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Abstract

We disaggregate consumption growth into components with different levels of persistence

and show that a single business-cycle consumption factor can explain satisfactorily the differ-

ences in risk premia across book-to-market and size-sorted portfolios. We argue that accounting

for persistence heterogeneity in consumption is important for interpreting cross-sectional risk

compensations in financial markets but also for capturing the joint time-series dynamics of

consumption and returns across horizons (for instance, the hump-shaped pricing ability of the

covariance between “ultimate consumption” and returns, the hump-shaped structure of long-run

risk premia as well as the decaying pattern in consumption growth predictability). Using a novel

time/frequency-based data generating process for consumption growth and asset returns, we

discuss implications for the asset pricing literature relying on aggregation.
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1 Introduction

It is a basic tenet of economic theory that agents care about their consumption stream. A traditional

implication, for valuation in financial markets, of this accepted premise is that the risk of any asset

should depend on the covariance of its returns with consumption growth. Assets which pay off in

adverse states of nature (i.e., those in which consumption growth is lower) are assets which should

be perceived as being less risky and should therefore provide, in equilibrium, lower expected returns.

Conversely, those assets whose returns are positively correlated with consumption growth are assets

with inferior hedging abilities. Their demand should be lower, thereby justifying lower prices, and

higher expected returns.

This logic, grounded in the classical Consumption CAPM (CCAPM) model of Rubinstein (1976),

Breeden and Litzenberger (1978), and Breeden (1979), is known not to be supported by economic

data. Differences in expected returns across risky securities are empirically not attributable to sheer

differences in the variability of the returns of these securities with respect to changes in aggregate

consumption.1 This failure has lead to alternative models of economic behavior in which a prominent

role is given to suitable modifications of the conventional time-separable utility paradigm.2

Is aggregate consumption growth the “right” notion of consumption from an asset pricing stand-

point? This paper argues that aggregate consumption growth, the subject of much investigation,

can be separated into a variety of components, layers, or details. These details operate at different

frequencies, thereby representing features of the overall consumption stream with cycles of different

lengths. While the covariance between aggregate consumption growth and individual assets’ returns

does not explain the cross-sectional dispersion of expected excess returns, we show that the covari-

ance between specific details of the consumption growth process and assets’ returns is an important

determinant of risk in financial markets.

In essence, investors may not focus on very high-frequency components of the consumption

process. For the purpose of asset pricing, these components may just amount to short-term noise.

1Campbell (2003) and Cochrane (2001) provide comprehensive discussions.
2Fundamental contributions are Abel’s external habit as in Abel (1990), Constantinides (1990), Detemple and

Zapatero (1991), Campbell and Cochrane (1999) and Mezly, Santos and Veronesi (2004), inter alia, Epstein and Zin’s
recursive utility as in Epstein and Zin (1989, 1991), Bansal and Yaron (2004), and Hansen, Heaton, and Li (2008),
among others, and loss aversion as in Barberis, Huang and Santos (2001). For an interesting discussion of their
unified interpretation as preference theories defined over consumption and a suitable reference factor, as well as for
further extensions in an expected utility framework, we refer the interested reader to the work of Garcia, Renault,
and Semenov (2004).
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Lower frequency components of consumption growth with various degrees of persistence may, how-

ever, be important drivers of risk premia. A new methodology for signal extraction, along with the

application of suitable pricing techniques, allows us to identify these priced components.

We make three contributions. First, using a data generating process which explicitly separates

portfolio returns and consumption growth into uncorrelated components operating at different fre-

quencies, we illustrate the importance for asset pricing of a business-cycle consumption component

with periodicity between 2 and 8 years (the usual length of the business cycle according to Burns

and Mitchell, 1946; see, also, the more recent, implicit taxonomy in Comin and Gertler, 2006). More

explicitly, in the size and book-to-market space represented by the traditional Fama-French (FF)

portfolios, we show that a single-factor model in which the factor is business-cycle consumption

( growth) - a component representing consumption fluctuations between 2 and 8 years - yields sat-

isfactory pricing errors and a coefficient of determination around 40%. This result is derived after

introducing a novel notion of component-wise beta. We provide evidence for the pricing ability of

the beta associated with business-cycle consumption.

Second, after recognizing that short-term returns are priced by a long-run consumption compo-

nent, we show that reliance on low-frequency consumption features has implications for the asset

pricing literature relying on aggregation, be it the aggregation of returns, as in a specification for

long-run returns (e.g., Daniel and Marshall, 1997) , the aggregation of the factor(s) (e.g., Parker

and Julliard, 2005), or both (Bandi et al., 2011). We formalize the mapping between our approach

to pricing and aggregation. In doing so, we provide a model-based justification for existing pricing

results in the literature.

Third, we emphasize that our proposed component model for returns and consumption growth

has cross-sectional as well as time-series implications. We use the latter to discuss an array of time-

series metrics which can be viewed as complementary to the standard cross-sectional metrics. The

use of criteria relying on time-series properties of returns and consumption growth offers additional,

often-overlooked in the asset pricing literature, dimensions along which pricing models should be

evaluated and according to which business-cycle consumption appears to fare satisfactorily.

We expand on these three contributions in this Introduction before turning to a formal treat-

ment. Our analysis begins with a model for consumption growth gt+1 = log ct+1

ct
which expresses

it as gt =
∑J

j=1 g
(j)
t + π, where the g

(j)
t s are mean-zero frequency-specific consumption details -

each detail being uniquely identified by its level of persistence - and π is a mean term. Each

3



component is associated with fluctuations between 2j−1 and 2j quarters. Importantly, the shocks

determining individual components are, in general, not aggregates of high-frequency shocks. They

are, instead, frequency-specific as well as time-specific. This modeling device represents a depar-

ture from classical time-series specifications (see Bandi, Perron, Tamoni and Tebaldi, 2013, BPTT

henceforth), one which represents, in our context, the idea that different components of the con-

sumption process may be the result of uncorrelated (across layers) random shocks with different

sizes and different half-lives. The separation into J+1 details, with J > 1, gives us more granularity

in the analysis of fluctuations with different cycles that is the case with traditional (2-component)

filters of the Beveridge-Nelson type (see Beveridge and Nelson, 1981). This granularity is cru-

cial to evaluate the differential impact of various consumption details on risk premia. Write the

generic asset i’s excess return as Reit,t+1 =
∑J

j=1R
ei(j)
t,t+1 + η, where the symbols have the same in-

terpretation as for gt. We show that the size and book-to-market portfolios are suitably priced

by Cov
[
g

(4)
t+1 + g

(5)
t+1, R

ei(4)
t,t+1 +R

ei(5)
t,t+1

]
(or the corresponding beta) where g

(4)
t+1 + g

(5)
t+1 is business-

cycle consumption, the above-mentioned sub-component of the consumption process representing

(business-cycle) fluctuations with periodicity between 2 and 8 years.

As stressed, the proposed framework has implications for the asset pricing literature relying on

aggregation. An interesting question to ask is whether there are subsets of frequencies over which

pricing models, like the traditional CCAPM, fare satisfactorily. This question has been addressed in

the time domain (e.g., Bandi et al., 2011) and, as is natural, in the frequency domain (e.g., Berkowitz,

2001, Cogley, 2001, and Yu, 2012). A consistent conclusion of this line of work is that the fit of the

model improves as the horizon increases, thereby providing some support for the implication that

asset pricing puzzles are largely short-term phenomena having to do with frictions. The focus of the

above literature is on long-run returns. A related, but different, question is: at which frequency do

the shocks that matter to price short-term returns of the kind routinely used in asset pricing tests

operate? This issue has also been studied in the time domain (e.g., Bansal and Yaron, 2004, Bansal,

Dittmar, and Kiku, 2009, and Hansen, Heaton and Li, 2008) as well as in the frequency domain

(Dew-Becker and Giglio, 2013). We operate in a time-frequency domain and provide an explicit

consumption/return data generating process which expresses all processes as sums of uncorrelated

components (and, therefore, shocks) with periodicity of different length. Our decomposition, and the

resulting decomposition of the overall covariance between consumption growth and asset returns into

sub-covariances (one for each frequency), is explicit about the role of consumption shocks operating
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at different scales for the pricing of short-term returns. Importantly, since aggregation reveals low-

frequency relations (and consumption betas defined on low-frequency components are shown in the

paper to capture cross-sectional risk premia), the proposed framework also translates into a price

formation mechanism yielding effective cross-sectional pricing for low-frequency returns. In this

sense, our scale-based decompositions nicely tie low-frequency consumption dynamics to both the

pricing of long-run returns (as in, e.g., Daniel and Marshall, 1997) and that of short-run returns (as

in, e.g., Bansal and Yaron, 2004).

Ortu, Tamoni, and Tebaldi (2013) also decompose consumption growth into components with

heterogeneous levels of persistence. They relate selected consumption components to observable eco-

nomic proxies and discuss the implications of persistence heterogeneity for the market risk premium.

The present paper introduces a notion of beta written as a suitable aggregate of component-specific

betas and studies the impact of consumption risk defined on details of consumption growth for

asset pricing. We discuss the implications for the asset pricing literature relying on various forms of

aggregation (e.g., Daniel and Marshall, 1997, and Parker and Julliard, 2005) of a novel data gener-

ating process in which cross-sectional variation in risk compensations is determined by scale-specific

consumption risk. As a result of this analysis, we show formally that Daniel and Marshall’s 2-year

factor is readily justified by our business-cycle consumption factor.

Koijen, Lustig, and Van Nieuwerburgh (2012) link the excess returns on high minus low book-to-

market portfolios to business-cycle risk. To identify the relation between returns and macroeconomic

activity, Koijen et al. (2012) adopt an event-time approach which exploits the role of the Cochrane

and Piazzesi (2005) factor as a mediating variable. Similarly to Koijen et al. (2012), we emphasize

the role played by business-cycle dynamics in cross-sectional pricing. Differently from Koijen et al.

(2012), our results stem from a novel notion of component-wise consumption beta which re-affirms

the role of (low frequency components of) consumption as a key state variable. Both Koijen et

al. (2012) and this paper point to the need for new approaches (such as, investigating windows

around low value return events or, in our case, consumption betas over alternative scales and/or

aggregation horizons) intended to make the relation between asset prices and macroeconomic growth

more transparent.

We find that accounting for persistence heterogeneity in consumption is important for interpret-

ing differences in risk compensation across assets. We also show that it is key for capturing the

joint dynamics of consumption growth and returns across different time horizons. To this extent, in

5



its third contribution, the paper uses a variety of metrics intended to evaluate the pricing ability of

a model in which a business-cycle component of the consumption process is the main determinants

of the cross-sectional dispersion in risk premia.

First, the model generates positive consumption growth autocorrelations up three lags (quarters)

and largely insignificant autocorrelations thereafter. This finding is consistent with data.

Second, following Parker and Julliard (2005) who define risk in terms of covariances with respect

to ultimate consumption (Cov
[
gt,t+h+1, R

ei
t,t+1

]
with h large), we show that the proposed pricing

model closely reproduces their documented hump-shape pattern of R2s with a peak corresponding

to a time period between 2.5 and 3 years. Averaging, as in the definition of Parker and Julliard’s ul-

timate consumption, reveals persistent components by eliminating short-term fluctuations (BPTT,

2013, for a formal treatment). Thus, there is an important conceptual link between ultimate con-

sumption and a data generating process, like the one we propose, in which persistent components

of the consumption process with business-cycle fluctuations drive risk premia.

Third, we look at predictability of consumption growth as in Piazzesi (2001). In this context,

we report the (average, across stocks) covariance between future consumption growth and current

excess returns (Cov
[
gt+h,t+h+1, R

ei
t,t+1

]
) to show that, barring short-term seasonal patterns, the

component model yields the consumption predictability found in the data.

Finally, as suggested by Cochrane and Hansen (1992), we examine the equity premium at long

horizons, namely the (average, across stocks) covariance between long-run consumption growth and

long-run excess returns divided by the horizon ( 1
hCov

[
gt,t+h, R

ei
t,t+h

]
). In the data, this standardized

covariance is typically found to be hump-shaped: it increases up to about 2 years before decreasing

monotonically. Our component model for consumption reproduces this pattern satisfactorily.

We view our approach as contributing to a growing literature that seeks to improve the empirical

performance of the consumption-based asset pricing model by redefining the relevant measure of

consumption. In particular, several recent studies propose alternative notions of consumption to

address measurement issues for the purpose of asset pricing. For example, Jagannathan and Wang

(2007) show that the CCAPM performs better in annual data when consumption growth is measured

over the fourth quarter. Aı̈t-Sahalia et al. (2004) find that luxury goods have greater pricing

ability than aggregate consumption. Savov (2011) proxies for consumption using data on municipal

solid waste and finds that garbage growth is priced in the cross-section of US and international

portfolio returns. Da and Yun (2010) and Chen and Lu (2012) report similar results when using
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electricity consumption and carbon dioxide emissions to proxy for consumption. Exploiting the

information in micro-level household data, Malloy et al. (2009) use stockholder consumption to

price the size and value portfolios. Yogo (2006) studies the role of durable consumption in cross-

sectional pricing. Qiao (2013) and Kroencke (2013) use notions of “filtered consumption” from

macroeconomic variables and “unfiltered consumption”, respectively, to address the shortcomings

of traditional NIPA consumption while supporting the need for a cleaner consumption measure for

asset valuation.

Rather than proposing an alternative measure of aggregate consumption, this paper relies on

the standard ”non-durable plus services” consumption series. Starting off with the premise that

signal (priced consumption risk) and noise may be frequency-specific, we extract the priced com-

ponents of the consumption process and identify the frequency over which they operate. While

it is natural for us to begin with the most traditional notion of consumption, we emphasize that

our suggested frequency/time-based approach, and data generating process, may be applied to any

other consumption measure. To this extent, we conclude our discussion by examining alternative

consumption series. Importantly, the methods could also be applied to any other factor, other than

consumption. For any assumed factor, the proposed approach appears to be ideally suited to shed

light on the relative importance of dynamics at different frequencies. In this sense, the paper’s

contribution has a general methodological content, one to which we now turn.

2 A linear scale-based stochastic discount factor

The most classical utility-based asset pricing formula states that

Et[R
i
t,t+1mt+1] = 1, (1)

where mt+1 is a stochastic discount factor and Rit,t+1 is a generic asset i’s uncertain return. One

implication of Eq. (1) is that, after taking dividends into account, absent risk-neutrality, prices are

martingales only once the objective probabilities are suitably modified by the change of measure

mt+1.

In terms of risk compensations in excess of the risk-free asset Rf , one could write

Et[(R
i
t,t+1 −Rf )mt+1] = Et[R

ei
t,t+1mt+1] = 0, (2)
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or, equivalently, after integrating time t information out,

E[Reit,t+1mt+1] = 0,

which immediately leads to the unconditional beta-representation

E[Reit,t+1] = −λ
Cov

[
mt+1, R

ei
t,t+1

]
Var[mt+1]

= −λβi,

where λ = Var[mt+1]
E[mt+1] .

Is aggregate consumption growth too coarse a measure to deliver meaningful quantities of risk

and, consequently, to “imply” meaningful expected returns? We address this issue by working with

scale-time decompositions for both consumption growth and the excess returns on test assets and

by assuming that mt+1 is driven by consumption details. Write

gt+1 =
6∑
j=1

g
(j)
t+1 + π (3)

and

Reit,t+1 =
6∑
j=1

R
ei(j)
t,t+1 + η. (4)

Using Eq. (3), define

mt+1 = a−
6∑
j=1

bjg
(j)
t+1. (5)

The details
{
g

(j)
t+1, R

ei(j)
t,t+1

}
may be thought of as uncorrelated, linear autoregressive processes with

a scale-specific autoregressive parameter ρj and scale-specific shocks defined on the dilated time

t− 2j of each individual scale. Because j is measured in terms of quarters, each detail is associated

with periodic fluctuations between 2j−1 and 2j quarters.

Since the data spans a time frame of about 50 years, our chosen lowest frequency component

(J = 6, in the notation used above) strikes a compromise between identifiability (higher frequency

details are easier to identify) and richness of the model (the larger the number of details, the richer

the decomposition). Such a component captures fluctuations between 8 years and 16 years. We

will show that a large percentage of the pricing ability of consumption growth is associated with
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scales lower than J = 6 and corresponding with business-cycle periodicities of 2 to 8 years. Through

(business cycle-like) fluctuations in the consumption components, we will generate directly (business

cycle-like) fluctuations in the stochastic discount factor, a feature which was discussed by Parker and

Julliard (2005) as being empirically warranted We will also provide an alternative - but natural, in

our view - channel through which hard-to-detect persistent components in the consumption process

affect asset prices, the role of persistence in consumption for asset pricing being highlighted in

influential, recent work (e.g., Alvarez and Jermann, 2005, Bansal and Yaron, 2004, and Hansen,

Heaton, and Li, 2008).

The decompositions in Eqs. (3) and (4), along with autoregressive dynamics for the details, trans-

late into aggregated processes
{
gt+1, R

ei
t,t+1

}
for which a generalized Wold representation holds, one

in which the time series are linear combinations of shocks that are both time- and frequency-specific.

This representation (heavily used in the simulations in Section 5) captures the idea that economic

time series may be suitably interpreted as the result of a cascade of shocks occurring at different

times and different frequencies. The representation separates us from traditional approaches in

time series. It also separates us from existing methods in the multi-resolution literature. As for

the later case, we are not simply expressing a conventional time series in terms of its details. If

we were to do so, the low-frequency shocks would solely be suitable aggregates of high-frequency

shocks, thereby leading to a conventional Wold representation. We are modelling data generating

processes for which the resulting time series are the sum of details affected by scale-specific shocks

(see BPTT, 2013, for details).

Denote now by
{
g

(j)

k2j
, R

ei(j)

k2j

}
the details sampled every 2j times. Ortu et al. (2013) and BPTT

(2014) refer to these sub-series of the original details defined on chronological time as decimated

series. For each scale, the decimated series are designed to capture all essential information about

dynamics at the corresponding frequency (Appendix A provides a discussion). Returning to Eq.

(5), the uncorrelatedness of the mean-zero details suggest that one should be able to write

βi =

6∑
j=1

w(j)β
(j)
i , (6)

where β
(j)
i = Cov

[
g

(j)

k2j
, R

ei(j)

k2j

]
/Var

[
g

(j)

k2j

]
and w(j) = −bj

Var
[
g

(j)

k2j

]
Var[mt]

. In other words, we should

be able to express βi as a weighted average of scale-specific consumption betas β
(j)
i with weights
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w(j) given by the relative contribution of individual consumption details to the overall variance of

the stochastic discount factor. Said differently, there should not be any allowance for cross-scale

covariance terms.

The following proposition shows formally that our assumed filtering method for the compo-

nents relying on Haar transforms is effective in yielding exactly this result in-sample.3 We refer

to Whitcher et al. (2000) for an analogous (auto-)covariance decomposition in the presence of

overlapping observations.

Proposition (Disaggregating the beta into component-wise betas.) Should a Haar filter

be applied to
{
gt+1, R

ei
t,t+1

}
, the resulting estimated beta would conform with Eq. (6) exactly.

Proof. See Appendix.

Importantly, the Proposition leads to a (theoretical and empirical) beta formulation conveniently

expressed in terms of covariances between contemporaneous details of the consumption growth and

return processes, namely

E[Reit,t+1] =
6∑
j=1

λjβ
(j)
i , (7)

where λj = RfbjVar
[
g

(j)

k2j

]
. Eq. (7) can be viewed as a linear factor model in which the factors are

the consumption details. This model will be evaluated in the next Section.

2.1 Interpreting the CCAPM as a restriction

Under a constant relative risk-aversion utility function u(ct) =
c1−γt
1−γ and a simple approximation,4

Eq. (1) yields the following expected return-beta representation

Et[R
ei
t,t+1] ≈

small ∆ct+1

γCovt

[
log

ct+1

ct
, Reit,t+1

]
= γCovt

[
gt+1, R

ei
t,t+1

]
= λt βi,t , (8)

3In this section, we focus on economic logic and, therefore, do not discuss identification by virtue of Haar filters
formally. We refer the reader to Appendix A for additional information.
We, however, point out right from the start that, while alternative filters could have been employed without affecting
the empirical results, using Haar filters is convenient. In particular, they allow us to be concise - as well as formal -
about the relation between scales and different levels of aggregation (discussed in Section 5), thereby allowing us to
focus on economic logic without unnecessary technical complications. Because the evaluation of the implications of
our proposed approach for the cross-sectional asset pricing literature relying on aggregation is a core subject of our
analysis (and Section 5 is devoted to it), the structure of Haar filters appears particularly convenient for our purposes.

4Ignoring the discount factor, write mt+1 =
u′(ct+1)

u′(ct)
=

(
ct+1

ct

)−γ
=

(
∆ct+1

ct
+ 1

)−γ
≈ (∆ log ct+1 + 1)−γ ≈

1− γ∆ log ct+1 when ∆ct+1 is small.
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where λt = γVart(gt) and βi,t = Covt
[
gt+1, R

ei
t,t+1

]
/Vart [gt+1]. Similarly, in unconditional terms,

we have

E[Reit,t+1] ≈
small ∆ct+1

λ βi (9)

where λ = γVar(gt) and βi = Cov
[
gt+1, R

ei
t,t+1

]
/Var [gt+1]. The interpretation of Eqs. (8) and

(9) is standard and leads to the classical CCAPM: the risk of any asset should be measured by

the covariance of the asset’s return with respect to consumption growth. Assets whose returns are

relatively lower in states of nature in which consumption growth is lower are perceived as riskier

and should, therefore, require a higher risk compensation, leading to higher expected returns in

excess of the risk-free rate.

Hence, the CCAPM can be viewed as a restriction on the model in Eq. (7), one in which bj = γ

for all j: the pricing impact of different consumption details is assumed to be the same across scales.

The restriction, i.e., the traditional CCAPM, is not validated by data. Regardless of the sampling

period, a broad literature has documented that differences in average excess returns across US assets

do not appear to be justifiable based on the corresponding differences in the covariance of the assets’

returns with respect to aggregate consumption growth.

Using data on the 25 FF portfolios sorted on size and book-to-market between 1963:Q1 and

2013:Q4, as well as data on consumption of non-durables and services, seasonally-adjusted in 1996

chain-weighted dollars,5 we confirm this standard result.

Figure 1 plots the average returns on the portfolios. It shows the typical decreasing pattern

across size (from small to large) with the sole (also typical) exception of the first value quintile for

which the trend is largely reversed. We will return to the first value quintile, and the first size/value

portfolio in particular, in what follows. Similarly, the figure displays an increasing pattern of average

portfolio returns along the book-to-market dimension, i.e., the well-known value premium.

[Insert Figure 1 about here.]

Figure 2–Panel A plots average excess portfolio returns (on the vertical axis) against expected

excess returns implied by the unconditional specification in Eq. (9). Predicted returns do not align

with historical returns, the largest deviations corresponding with portfolios in the first and in the

last value quintile.

5For complete information on the data, we refer the interested reader to Appendix C.
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[Insert Figure 2 about here.]

We conclude this section by pointing out that Gençay et al. (2003, 2005) use scale-specific market

return betas, βi(j), as regressors in cross-sectional regressions with return details, R
ei(j)
t , in order

to evaluate individual (i.e., one for each scale) versions of the CAPM. We are, instead, interested

in the pricing ability of alternative consumption components for aggregate returns (rather than for

individual layers of the return process) as needed in asset pricing applications. We are also interested

in the mapping - for pricing purposes - between frequency and aggregation, something which we

formalize below. Our analysis leads to the explicit provision of a data generating process for both

consumption and returns capable of reconciling both cross-sectional and time-series dynamics for

purposes of asset valuation.

We now turn to the specification in Eq. (7).

3 Scale-specific betas and lambdas

In this section, we first quantify the exposures of the returns on the 25 FF portfolios to consumption

risk over alternative scales. We then characterize the frequency-wise risk compensations.

As is customary in the literature, to evaluate the relative price of risk (λj) associated with

different scale-specific betas (βi(j)), we run time-series regressions of the type

R
ei(j)

k2j ,k2j+2j
= β0 + β

(j)
i g

(j)

k2j ,k2j+2j
+ εk2j+2j , (10)

with k ∈ Z. The difference between the standard time-series approach in asset pricing and our

(scale-wise) approach is that the regressions are on details sampled every 2j times.

Using the first-pass estimates β
(j)
i , we then estimate the specification

E[Re,it,t+1] = λ0 +

6∑
j=1

λjβ
(j)
i + αi (11)

with an intercept and, when appropriate, with restrictions on the λjs.

We begin by analyzing the behavior of β
(j)
i and λj across alternative scales and portfolios. Figure

3 plots the betas of the 25 FF portfolios associated with different scales. Going from the highest

frequency scale to our chosen lowest frequency scale (j = 6), we witness a rotation from size to
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value. In particular, the consumption detail corresponding to scale j = 2 (i.e., 6 months to 1 year)

translates into betas which align very effectively with average returns (as reported in Figure 1) in

the size dimension (higher betas for small firm portfolios, lower betas for large firm portfolios) while

failing to capture the second dimension, i.e., value. The betas corresponding to lower frequency

details of the consumption process (j = 3, 4, and 5) display improved alignment in the value space

without losing their ability to capture cross-sectional variability in risk premia across size. The scale

j = 5, among them, is the one for which the visual alignment of the betas across both dimensions

appears to be the best. The value premium, in particular, is captured rather effectively at this low

frequency (4 to 8 years). An important size tilt is, however, also present.

[Insert Figure 3 about here.]

While it is not hard to conjecture that the betas corresponding to scale j = 5 may be the most

effective in explaining cross-sectional variability in average returns, the preceding scale j = 4 may

represent an improvement in the size space. Interestingly, such an improvement is expected to be

brought about even by portfolios in the first value quintile. As documented in Figure 1, these are

portfolios for which the typical decreasing trend with size increases does not hold. Consistently, at

scale j = 4, the betas associated with the first value quintile have the same hump-shaped pattern

which characterizes average historical returns.

Table 1 reports the numerical values of the betas for all portfolios, along with their statistical

significance. Importantly, the largest betas correspond to the scales that, visually, seemed to matter

the most economically, due to their alignment along the size/value dimension: j = 2, j = 4, and

j = 5. Also, these betas are generally significantly differently from zero.

[Insert Table 1 about here.]

Table 2 contains multivariate estimates of the model in Eq. (11) with all lambdas set equal

to zero with the exception of the lambdas associated with j = 2, j = 4, and j = 5. The lambda

estimates corresponding with the fourth and the fifth scale are very statistically significant, whereas

the lambda estimate corresponding to the second scale appears to be insignificant (and negative,

in terms of its point estimate). The intercept is also statistically insignificant. The pricing errors

are small (whether they are measured by the root mean squared alpha or by the mean absolute

alpha) and the coefficient of determination is a rather high value of 46%. The numerical values
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of the prices of risk associated with scale four and scale five are rather similar, 0.997 and 0.982

respectively. This result is interesting. While mt+1 is in reduced-form, one can conjecture that the

risk price λj should depend on both the relative variance of the corresponding detail Var
[
g

(j)

k2j

]
and

a notion of scale-specific risk aversion, through the reduced-form parameter bj . If this were the

case, since λ4 ≈ λ5 and Var
[
g

(4)

k2j

]
≈ Var

[
g

(5)

k2j

]
in our data, such a notion of risk-aversion would be

stable across business-cycle scales.

[Insert Table 2 about here.]

Dropping the (previously insignificant) second component does not modify these findings in

any relevant way. The pricing errors increase, as expected, but only mildly. The coefficient of

determination decreases (to 39%) but not by much. This is a two-factor specification in which the

factors are, again, the fourth and the fifth component of the consumption growth process.

Going from a two-factor specification to a one-factor model in which the factor is a business-

cycle component (dubbed, earlier, business-cycle consumption) given by the sum of the fourth and

the fifth component is now natural. It is natural since the corresponding beta would be defined

as a linear combination - with weights depending on the relative contribution to total variance

of the corresponding consumption component - of the betas associated with the two consumption

components, i.e.,

βbcc =
Cov

[
g

(4)
t + g

(5)
t , R

ei(4)
t +R

ei(5)
t

]
Var

(
g

(4)
t + g

(5)
t

)
=

Cov
[
g

(4)

k2j
, R

ei(4)

k2j

]
Var

(
g

(4)

k2j

)
+ Var

(
g

(5)

k2j

) +
Cov

[
g

(5)

k2j
, R

ei(5)

k2j

]
Var

(
g

(j)

k2j

)
+ Var

(
g

(5)

k2j

)
=

Var
(
g

(4)

k2j

)
Var

(
g

(4)

k2j

)
+ Var

(
g

(5)

k2j

)β(4)
i +

Var
(
g

(5)

k2j

)
Var

(
g

(4)

k2j

)
+ Var

(
g

(5)

k2j

)β(5)
i

= $(4)β
(4)
i +$(5)β

(5)
i ,

where the second equality derives from the same argument leading to the Proposition in the previous

section. The pricing model would then be

E[Reit,t+1] = λ0 + λbccβbcc + αi. (12)
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Table 3 reports the results. The pricing errors are only 8 basis point, per year, higher than in the

unrestricted case, with a coefficient of determination of 36%, a marginal reduction over the earlier

specification which explicitly separated the two components. The constant remains insignificant.

The estimated price of risk λ̂bcc is significantly estimated with a t-statistic of about 3.5. We note

that, since in our data $(4) ≈ $(5) ≈ 1
2 , the one-factor model can be viewed as a restriction on the

two-factor model. The restriction resides in b4 = b5. Should the difference in the reduced-form bjs

be driven structurally by different levels of risk aversion across horizons, then the restriction would

imply similar aversion to risk over the short end and the long end of the business cycle. Regardless

of structural interpretations, this empirical evidence lends economic and statistical support to a

parsimonious one-factor specification.

[Insert Table 3 about here.]

In essence, there are sound economic reasons to place emphasis on both the fourth and the fifth

scale with the sum of the two (business-cycle consumption) performing virtually as well as a less

restricted two-factor specification. These two scales capture size and value effects in different, but

complementary, ways. Reflecting the rotation of the scale-specific betas from size to value as we

transition from higher frequency details of the consumption process to lower frequency details, the

fourth scale is quite effective along the size dimension. While offering an appealing size tilt, the

best-performing fifth scale is more effective along the value dimension. As stressed earlier, these

two contiguous scales jointly span the accepted length of the business cycle capturing fluctuations

in consumption growth between 2 and 8 years.

4 Temporal aggregation and asset prices

In this section, we show the sense in which our proposed methodology for risk-detection and pricing

is linked to temporal aggregation and, as such, has implications for the long-run asset pricing

literature.

In order to do so, we use the structure of the Haar filters (used for the identification of the

time-series layers) to derive the expressions

1

2s

2s∑
i=1

gt+i := gt,t+2s =
6∑

j=s+1

g
(j)
t+2s + π

(6)
t+2s (13)
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and
1

2s

2s∑
i=1

Reit+i := Reit,t+2s =

6∑
j=s+1

R
ei(j)
t+2s + η

(6)
t+2s , (14)

where s = 0, 1, . . . , 5 denotes the aggregation level and
{
π

(6)
t+2s , η

(6)
t+2s

}
are long-run averages (see

Appendix A).6 Both equations imply that aggregation of the time series of interest over suitable

horizons uncovers information at different scales or, more precisely, for scales that are higher than

the one corresponding to the aggregation level (BPTT, 2013, for a thorough treatment).

The expressions also make apparent the link between the scale-wise time-series regression in Eq.

(10) (reported here, for convenience, again)

R
ei(s)
t+2s = β0 + β

(s)
i g

(s)
t+2s + εt+2s ,

and the long-horizon regressions

Reit,t+h = β0,h + βi,hgt,t+h + ut+h. (15)

Letting h = 2s−1, and using Eqs. (13) and (14), the long-horizon regressions can be viewed as

filtering out noisy high-frequency components at scales j < s, thereby capturing co-movements

between the components g
(s)
t and R

ei(s)
t . In this sense, we expect the long-horizon betas βi,h to

behave similarly to the β
(s)
i at scale s. The sole difference between the two is that βi,h should also

be influenced by the co-variation between components g
(j)
t and R

ei(j)
t at higher scales j > s. Hence,

it should also reflect lower frequency fluctuations.

In sum, our proposed data generating process and identification framework justify an alterna-

tive approach to the evaluation of pricing models: in order to measure risk exposure, one may run

long-horizon regressions to filter out the noisy components in the factor(s) (consumption, in our

case) and returns. This alternative route, however, requires the choice of an aggregation horizon.

Our previous findings document that business-cycle frequencies between 2 and 8 years, i.e., the fre-

quencies captured by the components j = 4 and j = 5 (jointly defining business-cycle consumption),

are key to explaining cross-sectional dispersion in average returns on portfolios sorted based on size

6Eqs. (3) and (4) define our assumed data generating processes. Eqs. (13) and (14) are true, by construction,

given our employed filter. For J = 6, the long-run averages π
(6)
t+2s and η

(6)
t+2s are close to constant values. Hence, when

s = 0, Eqs. (13) and (14) approximately yield Eqs. (3) and (4), as expected of a valid filter.
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and value. To this extent, in agreement with Eq. (15), we choose s = 4. As a consequence, the

long-horizon regression in Eq. (15) relies on returns and consumption growth aggregated over two

years. In fact, h = 2s−1 = 8 quarters.

We argued that, at this horizon, temporal aggregation eliminates higher-frequency components

at scale j = 1, 2 and 3. One may now wonder how close is 2-year consumption growth to the

sum of the components at scale j = 4 and j = 5? Figure 4 displays the aggregated (over 2 years)

consumption growth series along with business-cycle consumption. We observe that the two series

strongly co-move, a fact also confirmed by a correlation of 0.86. More formally, setting s = 3 in

Eq.(13), one obtains

gt,t+23 −
(
g

(4)
t+23 + g

(5)
t+23

)
= g

(6)
t+23 + π

(6)
t+2s ,

i.e., the difference between consumption growth aggregated over 2 years and business-cycle consump-

tion is driven by a detail, g
(6)
t+23 , operating at lower than business-cycle frequencies (scale j = 6) and

a long-run average, π
(6)
t+2s . When g

(6)
t+23 is relatively small in terms of its volatility, then we expect

aggregation to perform very satisfactorily as a risk-extraction mechanism. This is the case in our

data, as we discuss further below.

Both gt,t+23 and g
(4)
t+23 + g

(5)
t+23 decline around NBER recessions. These dynamics are analogous

to those of variables known to be fluctuating with the business-cycle, like the term-spread and

credit spreads (see Ortu et al., 2013, for evidence). To illustrate this point, in Figure 5 we report

the logarithm of Campbell and Cochrane’s local coefficient of risk aversion, as well as gt,t+23 , over

two different horizons. The correlation between the two series over the longer horizon 1995:Q4-

2013:Q4 is about −67%. This outcome is only mildly due to extreme dynamics between 2006:Q4

and 2013:Q4. Excluding this last period only lowers the (absolute value of the) correlation to −53%.

[Insert Figures 4 and 5 about here.]

4.1 The short-term compensation of long-run betas

Motivated by this analysis, one would expect a CCAPM model based on long-horizon betas to ex-

plain short-term returns. This is, as demonstrated above, an implication of our proposed component-

based data generating process. To this extent, we test the specification

E[Reit,t+1] = λ0 + λhβi,h + αi (16)
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and compare it to Eq. (12).

Figure 6, Panel A, provides a graphical representation. Average returns are rather well explained

by the βi,hs, the first size and value portfolio being a typical exception. The model achieves an R2

of 26%, with a mean absolute pricing error of 1.75 percent per year (c.f. Table 4-Panel A). The

estimated constant λ0 is, as earlier, not significant. These findings are comparable to (but less

strong than) the ones in Table 3-Panel B, where the consumption betas were defined on the sum of

two business-cycle components only.

[Insert Table 4 about here.]

[Insert Figure 6 about here.]

Inferior performance as compared to a pure component model is not surprising, in light of the

discussion in the previous subsection. Aggregation to 2 years preserves the priced components (the

fourth and the fifth) as well as the sixth. We find that 6% of the overall consumption variance is

explained by the sixth component, a considerably lower number than the 30% figure corresponding

to business-cycle consumption. Since the contribution of the sixth component to the overall variance

of the process is limited, it is expected that this component would affect estimated covariances and

pricing somewhat, but only marginally.

The interaction between the sixth component and the small growth portfolio also has an impact.

Should we exclude this portfolio, the model with betas on aggregates and the model with component-

wise betas would fare similarly both in terms of R2 (increasing to about 46%) and pricing errors

(reducing to about 1.54 percent per year).

It is important to notice that this analysis hinges on simple long-run returns. In light of the

mapping between aggregation and component-extraction illustrated above, summing returns - as in

the computations of simple returns - is natural. Interestingly, however, the use of compounded long-

run returns, as generated by the re-investment of past returns as well, delivers superior findings.

Table 4, Panel B, shows that, in this case, the R2 reaches a value of 49%, with a mean absolute

pricing error of 1.34 percent per year. Figure 6, Panel B, offers a visual representation.

4.2 Revisiting (and justifying) the approach in Daniel and Marshall (1997)

We have shown how one can employ - and, importantly, justify - long-horizon betas in the study

of short-run premia. We emphasized how the use of these betas can be motivated in the context of
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a component model of the type we propose. Since long-run average returns have the same pattern

(across test assets) as short-run average returns, the proposed model provides a formal justification

for relating long-horizon returns to long-run betas as well (as in the work of Bandi et al., 2011).

In this sense, our scale-based consumption decomposition nicely ties low-frequency consumption

dynamics to both the pricing of long-run returns (as in, e.g., Daniel and Marshall, 1997) and to

that of short-run returns (as in, e.g., Bansal and Yaron, 2004).

In a well-known contribution, Daniel and Marshall (1997) emphasize that both the equity pre-

mium and the risk-free rate puzzles may disappear, in the presence of the right preference specifi-

cation, once returns and consumption growth are computed over a 2-year horizon. We too provide

support for a 2-year horizon of aggregation. We justify aggregation over 2 years formally as a way

to eliminate consumption cycles higher than what was shown to be the relevant, for pricing, 2 to 8

years frequency. Differently from Daniel and Marshall (1997), however, we focus on cross-sectional

pricing.

In their conclusions, Daniel and Marshall (1997) emphasize that frictions may affect the link

between returns and consumption at horizons shorter than 2 years, thereby leading to failures of the

classical consumption model. Since they also find the validity of this model (for the equity premium

and the risk-free rate) to be questionable at frequencies lower than 2 years, they wonder ”what

economic model would disrupt this linkage at very long horizons” and, effectively, have different

implications at different horizons. By allowing for different risk quantities βi(j) across different

layers of the consumption stream and, possibly, for different prices of risk γj , we explicitly break

the link between alternative horizons of aggregation and address this issue directly. In a time-series

context closer to the framework in Daniel and Marshall (1997), BPTT (2013) provide further details

about the implications of a component model for differential outcomes upon aggregation.

While the asset pricing literature has a tendency to focus on cross-sectional metrics (like pricing

errors and coefficients of determination), more structural approaches to pricing imply temporal

dynamics as well. Focusing on metrics derived from these dynamics adds much needed dimensions

to the evaluation of any proposed approach. In what follows, we apply different time-series metrics

to the model and show that some reported stylized facts are, in fact, hard to replicate without a

component-based specification.
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5 The time-series dynamics of returns and consumption growth:

metrics

What are the implications of the presence of heterogeneous details in consumption growth for the

joint dynamic properties of consumption and asset returns? In order to address this issue, we

simulate return and consumption processes according to a component model motivated by the

previous empirical analysis. We then employ the simulated process to verify the extent to which

several findings regarding the joint behavior of asset returns and consumption growth over horizons

of different lengths are satisfactorily replicated.

The mean-zero return details relate to the mean-zero consumption details according to the

following specification:

R
i(j)
t,t+1 =


β

(j)
i g

(j)
t+1 for j = 4 and 5,

ε
(j)
i,t otherwise

,

where ε
(j)
i,t is N(0, σ

(j)
i ) and σ

(j)
i is chosen so as to match the variance of the component R

i(j)
t,t+1

at scale j for asset i. In other words, only the fourth and the fifth component of consumption

and returns correlate with each other, their relation being based on the previously reported betas

in Table 3. All other components are assumed to be white noise shocks with suitable variances.

Importantly, all shocks are scale-specific and, contrary to classical time series modeling, they are,

in general, not sums of high-frequency shocks.

In essence, returns are generated solely based on two details of the consumption process along

with (noise) components at all other scales. For consistency with a pricing model which includes

both the 4th and the 5th scale through a business-cycle consumption factor, we further impose

E[Rit,t+1] = λbccβbcc = λbcc

(
1

2
β

(4)
i +

1

2
β

(5)
i

)
, (17)

using $(4) ≈ $(5) ≈ 1
2 , where the betas and the lambdas are estimated from the data. Since the

consumption details are mean zero, the restriction implied by Eq. (17) is imposed by simply adding

a constant term to all simulated return series.

In addition to evaluating the full model further, below we provide a rich assessment of the

relative contribution, to asset pricing, of shorter (2 to 4 year) cycles in consumption (as represented
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by g
(4)
t+1) in addition to the 4 to 8 year cycles delivered by the main component, i.e., g

(5)
t+1. We begin

with the autocorrelation of consumption growth.

5.1 Autocorrelation of consumption growth

In the data, the consumption growth autocorrelation is positive and significant up to the third

quarter. The values implied by the model are very plausible. Figure 7 provides the empirical

autocorrelations along with 95% confidence bands and their model-implied counterparts. The first

and the second quarter autocorrelations are very closely matched. The third quarter autocorrelation

implied by the model is slightly lower than that in the data and outside of the corresponding

confidence bands. However, it is clearly positive just like in the data. Keeping in mind that the

addition of components, or details, of the consumption process may easily reconcile these small

differences, a simple specification with two details (the 4th and the 5th) appears to capture critical

first-order phenomena in the consumption dynamics.

[Insert Figure 7 about here.]

5.2 Parker and Julliard’s effects

Parker and Julliard (2005) find that consumption growth measured over long horizons (dubbed

ultimate consumption) is an effective driver of risk premia. In other words, it leads to covariances

Cov
[
gt,t+h+1, R

ei
t,t+1

]
which, for appropriate values of h (corresponding to about 3 years in their

framework), nicely align with historical average returns in the same size/value space investigated

here and, ubiquitously, in much of the literature. Parker and Julliard (2005) report a hump-shape

in the coefficients of determination of their pricing model as a function of the horizon over which

consumption growth is calculated. Their R2s are monotonically increasing up to 11 quarters before

decreasing steadily thereafter. For their efficient GMM estimates, the reported R2 at the peak is

around 38%.

We apply the same methodology as in Parker and Julliard (2005) to our simulated data (Figure

8). When using only one dominant component (the 5th), the hump-shape is reproduced with a peak

between 9 and 10 quarters and a corresponding R2 of about 23% (Figure 8, solid line). Adding only

one additional component (the 4th) preserves the location of the peak and raises the R2 to about

29% (Figure 8, solid line with circles). Said differently, with two details only, the 4th and the 5th,
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the adopted specification translates into R2 spikes at horizons around two years and a half and very

close to the 11-quarter time frame emphasized by Parker and Julliard (2005).

[Insert Figure 8 about here.]

As illustrated formally by BPTT (2013), averaging is an effective mechanism to bring to light

persistent details while eliminating contaminations with more frequent cyclical fluctuations. In

this sense, the mapping between Parker and Julliard’s 3-year horizon and components with cycles

between 2 and 8 years is not surprising. On the one hand, ultimate consumption can be justified, at

a fundamental level, by a data generating process, like the one we propose, in which business-cycle

components of the consumption process play a dominant role in the determination of risk premia.

On the other hand, the averaging implicit in the definition of ultimate consumption may provide

information about the frequency at which the relevant (for asset pricing) details of the consumption

process operate. Their 3-year horizon is suggestive of the importance of business-cycle fluctuations

in consumption. These fluctuations are captured explicitly by our reported 4th and 5th detail.

5.3 Predictability of consumption growth

A related object of interest, focusing on risk rather than on its pricing, is the covariance of the portfo-

lio returns Reit,t+1 with respect to future consumption growth gt,t+h+1, namely Cov
[
gt,t+h+1, R

ei
t,t+1

]
.

Figure 9 plots this quantity over time along with 95% confidence bands constructed using Newey-

West standard errors (dotted lines). The contemporaneous covariance (h = 0) is non-zero. Its value

increases up to 7 quarters. Beyond that time, the numbers decrease slightly with the horizon, but

the confidence bands become larger.

The figure shows that the covariance pattern in the data is well replicated by the adopted

specification. In a model with only the 5th component, the implied covariances are hump-shaped,

as in the data, and close to the empirical ones, but with a peak around 10 quarters (Figure 9–Panel

A). Remarkably, the addition of the 4th component (in Figure 9–Panel B) leads to a close replication

of the trend in the empirical covariances up to 16 quarters (including the hump around 7 quarters).

[Insert Figure 9 about here.]

As suggested by Piazzesi (2001), this long-run risk measure can be decomposed into its individual
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elements, i.e.,

Cov
[
gt,t+h+1, R

e
t,t+1

]
=

h∑
i=0

Cov
[
gt+i+1, R

e
t,t+1

]
.

Figure 10 plots the individual elements under the summation sign, i.e., the slopes of the cumulative

covariance function in Figure 9. In the data, these slopes are positive up to horizon 8. Barring

seasonal fluctuations, a model solely inclusive of the 5th detail would fare quite well in replicating this

pattern of covariances (Figure 10–Panel A). It would, however, yield an excessively flat structure at

high frequencies. As earlier, the addition of the 4th component is successful in providing a solution

to this issue (Figure 10–Panel B). This component raises the value of the simulated covariances

precisely where needed (namely, at short horizons), thereby closely replicating the convex pattern

of the empirical covariances.

[Insert Figure 10 about here.]

5.4 The equity premium at long horizons

Following Cochrane and Hansen (1992), we conclude this analysis by focusing on the long-run

covariance between consumption growth and stock returns divided by the horizon, i.e.,

1

h
Cov

[
gt,t+h, R

e
t,t+h

]
.

For our data, this normalized covariance is hump-shaped with a peak around 2 years (Figure 11).

Using only the 5th detail gives us a hump at 3.5 years (Figure 11, Panel A). Introducing the 4th

detail improves, as before, matters, especially at short horizons (Figure 11, Panel B). In particular,

it relocates the hump around the correct time frame. Not only does the model capture the location

of the peak, it also does not predict a somewhat counterfactual high covariance of consumption

growth and stock returns at long horizons, an implication of the long-run risk model or models

entailing monitoring costs and heterogeneous agents in which only a fraction of households adjusts

consumption over discrete intervals. We return to this result below.

[Insert Figure 11 about here.]

This last observation leads to a broader point. The above criteria are stringent. They are

stringent in the sense that influential and successful, along a variety of important dimensions,
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asset pricing models may find them hard to meet. To this extent, we now turn to the analogous

implications for a model with external habit (Campbell and Cochrane, 1999) and one with long-run

risk (Bansal and Yaron, 2004).

5.5 Time series metrics and pricing models

Using the classical external habit model of Campbell and Cochrane (1999) with model parame-

ters provided therein, Figure 12 plots the terms 1
hCov

[
gt+h+1, R

e
t,t+1

]
(Panel A) and the terms

1
hCov

[
gt,t+h, R

e
t,t+h

]
(Panel B) for various horizons h. The implied covariances are substantially

larger than those in the data, particularly at high frequencies.

Figure 13 provides the same quantities for the long-run model of Bansal and Yaron (2004) using

parameters provided in Bansal, Kiku, and Yaron (2012). The outcome is even more striking. The

implied covariances are considerably larger than what is found in the data. Their pattern is also

monotonically increasing rather than hump-shaped, a pattern which is consistent with data and

is, as shown earlier, yielded by a component-model for consumption of the kind suggested in this

paper.

[Insert Figures 12 and 13 about here.]

Importantly, we do not view these metrics as lessening the relevance of models which have added

crucially to our understanding of price formation in financial markets. In light of their stringency,

we view them instead as providing support for an alternative dimension to asset pricing, one which

explicitly emphasizes the importance of explicitly separating - as in this work - dynamics at different

frequencies.

While our proposed methods have been introduced in a reduced-form linear specification for

the stochastic discount factor, they can be employed to enrich existing structural models in order

to create a separation between dynamics at alternative scales. One extension, in particular, that

we view as important is to justify structurally the potential presence of different levels of risk

aversion across frequencies, something that we allowed implicitly through the bjs and called earlier

scale-specific risk aversion. Important progress in this area is being made by Andries et al. (2014).
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6 Alternative measures of consumption

If business-cycle components matter for asset pricing, measures of consumption intended to address

the shortcomings of NIPA consumption should reveal similar effects as those reported above. If

these measures are less contaminated by short-term noise than NIPA consumption, identification

of the business-cycle components should also be more effective. This section focuses on Qiao’s

“filtered” consumption (Qiao, 2013), Kroenke’s “unfiltered” consumption (Kroenke, 2013), and

total consumption (e.g., Daniel and Marshall, 1997).

“Filtered” consumption is the result of principal component analysis on suitable macro variables

and a lasso regression of NIPA consumption growth on the principal components. Table 5 provides

results for a single factor model with “filtered” consumption as the factor (Panel A) and a two-factor

model built on extracted (two-to-four years and four-to-eight years) business-cycle components

(Panel B). The sum of the two business-cycle components has a 70% correlation with the aggregate

“filtered” series. As shown in the original paper, the betas with respect to “filtered” consumption

align satisfactorily with average returns, thereby yielding small pricing errors and a high R-squared

value of around 55%.7

Turning to a pricing model on the two business-cycle components (Panel B), the fit improves with

a reduction in the pricing errors and an increase in R-squared. What is, however, surprising is that,

contrary to NIPA consumption and the two additional series we examine below, the betas associated

with the 4-to-8 year “filtered” consumption component align negatively in the value dimension:

high value portfolios have a relatively lower covariation with the lower frequency business-cycle

component. This effect results into a precisely estimated, but negative, price of risk. We emphasize

that, while both business-cycle components continue to lead to an improved fit, the nature of the

betas with respect to 4-to-8 year business-cycle consumption (and the resulting negative price of risk)

is specific to “filtered” consumption. What is also specific to “filtered” consumption is the relative

variance weight of the 2-to-4 year and the 4-to-8 year components. While in all other consumption

series examined in this paper the contribution of the two components to the overall variance of

consumption is similar (thereby leading to similar weights in our proposed one-factor specification),

for “filtered” consumption the relative contribution of the higher (2-to-4 years) frequency component

is drastically larger. The behavior of the betas at scale j = 5 for the “filtered” consumption series

7Numerical differences between our results and Qiao’s results are the outcome of differences in portfolio choice (he
focuses on the ten size and value portfolios separately).
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might also be the outcome of differences in sample length.

[Insert Table 5 about here.]

“Unfiltered” consumption is the result of a process which unrevels the filter inherent in NIPA

consumption. Table 6 reports our findings. Coherently with the results in Kroenke (2013), aggregate

“unfiltered” consumption prices the cross-section of the 25 FF portfolios very satisfactorily (with

an R-squared of 59%). The correlation between the sum of the two business-cycle components and

the aggregate series is 77% in this case. When regressing average returns on the betas associated

with the two business-cycle components, we find evidence of a substantial improvement in the fit

(Panel B). The resulting R-squared is a remarkable 71%. Importantly for our purposes, the prices

of risk associated with the two components are very similar. Consistent with this result, turning

to a single factor model (Panel C) in which the two components are weighed by the corresponding

contribution to relative variance, as earlier, does not affect the fit relative to a two (business-cycle)

factor specification. In other words, the restriction of equal lambdas across components is supported

by the data. As for NIPA consumption, a single business-cycle factor performs very satisfactorily

relative to raw consumption.

[Insert Table 6 about here.]

Total consumption adds purchases of durables to nondurables and services (Table 7). In agree-

ment with the reported usefulness of durables in cross-sectional pricing (Yogo, 2006), the aggregate

series prices the size and value portfolios better than aggregate NIPA consumption (Panel A).

Focusing on the two business-cycle components improves matters along a variety of metrics: the

intercept becomes insignificant, the pricing errors decrease by 10% to 15%, the coefficient of de-

termination goes from 28% to 44%. Even in this case, the restriction of equal prices of risk across

components is supported by the data (Panel C versus Panel B). Again, the empirical performance of

one business-cycle factor is economically and statistically indistinguishable from that of a two-factor

specification.

[Insert Table 7 about here.]
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7 Further discussion and conclusions

The economic purity of the CCAPM has lead to a variety of approaches intended to reconcile the

appeal of consumption-based explanations of the pricing of risky assets with well-known empirical

regularities. The use of economically-motivated scaling factors in the definition of a stochastic

discount factor defined with respect to consumption (Lettau and Ludvingson, 2001) or the emphasis

on alternative utility specifications (and consumption dynamics) capable of suitably modifying a

stochastic discount factor, again, defined over consumption (Campbell and Cochrane, 1999, Bansal

and Yaron, 2004, and Hansen, Heaton, and Li, 2008, inter alia) are successful examples of this

reconciliation in the literature.

In this paper we step back a little and take an alternative view of the same issue. We suspect

that certain features (components) of the consumption process may matter for the purpose of

asset pricing, the relative impact of other components being economically lower. If we separate

the covariance between consumption growth and asset returns into sub-covariances (one for each

component of the consumption process and each component of the return process), it may be

the case that sub-components (i.e., sub-covariances) of the typical object of interest (the overall

covariance between aggregate consumption growth and asset returns) explain the observed cross-

sectional dispersion in average returns, whereas the overall covariance does not (the latter being

a typical finding). In other words, consumption cycles of different length may affect the pricing

of risky assets differently. In particular, high-frequency consumption cycles may solely represent

short-term noise attenuating the explanatory power of the classical consumption betas.

Consistent with this logic, after careful separation of the consumption components and using

portfolios sorted based on traditional dimensions like size and book-to-market, we find that priced

consumption risk may be defined in terms of the covariance of (business-cycle) asset return com-

ponents with a single business-cycle consumption factor with a periodicity between 2 and 8 years.

Said differently, the cross-sectional dispersion of the risk premia of common test assets depends

crucially on business-cycle fluctuations in consumption.

We show that, by zooming in onto the relevant (for pricing) layers of the consumption process,

explicit separation of heterogeneous (in terms of their persistence and periodicity) consumption

components leads to satisfactory quantities of risk, prices of risk, and pricing errors. While these

are ubiquitous, for good economic reasons, cross-sectional metrics, they may miss important time-
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series dimensions. To address this issue, we focus on suitable time-series criteria, namely consump-

tion growth autocorrelation, the hump-shaped pricing ability of the covariance between ultimate

consumption (as defined in Parker and Julliard, 2005) and returns, the hump-shaped structure of

long-run risk premia and the decaying pattern in consumption growth predictability. According

to all of these metrics, a heterogeneous-component model for consumption growth fares very sat-

isfactorily in addressing stylized facts about the joint dynamics of consumption and asset returns

over time. It does so while remaining within the appealing confines of a consumption-based linear

factor model yielding the classical CCAPM as a restriction, a model in which investors solely weigh

different layers of the consumption process differently for the purpose of asset pricing.

The separation of the stochastic discount factors into details operating over different scales is,

in our view, of separate methodological interest and can be applied to any factor, our focus being

on the standard “non-durable plus services” consumption series employed here in the context of a

reduced-form expression for the stochastic discount factor. We leave extensions of the methods to

alternative factors as well as to structural (component-based) approaches to asset pricing for future

work.
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A Decomposing Time Series along the Persistence Dimension

This section shows how to decompose a time series into components with different levels of persistence.8

Given a time series {gt}t∈Z we begin by constructing moving averages π
(j)
t of size 2j :

π
(j)
t =

1

2j

2j−1∑
p=0

gt−p, (A.1)

where π
(0)
t ≡ gt. Given the choice of sample size, it is readily observed that these moving averages satisfy

the iterative relation:

π
(j)
t =

π
(j−1)
t + π

(j−1)
t−2j−1

2
. (A.2)

In words each element π
(J)
t is the h−period moving average with h = 2J and time is consistently scaled by

a factor 2J . Next, we denote by g
(j)
t the difference between moving averages of sizes 2j−1 and 2j , i.e. :

g
(j)
t = π

(j−1)
t − π(j)

t . (A.3)

Intuitively, g
(j)
t captures fluctuations that survive to averaging over 2j−1 terms but disappear when the

average involves 2j terms, i.e. fluctuations with half-life in the interval
[
2j−1, 2j

)
. Accordingly, the moving

average π
(j)
t includes fluctuations whose half-life exceeds 2j periods. From now on, we refer to the derived

time series
{
g
(j)
t

}
t∈Z

as to the component of the original time series {gt}t∈Z with level of persistence j. Since

π
(0)
t ≡ gt, by summing up over j it follows immediately from (A.3) that:

gt =

J∑
j=1

g
(j)
t + π

(J)
t , (A.4)

for any J ≥ 1. In words, equation (A.4) decomposes the time series gt into a sum of components with half-life

belonging to a specific interval, plus a residual term that represents a long-run average.

Due to the overlap of the moving averages that define g
(j)
t , the decomposition (A.4) can lead to a

biased evaluation of the persistence of the time series gt. To address this issue we select the information in

the components g
(j)
t and π

(j)
t in a suitable manner. In particular, since by definition each component g

(j)
t

is a linear combination of the realizations gt, gt−1, . . . , gt−2j+1, to remove any spurious serial correlation

introduced by the overlapping of the moving averages we restrict our attention to the sub-series:

{
g
(j)
t , t = k2j , k ∈ Z

}
(A.5){

π
(j)
t , t = k2j , k ∈ Z

}
9 (A.6)

8This part of the appendix is drawn from Ortu, Tamoni, and Tebaldi (2013).
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We refer to these sub-series as to the decimated components at level of persistence j of the original time series.

Clearly, persistence in a decimated component is not an artifact; rather, it represents an actual fluctuation

of the original series with an half-life in the interval
[
2j−1, 2j

)
.

The process of decimation controls for spurious persistence by deleting from the components g
(j)
t and

π
(j)
t all and only the information irrelevant to reconstruct the original time series gt. Formally, this follows

from observing that for any J ≥ 1 one can define a linear, invertible operator T (J) that maps the decimated

components
{
g
(j)
t , t = k2j , k ∈ Z

}
, j = 1, ..., J and

{
π
(j)
t , t = k2j , k ∈ Z

}
into the time series {gt}t∈Z. To

illustrate how this works for J = 2 we first observe that in this case (A.1) yields:

π
(2)
t =

gt + gt−1 + gt−2 + gt−3
4

. (A.7)

Next we substitute (A.2) into (A.3) and let j = 1, 2 to obtain:

g
(2)
t =

π
(1)
t − π

(1)
t−1

2
=

1

2

(
gt + gt−1

2
− gt−2 + gt−3

2

)

g
(1)
t =

π
(0)
t − π

(0)
t−1

2
=

(
gt − gt−1

2

)

g
(1)
t−2 =

π
(0)
t−2 − π

(0)
t−3

2
=

(
gt−2 − gt−3

2

)
.

(A.8)

We then consider the system obtained by stacking (A.7) on top of (A.8), which in matrix notation becomes:


π
(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2

 =


1
4

1
4

1
4

1
4

1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0

0 0 1
2 − 1

2




gt

gt−1

gt−2

gt−3

 . (A.9)

Denoting by T (2) the (4× 4) matrix in (A.9), we notice that T (2) is orthogonal, that is Λ(2) ≡ T (2)
(
T (2)

)>
is diagonal. Moreover, the diagonal elements of Λ(2) are non-vanishing so that

(
T (2)

)−1
=
(
T (2)

)> (
Λ(2)

)−1
is well-defined, and hence: 

gt

gt−1

gt−2

gt−3

 =
(
T (2)

)−1


π
(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2

 . (A.10)

By letting t vary in the set
{
t = k22, k ∈ Z

}
, equation (A.10) shows how to reconstruct uniquely the entire
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time series {gt}t∈Z from the decimated components
{
g
(j)
t , t = k2j , k ∈ Z

}
, j = 1, 2 and

{
π
(2)
t , t = k22, k ∈ Z

}
.10

B β decomposition

We denote by
(
M

(J)
T

)
and

(
R

(J)
T

)
the vectors collecting the T = 2J observations of the series {Mt} and

{Rt}, respectively:

M
(J)
T = [MT , MT−1, . . . , M1]

ᵀ

R
(J)
T = [RT , RT−1, . . . , R1]

ᵀ
.

We use the transformation (Haar) matrix T (J) defined in the previous section, to express the sample co-

variance between Mt and Rt as the sum of the second moments of the decimated components M(j) =[
M

(j)
2j , . . . ,M

(j)
k·2j , . . . ,M

(j)
T

]ᵀ
and R(j) =

[
R

(j)
2j , . . . , R

(j)
k·2j , . . . , R

(j)
T

]ᵀ
:

∑T
t=1MtRt

T
−
∑T

t=1Mt

T

∑T
t=1Rt

T
=

(
M

(J)
T

)ᵀ (
R

(J)
T

)
T

−
∑T

t=1Mt

T

∑T
t=1Rt

T

=

((
Λ(J)

)−1/2 T (J)M
(J)
T

)ᵀ ((
Λ(J)

)−1/2 T (J)R
(J)
T

)
T

−
∑T

t=1Mt

T

∑T
t=1Rt

T

=

∑J
j=1 2j(M(j))ᵀR(j)

T
+ 2J

π
(J)
M π

(J)
R

T
−
∑T

t=1Mt

T

∑T
t=1Rt

T

=

J∑
j=1

(M(j))ᵀR(j)

T
2j

,

where in the second equality we exploit the fact that the matrix
(
Λ(J)

)−1/2 T (J) is orthonormal, in the third

we exploit the fact that the diagonal elements of the matrix Λ(J) ≡ T (J)
(
T (J)

)T
are λ1 = λ2 = 1/2J ,

λk = 1/2J−j+1, k = 2j−1 + 1, . . . , 2j , j = 2, . . . , J , and in the last row we exploit the definition of the scaling

component π
(J)
M and π

(J)
R .

Now observe that the component M(j) at scale j has exactly T
2j observations due to decimation. Under

the usual assumptions, the weak law of large numbers gives

(M(j))ᵀR(j)

T
2j

p→ E
[
M

(j)
t R

(j)
t

]
and, therefore, we have that

Cov [Mt, Rt] =

J∑
j=1

E
[
M

(j)
t R

(j)
t

]
.

10For an extension of this procedure to any J ≥ 2 and a recursive algorithm for the construction of the matrix T (J),
associated to an arbitrary level of persistence J , see e.g. Mallat (1989).
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Transitioning now to the corresponding beta decomposition is natural.

C Data

Our empirical exercise is conducted on data sampled on a quarterly frequency. The data cover the first

quarter of 1963 through fourth quarter of 2012. Following earlier work (e.g. Hansen and Singleton, 1983 and

Bansal and Yaron, 2004), we use data on U.S. real nondurables and services consumption per capita from

the Bureau of Economic Analysis. We make the standard end-of-period timing assumption that consumption

during period t takes place at the end of the period. Growth rates are constructed by taking the first difference

of the corresponding log series.

The portfolios employed in our empirical tests sort firms on dimensions that lead to cross-sectional

dispersion in measured risk premia. We first consider a 5 × 5 two-way sort on market capitalization and

book-to-market resulting in 25 portfolios (see Fama and French (1993)). We also consider one-way sorted

portfolio. The particular characteristics that we consider are firms’ market value, book-to-market ratio, and

past returns (momentum). Data on returns from these portfolio sorts are obtained from Ken French’s web

site at Dartmouth college.11 Portfolios comprise stocks listed on NYSE, AMEX and NASDAQ. Returns on

value weighted portfolios are used, but results are very similar when using equal weighted portfolios. The

market is the value-weight return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) and the excess

returns are with respect to the one-month Treasury bill rate (from Ibbotson Associates). The returns on

equity and the risk-free rate are aggregated to a quarterly level by multiplying returns within a quarter.

11Details on how these portfolios are formed are available from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Figure 1: Average realized returns of the 25 Fama-French portfolios sorted on Size and Book-to-
Market.
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(a) Standard C-CAPM

(b) Scale j = 4, 5

(c) Scale j = 4, 5 - Restricted

Figure 2: Cross-Sectional Fit. Panel A: The figure plots fitted versus average actual excess
returns (% per year) of standard consumption-capm model for the 25 size and book-to-market
portfolios. Panel B: The figure plots fitted and average returns when the priced factors are the
consumption components at scale j = 4, 5. Panel C: The figure plots fitted and average returns
when the priced factor is restricted to be the sum of the consumption components at scale j = 4, 5.
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Figure 3: Betas β
(j)
i for portfolios i = 1, . . . , N . Each Panel refers to a scale j = 1, . . . , J (scale j

capture fluctuations between 2(jj−1) and 2jj quarters).
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Figure 4: Comparison between consumption growth aggregated over 2 years, gt−8,t, and the compo-

nents g
(4)
t and g

(5)
t capturing cycles between 2 and 4 years, and between 4 and 8 years, respectively.

The shaded regions are NBER recessions, from peak to trough.
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(a) Aggregated consumption growth and Risk aversion - 1955-2006

(b) Aggregated consumption growth and Risk aversion - 1955-2013

Figure 5: Consumption growth aggregated over 2 years, gt−8,t, and risk aversion. Panel
A: Sample 1955Q4-2006Q4. Panel B: Sample 1955Q4-2013Q4. Log of local coefficient of relative

risk aversion rat = log(γ) − st, where st = log
(
Ct−Ht
Ct

)
is log surplus consumption ratio and γ is

the instantaneous utility curvature parameter. Correlation is 53% in the shorter sample and 67%
in the full sample.
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(a) Simple long-run returns

(b) Compounded long-run returns

Figure 6: Cross-Sectional Fit - 2-years Aggregated Consumption. Panel A: Simple long-
run returns - we approximate long-horizon excess returns by summing one-period excess returns,∑h

i=1R
ei
t+i. Panel B: Compounded long-run returns - we obtain long-horizon excess returns by∏h

i=1R
i
t+i −

∏h
i=1R

f
t+i. The figure plots fitted versus average actual excess returns (% per year) of

the long-run consumption-capm model a-la Daniel and Marshall (1999) for the linear compounding
(Panel A) and gross compounding (Panel B) case respectively.
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Figure 7: Autocorrelation of consumption growth at different lags in the scale-wise model (vertical
bar), and in the data (solid line) together with 95% confidence bounds (dashed lines).

Figure 8: Average (across portfolios) of R2 obtained from cross-sectional regressions a-la Parker
and Julliard.
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(a) Scale j = 5

(b) Scale j = 4, 5

Figure 9: Covariance of returns from time t to time t + 1, Reit,t+1, with consumption growth from

time t to time t+ 1 + h, log(
Ct+h+1

Ct
), for different quarterly horizons h. Scale-wise model with solid

diamonds (j = 5 and j = 4, 5). The dashed lines are 95% confidence bounds based on Newey-West
standard errors.
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(a) Scale j = 5

(b) Scale j = 4, 5

Figure 10: Covariance of consumption growth, log(
Ct+h+1

Ct+h
), and stock returns, Reit,t+1 from time t to

time t + 1. Scale-wise model with solid diamonds (j = 5 and j = 4, 5). The dashed lines are 95%
confidence bounds based on Newey-West standard errors.
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(a) Scale j = 5

(b) Scale j = 4, 5

Figure 11: Covariance of consumption growth, log(
Ct+h
Ct

), and stock returns, Reit,t+h, divided by
horizon h. Scale-wise model with solid diamonds. The dashed lines are 95% confidence bounds
based on Newey-West standard errors.
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(a) Lagged equity returns and consumption growth at long horizons

(b) Equity premium at long horizons

Figure 12: External Habit. Panel A: Covariance of returns from time t to time t + 1, Reit,t+1,

with consumption growth from time t to time t+ 1 +h, log(
Ct+h+1

Ct
), for different quarterly horizons

h. Panel B: Covariance of consumption growth, log(
Ct+h
Ct

), and stock returns, Reit,t+h, divided by
horizon h. Habit model with solid diamonds. Sample 1947Q2-2013Q4. The dashed lines are 95%
confidence bounds based on Newey-West standard errors.
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(a) Lagged equity returns and consumption growth at long horizons

(b) Equity premium at long horizons

Figure 13: Long-run Risks. Panel A: Covariance of returns from time t to time t + 1, Reit,t+1,

with consumption growth from time t to time t+ 1 +h, log(
Ct+h+1

Ct
), for different quarterly horizons

h. Panel B: Covariance of consumption growth, log(
Ct+h
Ct

), and stock returns, Reit,t+h, divided by
horizon h. LRR model with solid diamonds. Sample 1947Q2-2013Q4. The dashed lines are 95%
confidence bounds based on Newey-West standard errors.
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Panel A: Portfolio Risk Measures R
ei(j)
k2j = β

(j)
i gk2j + εk2j

Component j
Portfolio j = 1 j = 2 j = 3 j = 4 j = 5
11 2.52 14.74 -1.21 12.42 6.97

( 0.47) ( 2.94) ( -0.26) ( 1.81) ( 0.90)
12 1.90 12.46 2.16 11.84 8.09

( 0.41) ( 3.03) ( 0.61) ( 2.08) ( 1.17)
13 -0.48 11.05 1.18 10.68 7.86

( -0.12) ( 2.97) ( 0.37) ( 2.07) ( 1.27)
14 -0.14 9.64 1.51 9.43 8.05

( -0.04) ( 2.72) ( 0.52) ( 1.99) ( 1.42)
15 -1.10 10.12 2.77 10.02 10.10

( -0.25) ( 2.70) ( 0.82) ( 1.75) ( 1.66)
21 -0.92 14.13 0.95 10.75 5.17

( -0.19) ( 3.07) ( 0.28) ( 1.95) ( 0.77)
22 -1.61 9.79 0.56 10.84 5.13

( -0.38) ( 2.54) ( 0.19) ( 2.62) ( 0.97)
23 -2.65 9.61 1.36 10.87 7.24

( -0.70) ( 2.89) ( 0.52) ( 2.52) ( 1.82)
24 -2.79 8.87 2.67 8.11 9.73

( -0.75) ( 2.88) ( 0.94) ( 2.17) ( 1.88)
25 -1.72 8.87 2.95 9.56 8.09

( -0.41) ( 2.51) ( 1.01) ( 2.37) ( 1.66)
31 -1.39 12.71 2.20 10.62 4.69

( -0.31) ( 2.98) ( 0.68) ( 2.21) ( 0.92)
32 -3.02 9.34 2.98 11.35 6.15

( -0.81) ( 2.61) ( 1.27) ( 3.01) ( 1.28)
33 -3.01 9.02 2.54 8.88 6.20

( -0.88) ( 2.81) ( 1.13) ( 2.91) ( 1.40)
34 -3.33 8.40 2.16 9.16 7.00

( -0.99) ( 2.69) ( 0.78) ( 2.21) ( 1.68)
35 -3.46 8.47 3.68 9.05 6.06

( -0.90) ( 2.58) ( 1.24) ( 2.44) ( 1.67)
41 -0.84 12.08 0.91 11.05 3.78

( -0.21) ( 3.35) ( 0.32) ( 2.60) ( 1.06)
42 -1.87 10.28 2.45 8.81 6.45

( -0.54) ( 3.08) ( 1.07) ( 2.27) ( 1.65)
43 -4.07 7.79 3.17 8.15 7.82

( -1.27) ( 2.55) ( 1.42) ( 1.88) ( 1.99)
44 -4.35 7.60 1.96 9.98 7.70

( -1.35) ( 2.64) ( 0.77) ( 2.51) ( 2.38)
45 -0.63 5.88 4.65 9.09 8.37

( -0.17) ( 1.69) ( 1.62) ( 1.99) ( 2.61)
51 -2.39 10.50 1.82 9.21 4.05

( -0.81) ( 3.74) ( 0.69) ( 2.80) ( 0.89)
52 -2.75 7.57 2.54 6.45 6.27

( -0.98) ( 2.86) ( 1.39) ( 1.92) ( 1.78)
53 -0.20 5.24 5.09 4.86 8.07

( -0.07) ( 2.24) ( 2.50) ( 1.33) ( 3.13)
54 -3.40 4.91 3.46 6.97 7.12

( -1.32) ( 1.83) ( 1.39) ( 2.22) ( 1.94)
55 -2.03 5.94 3.13 8.83 8.20

( -0.66) ( 2.18) ( 1.04) ( 2.97) ( 1.85)

Table 1: 25 Portfolios Formed on Size and Book-to-Market. The Table reports:
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Panel A: β
(2)
i , β

(4)
i , β

(5)
i - second-pass regression

Constant λ2 λ4 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -0.457 0.864 0.820 1.92 1.63 66.740 23 0.000
(-) ( 0.290) (0.217) ( 0.220)
-2.686 -0.428 0.997 0.982 1.85 1.54 59.634 22 0.000 0.46
(4.391) (0.308) (0.284) (0.355)

Table 2: Multivariate model - 25 Portfolios Formed on Size and Book-to-Market. Second-
pass regressions with a constant. The Table reports: the estimates of the prices of risk on the
consumption component and the constant term; the asymptotic standard errors (in parentheses)
for these estimates, ignoring the sampling error in the betas; and asymptotic test statistics for
the hypothesis that the alphas are all zero. The last column reports the R2 of cross-sectional
regression. We also report the root mean square alpha and the mean absolute alpha (MAPE)
across all securities. They are expressed in percent per year.

Panel A: Unrestricted C-CAPM, E[Reit,t+1] = λ4β
(4)
i + λ5β

(5)
i - second-pass regression

Constant λ4 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.439 0.908 2.26 1.83 58.078 24 0.000
(-) (0.340) (0.238)
-5.663 0.860 1.254 2.19 1.68 56.139 23 0.000 0.39
(3.728) (0.390) (0.373)

Panel B: Restricted C-CAPM, E[Reit,t+1] = λrestr(β
(4)
i ∗ w(4) + β

(5)
i ∗ w(5)) - second-pass

regression

Constant λrestr
√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.324 2.33 1.90 59.677 25 0.000
(-) (0.402)
-6.428 2.201 2.24 1.76 58.017 24 0.000 0.36
(4.006) (0.635)

Table 3: H0: λ4 = λ5 25 Portfolios Formed on Size and Book-to-Market Second-pass
regressions without and with a constant. The Table reports: the estimates of the prices of risk on the
consumption component j and the constant term; the asymptotic standard errors (in parentheses)
for these estimates, ignoring the sampling error in the betas; and asymptotic test statistics for
the hypothesis that the alphas are all zero. The last column reports the R2 of cross-sectional
regression. We also report the root mean square alpha and the mean absolute alpha (MAPE)
across all securities. They are expressed in percent per year. In Panel B, we restrict the two price
of risk to be the same.
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Panel A: βDM from simple returns - second-pass regression E[Reit,t+1] = λDMβDM

Constant λDM
√
α2 ‖α‖ χ2-stat DoF p-value R2

0 3.028 2.51 1.85 68.032 24 0.000
(-) (0.909)
3.583 1.941 2.38 1.75 58.793 23 0.000 0.26
(2.826) (0.696)

Panel B: βDM from compounded returns - second-pass regression E[Reit,t+1] = λDMβDM

Constant λ2

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 2.402 2.13 1.56 65.463 24 0.000
(-) (0.708)
2.920 1.716 1.97 1.37 57.009 23 0.000 0.49
(2.886) (0.508)

Table 4: One factor model (Daniel and Marshall) - 25 Portfolios Formed on Size and
Book-to-Market. Second-pass regressions with a constant. The Table reports: the estimates of
the prices of risk on the consumption component and the constant term; the asymptotic standard
errors (in parentheses) for these estimates, ignoring the sampling error in the betas; and asymptotic
test statistics for the hypothesis that the alphas are all zero. The last column reports the R2

of cross-sectional regression. We also report the root mean square alpha and the mean absolute
alpha (MAPE) across all securities. They are expressed in percent per year. Simple returns means
we approximate long-horizon excess returns by summing one-period excess returns,

∑h
i=1R

ei
t+i.

Compounded returns means we obtain long-horizon excess returns by
∏h
i=1R

i
t+i −

∏h
i=1R

f
t+i.
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Panel A: Raw C-CAPM, E[Rei
t,t+1] = λβi - second-pass regression

Constant λ
√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.923 2.12 1.68 34.306 24 0.000
(-) (0.689)
-2.352 2.365 2.08 1.65 34.093 23 0.000 0.543
(4.026) (0.801)

Panel B: Unrestricted C-CAPM, E[Rei
t,t+1] = λ4β

i(4) + λ5β
i(5) - second-pass regression

Constant λ4 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.621 -0.405 1.72 1.46 60.630 23 0.000
(-) (0.362) (0.183)
1.418 1.465 -0.412 1.70 1.41 52.590 22 0.001 0.65
(3.207) (0.473) (0.187)

Table 5: Filtered consumption series using principal-components lasso regression
(PCLR) - see Qiao (2013): Second-pass regressions without and with a constant. The Ta-
ble reports: the estimates of the prices of risk on the consumption component j and the constant
term; the asymptotic standard errors (in parentheses) for these estimates, ignoring the sampling
error in the betas; and asymptotic test statistics for the hypothesis that the alphas are all zero.
The last column reports the R2 of cross-sectional regression. We also report the root mean square
alpha and the mean absolute alpha (MAPE) across all securities. They are expressed in percent
per year. In Panel B, we restrict the two price of risk to be the same. The sample is annual, from
1965 to 2007.
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Panel A: Raw C-CAPM, E[Rei
t,t+1] = λβi - second-pass regression

Constant λ
√
α2 ‖α‖ χ2-stat DoF p-value R2

0 7.547 2.52 1.96 42.059 24 0.013
(-) (2.011)
5.095 4.134 1.72 1.44 38.657 23 0.022 0.59
(3.280) (1.418)

Panel B: Unrestricted C-CAPM, E[Rei
t,t+1] = λ4β

i(4) + λ5β
i(5) - second-pass regression

Constant λ4 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.002 1.050 2.22 1.78 67.286 23 0.000
(-) (0.637) (0.407)
-6.213 1.730 1.571 1.50 1.13 47.051 22 0.001 0.71
(3.814) (0.600) (0.599)

Panel C: Restricted C-CAPM, E[Rei
t,t+1] = λrestr(βi(4) ∗ w(4) + βi(5) ∗ w(5)) - second-pass regression

Constant λrestr

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.882 2.00 1.56 51.279 24 0.001
(-) (0.567)
-2.277 2.311 1.97 1.56 47.376 23 0.002 0.71
(2.816) (0.693)

Table 6: Unfiltered NIPA consumption - see Kroencke (2013): Second-pass regressions with-
out and with a constant. The Table reports: the estimates of the prices of risk on the consumption
component j and the constant term; the asymptotic standard errors (in parentheses) for these es-
timates, ignoring the sampling error in the betas; and asymptotic test statistics for the hypothesis
that the alphas are all zero. The last column reports the R2 of cross-sectional regression. We also
report the root mean square alpha and the mean absolute alpha (MAPE) across all securities. They
are expressed in percent per year. In Panel B, we restrict the two price of risk to be the same.
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Panel A: Raw C-CAPM, E[Rei
t,t+1] = λβi - second-pass regression

Constant λ
√
α2 ‖α‖ χ2-stat DoF p-value R2

0 3.475 3.00 2.14 72.384 25 0.000
(-) (1.068)
5.439 1.597 2.36 1.82 63.632 24 0.000 0.28
(2.273) (0.788)

Panel B: Unrestricted C-CAPM, E[Rei
t,t+1] = λ4β

i(4) + λ5β
i(5) - second-pass regression

Constant λ4 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.789 1.111 2.20 1.79 57.155 24 0.000
(-) (0.428) (0.356)
-5.791 1.311 1.669 2.09 1.64 55.263 23 0.000 0.44
(3.893) (0.521) (0.526)

Panel C: Restricted C-CAPM, E[Rei
t,t+1] = λrestr(βi(4) ∗ w(4) + βi(5) ∗ w(5)) - second-pass regression

Constant λrestr

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.802 2.23 1.79 59.859 25 0.000
(-) (0.547)
-5.658 2.848 2.12 1.65 57.795 24 0.000 0.42
(3.868) (0.869)

Table 7: Total consumption expenditures (including purchases of nondurables, services,
and durable consumption goods): Second-pass regressions without and with a constant. The
Table reports: the estimates of the prices of risk on the consumption component j and the constant
term; the asymptotic standard errors (in parentheses) for these estimates, ignoring the sampling
error in the betas; and asymptotic test statistics for the hypothesis that the alphas are all zero. The
last column reports the R2 of cross-sectional regression. We also report the root mean square alpha
and the mean absolute alpha (MAPE) across all securities. They are expressed in percent per year.
In Panel B, we restrict the two price of risk to be the same.
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