. The 90 percent interval of this prior covers the range from 0.05 to 3, which covers

most calibrated values for δ′′/δ′ (1) (e.g., Jaimovich and Rebelo (2009)).

For ζ, we assume that the prior follows the beta distribution with mean 0.3 and standard

deviation 0.1. The 95 percent interval of this prior density ranges roughly from 0.1 to 0.5. Covas

and den Hann (2011) document that ζ ranges from 0.1 to 0.4 for various sizes of firms. Our prior

covers their empirical estimates. We find that our estimate of ζ is quite robust and not sensitive

to the prior distribution.

For µ, we assume that the prior follows the gamma distribution with mean 2 and standard

deviation 2. The 90 percent interval of this prior ranges from 0.1 to 6, which is wide enough to

cover low to high elasticity used in the literature. For example, if we assume that ε follows the

Pareto distribution 1 − ε−ς , then µ = ς. Wang and Wen (2012) estimate that ς is equal to 2.4,
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Table 2. Prior and Posterior Distributions

Prior Distribution Posterior Distribution
Parameter Distr. Mean St.Dev. Mode Mean 5% 95%

h Beta 0.333 0.235 0.5365 0.5443 0.4864 0.6046
Ω Gamma 2 2 0.0297 0.0337 0.0110 0.0557
δ′′/δ′ Gamma 1 1 11.7869 11.9229 8.2706 15.1467
ζ̄ Beta 0.3 0.1 0.2975 0.2981 0.2337 0.3566
µ Gamma 2 2 2.5336 2.5844 2.1143 3.0557
f1 Gamma 1 1 0.0521 0.0444 0.0125 0.0718
f2 Gamma 1 1 4.7264 4.7855 2.7891 6.6858
f3 Gamma 1 1 0.4068 0.3291 0.0101 0.5749

ρa Beta 0.5 0.2 0.9695 0.9643 0.9431 0.9868
ρam Beta 0.5 0.2 0.9629 0.9635 0.9471 0.9808
ρz Beta 0.5 0.2 0.3595 0.3427 0.2233 0.4609
ρθ Beta 0.5 0.2 0.9285 0.9242 0.8990 0.9495
ρψ Beta 0.5 0.2 0.9879 0.9802 0.9650 0.9968

ρζ Beta 0.5 0.2 0.8770 0.8735 0.8104 0.9390

σa Inv-Gamma 0.01 Inf 0.0022 0.0024 0.0018 0.0029
σam Inv-Gamma 0.01 Inf 0.0101 0.0105 0.0093 0.0116
σz Inv-Gamma 0.01 Inf 0.0059 0.0060 0.0053 0.0066
σθ Inv-Gamma 0.1 Inf 0.1839 0.1925 0.1226 0.2603
σψ Inv-Gamma 0.01 Inf 0.0080 0.0082 0.0072 0.0092
σζ Inv-Gamma 0.01 Inf 0.0077 0.0083 0.0048 0.0118

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.

which lies in our range.

For the coefficients in the measurement equation of the financial condition index, f1, f2, f3, we

assume that the priors follow the gamma distribution with mean 1 and standard deviation 1. The

90 percent interval of this prior covers fairly large range from 0.05 to 3. We find that our estimates

of these parameters are quite robust and not sensitive to the prior distribution.

The third subset of parameters is Ψ3 = {ρi, σi} for i ∈ {a, z, am, θ, ζ, ψ} , where ρi and σi denote

the persistence parameters and the standard deviations of the six structural shocks, respectively.

Following Smets and Wouters (2007) and LWZ (2013), we assume that ρi follows a beta distribution

with mean 0.5 and standard deviation 0.2. The prior for σi follows inverse gamma distribution with

mean 0.01 and standard deviation ∞, except for σθ. For the sentiment shock θt, we assume that

the prior mean of σθ is equal to 0.1. The choice of this high prior volatility is based on the fact

that the stock price is the main data used to identify the sentiment shock. Since we know that

the stock market is very volatile, it is natural to specify a large prior volatility for the sentiment

shock. As a robustness check, we also consider the prior mean 0.01 of σθ and find similar results

(see Appendix E).

Table 2 presents the prior distributions of the parameters in groups two Ψ2 and three Ψ3. It

also presents the modes, means, and 5th and 95th percentiles of the posterior distributions for
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those parameters obtained using the Metropolis-Hastings algorithm with 200,000 draws.15 In later

analysis, we choose the posterior modes as the parameter values for all simulations.

Table 2 reveals that our estimates of most parameters are consistent with those in the literature

(e.g., LWZ (2013)). We shall highlight some of the estimates. First, the sentiment shock is highly

persistent and volatile. The posterior mode and mean of the AR(1) coefficient are equal to 0.9285

and 0.9242, respectively. The posterior mode and mean of the standard error are equal to 0.1839

and 0.1925, respectively. Second, our estimated investment adjustment cost parameter is small.

The posterior mode and mean of this parameter are equal to 0.0297 and 0.0337, respectively.

This result is important because a large adjustment cost parameter is needed for most DSGE

models in the literature to explain the variations in stock market prices or returns. But a large

value is inconsistent with micro-level evidence (Cooper and Haltiwanger (2006)). For example,

the estimate in Christiano, Motto, and Rostagno (2009) is 29.22. The intuition is that a large

investment adjustment cost parameter makes Tobin’s marginal Q very volatile, which helps explain

the volatility of the stock market value. By contrast, in our model the aggregate stock market

value contains a separate bubble component. The movement of the stock market value is largely

determined by the bubble component which is driven largely by the sentiment shock. According to

our estimated parameter values, the bubble component accounts for about 14 percent of the stock

market value in the steady state. We will show below that this small component plays a dominant

role in explaining fluctuations in the stock market as well as macroeconomic quantities.

3.3. Model Fit

To evaluate our model performance, we present in Table 3 the baseline model’s predictions regard-

ing standard deviations, correlations with output, and serial correlations of output, consumption,

investment, hours, and stock prices. This table also presents results for four re-estimated compar-

ison models that will be discussed later. The model moments are computed using the simulated

data from the estimated model when all shocks are turned on. We take the posterior modes as

parameter values. Both simulated and actual data are in logs and HP filtered.

From Table 3, we observe that the estimated model fits the empirical moments from the actual

data quite well. We highlight two results. First, our model matches closely the stock market

volatility in the data (0.1088 versus 0.1082). This result is remarkable because most neoclassical

models in finance or macroeconomics have difficulty in explaining the stock market volatility (Shiller

(1981)). Second, our model matches the persistence of macroeconomic quantities and stock prices

as well as their comovements. As is well known, many real business cycle models have difficulty in

generating the persistence of output because they lack an endogenous amplification and propagation

mechanism. Our estimated model with bubbles identifies a new shock, the sentiment shock, and

provides a powerful amplification and propagation mechanism for this shock.

15We have checked that our estimates pass Iskrev’s (2010) test of identification.
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Table 3. Business Cycles Statistics

Y C I N SP P

Standard Deviations
U.S. Data 0.0170 0.0093 0.0419 0.0179 0.1082 0.0111
Baseline Model 0.0184 0.0146 0.0429 0.0130 0.1058 0.0106
No Stock Price 0.0115 0.0095 0.0304 0.0111 0.0132 0.0122
No Sentiment 0.0150 0.0140 0.0332 0.0157 0.1020 0.0249
No Bubble 0.0177 0.0165 0.0410 0.0187 0.1028 0.0261
Extended 0.0246 0.0194 0.0535 0.0125 0.1220 0.0112

Standard Deviations Relative to Y
U.S. Data 1.0000 0.5452 2.4672 1.0539 6.3714 0.6540
Baseline Model 1.0000 0.7898 2.3236 0.7029 5.7366 0.5753
No Stock Price 1.0000 0.8252 2.6335 0.9570 1.1460 1.0568
No Sentiment 1.0000 0.9293 2.2072 1.0414 6.7769 1.6519
No Bubble 1.0000 0.9328 2.3152 1.0559 5.8066 1.4768
Extended 1.0000 0.7885 2.1738 0.5084 4.9564 0.4535

First Order Autocorrelations
U.S. Data 0.9003 0.9023 0.8671 0.9255 0.7652 0.8620
Baseline Model 0.8903 0.9258 0.7944 0.7834 0.7607 0.8474
No Stock Price 0.8303 0.8872 0.7348 0.7699 0.7219 0.8827
No Sentiment 0.9063 0.9142 0.8295 0.7361 0.7219 0.8112
No Bubble 0.9372 0.9417 0.8710 0.7817 0.7220 0.7548
Extended 0.9117 0.9400 0.8365 0.8368 0.7637 0.8574

Correlation with Y
U.S. Data 1.0000 0.9296 0.9705 0.8208 0.4217 -0.1287
Baseline Model 1.0000 0.9364 0.8788 0.6133 0.3943 -0.0707
No Stock Price 1.0000 0.8774 0.7990 0.6759 0.4546 -0.0779
No Sentiment 1.0000 0.8514 0.7364 0.5554 0.0596 -0.1443
No Bubble 1.0000 0.8995 0.7101 0.5237 0.0784 0.0703
Extended 1.0000 0.9582 0.9098 0.6407 0.4978 -0.0797

Note: The model moments are computed using the simulated data (20,000 periods) from the
estimated model at the posterior mode. All series are logged and detrended with the HP filter.
The columns labeled Y , C, I, N , SP , and P refer, respectively, to output, consumption, investment,
hours worked, the stock price, and the relative price of investment goods. “No Bubble” corresponds
to the model without bubbles. “No Sentiment” corresponds to the baseline model without sentiment
shocks. “No Stock Price” corresponds to the baseline model without using the stock price data in
estimation. “Extended” corresponds to the model in Section 5.2.
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4. Economic Implications

In this section, we discuss the model’s empirical implications based on the estimated parameters.

We address the following questions: How much does each shock contribute to the variations in

the stock market, output, investment, consumption, and hours? What explains the stock market

booms and busts? Does the stock market affect the real economy? We then use our model to shed

light on two major bubble and crash episodes in the U.S. economy: (i) the internet bubble during

the late 1990s and its subsequent crash, and (ii) the recent stock market bubble in tandem with

the housing bubble and the subsequent Great Recession.

4.1. Relative Importance of the Shocks

Our estimated model helps us evaluate the relative importance of the shocks in driving fluctuations

in the growth rates of stock prices and macroeconomic quantities. We do this through the variance

decomposition. Table 4 reports this decomposition across the six structural shocks at the business

cycle frequency.16

Table 4 shows that the sentiment shock accounts for about 98 percent of the stock market fluc-

tuations. The contributions of the other shocks are negligible. The sentiment shock is transmitted

from the stock market to the real economy through the credit constraints. A sentiment shock

causes the fluctuations in the credit limit and hence affects a firm’s investment decisions. This in

turn affects aggregate investment and aggregate output. Table 4 reveals that the sentiment shock

explains about 20 and 31 percent of the fluctuations in investment and output, respectively. The

sentiment shock is the dominating force driving the fluctuations in consumption, accounting for

about 32 percent of its variation. This is due to the large wealth effect caused by the fluctuations

in the stock market value.

The two TFP shocks are important in explaining variations in macroeconomic quantities as in

the RBC literature, but they barely affect the stock market fluctuations.

The labor supply shock accounts for most of the fluctuations in hours (about 72 percent). It

also contributes to a sizable fraction of fluctuations in output, investment and consumption. This

shock is a reduced-form shock capturing the labor wedge. A similar finding is reported in LWZ

(2013) and Justiniano, Primiceri, and Tambalotti (2011).

The permanent IST shock does not explain much of the fluctuations in investment, output,

consumption, and hours. This is because our model is designed to fit the data of the relative

price of the investment goods and the IST shock is tied to the fluctuations in the relative price of

investment goods. This result is consistent with the findings reported in Justiniano, Primiceri, and

Tambalotti (2011), LWZ (2013), Christiano, Motto and Rostagno (2010), and Liu, Waggoner, and

Zha (2012).

16We compute variance decomposition using the spectrum of the linearized models and an inverse first difference
filter for stock prices, output, consumption, investment to reconstruct the levels. The spectral density is computed
from the state space representation of the model with 2000 bins for frequencies covering that range of periodicities.
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Table 4. Variance Decomposition at Business Cycle Frequencies

Sentiment Financial IST Agrowth Atrans Labor MeaErr

Stock Price

Baseline 98.45 0.00 0.22 0.53 0.51 0.29 –
No Stock Price 0.70 27.61 2.43 23.32 5.94 39.99 –
No Bubble – 0.01 1.70 3.11 0.42 1.21 93.55
No Sentiment – 0.00 1.14 4.49 0.54 0.90 92.93
Extended 73.37 11.26 0.04 1.78 6.44 7.09 –

Output

Baseline 30.56 0.11 0.93 18.09 31.17 19.13 –
No Stock Price 14.29 14.48 1.21 35.48 2.34 32.21 –
No Bubble – 0.46 21.45 31.00 15.03 32.05 0.00
No Sentiment – 0.09 22.49 12.97 31.22 33.23 0.00
Extended 17.22 2.45 1.18 53.59 13.04 12.53 –

Investment

Baseline 19.54 0.72 4.17 36.22 25.31 14.04 –
No Stock Price 23.94 60.36 0.40 6.75 0.92 7.63 –
No Bubble – 1.85 53.78 20.68 6.82 16.88 0.00
No Sentiment – 0.49 55.95 20.73 10.27 12.56 0.00
Extended 10.49 1.16 6.27 37.47 36.18 8.43 –

Consumption

Baseline 31.68 0.03 0.38 18.68 29.78 19.45 –
No Stock Price 3.97 0.64 1.45 49.10 2.58 42.26 –
No Bubble – 0.02 6.11 58.10 11.98 23.79 0.00
No Sentiment – 0.00 7.70 36.37 27.80 28.13 0.00
Extended 19.92 3.67 0.52 57.25 3.62 15.02 –

Hours

Baseline 4.20 0.41 2.10 19.00 2.67 71.62 –
No Stock Price 4.42 19.30 0.04 1.65 1.68 72.91 –
No Bubble – 0.30 21.07 21.24 10.36 47.04 0.00
No Sentiment – 0.09 20.70 15.79 12.62 50.81 0.00
Extended 2.50 0.77 5.42 10.08 15.03 66.19 –

Note: “No Bubble” corresponds to the model without bubbles. “No Sentiment” corresponds to
the baseline model without sentiment shocks. “No Stock Price” corresponds to the baseline model
without using the stock price data in estimation. “Extended” corresponds to the model in Section
5.2. “MeaErr” denotes the measurement error in the measurement equation for the stock prices.
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Our estimated financial shock is highly persistent, but accounts for a negligible fraction of

fluctuations in stock prices, investment, consumption, output, and hours. The intuition is that the

sentiment shock is similar to the financial shock since both shocks affect the credit constraints.

However, the sentiment shock displaces the financial shock once the stock price data is included

in the estimation because only this shock can generate comovement between stock prices and

macro quantities, as well as the excessive volatility of stock prices. Table 4 shows that when the

stock price data is not included in the estimation, the re-estimated financial shock becomes much

more important, explaining about 28, 14, 60 percent of the variations in stock prices, output,

and investment, respectively. However, this re-estimated model cannot explain the stock market

volatility. As Table 3 reveals, the stock price volatility generated by the re-estimated model is

about 0.01, while the volatility in the data is about 0.11.

4.2. What Explains Stock Market Booms and Busts?

From the variance decomposition, we find that the sentiment shock is the most important driving

force behind the fluctuation in the stock market.17 Why are other shocks not important? To

address this question, we derive the log-linearized detrended stock price as

P̂ st =
K̃Q̃

P̃ s
(Q̂t + K̂t+1) +

B̃a

P̃ s
B̂a
t , (44)

where a variable with a tilde denotes its steady state detrended value and a variable with a hat

denotes the relative deviation from the steady state. We also use equation (D.13) in the appendix

to derive

B̂a
t = −Λ̂t +

[
1− β(1− δe)θ̄

]
ϕG

∞∑

j=1

Et(P̂t+j − Q̂t+j) +
1− (1− δe)θ̄

(1− δe)θ̄

∞∑

j=1

Etm̂t+j . (45)

In the preceding equation, ϕG is a negative number given in (D.7) in the appendix. Equation (44)

shows that the variations in the stock price are determined by the variations in marginal Q, Q̂t,

the capital stock, K̂t+1, and the bubble, B̂a
t . As is well known in the literature, the capital stock

is a slow-moving variable and cannot generate large fluctuations in the stock price. The variation

in marginal Q can be large if the capital adjustment cost parameter is large. But according to

our estimation, this parameter is small and hence movements in marginal Q cannot generate large

fluctuations in the stock price. Equation (45) reveals that the variation in the bubble is largely

determined by the variation in the expected future relative size of the aggregate bubble to the new

bubble, m̂t+j , because the variations in Λ̂t, P̂t+j and Q̂t+j are small. The variation in m̂t+j is

determined by the sentiment shock θ̂t+j as shown in equation (32). According to our estimation,

the sentiment shock is the dominant driver of the stock market fluctuations, even though the bubble

component accounts for a small share of the stock price (B̃a/P̃ s = 0.14) in the deterministic steady

17We use the Campbell-Shiller approximation (Campbell (1999)) to compute the stock return volatility and find
that the sentiment shock explains more than 90 percent of the stock return volatility.

25



state.

Why are the other shocks not important drivers of the stock market fluctuations? We first note

that the IST shock cannot be the primary driver when we allow the model to fit both the stock price

data and the relative price of investment goods data. This is because the price of the investment

goods is countercyclical, but the stock market value is procyclical. A positive IST shock can reduce

the price of the investment goods, but it also reduces the marginal Q and hence the stock market

value.

The labor supply shock cannot be the primary driver either. Since it affects the marginal utility

of leisure directly, it is an important shock to explain the variation in hours. However, it cannot

generate large movements in the stock price because its impact on the marginal Q is small.

We next turn to the two TFP shocks, which are considered to be the main driver of the

fluctuations in real quantities in the RBC literature. Figure 2 shows that a permanent TFP shock

cannot be an important driver of the stock market movements. A permanent TFP shock reduces

marginal Q because it reduces the future marginal utility of consumption due to the wealth effect.

Though it raises the bubble in the stock price, the net impact on the stock price is negative and

small. As Figure 2 shows, the impulse responses of output are similar to those of the stock price.

This implies that the volatility of the stock market would be counterfactually similar to that of

output growth if the permanent TFP shock were the driving force.

As illustrated in Figure 2, although a positive transitory TFP shock raises both marginal Q and

the bubble, its impact on the stock price is small, compared to that on consumption, investment,

and output. Thus, it cannot explain the high relative volatility of the stock market.18

Recently, Jermann and Quadrini (2012) show that the financial shock is important for business

cycles. LWZ (2013) find that the housing demand shock displaces the financial shock when the

housing price data is included in estimation. Figure 2 shows that once the stock market data

is incorporated, the role of the financial shock is significantly weakened. The intuition is that an

increase in the financial shock causes the credit constraints to be relaxed, thereby raising investment.

Since it does not affect output directly, consumption falls on impact. Thus, the financial shock

cannot generate comovement between consumption and investment. As capital accumulation rises,

marginal Q falls, causing the fundamental value of the stock market to fall. In addition, the bubble

component also falls on impact because there is no room for a bubble as the credit constraints are

already relaxed. As a result, the net impact of an increase in the financial shock is to reduce the

stock price, implying that the financial shock cannot drive the stock market cyclicality.

Now consider the impact of a sentiment shock presented in Figure 3. A positive sentiment shock

raises the size of the bubble, causing the credit constraints to be relaxed. Thus, firms make more

investment. As capital accumulation rises, marginal Q falls so that the fundamental value of the

stock market also falls. But this fall is dominated by the rise in the bubble component, causing

18Note that both a permanent and a transitory TFP shocks can generate a fall in hours on impact. This is due to
the presence of habit formation utility and investment adjustment costs (see, Fransis and Ramey (1998) and Smets
and Wouters (2007)).
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Figure 2: Impulse responses to a one-standard-deviation permanent TFP shock (Apt ), transitory
TFP shock (Amt ), and financial shock (ζt) in the baseline model. All vertical axes are in percentage.
We compute the responses for 20,000 draws from the posterior distributions. The solid line is the
median value, the dashed lines indicate the 90 percent confidence interval.
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Figure 3: Impulse responses to a one-standard-deviation sentiment shock in the baseline model.
All vertical axes are in percentage. We compute the responses for 20,000 draws from the posterior
distributions. The solid line is the median value, the dashed lines indicate the 90 percent confidence
interval.

the stock price to rise on impact. This in turn causes consumption to rise due to the wealth effect.

The capacity utilization rate also rises due to the fall of marginal Q, causing the labor demand to

rise. The rise in the labor demand is dominated by the fall in the labor supply due to the wealth

effect, and hence labor hours fall on the impact period, but rises afterward. The increased capacity

utilization raises output.

Notice that on impact the stock price rises by about 8 percent, which is much larger than the

impact effects on output (0.2 percent), consumption (0.2 percent) and investment (0.3 percent).

This result indicates that the sentiment shock can generate a large volatility of the stock market

relative to that of consumption, investment, and output. The sentiment shock has a small impact

on the price of investment goods. This allows the movements of the price of investment goods to

be explained by the IST shock.

The top panel of Figure 4 presents the smoothed estimate of the sentiment shock θ̂t = ln
(
θt/θ̄

)
.

The middle panel plots the historical demeaned logged stock price growth and the fitted demeaned

logged stock price growth from the model when all shocks are turned on and when only the sentiment
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Figure 4: The top panel plots the smoothed sentiment shocks estimated from the baseline model.
The middle panel plots the year-on-year growth data of the actual stock prices (labeled “Data”)
and the smoothed estimates of the stock prices based on all seven shocks (labeled “Model”) and on
the sentiment shock only (labeled “Sentiment”). The bottom panel plots the smoothed estimates
of the bubble and the fundamental components of stock prices.
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shock is turned on. We cannot find visual differences among the three lines, indicating that the

sentiment shock drives almost all of the stock market fluctuations. Comparing these two panels

reveals that the fluctuations in the sentiment shock and in the stock market follow an almost

identical pattern. This implies that the boom of the stock market is fed by the optimistic sentiment

of growing bubbles and the bust is fueled by the pessimistic sentiment of shrinking bubbles or the

collapse of bubbles. The bottom panel of Figure 4 presents the two components of the stock price

when all shocks are turned on: demeaned growth of logged bubble values and demeaned growth

of logged fundamental values. This panel reveals that the movements of the bubble component

and the stock price follow an almost identical pattern. But the movements of the fundamental

component and the stock price follow almost opposite patterns, indicating that the stock market

fluctuations cannot be explained by fundamentals.

4.3. Understanding Major Bubble and Crash Episodes

The U.S. economy has experienced two major bubble and crash episodes: (i) the internet bubble

during the late 1990s and its subsequent crash, and (ii) the recent stock market bubble in tandem

with the housing bubble and the subsequent Great Recession. Can our model help understand these

two episodes? To address this question, we compute the paths of stock prices, business investment,

consumption, and labor hours implied by our estimated model when all shocks are turned on and

when the sentiment shock alone is at work. We then compare these paths with the actual data

during these two episodes.

Figure 5 shows that our estimated DSGE model fits the actual data almost exactly. In addition,

the sentiment shock plays the most important role. In particular, the sentiment shock is the

dominant driving force behind the fluctuations in stock prices and investment. We also find that

there are sizable gaps between the actual consumption and labor data and the simulated data

when the sentiment shock alone is turned on. This suggests that other shocks are also important in

driving the variations in consumption and hours. In particular, the permanent TFP shock accounts

for a large share of the variation in consumption and the labor supply shock accounts for most of the

variation in labor hours, as suggested by the variance decomposition reported in Table 4. The labor

supply shock captures the labor wedge and may be interpreted as a reduced form representation

of the labor market friction. Our result suggests that labor market frictions played a significant

role in accounting for drops in hours growth especially during the Great Recession. Modeling such

frictions is an interesting future research topic, which is beyond the scope of this paper.

What is the role of the financial shock? The top panel of Figure 6 plots the smoothed financial

shock, indicating that there was a large negative financial shock that tightened credit constraints

during the Great Recession. This shock helps explain the gap between the actual investment data

and the estimated data when only the sentiment shock is turned on (see the top right panel of

Figure 5). Figure 6 also shows that the IT bubble in 1990s and the subsequent crash were not quite

related to financial shocks because the smoothed financial shock moved countercyclically during
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Figure 5: The internet bubble and Great Recession episodes. This figure plots the year-on-year
growth rates of stock prices, investment, consumption, and labor hours. The shaded area is the
NBER recession bar. Data: actual data. Model: model fitted data when all shocks are turned on.
Sentiment: model fitted data when only the sentiment shock is turned on.
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that period. Instead, the sentiment shock is the most important shock to explain that episode.
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Figure 6: Smoothed financial shocks ζ̂t. The shaded areas represent NBER recession bars.

To see why the NFCI data is important to identify the financial shock, we estimate the model

without the NFCI data and obtain the smoothed financial shock on the bottom panel of Figure

6. We find that the correlation between the smoothed financial shock and NFCI is only -0.03,

whereas the correlation in the baseline estimation is around -0.88, indicating that the NFCI data

is informative for identification. In addition, the bottom panel of Figure 6 shows that there was an

increasing sequence of financial shocks during the IT bubble period. The shock series is relatively

smooth and there was no significant drop during the Great Recession. All these counterintuitive

features are in contrast to those shown on the top panel of Figure 6 and are inconsistent with the

common view.

5. Understanding the Sentiment Shock

In this section, we conduct various sensitivity analyses and robustness checks to understand the

nature of the sentiment shock.

5.1. Two Alternative Models

To further understand the role of the sentiment shock in economic fluctuations, we estimate two

alternative models without this shock. The first alternative model is derived from our baseline

model presented in Section 2 after removing the sentiment shock in equation (25) and setting

θt = θ̄ = 0.9975. In the second alternative model, we replace the credit constraint (12) with the
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Kiyotaki-Moore type constraint:

Ljt+1

Rft
≤ (1− δe)ξtQtK

j
t+1. (46)

The resulting equilibrium is identical to the bubbleless equilibrium in our baseline model. In

addition, in order to make the above two models flexible enough to match the stock prices and to

avoid the stochastic singularity problem, we add measurement errors in the observation equation

for stock prices. Table 5 presents the variance decompositions for the two estimated alternative

models.

We find that the measurement errors explain almost all of the stock market volatility in the two

alternative models. In particular, they explain about 93 percent of the fluctuations in the stock

prices in the alternative model without sentiment shocks. The IST shock and the two TFP shocks

together explain about 87 percent of the investment fluctuation. The impact of the financial shock

is still negligible as in our baseline model. The large impact of the measurement errors indicate

that these models are misspecified.

Similar patterns emerge in the alternative model without bubbles as Table 4 reveals. In partic-

ular, the measurement errors now explain 94 percent of the fluctuations in the stock prices, and the

IST shock and the two TFP shocks together explain about 80 of the fluctuations in the investment.

Again, the financial shock plays a negligible role.

To compare the performance of our baseline model with that of the alternative models, we

first compute the marginal likelihoods based on the Laplace approximation. We find that the log

marginal likelihoods for our baseline model, the model without sentiment shocks, and the model

without bubbles are equal to 2226.9, 2098.4, and 2092.0, respectively. This suggests that the data

favor our baseline model.

We then report the business cycle moments based on the simulated data from the two alternative

models in Table 3. Compared to the baseline model, the two alternative models perform much worse

in the following two dimensions. First, the model without sentiment shocks and the model without

bubbles counterfactually predict that the stock market and output are almost uncorrelated, though

they can fit the stock price volatilities quite well due to the measurement errors. Thus, the sentiment

shock not only helps explain the stock market volatility, but also plays an important role in driving

the comovement between the stock market and the real economy. Second, the two alternative

models overpredict the volatility of the relative price of investment goods by about twice as much.

5.2. Consumer Sentiment Index

In our model, the sentiment shock is an unobserved latent variable. We infer its properties from our

six time series of the U.S. data using an estimated model. We find that the consumer sentiment

index (CSI) published monthly by the University of Michigan and Thomson Reuters is highly
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correlated with our sentiment shock as illustrated in Figure 7.19 The correlation is 0.61. We now

incorporate this data in the estimation and consider the following measurement equation:

CSIt = CSI + b1θ̂t + b2∆Ŷt + b3∆Ŷt−1 + b4∆Ŷt−2 + b5∆Ŷt−3 + εerrcci,t,

where ∆ denotes the first difference operator. In this equation, we allow for measurement errors

εerrcci,t and the correlation between CSI and business cycles (i.e., output growth in the past four

quarters). This specification captures the fact that CSI may be influenced by current and past

GDP growth. We also allow the sentiment shock to be correlated with other shocks in the model

such that

θ̂t = θ̂1t + θ̂2t, θ̂1t = ρθθ̂1t−1 + ε̂θ,t,

θ̂2t = a1ζ̂t + a2Â
m
t + a3λ̂a,t + a4λ̂z,t + a5ψ̂t,

where λa,t = Apt /A
p
t−1 and λz,t = Zt/Zt−1.

1975 1980 1985 1990 1995 2000 2005 2010

0

 

 

1975 1980 1985 1990 1995 2000 2005 2010
−0.5

0

0.5
Sentiment shock
Consumer sentiment index

Figure 7: This figure plots the sentiment shock estimated from the baseline model and the consumer
sentiment index downloaded from the University of Michigan. Both series are measured as the
deviation from the mean divided by the mean. The shaded areas represent NBER recession bars.

Tables 3 and 4 present results based on the estimated parameter values.20 Table 4 shows that

the impact of the sentiment shock is weakened compared to the baseline model. But it is still the

dominant force driving the stock market fluctuations, explaining about 73 percent of the variation.

It also explains a sizable fraction of the variations in real quantities. In particular, it explains about

17, 10 and 20 percent of the variations in output, investment and consumption, respectively. The

19This index is normalized to have a value of 100 in December 1964. At least 500 telephone interviews are conducted
each month of a continental United States sample (Alaska and Hawaii are excluded). Five core questions are asked.
An important objective of this index is to judge the consumer’s level of optimism/pessimism.

20The parameter estimates are available upon request.
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two TFP shocks are the most important force in explaining these quantities. But they are still not

important in explaining the stock market fluctuations. Table 3 shows that the extended model and

the baseline model perform almost equally well in explaining business cycle statistics.

5.3. A Hybrid Model

Our baseline model has abstracted away from many other potentially important shocks such as

news shocks or uncertainty shocks. Thus, it is possible that the sentiment shock is not impor-

tant at all in explaining stock prices and real variables if other shocks are taken into account.

To examine this possibility, we follow the methodology of Ireland (2004) and combine the DSGE

model with the VAR model. We then estimate this hybrid model using Bayesian methods.21

Following Ireland (2004), we now shut down all the shocks in the baseline model except the senti-

ment shock, and introduce four measurement errors into the measurement equations for the data
{
∆P sData

t ,∆CData
t ,∆IData

t , lnNData
}
. Specifically, let









∆P sData
t

∆CData
t

∆IData
t

lnNData









=









∆P̂ st

∆Ĉt

∆Ît

N̂t









+









ln (gγ)

ln (gγ)

ln (gγ)

ln
(
N̄
)









+−→ν t, (47)

where −→ν t is the vector contains four measurement errors, gγ is the gross growth rate of output,

and N̄ is the average hours in the data. Following Ireland (2004), we assume that the measurement

errors −→ν t follow a VAR(1) process:

−→ν t = A−→ν t−1 + Bε̂ν,t, (48)

where A is the coefficient matrix and B is assumed to be lower-triangular such that the innovations

in ε̂ν,t are orthogonal to each other.

The measurement errors in equation (48) can be considered as a combination of all omitted

structural shocks in our baseline model and allow for potential model misspecifications. We allow

the measurement errors to be flexible enough so that the data are not necessarily driven by the

sentiment shock. The idea is that, if the sentiment shock is not the driving force, then equations

(47) and (48) form a first-order Bayesian VAR system and the measurement errors should be

important in explaining fluctuations in the data of
{
∆P sData

t ,∆CData
t ,∆IData

t , lnNData
}
. On the

other hand, if the baseline model is correctly specified and the sentiment shock is the main source

of fluctuations, then the estimated measurement errors will be unimportant.

The variance decomposition shows that the sentiment shock remains the single most important

factor accounting for the stock price variation although its importance is somewhat reduced. It

explains about 82 percent of the variation in the stock prices. It still accounts for significant frac-

21We thank Tao Zha for suggesting us to conduct this analysis.
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tions of fluctuations in investment, consumption and output, explaining about 26, 38, 35 percent,

respectively. As in the baseline model, the sentiment shock is not important in explaining the

fluctuation in hours. We also find that the estimates of the common parameters in the hybrid

model are very similar to those in the baseline model. The smoothed sentiment shock is still highly

correlated with the consumer sentiment data, the correlation is about 0.73. These results suggest

that the importance of the sentiment shock is robust to the model variation and specification of

different shocks.

6. Conclusion

Stock markets are highly volatile and it is challenging to explain their movements entirely by fun-

damentals. Many people believe that bubbles, fads or irrationality may play an important role in

determining stock prices. This idea has been developed extensively in the theoretical literature.

However, the development of the empirical literature is hindered by the lack of identification of bub-

bles using the VAR approach or other reduced-form regression analysis. As a result, the empirical

importance of bubbles for the stock market and for the real economy is unclear.

The main contribution of this paper is that it provides a Bayesian DSGE model of stock market

bubbles and business cycles. Stock market bubbles emerge endogenously through a positive feed-

back loop mechanism supported by self-fulfilling beliefs. Using Bayesian methods, we identify a

sentiment shock that drives the movements of bubbles and hence stock prices. Unlike many other

demand side shocks such as news shocks and uncertainty shocks, the sentiment shock can generate

comovements among consumption, investment, hours, output and stock prices. Our Bayesian es-

timation shows that the sentiment shock explains most of the stock market volatility and sizable

fractions of the variations in investment, consumption, and output. It is the driving force behind

the comovements between stock prices and macroeconomic quantities. In addition to the empirical

contribution, our paper also makes a theoretical contribution to the literature on rational bubbles

by modeling recurrent bubbles in an infinite-horizon DSGE framework. Our theoretical model is

useful to address many other quantitative or empirical questions. For example, our model focuses

on the real side and does not consider inflation and monetary policy. Should monetary policy

respond to asset price bubbles? Miao, Wang and Xu (2012) study this question by embedding the

present model in a dynamic new Keynesian framework.
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Appendix

A Proof of Proposition 1:

We use a conjecture and verification strategy to find the decision rules at the firm level. We first

study the optimal investment problem by fixing the capacity utilization rate ujt . Using (14) and
(16), we can write firm j’s dynamic programming problem as

vt(ε
j
t)K

j
t + bt,τ (ε

j
t )− vLt(ε

j
t)L

j
t = max

Ijt ,L
j
t+1

ujtRtK
j
t − PtI

j
t − Ljt +

Ljt+1

Rft
(A.1)

+Qt[(1− δjt)K
j
t + εjtI

j
t ] +Bt,τ −QLtL

j
t+1,

subject to the investment constraint:

0 ≤ PtI
j
t ≤ ujtRtK

j
t − Ljt +

Ljt+1

Rft
+ ηtK

j
t . (A.2)

For εjt ≤ Pt/Qt, I
j
t = 0. Optimizing over Ljt+1 yields QLt = 1/Rft. For εjt+1 ≥ Pt/Qt, the optimal

investment level must reach the upper bound in the above investment constraint. We can then
immediately derive the optimal investment rule in (18). In addition, the credit constraint (17)
must bind so that

1

Rft
Ljt+1 = QtξtK

j
t +Bt,τ . (A.3)

Substituting the optimal investment rule and QLt = 1/Rft into (A.1) yields:

vt(ε
j
t )K

j
t + bt,τ (ε

j
t)− vLt(ε

j
t )L

j
t

= ujtRtK
j
t +Qt(1− δjt)K

j
t +Bt,τ − Ljt

+max{Qtε
j
t/Pt − 1, 0} ×

(

ujtRtK
j
t + ηtK

j
t − Ljt +

Ljt+1

Rft

)

. (A.4)

Since ujt is determined before observing εjt , it solves the following problem:

max
ujt

ujtRtK
j
t +Qt(1− δjt)K

j
t +Gtu

j
tRtK

j
t , (A.5)

where Gt is defined by (20). We then obtain the first order condition

Rt(1 +Gt) = Qtδ
′(ujt ). (A.6)

Since δjt = δ(ujt) is convex, this condition is also sufficient for optimality. From this condition, we

can immediately deduce that optimal ujt does not depend on firm identity so that we can remove
the superscript j.
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By defining δt ≡ δ(ut), (A.4) becomes

vt(ε
j
t)K

j
t + bt,τ (ε

j
t )− vLt(ε

j
t)L

j
t

= utRtK
j
t +Qt(1− δt)K

j
t +Bt,τ − Ljt

+max{Qtε
j
t/Pt − 1, 0} ×

(

utRtK
j
t + ηtK

j
t − Ljt +

Ljt+1

Rft

)

,

where Ljt+1/Rft is given by (A.3). Matching coefficients yields:

vt(ε
j
t ) =

{

utRt +Qt(1− δt) + (Qtε
j
t/Pt − 1)(utRt + ηt + ξtQt) if εjt ≥

Pt

Qt

utRt +Qt(1− δt) otherwise
, (A.7)

bt,τ (ε
j
t ) =

{ (

Qtε
j
t/Pt − 1

)

Bt,τ if εjt ≥
Pt

Qt

Bt,τ otherwise
, (A.8)

and

vLt(ε
j
t) =

{

Qtε
j
t/Pt − 1 if εjt ≥

Pt

Qt

1 otherwise
.

Using equation (16), we then obtain (21) and (22) and (23). Q.E.D.

B Stationary Equilibrium

We define the following transformed variables:

C̃t ≡
Ct
Γt
, Ĩt ≡

It
ZtΓt

, Ỹt ≡
Yt
Γt
, K̃t ≡

Kt

Γt−1Zt−1
,

P̃ st ≡
P st
Γt
, B̃a

t ≡
Ba
t

Γt
, X̃t ≡

Xt

ΓtZt
, W̃t ≡

Wt

Γt
,

Q̃t ≡ QtZt, P̃t = PtZt, R̃t = RtZt, Λ̃t ≡ ΛtΓt,

where Γt = Z
α

1−α

t At. The other variables are stationary and there is no need to scale them. To be
consistent with a balanced growth path, we also assume that K0t = Γt−1Zt−1K0, where K0 is a
constant.

The six shocks in the model are given by

1. The permanent TFP shock,

Apt = Apt−1λat, lnλat = (1− ρa) ln λ̄a + ρa lnλa,t−1 + εat. (B.1)

2. The transitory TFP shock,
lnAmt = ρam lnAmt−1 + εam,t. (B.2)

3. The IST shock,

Zt = Zt−1λzt, lnλzt = (1− ρz) ln λ̄z + ρz lnλz,t−1 + εzt. (B.3)
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4. The sentiment shock,
ln θt = (1− ρθ) θ̄ + ρθ ln θt−1 + εθ,t. (B.4)

5. The labor shock,
lnψt =

(
1− ρψ

)
ln ψ̄ + ρψ lnψt−1 + εψt. (B.5)

6. The financial shock,
ln ζt =

(
1− ρζ

)
ln ζ̄ + ρζ ln ζt−1 + εζt.

Here, all innovations are mutually independent and are independently and identically dis-
tributed normal random variables.

Denote by gγt ≡ Γt/Γt−1 the growth rate of Γt. Denote by gγ the nonstochastic steady-state of
gγt, satisfying

ln gγ ≡
α

1− α
ln λ̄z + ln λ̄a. (B.6)

On the nonstochastic balanced growth path, investment and capital grow at the rate of λ̄I ≡ gγ λ̄z;
consumption, output, wages, and bubbles grow at the rate of gγ ; and the rental rate of capital,
Tobin’s marginal Q, and the relative price of investment goods decrease at the rate λ̄z.

After the transformation described in Section 3, we can derive a system of 15 equations for 15
transformed variables: {C̃t, Ĩt, Ỹt, Nt, K̃t, ut, Q̃t, X̃t, P̃t, W̃t, R̃t, mt, B̃

a
t , Rft, Λ̃t}.

1. Resource constraint:

C̃t +



1 +
Ω

2

(

Ĩt

Ĩt−1

gztgγt − λ̄I

)2


 Ĩt = Ỹt, (B.7)

where gzt = Zt/Zt−1.

2. Aggregate Investment:

Ĩt =
(

αỸt + ζtQ̃tX̃t + B̃a
t

) 1− Φ (ε∗t )

P̃t
, (B.8)

where ε∗t = P̃t/Q̃t.

3. Aggregate output:

Ỹt =
(

utX̃t

)α
N1−α
t . (B.9)

4. Labor supply:

(1− α)
Ỹt
Nt

Λ̃t = ψt. (B.10)

5. The law of motion for capital:

K̃t+1 = (1− δt)X̃t + Ĩt
Σ (ε∗t )

1− Φ (ε∗t )
, (B.11)

where

Σ (ε∗t ) ≡

∫

ε>ε∗t

εdΦ (ε) .

6. Capacity utilization:

α
Ỹt

utX̃t

(1 +Gt) = Q̃tδ
′(ut), (B.12)
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where

Gt =

∫

ε>ε∗t

(ε/ε∗t − 1) dΦ (ε) =
Σ (ε∗t )

ε∗t
+Φ(ε∗t )− 1.

7. Marginal Q:

Q̃t = β(1− δe)Et
Λ̃t+1

Λ̃t

Q̃t+1

gzt+1gγt+1

[
ut+1δ

′(ut+1) + (1− δt+1) + ζt+1Gt+1

]
. (B.13)

8. Effective capital stock used in production:

X̃t =
1− δe
gztgγt

K̃t + δeK0. (B.14)

9. Euler equation for investment goods producers:

P̃t = 1 +
Ω

2

(

Ĩt

Ĩt−1

gztgγt − λ̄I

)2

+Ω

(

Ĩt

Ĩt−1

gztgγt − λ̄I

)

Ĩt

Ĩt−1

gztgγt

−βEt
Λ̃t+1

Λ̃t
Ω

(

Ĩt+1

Ĩt
gzt+1gγt+1 − λ̄I

)(

Ĩt+1

Ĩt

)2

gzt+1gγt+1. (B.15)

10. The wage rate:

W̃t = (1− α)
Ỹt
Nt
. (B.16)

11. The rental rate of capital:

R̃t =
αỸt

utX̃t

. (B.17)

12. Evolution of the number of bubbly firms:

mt = mt−1(1− δe)θt−1 + δeω. (B.18)

13. Evolution of the total value of the bubble:

B̃a
t = βEt

Λ̃t+1

Λ̃t
B̃a
t+1 (1 +Gt+1) (1− δe)θt

mt

mt+1
. (B.19)

14. The risk-free rate:
1

Rft
= βEt

Λ̃t+1

Λ̃t

1

gγt+1
(1 +Gt+1) (1− δe). (B.20)

15. Marginal utility for consumption:

Λ̃t =
1

C̃t − hC̃t−1/gγt
− βEt

h

C̃t+1gγt+1 − hC̃t
. (B.21)

43



C Steady State

The transformed system presented in Appendix B has a nonstochastic steady state. We eliminate
W̃t and R̃t and then obtain a system of 15 equations for 15 steady-state values: {C̃, Ĩ, Ỹ, N, K̃,

u, Q̃, X̃, P̃, W̃, R̃, m, B̃a, Rf , Λ̃}, where we have removed time subscripts. We assume that the
function δ (·) is such that the steady-state capacity utilization rate is equal to 1. In addition, we

set Q̃ = 1 which pins down G.

1. Resource constraint:
C̃ + Ĩ = Ỹ, (C.1)

where we have used the fact that λ̄I = λ̄zgγ .

2. Aggregate investment:

Ĩ =
(

αỸ + ζ̄Q̃X̃ + B̃a
) 1−Φ (ε∗)

P̃
, (C.2)

where 1− Φ (ε∗) =
∫

ε>ε∗ dΦ (ε) , and ε∗ = P̃/Q̃.

3. Aggregate output:
Ỹ = X̃αN1−α. (C.3)

4. Labor supply:

(1− α)
Ỹ

N
Λ̃ = ψ̄. (C.4)

5. End-of-period capital stock:

K̃ = (1− δ (1))X̃ + Ĩ
Σ (ε∗)

1− Φ (ε∗)
, (C.5)

where

Σ (ε∗) ≡

∫

ε>ε∗
εdΦ (ε) .

6. Capacity utilization:

α
Ỹ

X̃
(1 +G) = Q̃δ′(1), (C.6)

where

G =

∫

ε>ε∗
(ε/ε∗ − 1) dΦ (ε) =

Σ (ε∗)

ε∗
+Φ(ε∗)− 1.

7. Marginal Q:

1 = β(1− δe)
1

λ̄zgγ

[
δ′(1) + 1− δ (1) + ζ̄G

]
. (C.7)

8. Effective capital stock used in production:

X̃ =
1− δe
λ̄zgγ

K̃ + δeK0. (C.8)
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9. Euler equation for investment goods producers:

P̃ = 1. (C.9)

10. The wage rate:

W̃ = (1− α)
Ỹ

N
. (C.10)

11. The rental rate of capital:

R̃ =
αỸ

X̃
. (C.11)

12. Evolution of the number of bubbly firms:

m = m(1− δe)θ̄ + δeω. (C.12)

13. Evolution of the total value of the bubble:

B̃a = βB̃a (1 +G) (1− δe)θ̄. (C.13)

14. The risk-free rate:
1

Rf
= β

1

gγ
(1 +G) (1− δe). (C.14)

15. Marginal utility for consumption:

Λ̃ =
1

C̃ − hC̃/gγ
−

βh

C̃gγ − hC̃
. (C.15)

For convenience, define ε∗t = Pt/Qt = P̃t/Q̃t as the investment threshold. We use a variable
without the time subscript to denote its steady-state value in the transformed stationary system.
The following proposition characterizes the bubbly steady state.22

Proposition 2 Suppose that ω > 0 and 0 < εmin < β(1 − δe)θ̄ < β. Then there exists a unique
steady-state threshold ε∗ ∈ (εmin, εmax) satisfying

∫

ε>ε∗
(ε/ε∗ − 1) dΦ (ε) =

1

β(1− δe)θ̄
− 1. (C.16)

If the parameter values are such that

B̃a

Ỹ
=

[ϕk − (1− δ(1))]ϕx
1/
[
β(1− δe)θ̄

]
−Φ (ε∗)

− α− ζ̄ϕx > 0, (C.17)

where we define

ϕk ≡

(
1− δe
λ̄zgγ

+ δe
K0

K̃

)−1

, (C.18)

22The bubbleless steady state can be obtained by setting B̃a = 0 and m = ω = 0. Thus, we can remove equations
(C.13) and (C.12).
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ϕx ≡
α

λ̄zgγ θ̄ − (1− δ (1)) β(1− δe)θ̄ − ζ̄
[
1− β(1− δe)θ̄

] , (C.19)

then there exists a unique bubbly steady-state equilibrium with the bubble-output ratio given in
(C.17). The steady-state growth rate of the bubble is given by θ̄ = Rf/gγ , where Rf is the steady-
state interest rate. In addition, if

δ′(1) =
α

β(1 − δe)θ̄

1

ϕx
, (C.20)

then the capacity utilization rate in this steady state is equal to 1.

Proof: In the steady state, equation (B.15) implies that P̃ = 1. Hence by definition we have

ε∗ = 1/Q̃. Then by the evolution equation (B.19) of the total bubble, we obtain the steady-state
relation:

1

β(1− δe)θ̄
− 1 = G =

∫

ε>ε∗
(ε/ε∗ − 1) dΦ (ε) . (C.21)

Define the expression on the right-hand side of the last equality as a function of ε∗, G (ε∗) . Then
we have G(εmin) =

1
εmin

− 1 and G(εmax) = 0. Given the assumption that εmin < β(1 − δe)θ̄, there

is a unique solution ε∗ to equation (C.21) by the intermediate value theorem. In addition, by the
definition of G, we have

G =
Σ(ε∗)

ε∗
− [1− Φ (ε∗)] ,

where Σ (ε∗) =
∫

ε>ε∗ εdΦ (ε) . Thus Σ (ε∗) can be expressed as

Σ (ε∗) = [G+ 1− Φ (ε∗)] ε∗. (C.22)

Suppose that the steady-state capacity utilization rate is equal to 1. The steady-state version
of (B.13) gives (C.7) and the steady-state version of (B.12) gives (C.6). Using these two equations,
we can derive

α
Ỹ

X̃
=

Q̃

1 +G

[
gzgγ

β(1− δe)
− (1− δ(1))− ζ̄G

]

. (C.23)

Substituting equation (C.21) into the above equation yields:

Q̃X̃

Ỹ
= ϕx, (C.24)

where ϕx is given by (C.19). In order to support the steady-state u = 1, we use equation (B.12)
and (C.24) to show that condition (C.20) must be satisfied.

From (B.14), the end-of-period capital stock to the output ratio in the steady state satisfies

K̃

Ỹ
= ϕk

X̃

Ỹ
, (C.25)
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where ϕk is given by (C.18). Then from equation (B.11), we can derive the steady-state relation:

Ĩ

Ỹ
=

1− Φ (ε∗)

Σ (ε∗)
[ϕk − (1− δ (1))]

X̃

Ỹ

=
1− Φ (ε∗)

[G+ 1− Φ (ε∗)]
[ϕk − (1− δ (1))]

Q̃X̃

Ỹ

=
[1− Φ (ε∗)] [ϕk − (1− δ (1))]ϕx

G+ 1− Φ (ε∗)
, (C.26)

where the second line follows from (C.22) and ε∗ = 1/Q̃ and the last line follows from (C.24). After
substituting (C.21) into the above equation, we solve for 1− Φ (ε∗) :

1− Φ (ε∗) =
1/
[
β(1− δe)θ̄

]
− 1

(

Ĩ/Ỹ
)−1

[ϕk − (1− δ (1))]ϕx − 1
, (C.27)

From (B.8), the steady-state total value of bubble to GDP ratio is given by

B̃a

Ỹ
=

Ĩ

Ỹ

1

1− Φ (ε∗)
− α− ζ̄

Q̃X̃

Ỹ
.

Substituting (C.21), (C.26) and (C.24) into the above equation yields (C.17). We require B̃a/Ỹ > 0.
By (23) and (34), the growth rate of bubbles of the surviving firms in the steady state is given by
θ̄ = Rf/gγ . Q.E.D.

D Log-linearized System

We eliminate equations for W̃t and R̃t. The log-linearized system for 13 variables {C̃t, Ĩt, Ỹt, Nt,

K̃t, ut, Q̃t, X̃t, P̃t, mt, B̃
a
t , Rft, Λ̃t} including two growth rates are summarized as follows:

1. Resource constraint:

Ŷt =
C̃

Ỹ
Ĉt +

Ĩ

Ỹ
Ît. (D.1)

2. Aggregate investment:

Ît =
α

α+ ζ̄ϕx + B̃a/Ỹ
Ŷt +

ζ̄ϕx
α+ ζ̄ϕx + B̃a/Y

(

ζ̂t + Q̂t + X̂t

)

(D.2)

+
B̃a/Ỹ

α+ ζ̄ϕx + B̃a/Ỹ
B̂a
t − µε̂∗t − P̂t,

where

µ =
φ (ε∗) ε∗

1− Φ (ε∗)
, ε̂∗t = P̂t − Q̂t. (D.3)

3. Aggregate output:

Ỹt = α
(

ût + X̂t

)

+ (1− α) N̂t. (D.4)
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4. Labor supply:
Λ̂t + Ŷt − N̂t = ψ̂t. (D.5)

5. End of period the capital stock:

K̂t+1 = −
δ′ (1)

ϕk
ût +

1− δ (1)

ϕk
X̂t +

(

1−
1− δ (1)

ϕk

)(

Ît −
µ

ϕG
ε̂∗t

)

, (D.6)

where

ϕG ≡ −
1− Φ (ε∗)

G
− 1. (D.7)

6. Capacity utilization:

Ŷt − X̂t +
[
1− β(1− δe)θ̄

]
ϕGε̂

∗
t = Q̂t +

(

1 +
δ′′ (1)

δ′ (1)

)

ût. (D.8)

7. Marginal Q:

Q̂t = Et

(

Λ̂t+1 − Λ̂t

)

+ Et

(

Q̂t+1 − ĝzt+1 − ĝγt+1

)

+
β(1− δe)δ

′ (1)

λ̄zgγ

δ′′ (1)

δ′ (1)
Etût+1

+
ζ̄β(1− δe)G

λ̄zgγ
Et

(

ζ̂t+1 + ϕGε̂
∗
t+1

)

. (D.9)

8. Effective capital stock

X̂t =
1− δe
λ̄zgγ

ϕk

(

K̂t − ĝzt − ĝγt

)

. (D.10)

9. Euler equation for investment goods producers:

P̂t = Et[(1 + β) Ωg2γλ̄
2
z Ît +Ωλ̄2zg

2
γ (ĝγt + ĝzt)− Ωλ̄2zg

2
γ Ît−1 (D.11)

−βΩλ̄2zg
2
γ

(

Ît+1 + ĝzt+1 + ĝγt+1

)

].

10. Evolution of the number of bubbly firms:

m̂t = (1− δe) θ̄m̂t−1 + (1− δe) θ̄θ̂t−1. (D.12)

11. Evolution of the total value of the bubble:

B̂a
t = Et

(

Λ̂t+1 − Λ̂t + B̂a
t+1

)

+
[
1− β(1− δe)θ̄

]
ϕGEtε̂

∗
t+1 (D.13)

+
1− (1− δe)θ̄

(1− δe)θ̄
Etm̂t+1.
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12. The risk-free rate

−R̂ft = Et

(

Λ̂t+1 − Λ̂t − ĝγt+1

)

+ [1− β(1− δe)Rf/gγ ]ϕGEtε̂
∗
t+1. (D.14)

13. Marginal utility for consumption:

Λ̂t =
gγ

gγ − βh

[

−
gγ

gγ − h
Ĉt +

h

gγ − h

(

Ĉt−1 − ĝγt

)]

−
βh

gγ − βh
Et

[

−
gγ

gγ − h

(

Ĉt+1 + ĝγt+1

)

+
h

gγ − h
Ĉt

]

. (D.15)

14. The growth rate of consumption goods

ĝγt =
α

1− α
λ̂zt +

(

λ̂at + Âmt − Âmt−1

)

. (D.16)

15. The growth rate of the investment goods price:

ĝzt = λ̂zt. (D.17)

In the above system G is determined by (C.13),

G =
1

β (1− δe) θ̄
− 1, (D.18)

(1− Φ (ε∗)) is given by (C.27), and δ′ (1) satisfies (C.20). The log-linearized shock processes are
listed below.

1. The permanent technology shock:

λ̂at = ρaλ̂at−1 + εat. (D.19)

2. The transitory technology shock:

Âmt = ρamÂ
m
t−1 + εam,t. (D.20)

3. The permanent investment-specific technology shock:

λ̂zt = ρzλ̂zt−1 + εzt. (D.21)

4. The labor supply shock:
ψ̂t = ρψψ̂t−1 + εψt. (D.22)

5. The financial shock:
ζ̂t = ρζ ζ̂t−1 + εζt. (D.23)

6. The sentiment shock:
θ̂t = ρθθ̂t−1 + εθt. (D.24)
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Table E.1 Prior and posterior distributions of shock parameters

Prior Distribution Posterior Distribution
Parameter Distr. Mean St.Dev. Mode Mean 5% 95%

h Beta 0.333 0.235 0.5438 0.5434 0.4871 0.6052
Ω Gamma 2 2 0.0290 0.0344 0.0112 0.0573
δ′′/δ′ Gamma 1 1 11.4409 11.9169 8.3284 15.4937
ζ̄ Beta 0.3 0.1 0.2918 0.2969 0.2246 0.3595
µ Gamma 2 2 2.5714 2.6029 2.1241 3.1928

f1 Gamma 1 1 0.0535 0.0440 0.0132 0.0718
f2 Gamma 1 1 4.7268 4.8177 2.5445 7.0784
f3 Gamma 1 1 0.4164 0.3232 0.0047 0.5628

ρa Beta 0.5 0.2 0.9615 0.9650 0.9432 0.9866
ρam Beta 0.5 0.2 0.9672 0.9636 0.9456 0.9806
ρz Beta 0.5 0.2 0.3592 0.3411 0.2229 0.4568
ρθ Beta 0.5 0.2 0.9304 0.9238 0.8970 0.9521
ρψ Beta 0.5 0.2 0.9874 0.9799 0.9638 0.9965

ρζ Beta 0.5 0.2 0.8777 0.8735 0.8089 0.9411

σa Inv-Gamma 0.01 Inf 0.0023 0.0023 0.0018 0.0029
σam Inv-Gamma 0.01 Inf 0.0103 0.0104 0.0093 0.0116
σz Inv-Gamma 0.01 Inf 0.0059 0.0060 0.0054 0.0067
σθ Inv-Gamma 0.01 Inf 0.1785 0.1946 0.1165 0.2638
σψ Inv-Gamma 0.01 Inf 0.0081 0.0082 0.0072 0.0093
σζ Inv-Gamma 0.01 Inf 0.0077 0.0084 0.0042 0.0121

E Robustness

To see if our result is robust for a smaller prior mean of σθ, we set the prior as Inv-Gamma with
mean 0.01 and standard deviation infinite. We re-do Bayesian estimation and report estimation
results in Table E.1. We find that these results are very similar to those in the baseline estimation.
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