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Abstract

Uncertainty associated with the monetary policy transmission mechanism is a key

driving force of business cycles. To investigate this link, we propose a new term struc-

ture model that allows the volatility of the yield curve to interact with macroeconomic

indicators. The data favors a model with two volatility factors that capture short-

term and long-term interest rate uncertainty. Increases in either of them lead higher

unemployment rates, but they interact with inflation in opposite directions.
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1 Introduction

Does interest rate uncertainty contribute to economic fluctuations and business cycles? If so,

by how much? While numerous studies have focused on monetary policy and its transmission

mechanism, less attention has been placed on understanding how uncertainty surrounding the

monetary policy transmission may impact the economy. We investigate this relationship by

introducing a new term structure model: uncertainty is extracted from the volatility (second

moments) of yields yet it also impacts the first moments of macroeconomic variables in a

vector autoregression (VAR). Combining these two features constitutes the first contribution

of our paper, and sets our paper apart from the rest of the literature studying uncertainty

in a VAR.

Second, we also contribute to the term structure literature by devising a no-arbitrage

model with multiple stochastic volatility factors. The factors driving volatility are distinct

from the factors driving yields, which is necessary for capturing both characteristics of the

data. The data suggests that two factors are needed to capture the term structure of interest

rate volatility. We show that these two dimensions, short-term and long-term interest rate

uncertainty, have distinct economic implications too.

Figure 1 plots the short-term (left) and long-term (right) uncertainties in green, and how

they relate to the fluctuations of the unemployment rate (top) and inflation rate (bottom) in

blue. The top panels illustrate the common business cycle feature of the two uncertainties.

Increases in interest rate uncertainty precede economic downturns. Peaks of uncertainty typ-

ically lead postwar recessions and lead up-turns in unemployment rates by several months.

Despite the common movements across business cycles, these two uncertainties have a dis-

tinct dynamic relationship with inflation as seen in the bottom panels of Figure 1. Short-term

uncertainty resembles the dynamics of inflation, especially during the high inflation era of

the 1970s and early 1980s. This is consistent with the view that monetary policy responds

aggressively to battle inflation, for example, Taylor (1993). Greater movements in short-term

interest rates that are a response to higher inflation imply higher short-term volatility. The
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Figure 1: Uncertainty and macroeconomic variables

Blue: unemployment in the top panels, inflation in the bottom, with the scales on the y-axis. Green: short-

term uncertainty in the left panels and long-term uncertainty in the right panels. Estimated uncertainties

are scaled to fit the graph. Shaded area: NBER recessions.

relationship between long-term uncertainty and inflation is not uniform. For the first half of

the sample, they co-move. In the second half, they move in opposite directions.

To formally capture the dynamic correlations in Figure 1, we document the impulse

responses of macroeconomic variables to uncertainty shocks surrounding the yield curve.

Consistent with the lead-lag relationship in the top row of Figure 1, the unemployment rate

increases in response to a positive shock to either short-term or long-term uncertainty. In

contrast, shocks to these uncertainties impact inflation in the opposite directions: inflation

decreases in response to a shock to short-term uncertainty and it increases after a positive

shock to long-term uncertainty. This is because inflation is neither pro-cyclical nor counter-
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cyclical: some recessions are associated with high inflation, e.g. the recessions of the 1970’s

and early 1980’s; others are associated with concerns over deflation, e.g. the Great Recession.

Our two measures of uncertainty have competing effects on inflation. It is not a priori

clear about the overall effect. Moreover, although there is no ambiguity about the direc-

tion, the magnitude of the effect uncertainty has on unemployment might also differ from

a recession to an expansion. Time-varying impulse response functions provide a more com-

prehensive analysis for both. Different from VARs with homoskedastic or heteroskedastic

shocks, impulse responses from our model vary through time in both scale and shape. This

is a unique feature of our model due to the fact that both the first and second moments are

functions of uncertainty. It allows us to study the nature of uncertainty at different episodes

in depth. For example, the Great Recession is associated with downward pressure on in-

flation and a larger than normal increase in the unemployment rate. This reflects concerns

over deflation and a jobless recovery. A similar experience happens during Volcker’s tenure,

indicating his position as an inflation hawk. In contrast, the Great Inflation is associated

with upward pressure on inflation. Movements in the impulse responses for the Great Mod-

eration are less extreme than other time periods and lie in-between the impulse responses

from other episodes.

As our model is a non-linear, non-Gaussian state space model whose likelihood is not

known in closed-form, we use Bayesian methods to efficiently estimate the parameters and

state variables of the model. We develop a Markov chain Monte Carlo (MCMC) algorithm

to estimate the parameters and a particle filter for calculating the likelihood and filtered es-

timates of the state variables. Our MCMC and particle filtering algorithms leverage the fact

that the model can be written as a conditionally, linear Gaussian state space model. Con-

sequently, we can use the Kalman filter to draw many of the state variables and parameters

efficiently.

The remainder of the paper is organized as follows. We describe our relationship to the

relevant literatures in Subsection 1.1. Section 2 presents the new term structure model.
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Section 3 describes the MCMC and particle filtering algorithms used for estimation. In

Section 4, we study the economic implications of interest rate uncertainty. Section 5 demon-

strates how a collection of models with different specifications fit the yield curve. Section 6

concludes.

1.1 Related Literature

Our paper is closely related to recent advances in the literatures on uncertainty and the

term structure of interest rates. First, our paper contributes to the fast growing literature

on the role that uncertainty shocks play in macroeconomic fluctuations, asset prices and

monetary policy; see, e.g. Bloom(2013) for a survey; Baker, Bloom, and Davis(2013), Jurado,

Ludvigson, and Ng(2013), Bekaert, Hoerova, and Lo Duca(2013), and Aastveit, Natvik, and

Sola(2013) for empirical evidence; and Ulrich(2012), Pastor and Veronesi(2012) and Pastor

and Veronesi(2013) for theoretical models.

We differ from the empirical papers in the uncertainty literature in the following ways: (i)

We internalize the uncertainty: in our model, uncertainty serves both as the second moment

of yields (the factor driving the volatility of interest rates) and it directly impacts the first

moment of macroeconomic variables. In contrast, the uncertainty literature usually extracts

an estimate of uncertainty in a data pre-processing step, and then uses this estimate in a

second step as an observable variable in a homoskedastic vector autoregression. (ii) To our

knowledge, we are the first to advocate the two dimensions of uncertainty, and our analysis

shows that they impact inflation in opposite directions. (iii) Different from the rest of the

literature, we focus on interest rate uncertainty.

Our paper is also related to the VAR literature with stochastic volatility; see Cogley and

Sargent(2001), Cogley and Sargent(2005), and Primiceri(2005) for examples. We adopt a

similar approach to modeling the time-varying covariance matrix as Primiceri(2005). We

differ from this literature in that the volatility factors not only determine the size of the

shocks, but they also enter the conditional mean and have a first order impact. The latter is
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absent from existing models in this literature, and we show its importance through impulse

responses. Another difference between our model and those in the VAR literature is that

shocks to volatility are correlated with shocks to macroeconomic variables and the yield

factors. For example, shocks to macroeconomic variables can increase volatility.

Finally, we contribute to the term structure literature by introducing a flexible way to

simultaneously fit yields and their volatilities at different maturities. Much emphasis of the

earlier literature – e.g. Dai and Singleton(2000) and Duffee(2002) – has been placed on fitting

the cross section of yields at the expense of fitting the volatilities poorly. To address this

limitation, Collin-Dufresne and Goldstein(2002) proposed the class of unspanned stochastic

volatility (USV) models which separate the dynamics of volatility from yield factors.1 Creal

and Wu(2014) showed that USV models do improve the fit of volatility, but restrict the

cross-sectional fit of yields at the same time. More importantly, the existing literature on

USV models typically stops at one volatility factor. In contrast, we show that the data

suggests multiple factors.

2 Models

This section proposes a new macro finance term structure model to capture the dynamic

relationship between interest rate uncertainty and the macroeconomy. Our model has the

following unique features. First, uncertainty – originated from the volatility of the yield

curve – has a first order impact on the macroeconomy. Second, our model captures multiple

dimensions of yield volatility in a novel way. In our setting, fitting the yield volatility does

not constrain bond prices. Besides the flexibility of fitting the volatility, our pricing formula

remains simple and straightforward.

1There is some prior empirical work that studies whether volatility is priced using interest rate deriva-
tives or high frequency data. Examples include Bikbov and Chernov(2009), Andersen and Benzoni(2010),
Joslin(2010), Mueller, Vedolin, and Yen(2011), Cieslak and Povala(2013), and Christensen, Lopez, and Rude-
busch(2014).
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2.1 Dynamics

The model has an M × 1 vector of macroeconomic variables mt, and a G × 1 vector of

Gaussian yield factors gt that drive bond prices. The H × 1 vector of factors ht determine

the volatility of yields, and provide us measures of interest rate uncertainty.

The factors jointly follow a vector autoregression with stochastic volatility. Specifically,

the macro factors follow

mt+1 = µm + Φmmt + Φmggt + Φmhht + Σmεm,t+1. (1)

The dynamics for the yield factors are

gt+1 = µg + Φgmmt + Φggt + Φghht + Σgmεm,t+1 + ΣgDtεg,t+1, (2)

where the diagonal time-varying volatility is a function of ht

Dt = diag

(
exp

(
Γ0 + Γ1ht

2

))
. (3)

The volatility factors ht have dynamics

ht+1 = µh + Φhht + Σhmεm,t+1 + ΣhgDtεg,t+1 + Σhεh,t+1. (4)

To ensure stability of the system, the conditional mean of ht+1 does not depend on gt

and mt. The shocks are jointly i.i.d. normal (ε′m,t+1, ε
′
g,t+1, ε

′
h,t+1)′ ∼ N(0, I), with the

contemporaneous correlations captured through the matrices Σgm,Σhm and Σhg.

The identifying assumptions between the macro and yield factors are similar to standard

assumptions made in the VAR literature; i.e. macro variables are slow moving and do not

react to contemporaneous monetary policy shocks; but monetary policy does respond to con-

temporaneous macroeconomic shocks; see, e.g. Christiano, Eichenbaum, and Evans(1999),
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Stock and Watson(2001), Bernanke, Boivin, and Eliasz(2005), and Wu and Xia(2014). We

make an additional assumption about the volatility factors: only the lagged volatility fac-

tors affect the macro variables and yield curve; on the other hand, volatility does react to

monetary policy and macroeconomic shocks contemporaneously. Note that our results are

robust to reordering of the variables.

Of critical importance for our analysis, interest rate uncertainty ht impacts the macroe-

conomy through the conditional mean term Φmhht in (1), which is identified from the con-

ditional variance of the yield curve through Dt. This unique combination unifies two lit-

eratures; the literature on vector autoregressions with stochastic volatility (e.g. Cogley

and Sargent(2001), Cogley and Sargent(2005), and Primiceri(2005)) and the more recent

uncertainty literature that uses VARs to study uncertainty shocks and fluctuations in the

macroeconomy and/or asset-prices (e.g. Baker, Bloom, and Davis(2013), Jurado, Ludvigson,

and Ng(2013), Bekaert, Hoerova, and Lo Duca(2013), and Aastveit, Natvik, and Sola(2013)).

By choosing a log-normal process for the volatility in (3), we can utilize popular algo-

rithms for Bayesian estimation of stochastic volatility models; see, e.g. Kim, Shephard, and

Chib(1998). The matrices Γ0 and Γ1 permit a factor structure within the covariance matrix

and allow us to estimate models where the number of volatility factors and yield factors may

differ with G 6= H.

Our dynamic setup is related to the GARCH-M (GARCH-in-mean) literature within a

VAR; see, e.g. Engle, Lilien, and Robins(1987) and Elder(2004). The difference is that we

use stochastic volatility instead of GARCH to model time-varying variances, meaning that

volatility is not a deterministic function of past levels, but has its own innovations. This is

important because with our framework, we can use tools from the VAR literature such as

impulse responses, which are not as easily defined in GARCH-M type models because there

is no separate shock to volatility. Jo(2013) is similar to our paper in this spirit: while her

focus is oil price shocks, we focus on uncertainty shocks from the term structure of interest

rates.
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2.2 Bond prices

Zero coupon bonds are priced to permit no arbitrage opportunities. The literature on affine

term structure models demonstrates that to have ht realistically capture yield volatility, it

cannot price bonds; see, e.g. Creal and Wu(2014). In our model, this means that the yield

factors gt summarize all the information for the cross section of the yield curve.

The short rate is an affine function of gt:

rt = δ0 + δ′1gt. (5)

The risk neutral Q measure adjusts the probability distribution in (2) to incorporate in-

vestors’ risk premium, and is defined such that the price of an asset is equal to the present

value of its expected payoff. For an n-period zero coupon bond,

P n
t = E

Q
t

[
exp (−rt)P n−1

t+1

]
, (6)

where the risk-neutral expectation is taken under the autonomous VAR(1) process for gt:

gt+1 = µQg + ΦQg gt + ΣQg ε
Q
g,t+1, εQg,t+1 ∼ N (0, I) . (7)

As a result, zero-coupon bonds are an exponential affine function of the Gaussian state

variables

P n
t = exp

(
ān + b̄′ngt

)
. (8)

The bond loadings ān and b̄n can be expressed recursively as

ān = −δ0 + ān−1 + µQ′g b̄n−1 +
1

2
b̄′n−1ΣQg ΣQ′g b̄n−1,

b̄n = −δ1 + ΦQ′g b̄n−1,
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with initial conditions ā1 = −δ0 and b̄1 = −δ1. Bond yields ynt ≡ − 1
n

log (P n
t ) are linear in

the factors

ynt = an + b′ngt (9)

with an = − 1
n
ān and bn = − 1

n
b̄n.

Our model introduces a novel approach to incorporating volatility factors in no-arbitrage

term structure models while keeping bond prices simple through the assumptions (5) and (7).

Most term structure models impose the covariance matrices under the P and Q measures to

be the same in order to guarantee no-arbitrage in continuous time. Consequently, volatility

factors enter the variance of gt under Q and hence bond prices in general. To cancel the

volatility factors out of the pricing equation, unspanned stochastic volatility (USV) models

impose restrictions on the Q parameters that subsequently constrain the cross-sectional fit

of the model. In our model, ht does not enter the Q dynamics and it is not priced by

construction. Consequently, our model does not impose any restrictions on the cross section

of the yield curve. An advantage of working with discrete time models is that it allows

different variance-covariance matrices under P and Q, while still preserving no arbitrage.2

We will show the no arbitrage condition – the equivalence of the two probability measures –

by deriving the Radon-Nikodym derivative in Subsection 2.3. Because only gt is priced, we

do not need to specify the dynamics of mt and ht under Q. Nor are they identified using

bond prices alone even if we do.

The benefits of our specification are twofold. First, our dynamics for gt under Q and hence

the bond pricing formula are the same as in a Gaussian ATSM. Second, the separation of

the covariance matrices under the two measures allows a more flexible P dynamics, since we

are not limited to the functional forms that achieve analytical bond prices.

2 In concurrent and independent work, Ghysels, Le, Park, and Zhu(2014) propose a term structure model
where the pricing factors gt have Gaussian VAR dynamics and whose covariance matrices under the P and
Q measures are different. Their covariance matrix under P uses GARCH instead of stochastic volatility.
Stochastic volatility allows us to study the impact of uncertainty shocks, which is the focus of this paper.
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2.3 Stochastic discount factor

The pricing equation in (6) can be equivalently written as

P n
t = Et

[
Mt+1P

n−1
t+1

]
. (10)

Instead of incorporating the risk premium in the probability distribution through a change

of measure, we capture it by the stochastic discount factor (SDF) Mt+1 defined as

Mt+1 =
exp (−rt) pQ (gt+1|It; θ)

p (gt+1|It; θ)

where It contains all the information up to and including t, and θ summarizes all the pa-

rameters in the model.

3 Bayesian estimation

The ATSM with stochastic volatility is a non-linear, non-Gaussian state space model whose

log-likelihood is not known in closed-form. We estimate the model by Bayesian methods using

Markov chain Monte Carlo (MCMC) for the parameters and a particle filter to calculate the

log-likelihood and filtered estimates of the state variables.3 Our estimation method is highly

tractable because we formulate the model as a conditionally, linear Gaussian state space

model, which allows us to use the Kalman filter for most of our Gibbs sampler. We outline

the basic ideas of the MCMC algorithm in this section and provide full details in Appendix B.

Our paper contributes to the literature on Bayesian estimation of term structure models; see,

e.g. Chib and Ergashev(2009) and Bauer(2014) for Gaussian affine term structure models.

The MCMC algorithms developed in this paper are efficient and can handle a wide range of

models.

3Particle filters are simulation based algorithms for handling non-linear, non-Gaussian state space models;
see Creal(2012) for a survey.
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3.1 State space forms

Stack the yields ynt from (9) in order of increasing maturity for n = n1, n2, ..., nN , and assume

that all yields are observed with Gaussian measurement errors:

yt = A+Bgt + ηt, ηt ∼ N (0,Ω) , (11)

where A = (an1 , . . . , anN
)′, B = (b′n1

, ..., b′nN
)′. Under the assumption that all yields are mea-

sured with error, both the yield factors g1:T = (g1, . . . , gT ) and the volatility factors h0:T =

(h0, . . . , hT ) are latent state variables. Let y1:T = (y1, . . . , yT ) and m1:T = (m1, . . . ,mT ).

Using data augmentation and the Gibbs sampler, we draw from the joint posterior distri-

bution p (g1:T , h0:T , θ|y1:T ,m1:T ). The Gibbs sampler iterates between drawing from the full

conditional distributions of the yield factors p (g1:T |y1:T ,m1:T , h0:T , θ), the volatility factors

p (h0:T |y1:T ,m1:T , g1:T , θ), and the parameters θ. At each step of the algorithm, we formulate

a linear, Gaussian state space model that conditions on the most recent draw of the yield

factors g1:T or the volatility factors h0:T . Next, we outline the two linear Gaussian state

space forms used in our algorithm.

State space form I conditional on h0:T Conditional on the most recent draw of h0:T ,

the model has a linear Gaussian state space form: the state variable gt has a transition

equation in (2), and the observation equations for this state space model combine yields yt

in (11), the macroeconomic variables mt in (1), and the volatility factors ht in (4). Using

this representation, we draw the latent yield factors g1:T and many of the parameters that

enter the dynamics of gt.

State space form II conditional on g1:T Conditional on the most recent draw of g1:T , we

have a state space model with observation equations for the macro variables and yields in (1)

and (2) and transition equation for ht in (4); the observation equation for yields makes the

system non-linear. We use the approach of Kim, Shephard, and Chib(1998) to transform the
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non-linear observation equation in (2) into an (approximate) linear, Gaussian model. They

transform the nonlinear observation equation (2) into a linear equation with non-Gaussian

shocks. The non-Gaussian shocks are then approximated by a mixture of normals, where

each component of the mixture is indexed by a latent variable sit for i = 1, . . . , G and

t = 1, . . . , T . The details of this transformation are in Appendix B.1.2.

3.2 MCMC and particle filter

Our MCMC algorithm alternates between the two state space forms. We split the parameters

into blocks θ = (θ′g, θ
′
h, θ
′
r)
′, where we draw θg from the state space model when gt is latent,

θh from the state space model when ht is latent, θr conditional on g1:T and h0:T . Here we

sketch the rough steps and leave the details to Appendix B.

1. Conditional on h0:T , use the linear Gaussian state space model I.

(a) Draw θg using the Kalman filter without conditioning on g1:T .

(b) Draw g1:T using forward filtering and backward sampling; see, e.g. de Jong and

Shephard(1995), Durbin and Koopman(2002).

2. Draw the mixture indicators sit for i = 1, . . . , G and t = 1, . . . , T as in Kim, Shephard,

and Chib(1998), see Appendix B.1.2.

3. Conditional on g1:T and s1:T , use the linear Gaussian state space model II.

(a) Draw θh using the Kalman filter without conditioning on h0:T .

(b) Draw h0:T using forward filtering and backward sampling; see, e.g. de Jong and

Shephard(1995), Durbin and Koopman(2002).

4. Draw any remaining parameters in θr conditional on both g1:T and h0:T .

Iterating on these steps produces a Markov chain whose stationary distribution is the pos-

terior distribution p (g1:T , h0:T , θ|y1:T ,m1:T ).
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The particle filter that we implement is the mixture Kalman filter (MKF); see Chen and

Liu(2000).4 Similar to our MCMC algorithm, it utilizes the conditionally linear, Gaussian

state space form for statistical efficiency. Intuitively, if the volatilities h0:T were known, then

the Kalman filter would calculate the filtered estimates of g1:T and the likelihood of the

model exactly. In practice, the value of the volatilities are not known. The MKF calculates

a weighted average of Kalman filter estimates of g1:T where each Kalman filter is run with

a different value of the volatilities. This integrates out the uncertainty associated with

the volatilities. The statistical efficiency gains come from the fact that the Kalman filter

integrates out the Gaussian state variables exactly once we condition on any one path of the

volatilities.

4 Economic implications

Does interest rate uncertainty contribute to economic fluctuations, particularly at the busi-

ness cycle frequency? If so, by how much? How does this behavior vary through time? This

section investigates these questions by exploiting the modeling and estimation tools described

in the previous sections. We focus on two aspects of interest rate uncertainty: short-term

and long-term uncertainty. We illustrate that, although they both contribute negatively to

economic activity by inducing higher unemployment, their impacts on inflation have opposite

signs. The usefulness of two factors in capturing yield volatility is documented in Section 5.

Data, model and estimates We use the Fama-Bliss zero-coupon yields available from the

Center for Research in Securities Prices (CRSP) with maturities n = (1, 3, 12, 24, 36, 48, 60)

months. We use consumer price index inflation and the unemployment rate as our macroe-

conomic variables, which were downloaded from the FRED database at the Federal Reserve

Bank of St. Louis. Inflation is measured as the annual percentage change. We scale all

4The MKF has recently been applied in economics by Creal, Koopman, and Zivot(2010), Creal(2012),
and Shephard(2013).
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Table 1: Estimates for the benchmark macro model
δ0 × 1200 Γ0 Γ1 × 1

1200

-0.135 0 1 0
(0.013) – – –

0 0 1
φQ – – –

0.996 0.949 0.717 -1.978 0.495 0.498
(0.0005) (0.003) (0.020) (0.121) (0.012) (0.012)

µ̄m × 1200 µ̄g × 1200 µ̄h × 1200
4.343 6.826 5.701 6.862 6.128 0.107 2.733

(0.542) (0.541) (0.722) (0.758) (0.759) (0.627) (0.131)
Φm Φmg Φmh Σm × 1200

0.983 -0.012 0.039 -0.067 0.036 -0.036 0.019 0.371
(0.008) (0.013) (0.048) (0.033) (0.068) (0.020) (0.013) (0.010)

0.011 0.975 0.044 0.032 -0.089 0.054 -0.010 -0.008 0.187
(0.005) (0.007) (0.028) (0.019) (0.040) (0.012) (0.011) (0.008) (0.006)

Φgm Φg Φgh Σgm × 1200 Σg × 1200
0.011 -0.010 0.706 -0.065 0.332 -0.008 0.002 0.015 -0.025 0.360

(0.006) (0.006) (0.037) (0.014) (0.043) (0.003) (0.002) (0.008) (0.009) –
0.010 -0.003 0.010 0.965 0.014 -0.009 0.002 0.022 -0.023 0.184 0.360

(0.006) (0.007) (0.041) (0.021) (0.051) (0.003) (0.002) (0.010) (0.008) (0.012) –
0.012 -0.011 -0.138 -0.026 1.144 -0.012 0.003 0.016 -0.037 0.326 0.181 0.360

(0.006) (0.006) (0.042) (0.018) (0.051) (0.004) (0.003) (0.009) (0.009) (0.009) (0.008) –
Φh Σhm × 1200 Σhg × 1200 Σh × 1200

0.958 0.011 0.072 -0.051 0.033 -0.114 0.547 0.356
(0.015) (0.010) (0.034) (0.033) (0.033) (0.068) (0.191) (0.052)

0.001 0.994 0.008 0.005 0.060 -0.033 0.098 0.140 0.230
(0.012) (0.006) (0.028) (0.028) (0.029) (0.058) (0.162) (0.050) (0.032)

Posterior mean and standard deviations for the benchmark macroeconomic plus yields model. The
parameters φQ are the eigenvalues of ΦQg while µ̄m, µ̄g, and µ̄h are the unconditional means of the factors.

the variables by 1/1200. For example, a 5% annual interest rate is 5/1200. Our sample is

monthly from June 1953 to December 2013.

Our model has G = 3 yield factors which are rotated to capture the 3 month, 5 year,

and 1 year yields excluding measurement errors.5 The H = 2 volatility factors capture the

volatility of the 3 month yield and 5 year yield, and we label them short term uncertainty and

long term uncertainty. Posterior means and standard deviations for the model’s parameters

are reported in Table 1.

4.1 Impulse responses

We focus on the dynamic response of macroeconomic variables mt to uncertainty shocks εht.

5This normalization is chosen to create economically meaningful Gaussian factors. As in a Gaussian
ATSM, rotation of the factors does not have an economic impact on the model itself.
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Constant impulse response In a VAR with homoskedastic shocks – where uncertainty

only has a first moment effect and does not enter the conditional volatility, the impulse

response to either a one standard deviation shock or a one unit shock is a constant function

through time. It does not depend on the state variables. In a VAR with heteroskedastic

shocks – where uncertainty only effects the second moment, the impulse responses to a one

unit shock are a constant function although for a one standard deviation shock the scale

varies through time because of the stochastic volatility. In either of these cases, the shape

of the impulse response remains the same. For our model, we can define a time-invariant

version of an impulse response by assuming that εg,t = 0 ∀ t; see Appendix B.3 for details.

This assumption eliminates the non-linear effect a shock to ht has on gt+1 through Dt in

(2). This constant impulse response provides a summary of the average of the time-varying

impulse responses that we will discuss below.

We plot the median constant impulse response in Figure 2, with the [10%, 90%] highest

posterior density intervals calculated from our MCMC draws in the shaded areas. A one

standard deviation shock to short-term uncertainty is about 1/15 of the change in uncertainty

immediately before the Great Recession. Short-term interest rate uncertainty dies out faster

than long-term uncertainty. Both of them have a negative impact on the real economy:

higher uncertainty is associated with higher future unemployment rates. The difference is

the impact of the short-term uncertainty shock dies out faster, peaking at 0.2% in about 2

years. Long-term uncertainty leads to higher unemployment but at a much slower pace and

the impact is not statistically significant. The major difference between the two interest rate

uncertainties with different horizons is their relationship with inflation. A one time shock to

short-term interest rate uncertainty leads to lower inflation, peaking at -0.3%. In contrast,

a shock to long-term uncertainty is associated with higher inflation at a maximum of 0.1%.

Both effects are statistically significant. These two effects compete with each other, and it

is not a priori clear about the sign of the overall effect on inflation.
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Figure 2: Constant impulse response functions

Constant impulse responses to a one standard deviation shock to interest rate uncertainty. Top: short-term

uncertainty; bottom: long-term uncertainty. Left: uncertainty; middle: inflation; right: unemployment rate.

The [10%, 90%] highest posterior density intervals are shaded. Sample: June 1953 - December 2013.

Time-varying impulse response A unique feature of our hybrid model – jointly captur-

ing the first and second moment effects of uncertainty – is the existence of a state-dependent

impulse response, with both the scale and shape varying across time. Our model can dis-

tinguish periods like the Great Recession (2007 - 2009) from the Great Moderation (1985 -

2007). It also helps us to aggregate the overall effect uncertainty has on inflation for a spe-

cific time period. Neither a standard VAR with homoskedasticity or with heteroskedasticity

has this property. This feature usually only exists in VARs with time-varying autoregressive

coefficients. Our model gets the same benefit without explicitly introducing many more state

variables as time-varying parameters.

We plot the median impulse response to a one standard deviation shock in Figure 3 for the

following economically significant time periods: the Great Recession in red from December

2007, the Great Inflation in black from 1965, Volcker’s tenure in green from August 1979, the
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Figure 3: Time-varying impulse response functions
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Great Recession
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Greenspan

Impulse responses to a one standard deviation shock to interest rate uncertainty. Top: short-term uncertainty;

bottom: long-term uncertainty. Left: uncertainty; middle: inflation; right: unemployment rate. Sample

periods: the Great Recession in red from December 2007, the Great Inflation in black from 1965, the start of

Volcker’s tenure in blue from August 1979, the Great Moderation in turquoise from 1985, and Greenspan’s

conundrum in pink from June 2004.

Great Moderation in turquoise from 1985, and Greenspan’s conundrum in blue from June

2004. See Appendix B.3 for the calculations.

The responses of uncertainty to their own shocks in the first column are relatively homo-

geneous across each of the episodes. The impulse responses for inflation and unemployment

are different. During the Great Recession, short-term interest rate uncertainty has a bigger

negative impact on the unemployment rate. This period is associated with increased uncer-

tainty over unconventional monetary policy – quantitative easing and the Fed’s exit strategy

for example. The larger response of the unemployment rate coincides with the jobless recov-

ery. At the same time, the same uncertainty leads to lower inflation with a bigger magnitude

than other periods. This reflects the publics’ concerns over deflation during this time period.

In contrast, the Great Inflation is a period associated with a positive inflation response to
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uncertainty: increased long-term uncertainty leads to increases in inflation, higher than any

other time with an increasing trend 10 years out; increased short-term uncertainty still leads

to a decrease in inflation, but with a relatively milder magnitude. The subsequent Volker

tenure contrasts with the Great Inflation in that the short-term uncertainty (uncertainty

about monetary policy) now decreases inflation with twice the magnitude. This reflects

Volcker’s reputation as an inflation hawk. At the same time, short-term uncertainty increases

unemployment more so than before. This reinforces the view that Volcker placed more weight

on inflation and tolerated more negative real activity than his predecessor.

The Great Moderation is a calm period for economic activity and the impulse responses

(turquoise lines) lie in-between the other time-periods. Inflation and unemployment do not

respond aggressively to uncertainty shocks. Greenspan’s conundrum describes the period

where the Fed is actively increasing the short-term interest rate but the long-term rates are

not responsive, or even move in the opposite direction. The impulse responses show a big

drop in inflation in response to long-term interest rate uncertainty on top of the negative

response of inflation to short-term uncertainty. This movement in future inflation is priced

in bonds, by forward-looking agents putting downward pressure on long-term interest rates.

4.2 Estimates of uncertainty

We plot short-term and long-term interest rate uncertainties in the left panel of Figure 4.

Both uncertainties increased in the first half of the sample, and peaked in the early 1980s.

The short-term uncertainty displayed a decreasing trend since, although it increased again

right before the Great Recession, and settled down at the end of the sample. Whereas long-

term uncertainty remained relatively stable for the second half of the sample, and started

increasing again recently.

Magnitude of uncertainty The left panel of Figure 4 provides a visual inspection of the

magnitude of a one standard deviation shock as discussed in Subsection 4.1. One standard
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Figure 4: Uncertainty and volatility

Left: short-term and long-term uncertainty from the macro plus yields model. Right: conditional (smoothed)

volatility of yields for the 3, 12, and 60 month maturities.

deviation of the short-term uncertainty shock is about 0.4. The change in uncertainty im-

mediately before the Great Recession is about 6 (15 times the shock size), and the change

is about 8 before the 1980 recession (20 standard deviations). One standard deviation for

the long-term uncertainty shock is about 0.23. The hike of long-term uncertainty before the

Great Recession is about 11 times this magnitude, slightly smaller than the movement for

the short-term uncertainty relative to their respective standard deviations.

Uncertainty and recession The left panel of Figure 4 shows that both short-term and

long-term interest rate uncertainties are counter-cyclical: they increase drastically before

almost every recession and remain high throughout recessions; when the economy recov-

ers, both measures of uncertainty drop. This pattern is more pronounced for short-term

uncertainty than long-term uncertainty.

To reflect this observation statistically, we use the following simple regression:

hjt = α + β1recession,t + ujt, (12)

where 1recession,t is a recession dummy, and takes a value of 1 if time t is dated within a

recession by the NBER. The coefficients are 2.3 for short-term uncertainty meaning that
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uncertainty is 2.3 units higher during the recessions as opposed to expansions, and the

difference is 0.6 for long-term uncertainty. Both coefficients are statistically significant with

p-values numerically at zero.

5 Model comparison

5.1 Model specifications

Identification and other model restrictions All the models we study have G = 3 yield

factors, as this is a well-established choice in the term structure literature. We normalize

the yield factors to be the model-implied short-term, long-term, and medium-term (3, 60,

and 12 months) yields to study the term structure of interest rate uncertainty. Our method

to achieve this rotation is similar to Hamilton and Wu(2012). The differences are that our

model has heteroskedastic shocks, and that we assume that all yields are observed with

measurement error. Parameter restrictions are: (i) Σg is lower triangular; and (ii) ΦQg has

three free parameters that are its eigenvalues labeled φQ. Further details on this rotation

are in Appendix A. These restrictions prevent rotation of the yield-factor state variables gt.

To prevent the volatility factors from rotating and scaling, we impose (i) Σh is lower

triangular; (ii) Γ1 has an identity matrix 1200 × IH as its top block; scaling the volatility

factors ht up by 1200 gives them a similar scale as the observed variables mt and yt; (iii)

when H > 0, the diagonal elements of Σg are fixed at 0.0003, which is the same magnitude

as the estimates of Σg from the Gaussian ATSM when H = 0; (iv) the first H elements of

Γ0 are equal to zero.

We use the procedures of Kim, Shephard, and Chib(1998) as part of our MCMC algo-

rithm, which requires the restriction Φgh = ΣgmΣ−1
m Φmh, as explained in Appendix B. We

also restrict the covariance matrix under Q to be equal to the long-run mean under P; i.e.

ΣQg = Σgdiag
(
exp

[
Γ0+Γ1µ̄h

2

])
. This restriction implies that our model nests Gaussian ATSMs

as Σh → 0.
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Models To understand the factor structure in volatility, on top of the macro model studied

in Section 4, we compare yield only models M = 0 with H = 0, 1, 2, 3 volatility factors. We

label these models HH . Yields in the H1 model share one common volatility factor. Our

choice of Γ1 implies that the volatility factors in the H2 model capture the short-term (3

month) and long-term (60 month) volatilities. The H3 model adds another degree of freedom

for the medium-term (12 month) volatility.

Estimates Estimates of the posterior mean and standard deviation for the parameters of

all four yields only models as well as the log-likelihood and BIC (evaluated at the posterior

mean) are reported in Table 2. Priors for all parameters of the model are discussed in

Appendix C. The parameter estimates for the H0(3) model are typical of those found in

the literature on Gaussian ATSMs, see Hamilton and Wu(2012). We also note that with

the introduction of stochastic volatility the estimated values of the autoregressive matrix Φg

become more persistent. The modulus of the eigenvalues of this matrix are larger for all the

stochastic volatility models. Due to the increased persistence, the long-run mean parameters

µ̄g of the yield factors are larger than for theH0 model and closer to the unconditional sample

mean of yields.

5.2 Yield volatilities

Yield only models We first compare yield only models HH in terms of fitting the yield

volatility, and select the number of volatility factors needed to describe the data. Table 2

shows that the introduction of the first stochastic volatility factor causes an enormous in-

crease in the log-likelihood from 37581.8 for the H0 model to 38091.1 for the H1 model. The

addition of a second volatility factor that captures movements in long-term yields adds an-

other 100 points to the likelihood of the H2 model to 38191.3. Adding a third volatility factor

increases the likelihood by less than 30 points to 38227.0. As the number of volatility factors

increases, the number of parameters also increases. The BIC penalizes the log-likelihood for
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Figure 5: Estimated conditional volatility of yields from four models

Estimated conditional volatility of 3, 12, 60 month yields from four different models. Top left: univariate

generalized autoregressive score model; Top right: H1 (4) model; Bottom left: H2 (5) model; Bottom right:

H3 (6) model.

these added parameters. It selects the H2 model with two volatility factors as the best model

for its overall fit.

In Figure 5, we compare the estimated volatilities from the three yields only models with

the generalized autoregressive score volatility model from Creal, Koopman, and Lucas(2011)

and Creal, Koopman, and Lucas(2013).6 The top left panel plots the conditional volatility

of the 3, 12, and 60 month yields from the univariate GAS models. This graph illustrates

a factor structure for yield volatilities of different maturities. There is a common element

driving the co-movement between different maturities. At the same time, they have distinct

behavior across time. In the first half of the sample, the term structure of yield volatilities

6For each maturity n, we estimate an AR(1) model for the conditional mean of yields and the Student’s
t generalized autoregressive score (GAS) model of Creal, Koopman, and Lucas(2011) and Creal, Koopman,
and Lucas(2013) for the conditional volatility.
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sloped downward as the volatility of short-term interest rates was higher than long-term

rates. This reflects uncertainty about monetary policy. Short term rates became less volatile

than long-term rates after the early 1980’s and the term structure of volatility sloped up-

ward on average. This may reflect efforts by the monetary authorities to make policy more

transparent and better anchor agents’ expectations. In the mid-2000s, the volatility of long

and short rates moved in opposite directions with long-term volatility increasing at the same

time that short-term volatility is declining.

The remaining panels in Figure 5 plot the conditional volatility from the ATSM’s. In

the H1 model, movements in yield volatility are nearly perfectly correlated. With only

one factor, the model is not flexible enough to capture the idiosyncratic movements across

different maturities that are observed in the data. This is consistent with the findings in

Creal and Wu(2014). The H2 model adds flexibility through a second factor that drives the

difference in volatility between the short-term and long-term yields. This model captures

all the key features in the data we describe above. Although adding a third volatility factor

provides more flexibility, the key economically meaningful movements are already captured

by the first and second factors. Moreover, in the H3 model, the second and third volatility

factors h2t and h3t are highly correlated with a value of 0.76, while the correlation between

the first and second factors h1t and h2t is 0.4. Overall, both economic and statistical evidence

points to two volatility factors.

Macro model Our benchmark macro model studied in Section 4 adds two macro variables

– inflation and the unemployment rate – into the H2 model selected above. The conditional

volatilities from this model are plotted in the right panel of Figure 4. The estimated con-

ditional volatilities from the macro model are nearly identical to the estimates from the

yields-only H2 model and capture all the characteristics of yield volatility discussed above.

Overall, our benchmark macro model fits the yield volatility similarly to the preferred yield

only model.
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Table 3: Pricing errors relative to the Gaussian model

H0 H1 H2 H3 macro

1m 0.2524 0.9917 1.0170 1.0539 1.0059
3m 0.1283 0.7155 0.6539 0.6196 0.7007
12m 0.1262 0.7726 0.7599 0.7583 0.7995
24m 0.0941 1.0499 0.9904 0.9586 0.9894
36m 0.0781 0.9577 0.8912 0.8489 0.8822
48m 0.1070 0.9103 0.8748 0.8598 0.8804
60m 0.0841 0.9382 0.8644 0.8728 0.9298

First column: Posterior mean estimates of the pricing errors
√

diag (Ω)× 1200 for Gaussian the H0 model.
Column 2-5: ratios of pricing errors of other models relative to the H0 model.

5.3 Cross section of the yield curve

Our term structure models are designed to capture the volatility of yields while not sacrificing

their ability to fit the cross section of the yield curve. In fact, we find that by introducing

stochastic volatility it improves their ability to fit the yield curve at the same time. In Table 3,

we report the average pricing errors across the seven maturities for the Gaussian H0 model

in the first column. The next three columns report the ratios of pricing errors for the yields-

only models with H = 1, 2, 3 relative to the H0 model for the same maturity. In general,

the pricing errors decrease as more volatility factors are added. Relative to the Gaussian

H0 model, the largest improvement comes with the addition of the first volatility factor.

Adding a second volatility factor reduces the pricing errors further at all maturities but the

one month yield. Smaller pricing errors are expected when we introduce stochastic volatility

into the model. Stochastic volatility allows the signal-to-noise ratio to vary through time.

During periods of low conditional volatility, the data is highly informative and estimates of

the yield factors gt will weigh the recent data more heavily. Conversely, estimates of the

yield factors will place more weight on past data when conditional yield volatility is higher.

This has the effect of stabilizing the estimator of gt.

The last column of Table 3 shows the ratio of pricing errors in our benchmark macro

model relative to the H0 model. The average pricing errors are smaller than the H0 model –
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the most widely used model in the literature – and are comparable to the 2-factor H2 model.

Adding the macro factors into the model does not affect the fit of the cross-section of yields.

6 Conclusion

We developed a new macro finance affine term structure model with stochastic volatilities to

study the importance of interest rate uncertainty. In our model, the volatility factor serves

two roles: it is the volatility of the yield curve, and it also measures interest rate uncertainty

which directly interacts with macro variables in a VAR. Our model allows multiple volatility

factors, which are determined separately from the yield factors. With two volatility factors

and three traditional yield factors, our model can capture both aspects of the data.

The two volatility factors capture two aspects of interest rate uncertainty: short-term

and long-term uncertainty. Although they both contribute negatively to the real economy,

their influence over inflation has distinct signs: a shock to the short term interest rate

uncertainty leads to lower inflation, whereas a higher long term uncertainty leads to higher

inflation. Our model provides us time-varying impulse responses to study relative importance

of these two competing effect at different point of time. For example, during Volcker’s tenure,

Greenspan’s Conundrum and the Great Recession, uncertainty shocks are associated with

downward pressure on inflation; whereas Great Inflation is associated with upward inflation

pressure.
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Appendix A Bond loadings

To ensure that the bond loadings satisfy the conditions S1A = 0 and S1B
′ = IG a priori for a given value

of the parameters (δ0, φ
Q,ΣQg ), we use Proposition 2 of Hamilton and Wu(2014). Their proposition provides

an algorithm for imposing these conditions given an G×N matrix S1. In our work, S1 selects out the 3, 60,

and 12 month maturities (the 2nd, 7th, and 3rd elements of the vector of yields yt) and is equal to

S1 =


0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

 , y′t =
(
y

(1)
t y

(3)
t y

(12)
t y

(24)
t y

(36)
t y

(48)
t y

(60)
t

)
.

Using this rotation, the yield factors are equal to the model implied yields gt =
(
ŷ

(3)
t , ŷ

(60)
t , ŷ

(12)
t

)
because

we maintain the assumption that all yields are measured with error.

We make a slight modification to the algorithm of Hamilton and Wu(2014). We note that the vector of

bond loadings A is a linear function of the scalar parameter δ0. The loadings can therefore be decomposed

as A = Aδ0 +Cδ0×δ0, where Aδ0 and Cδ0 are both N ×1 vectors. In Appendix B, we use this decomposition

in our state space model and place the parameter δ0 in the state vector.

Let φQ denote the vector of ordered eigenvalues φQ =
(
φQ1 , . . . , φ

Q
G

)
. Define the function γn (x) =

1
n

∑n−1
j=0 x

j . The algorithm for imposing these conditions is:

1. Calculate ΦQg =
[
K
(
φQ
)
S′1
]−1 [

V
(
φQ
)] [

K
(
φQ
)
S′1
]

and δ1,g =
[
K
(
φQ
)
S′1
]−1

ιG where

K
(
φQ
)

(G×N)

=



γn1

(
φQ1

)
γn2

(
φQ1

)
· · · γnN

(
φQ1

)
γn1

(
φQ2

)
γn2

(
φQ2

)
· · · γnN

(
φQ2

)
...

... · · ·
...

γn1

(
φQG

)
γn2

(
φQG

)
· · · γnN

(
φQG

)


V
(
φQ
)

(G×G)

=


φQ1 · · · 0

...
. . .

...

0 · · · φQG



2. Given ΦQg and δ1,g, run the recursions

ψ̄n = ψ̄n−1 −
1

2
b̄′n−1ΣQg ΣQ′g b̄n−1

ζ̄n = ζ̄n−1 − b̄n−1

b̄n = ΦQ′g b̄n−1 − δ1,g

where the initial conditions are ψ̄1 = 0, ζ̄1 = 0G×1 and b̄1 = −δ1,g. Let ζn = 1
n ζ̄n and ψn = 1

n ψ̄n. The

matrix B is formed by stacking b′n in order of maturity.

33



3. Calculate µQg,1 = −
[
S1ζ

(
φQ
)]−1 [

S1ψ
(
φQ,ΣQg

)]
and µQg,2 = −

[
S1ζ

(
φQ
)]−1

[S1ιG] where

ζ
(
φQ
)

N×G
=


ζn1

(
φQ
)′

...

ζnN

(
φQ
)′

 ψ
(
φQ,ΣQg

)
N×1

=


ψn1

(
φQ,ΣQg

)
...

ψnN

(
φQ,ΣQg

)


4. Given µQg,1 and µQg,2, run the recursions

ān,δ0 = ān−1,δ0 + b̄′n−1µ
Q
g,1 +

1

2
b̄′n−1ΣQg ΣQ′g b̄n−1

c̄n,δ0 = c̄n−1,δ0 + b̄′n−1µ
Q
g,2

where the initial conditions are ā1,δ0 = 0 and c̄1,δ0 = 0. Let an,δ0 = − 1
n ān,δ0 and cn,δ0 = − 1

n c̄n,δ0 .

The vectors Aδ0 and Cδ0 are formed by stacking an,δ0 ,and cn,δ0 in order of maturity.

Forming the matrices in this way automatically satisfies the conditions S1B
′ = IG and S1A = 0. They also

imply a simple decomposition of A = Aδ0 + Cδ0 × δ0, which is useful for placing the model in state space

form. Also, note that µQg = µQg,1 + µQg,2 × δ0.

Appendix B MCMC and particle filtering algorithms

Appendix B.1 MCMC algorithm

In the appendix, we use the notation xt:t+k = (xt, . . . , xt+k) to denote a sequence of variables from time

t to time t + k. We formulate the model in terms of deviations from the means, with µ̄x denoting the

unconditional mean of the variable xt and x̄t = xt − µ̄x being the demeaned variable.

Our Gibbs sampling algorithm iterates between three basic steps: (i) drawing the latent yield factors

g1:T conditional on the volatilities h0:T and parameters θ; (ii) drawing the volatilities h0:T conditional on g1:T

and θ; (iii) and then drawing the parameters of the model θ given the state variables. The MCMC algorithm

is designed to minimize the amount that we condition on the latent variables by using the Kalman filter to

marginalize over the state variables. We will use two different state space representations as described in

Subsection 3.1. We write the model using the following state space form

Yt = Ztxt + dt + η∗t η∗t ∼ N (0, Ht) , (B.1)

xt+1 = Ttxt + ct +Rtε
∗
t+1 ε∗t+1 ∼ N (0, Qt) , (B.2)
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Appendix B.1.1 State space form I conditional on h0:T

The intercept A in (11) is a linear function of δ0, and we can decompose it into A = Aδ0 + Cδ0 × δ0. For

better mixing behavior of the MCMC algorithm, we place the unconditional means µ̄m, µ̄g and δ0 in the

state vector: we can draw them jointly with the yield factors ḡ1:T using simulation smoothing algorithms

(forward-filtering backward sampling). We can also marginalize over these parameters when drawing other

parameters of the model. We fit the model into the state space form (B.1) and (B.2) by defining the state

space matrices as

Yt =


mt

yt

h̄t

 , Zt =


I 0 0 I 0 0

0 B 0 0 B Cδ0

0 0 I 0 0 0

 , dt =


0

Aδ0

0

 , Ht =


0 0 0

0 Ω 0

0 0 0

 ,

xt =



m̄t

ḡt

h̄t

µ̄m

µ̄g

δ0


, Tt =



Φm Φmg Φmh 0 0 0

Φgm Φg Φgh 0 0 0

0 0 Φh 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I


, Rt =



Σm 0 0

Σgm ΣgDt 0

Σhm ΣhgDt Σh

0 0 0

0 0 0

0 0 0


, Qt = I,

and ct = 0. The priors for the parameters are δ0 ∼ N
(
δ0, Vδ0

)
, µ̄g ∼ N

(
µ̄g, Vµ̄g

)
, and µ̄m ∼ N

(
µ̄m, Vµ̄m

)
.

The initial conditions for x1 ∼ N (x1, P1) are

x1 =



Φmm̄0 + Φmhh̄0

Φmm̄0 + Φghh̄0

h̄0

µ̄m

µ̄g

δ0


, R1 =



Σm 0 0 0 0 0

Σgm ΣgD0 0 0 0 0

Σhm ΣhgD0 Σh 0 0 0

0 0 0 V
1
2
µ̄m

0 0

0 0 0 0 V
1
2
µ̄g

0

0 0 0 0 0 V
1
2

δ0


,

where x1 and P1 = R1Q1R
′
1 are observable.
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Appendix B.1.2 State space form II conditional on g1:T

First, we stack the dynamics of m̄t, ḡt, and h̄t implied by (1), (2), and (4) together as a VAR(1). Next, we

multiply both sides of the VAR by


Σm 0 0

0 IG 0

0 0 Σh




Σm 0 0

Σgm Σg 0

Σhm Σhg Σh


−1

.

This rotates the model so that the shocks (εmt, εgt, εht) are only present in their own respective equations.

The model can be written as

m̄t = Φmm̄t−1 + Φmg ḡt−1 + Φhh̄t−1 + Σmεmt

Σ−1
g ḡt = Σ−1

g ΣgmΣ−1
m m̄t + Σ−1

g

[
Φgm − ΣgmΣ−1

m Φm
]
m̄t−1 + Σ−1

g

[
Φg − ΣgmΣ−1

m Φmg
]
ḡt−1 +Dt−1εgt

h̄t =
[
Σhm − ΣhgΣ

−1
g Σgm

]
Σ−1
m m̄t + ΣhgΣ

−1
g ḡt −

[(
Σhm − ΣhgΣ

−1
g Σgm

)
Σ−1
m Φm + ΣhgΣ

−1
g Φgm

]
m̄t−1

−
[(

Σhm − ΣhgΣ
−1
g Σgm

)
Φmg + ΣhgΣ

−1
g Φg

]
ḡt−1 +

[
Φh − ΣhmΣ−1

m Φmh
]
h̄t−1 + Σhεht

where we have imposed the restriction that Φgh = ΣgmΣ−1
m Φmh. This restriction means that ḡt does not

depend on h̄t−1. Consequently, we can use the approach of Kim, Shephard, and Chib(1998) to reformulate

the stochastic volatility model for ḡt as an (approximate) linear, Gaussian model. Define the following

variables

g∗t = log (g̃t � g̃t)

g̃t = Σ−1
g

(
ḡt − ΣgmΣ−1

m m̄t −
[
Φgm − ΣgmΣ−1

m Φm
]
m̄t−1 −

[
Φg − ΣgmΣ−1

m Φmg
]
ḡt−1

)
By squaring both sides of g̃it for i = 1, . . . , G equation-by-equation and then taking logarithms, we can write

the model as

g∗t = Γ0 + Γ1ht−1 + ε∗gt

where the shocks are ε∗gt = log (εgt � εgt). Let st = (s1t, . . . , sG,t) denote a G× 1 vector of discrete variables

indexing each component of the normal mixture p(ε∗i,gt) ≈
∑10
j=1 πjN(ej , σ

2
j ), where E

[
ε∗i,gt|sit = j

]
= ej

and V
[
ε∗i,gt|sit = j

]
= σ2

j . In practice, we use the means and variances from the 10 component mixture

provided by Omori, Chib, Shephard, and Nakajima(2007). However, we do not use their approach to estimate
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the leverage parameters because our model is naturally written in terms of uncorrelated shocks.

The state space matrices are

Yt =

 m̄t

g∗t

 , Zt =

 Φmh 0

Γ1 0

 , dt =

 Φmm̄t−1 + Φmg ḡt−1

Γ0 + Γ1µ̄h + est

 , Ht =

 ΣmΣ′m 0

0 σ2
st

 ,

xt =

 h̄t−1

vec (Σhg)

 , Tt =

 Φh − ΣhmΣ−1
m Φmh (ǧ′t ⊗ I)

0 I

 , Rt =

 Σh

0

 , ct =

 m̌t

0

 ,

and with Qt = I. The priors for the parameters are vec (Σhg) ∼ N
(

Σhg, VΣhg

)
. The initial conditions for

x1 ∼ N (x1, P1) are

x1 =

 0

Σhg

 , P1 =

 ΣhΣ′h 0

0 VΣhg

 ,

where m̄0 is observable at time t = 0 and we define

m̌t = Σhm
[
Σ−1
m m̄t − Σ−1

m Φmm̄t−1 − Φmg ḡt−1

]
ǧt = Σ−1

g

[
ḡt − ΣgmΣ−1

m (m̄t − Φmm̄t−1)− Φgmm̄t−1 + ΣgmΦmg ḡt−1 − Φg ḡt−1

]
By placing vec (Σhg) in the state vector, we can draw these parameters jointly with h̄0:T . Note that the

unconditional mean of volatility µ̄h also enters the bond loadings A in (11) and cannot be placed in the state

vector.

Appendix B.1.3 The IMH algorithm

In our MCMC algorithm, we draw as many parameters as possible without conditioning on the state variables

and other parameters. In the algorithm in Appendix B.1.4, we will repeatedly apply the independence

Metropolis Hastings (IMH) algorithm along the lines of Chib and Greenberg(1994), in a combination with

Kalman filter to marginalize out the state variables based on the state space representations above. Here is

how it works. Suppose we separate the parameter vector θ = (ψ,ψ−) and we want to draw a subset of the

parameters ψ conditional on the remaining parameters ψ−.

• Maximize the log-posterior p (ψ|Y1:T , ψ
−) ∝ p (Y1:T |ψ,ψ−) p (ψ), where the likelihood is computed

using Kalman filter. Let ψ̂ be the posterior mode and H−1
ψ be the inverse Hessian at the mode.

• Draw a proposal ψ∗ ∼ t5
(
ψ̂,H−1

ψ ,
)

from a Student’s t distribution with mean ψ̂, scale matrix H−1
ψ ,

and 5 degrees of freedom.
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• The proposal ψ∗ is accepted with probability α =
p(Y1:T |ψ∗,ψ−)p(ψ∗)q(ψ(j−1))

p(Y1:T |ψ(j−1),ψ−)p(ψ(j−1))q(ψ∗)
.

A similar algorithm has been used by Chib and Ergashev(2009) for Gaussian ATSMs with macroeconomic

factors but no stochastic volatility.

Appendix B.1.4 MCMC algorithm

We use the notation θ(−) to denote all the remaining parameters in θ other than the parameters being drawn

in that step. Our MCMC algorithm proceeds as follows:

1. Draw Σm,Σg,Σgm: Conditional on h0:T and the remaining parameters of the model, write the

model as in state space form I. Draw parameters listed below using the IMH algorithm as explained

in Appendix B.1.3.

• vech (Σm)

• free parameters in Σg: note the diagonal elements of Σg are fixed.

• vec (Σgm)

2. Draw Ω (Option #1): Conditional on h0:T and the remaining parameters of the model θ(−), write

the model as in state space form 1. Draw the elements of Ω using the IMH algorithm as explained

above. In practice, not all the parameters can be drawn simultaneously and we randomly block them

into smaller groups at each iteration.

3. Draw
(
ḡ1:T , µ̄g, µ̄m, δ0, φ

Q
)
jointly in one block.

• Draw φQ from p
(
φQ|Y1:T , θ

(−)
)
: Conditional on h0:T and the remaining parameters of the

model θ(−), write the model in state space form I. Draw the elements of φQ using the IMH

algorithm as explained above.

• Draw (ḡ1:T , µ̄g, µ̄m, δ0) jointly from p
(
ḡ1:T , µ̄g, µ̄m, δ0|Y1:T , θ

(−), φQ
)
: Conditional on φQ,

draw (ḡ1:T , µ̄g, µ̄m, δ0) using the simulation smoother of Durbin and Koopman(2002).

4. Draw Ω (Option #2): Conditional on the draw of g1:T , we can draw from the full conditional

distribution of Ω when it has an inverse Wishart prior. This comes from the regression model yt =

A+Bgt + ηt where A and B are the bond loadings.

5. Draw (Φm,Φmg,Φgm,Φg) conditional on m̄1:T , ḡ1:T , h0:T : In this step, we write the model as a vec-

tor autoregression with a known form of conditional heteroskedasticity (we are conditioning on h0:T ).

Under a multivariate normal prior, the full conditional posterior for (Φm,Φmg,Φgm,Φg) is multivariate

normal. The draw is standard for a Bayesian VAR; see, e.g. Del Negro and Schorfheide(2011).
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6. Draw the mixture indicators sit for i = 1, . . . , G and t = 1, . . . , T : Draw mixture indicators sit

to approximate the distribution of the errors p
(
ε∗i,gt

)
. This step uses the 10 component mixture from

Omori, Chib, Shephard, and Nakajima(2007).

7. Draw (Γ1,Φmh,Φh,Σh) : Using state space form II, draw the following parameters conditional on

the mixture indicators s1:T . We use the IHM algorithm as described in Appendix B.1.3..

• Draw the free parameters in Γ1 if H < G.

• vec (Σhm).

• Φmh,Φh and vech (Σh): If the number of volatility factors H ≥ 2, we split the total number of

parameters into sub-groups of even size (roughly 5 parameters per MH step).

8. Draw from the joint distribution
(
h̄0:T ,Σhg, µ̄h,Γ0

)
:

• Draw µ̄h and Γ0 from p
(
µ̄h,Γ0|Y1:T , θ

(−)
)
. Recall that the parameters µ̄h and Γ0 enter the

bond loadings A in (11) from our assumption that the covariance matrix under Q is equal to the

(long-run) covariance matrix under P. This adds an additional term to the target distribution.

The Metropolis-Hastings acceptance probability is

α =
p
(
Y1:T |µ̄∗h,Γ∗0, θ(−)

)
p
(
y1:T |g1:T , µ̄

∗
h,Γ
∗
0, θ

(−)
)
p (µ̄∗h,Γ

∗
0) q

(
ψ(j−1)

)
p
(
Y1:T |µ̄(j−1)

h ,Γ
(j−1)
0 , θ(−)

)
p
(
y1:T |g1:T , µ̄

(j−1)
h ,Γ

(j−1)
0 , θ(−)

)
p
(
µ̄

(j−1)
h ,Γ

(j−1)
0

)
q (µ̄∗h,Γ

∗
0)

where p
(
Y1:T |µ̄h,Γ0, θ

(−)
)

is the likelihood of the state space form II calculated by the Kalman

filter and

log p
(
y1:T |g1:T , µ̄h,Γ0, θ

(−)
)
∝ −0.5 ∗ (νω + T ) ∗ log|Sω +

T∑
t=1

(yt −A−Bgt) (yt −A−Bgt)′|.

Here, νω and Sω are the prior hyperparameters of Ω, which we have integrated out of the MH

acceptance ratio.

• Draw
(
h̄0:T ,Σhg

)
jointly from p

(
h̄0:T ,Σhg|Y1:T , θ

(−), µ̄h,Γ0

)
: Using the state space form II,

draw h̄0:T and Σhg using the simulation smoother of Durbin and Koopman(2002).

Appendix B.2 Particle filter

The particle filter we implement is the mixture Kalman filter of Chen and Liu(2000). For a survey of particle

filtering see Creal(2012). Let xt|t−1 denote the conditional mean and Pt|t−1 the conditional covariance matrix
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of the one-step ahead predictive distribution p(xt|Y1:t−1, h0:t−1; θ) of a conditionally linear, Gaussian state

space model. Similarly, let xt|t denote the conditional mean and Pt|t the conditional covariance matrix of the

filtering distribution p(xt|Y1:t, h0:t; θ). Conditional on the volatilities h0:T , these quantities can be calculated

by the Kalman filter.

We define the parameters in the state space form (B.1) and (B.2) as follows

Yt =

 mt

yt

 , Zt =

 I 0

0 B

 , dt =

 µ̄m

A+Bµ̄g

 , Ht =

 0 0

0 Ω

 ,

xt =

 m̄t

ḡt

 , Tt =

 Φm Φmg

Φgm Φg

 , Rt =

 Σm 0

Σgm ΣgDt

 , ct =

 Φmhh̄t

Φghh̄t

 ,

and where Qt = I. Let Nmn = M +N denote the dimension of the observation vector Yt and J the number

of particles. Within the particle filter, we use the residual resampling algorithm of Liu and Chen(1998). The

particle filter then proceeds as follows:

At t = 0, for i = 1, . . . , J , set w
(i)
0 = 1

J and

• Draw h̄
(i)
0 ∼ p

(
h̄0; θ

)
and calculate (D0D

′
0)

(i)
= diag

[
exp

(
Γ0 + Γ1µ̄h + Γ1h̄

(i)
0

)]
.

• Set x
(i)
1|0 =

 Φmm̄0 + Φmhh̄
(i)
0

Φgmm̄0 + Φghh̄
(i)
0

, P
(i)
1|0 =

 ΣmΣ′m ΣmΣ′gm

ΣgmΣ′m ΣgmΣ′gm + Σg (D0D
′
0)

(i)
Σ′g

,

• Set `0 = 0.

For t = 1, . . . , T do:

STEP 1: For i = 1, . . . , J :

• Calculate c
(i)
t and R

(i)
t using h̄

(i)
t .
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• Run the Kalman filter:

v
(i)
t = Yt − Ztx(i)

t|t−1 − dt

F
(i)
t = ZtP

(i)
t|t−1Z

′
t +Ht

K
(i)
t = P

(i)
t|t−1Z

′
t

(
F

(i)
t

)−1

x
(i)
t|t = x

(i)
t|t−1 +K

(i)
t v

(i)
t

P
(i)
t|t = P

(i)
t|t−1 −K

(i)
t ZtP

(i)
t|t−1

x
(i)
t+1|t = Ttx

(i)
t|t + c

(i)
t

P
(i)
t+1|t = TtP

(i)
t|t T

′
t +R

(i)
t QtR

(i)′
t

• Draw from the transition density: h̄
(i)
t+1 ∼ p(h̄t+1|m̄t+1, ḡ

(i)
t+1, h̄

(i)
t , m̄t, ḡ

(i)
t ; θ) given by:

h̄t+1 = Φhh̄t + Σhmεm,t+1 + ΣhgDtεg,t+1 + Σhεh,t+1 εh,t+1 ∼ N (0, I)

• Calculate the weight: log
(
w

(i)
t

)
= log

(
ŵ

(i)
t−1

)
− 0.5Nnm log (2π)− 0.5 log |F (i)

t | − 1
2v

(i)′
t

(
F

(i)
t

)−1

v
(i)
t .

STEP 2: Calculate an estimate of the log-likelihood: `t = `t−1 + log
(∑J

i=1 w
(i)
t

)
.

STEP 3: For i = 1, . . . , J , calculate the normalized importance weights: ŵ
(i)
t =

w
(i)
t∑J

j=1 w
(j)
t

.

STEP 4: Calculate the effective sample size Et = 1∑J
j=1

(
ŵ

(j)
t

)2 .

STEP 5: If Et < 0.5J , resample
{
x

(i)
t+1|t, P

(i)
t+1|t, h̄

(i)
t+1

}J
i=1

with probabilities ŵ
(i)
t and set ŵ

(i)
t = 1

J .

STEP 6: Increment time and return to STEP 1.

Appendix B.3 Impulse response functions

We summarize (1) - (4) by

xt = µ+ Φxt−1 + Σt−1εt.

where

xt =


mt

gt

ht

 µ =


µm

µg

µh

 , Φ =


Φm Φmg Φmh

Φgm Φg Φgh

0 0 Φh

 , Σt−1 =


Σm 0 0

Σgm ΣgDt−1 0

Σhm ΣhgDt−1 Σh

 .
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For each draw
{
θ(k), x

(k)
0:T

}
in the MCMC algorithm where x

(k)
t =

(
m

(k)′
t , g

(k)′
t , h

(k)′
t

)′
, we calculate the

implied value of the shocks ε
(k)
t =

(
ε

(k)
mt , ε

(k)
gt , ε

(k)
ht

)
for t = 1, . . . , T . Note that mt is observable and does not

change from one draw to another.

Appendix B.3.1 Time-varying impulse responses

Let x̃
(k)
t =

(
m̃

(k)′
t , g̃

(k)′
t , h̃

(k)′
t

)′
denote the implied value of the state vector for the k-th draw assuming that

the j-th shock at the time of impact s is given by ε̃
(k)
js = ε

(k)
js + 1, and keeping all other shocks at their values

implied by the data. Then, given an initial condition of the state vector x̃
(k)
s−1 = x

(k)
s−1, for a τ period impulse

response, we iterate forward on the dynamics of the vector autoregression

x̃
(k)
t = µ(k) + Φ(k)x̃

(k)
t−1 + Σ

(k)
t−1ε̃

(k)
t , t = s, . . . , s+ τ.

The impulse response at time s, for a horizon τ , variable i, shock j, and draw k is defined as

Υ
(k)
s,ij,τ = x̃

(k)
i,s+τ − x

(k)
i,s+τ .

We then calculate the median and quantiles of Υ
(k)
s,ij,τ across the draws k = 1, . . . ,M .

Appendix B.3.2 Constant impulse responses

Let ẋ
(k)
t =

(
ṁ

(k)′
t , ġ

(k)′
t , ḣ

(k)′
t

)′
denote the implied value of the state vector for the k-th draw assuming that

the j-th shock at the time of impact s is given by ε̇
(k)
js = ε

(k)
js +1, ε

(k)
g,t = 0 for all t, and keeping all other shocks

at their values implied by the data. And, let ẍ
(k)
t =

(
m̈

(k)′
t , g̈

(k)′
t , ḧ

(k)′
t

)′
denote the implied value of the state

vector for the k-th draw assuming that the j-th shock at the time of impact s is given by ε̈
(k)
js = ε

(k)
js , ε̈

(k)
gt = 0

for all t and keeping all other shocks at their values implied by the data.7 Then, given an initial condition

of the state vector ẋks−1 = ẍks−1 = xks−1, we iterate forward on the dynamics of the vector autoregression

ẋ
(k)
t = µ(k) + Φ(k)ẋ

(k)
t−1 + Σ

(k)
t−1ε̇

(k)
t , t = s, . . . , s+ τ,

ẍ
(k)
t = µ(k) + Φ(k)ẍ

(k)
t−1 + Σ

(k)
t−1ε̈

(k)
t , t = s, . . . , s+ τ.

The impulse response for a horizon τ , variable i, shock j, and draw k is defined as

Ψ
(k)
ij,τ = ẋ

(k)
i,s+τ − ẍ

(k)
i,s+τ

7 Due to the linear nature, what the other shocks except for εgt are evaluated at will not change the value
of the constant impulse response.
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We then calculate the median and quantiles of Ψij,τ across the draws k = 1, . . . ,M .

Appendix C Prior distributions

We use proper priors for all parameters of the model but select the hyperparameters of each distribution to

be non-informative. Throughout this discussion, a normal distribution is defined as x ∼ N (µx, Vx), where

µx is the mean and Vx is the covariance matrix. The inverse Wishart distribution X ∼ InvWishart (ν, S) is

defined for a random k × k matrix X such that E [X] = S
ν−k−1 . Recall that we have divided all observed

variables by 1200 and this is reflected in the scale of the hyperparameters. Let ιk denote a k × 1 vector of

ones.

• δ0 ∼ N
(
0.001, 5× 10−5

)
.

• The eigenvalues φQ of ΦQg each have a beta distribution φQi ∼ beta (ai, bi) for i = 1, . . . G. For the

three factor model, we set a1 = 100, b1 = 1, a2 = 200, b2 = 10, a3 = 100, b3 = 60.

• µ̄m ∼ N
(

(4, 6)
′
/1200, IM × (4/1200)

2
)

.

• µ̄g ∼ N
(
(4.8× ιG×1) /1200, IG × 5× 10−6

)
.

• µ̄h ∼ N
(
0H×1, IH × 10−6

)
.

• vec (Σmg) ∼ N
(
0, IM×G × 10−6

)
, vec (Σhm) ∼ N

(
0, IH×M × 10−6

)
,vec (Σhg) ∼ N

(
0, IH×G × 10−6

)
• For the autoregressive parameters, the prior is a conditional prior p (Φm,Φmg,Φg,Φgm,Φmh,Φh|Σm,Σgm).

Define the transition matrix Φ as

Φ =


Φm Φmg Φmh

Φgm Φg ΣgmΣ−1
m Φmh

0 0 Φh


where have substituted the restriction Φgh = ΣgmΣ−1

m Φmh. The distribution of the free parame-

ters of vec (Φ) is truncated normal. We truncate it to the stationarity region. The distribution of

each sub-matrix is vec (Φmg) ∼ N
(
0, IM×G × 10−1

)
, vec (Φgm) ∼ N

(
0, IM×G × 10−1

)
, vec (Φmh) ∼

N
(
0, IM×H × 10−1

)
, vec (Φm) ∼ N

(
vec (IM × 0.95) , IM2 × 10−1

)
, vec (Φg) ∼ N

(
vec (IG × 0.95) , IG2 × 10−1

)
,

vec (Φh) ∼ N
(
vec (IH × 0.985) , IH2 × 10−1

)
.

• ΣmΣ′m ∼ InvWishart (νσm
, Sσm

) with νσm
= M + 2 and Sσm

= (νσm
−M − 1)× IM × 10−6.

• ΣhΣ′h ∼ InvWishart
(
νσg

, Sσg

)
with νσg

= H + 2 and Sσg
= (νσg

−H − 1)× IH × 10−6.
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• For the models with H = 1, 2 factors, we estimate parameters in the matrix Γ0. For H = 1, Γ′0 =(
1200 γ2,1 γ3,1

)
where γi,1 ∼ N (0, 1) for i = 2, 3. For H = 2, Γ′0 =

(
0 0 γ3,1

)
with

γ3,1 ∼ N (0, 1). For H = 3, Γ0 =
(

0 0 0

)
with no free parameters.

• For the models with H = 1, 2 factors, we estimate parameters in the matrix Γ1. For H = 1, Γ′1 =(
1200 γ2,1 γ3,1

)
where γi,1 ∼ N (1200, 250) for i = 2, 3. ForH = 2, Γ′1 =

 1200 0 γ3,1

0 1200 γ3,2


with γ3,i ∼ N (600, 250) for i = 2, 3. For H = 3, Γ1 = IH × 1200 with no free parameters. The scale

1200 is chosen so that ht has the same scale as the yield factors gt.

• The off-diagonal, lower triangular elements of Σg are Σg,ij ∼ N
(
0.0001, 10−6

)
. For identification of

the models with stochastic volatility, the diagonal values of Σg are fixed at 0.0003.

• Ω ∼ InvWishart (νω, Sω), where νω = N + 3 and Sω = (νω −N − 1)× IN × 5× 10−7.
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