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Abstract

Consider a second-price auction with costly bidding in which bidders with i.i.d.

private values have multiple opportunities to bid. If bids are publicly observable,

the resulting dynamic-bidding game generates greater expected total welfare than

when bids are sealed or, if the seller commits to an optimal reserve, greater expected

revenue. If the seller cannot commit to a bid-revelation policy, however, equilibrium

outcomes are the same as if bids cannot be revealed.
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1 Introduction

Bids in sealed-bid auctions may arrive at different times but, since they are sealed,

equilibrium play is the same as if bids were simultaneous. This paper considers the

welfare and revenue implications of an alternative policy of publicly revealing all bids as

they arrive, prior to an otherwise standard second-price auction with reserve price r, in

which bidders have i.i.d. private values vi and submitting a bid costs c > 0. In particular,

I consider a dynamic-bidding game in which there are K “bidding rounds” at which bids

can be simultaneously submitted, with bids made in each round automatically revealed

prior to the next round.

Bidders with higher values submit earlier bids in equilibrium, allowing them to deter

lower-value bidders from competing. Such bid deterrence benefits higher-value bidders,

by allowing them to obtain the object at a lower expected price, while also benefitting

lower-value bidders as they are able to avoid costly losing auction contests (Proposition

[[]]). For any given reserve price, the effect of dynamic bidding on seller expected rev-

enue is ambiguous – the revenue from new sales to lower-value bidders may or may not

dominate the lost revenue from selling to higher-value bidders at lower prices – but ex-

pected total welfare is always higher under dynamic bidding than under sealed bidding

(Proposition [[]]).

If the seller is able to commit to an optimal reserve price,1 expected revenue is higher

under dynamic bidding than under sealed bidding (Proposition [[]]). Intuitively, the

reason is that since dynamic bidding makes the auction more attractive to bidders at any

1The seller’s reserve price is set before the game begins and, in particular, does not depend on the

realized timing of entry into the auction. The seller can obviously do even better if able to commit to a

reserve price that changes over time until the first bidder entry (see Li and Conitzer (2013)) or to more

general dynamic mechanisms, the analysis of which is beyond the scope of this paper.
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given reserve price, the seller can raise the reserve without losing sales. Indeed, raising

the reserve price allows the seller to extract all the welfare gains associated with better

bidder coordination in the form of greater expected revenue.

Dynamic bidding increases expected welfare by reducing inefficient bidder congestion

in costly bidding contests, but there are limits to the entry coordination made possible

by dynamic bidding. In particular, even in the limit as the number of bidding rounds

goes to infinity, costly bidding contests arise in equilibrium with positive probability

(Corollary to Theorem [[]]). To build intuition for this result, suppose that only a small

mass of bidders (with values in the range [v̂,∞)) were to bid (and bid truthfully) in

the first round. Since first-round bids are unlikely, any bidder with value vi such that

r+c << vi << v̂ will find it profitable to bid v̂ in the first round, since doing so (i) deters

all those with values below v̂ from participating, allowing bidder i to win the object at

the reserve price with probability close to one, and (ii) ensures that bidder i does not

win at a price above his true value in the low-probability event that someone with value

greater than v̂ also enters in the first round.

The paper focuses on a setting in which bidding is costly and bids are publicly ob-

servable, but all of the analysis carries over to an alternative setting in which bidding is

costless and unobservable but there are costs associated with participating in the auction

and other bidders can observe when these costs are incurred. The notion that partic-

ipation can be costly is well-accepted in the auctions literature,2 but the analysis here

also depends on the notion that (i) these costs can be incurred prior to the auction itself

and (ii) the act of incurring these costs is observable to other bidders. For instance, the

2For instance, in a study of eBay coin auctions, Bajari and Hortacsu (2003) estimate that bidders

faced participation cost of $3.20, a significant amount given that expected revenue in these auctions

ranged from $40 to $50.
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cost of travelling to an auction site would not fit within the framework studied here,

since bidders cannot observe who has travelled to the auction site until they have already

incurred the travel cost.

That said, there are several sorts of potentially substantial participation costs that

must be incurred before an auction and which therefore have the potential, if observed

or revealed, to influence other bidders’ decisions whether to participate.

Example: Building personal trust. In a corporate acquisition, top managers of each

potential acquirer may need to meet at length with the target firm’s management to

become acquainted and build personal trust.

Example: Establishing one’s qualifications. Bidders in auctions of high-value assets are

often required to post bond and/or to receive third-party certification of their ability to

pay. Similarly, bidders in complex procurement auctions must often first establish that

they are capable of delivering the desired products or services.

Example: Securing necessary expertise. When bidding to provide expert services, a bidder

first needs to secure the services of a qualified expert. This may entail substantial cost

even if the bid is unsuccessful, if the experts’ services are needed to prepare the bid.

Some of these “pre-participation costs” could potentially be kept secret. For instance,

when a corporate acquisition target and potential suitor’s management teams meet, both

sides could choose to keep quiet about it. However, this paper’s results show that there

are situations in which the acquisition target and/or the suitor would prefer to reveal

that such a meeting has occurred, undermining its secrecy. Why? From the suitor’s

point of view, revealing that a meeting has taken place serves to signal its interest in the

target, deterring others from competing for the deal. Moreover, from the target’s point

of view, committing ahead of time to a transparent policy can increase expected revenue
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if the target can also commit to a reserve price.

Other times, the seller may have little influence over whether bidders can observe

each other’s pre-participation activities and/or be unable to observe when such costs

have been incurred. For instance, consider again the example in which bidders need to

secure an expert’s services in order to prepare a bid. In a “small world” with only a few

qualified experts, each of whom is in regular contact with all of the bidders, each bidder

would naturally be able to observe whenever anyone else secured an expert’s services, as

that expert would then be unavailable. On the other hand, the seller might not be able

to observe anything about which bidders have secured an expert until the auction itself.

The rest of the paper is organized as follows. The introduction continues with some

discussion of related literature. Section 2 presents the model of dynamic bidding. Section

3 provides the main analysis, while Section ?? considers an extension in which the seller

decides which bids to reveal. Section 4 offers concluding remarks.

Related literature. This paper fits into the literature following Samuelson (1985) on

auctions with costly bidding, the novel feature here being that bidders have multiple

opportunities to enter the auction. A key finding is that bidders with higher values enter

the auction earlier in order to signal their strength and deter others from entering the

auction later. As such, the paper is similar in spirit to the jump-bidding literature (e.g.

Avery (1998) and Horner and Sahuguet (2007)) and to the diverse literature that explores

other mechanisms for bidder-to-bidder signaling in auctions.3

Another large related strand of literature features sequential bidder arrivals, where

early entry also can serve to deter later entry. See e.g. McAfee and McMillan (1987)

3 See e.g. Eso and Schummer (2004), where higher bribes signal higher values; McAdams and Schwarz

(2007), where waiting until the deadline to bid signals a high value; and Daley, Schwarz, and Sonin (2012),

where bidders can burn money and/or make costly investments.
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and Bulow and Klemperer (2009). A crucial difference is that, in such sequential-entry

models, bidders who arrive earlier to the auction are typically assumed to be ex ante

identical to those who arrive later. By contrast, because bidders here choose when to

enter the auction, earlier entrants’ values are drawn from a higher distribution.

Several other reasons have been explored in the literature for why bidders can have

an incentive to bid early or wait until the last minute to bid, including: Common val-

ues : When the good has unknown quality, revealing one’s interest may convey a positive

signal about quality, prompting others to bid more aggressively. This gives bidders an

incentive to shroud their interest, including by waiting until the very last moment to bid

(Bajari and Hortacsu (2003), McAdams (2013)). Endogenous information acquisition:

Fishman (1988) and Hirschliefer and Png (1989) provide an alternative explanation of

jump bidding, that such early bids can deter others from acquiring information during

the auction. On the other hand, Rasmusen (2006) shows that early bidding may also

provoke others to invest in information acquisition, providing a possible explanation of

the commonly-observed flurry of last-minute bids on online-auction sites such as eBay.

Still more potential reasons for late bidding on sites like eBay include overlapping auc-

tions of substitute goods with different deadlines (Wang (2003), Zeithammer (2006)),

unsophisticated bidders (Ockenfels and Roth (2006), Ariely and Simonsohn (2008)), and

random delays in bid transmission (Ockenfels and Roth (2006)).

My focus here is on comparing equilibrium auction outcomes under sealed vs dynamic

bidding, not on characterizing the optimal sales mechanism. Several papers in the dy-

namic mechanism-design literature have characterized optimal dynamic mechanisms in

somewhat related settings. See e.g. Board and Skrzypacz (2010), Ely, Garrett, and Hin-

nosaar (2012), Gershkov and Moldavanu (2009), Hinnosaur (2011), and Pai and Vohra

(2013). A common theme of this literature is that bidders arrive to the auction accord-
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ing to an exogenous process. However, when participation is costly and bidders observe

private information about their values before deciding whether/when to participate, the

bidder-arrival process is inherently endogenous. This makes characterizing the optimal

mechanism potentially a very challenging problem.

The most closely related paper is Levin and Peck (2003) (hereafter “LP”). LP con-

siders a game in which two firms4 with i.i.d. entry costs have multiple opportunities to

enter a new market. Each firm enjoys monopoly revenue Rm if it is the only one to enter

or duopoly revenue Rd if both enter. When Rd = 0, LP’s game can be interpreted as a

second-price auction with zero reserve price, where bidders have known common value

v = Rm and i.i.d. entry costs. The basic structure of equilibrium entry is similar here

and in LP, but the papers take different (and complementary) analytical approaches. For

instance, whereas LP use a contraction argument to establish equilibrium uniqueness, I

provide a direct proof and a simple algorithmic method to compute the equilibrium.

[[ADD COST DISCUSSION: See slides from Stanford talk. Plus Alessandro Pavan

idea about “qualification cost” e.g. bank pre-approves your ability to pay up to a certain

level; this is costly but not related to bid submitted.]]

2 Model

Potential bidders i = 1, ..., N observe i.i.d. private values vi with continuous c.d.f. F (·),

p.d.f. f(·), and full support on [0, V ]. The seller then holds a second-price auction with

reserve price r, with the novel feature that there are K ≥ 1 “bidding rounds” at which

bidders simultaneously decide whether to incur cost c > 0 to submit a publicly observable

bid. (For simplicity, I assume that each bidder submits at most one bid.) The analysis

4LP provide an extension to n > 2 firms, under the assumption that duopoly revenue Rd = 0.
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will focus on symmetric threshold equilibria.

Definition 1 (Symmetric threshold equilibrium). A “symmetric threshold equilibrium

(STE)” is a perfect Bayesian equilibrium in which each bidder i bids (and bids truthfully)

in round k = 1, ..., K if and only if vi ≥ ek|K and no one has bid previously, where

e1|K ≥ ... ≥ eK|K are entry thresholds.

Let v−i = maxj 6=i vj and let G(·) and g(·) denote the c.d.f. and p.d.f. of v−i.

Benchmark case: Sealed bids. Samuelson (1985) characterized the unique STE

when there is just one round of bids or, equivalently, when there are multiple rounds

but bids are sealed. In this equilibrium, each bidder enters iff vi ≥ e1|1, where the

“simultaneous-entry threshold” e1|1 is defined by the entry-indifference condition:

(e1|1 − r)G
(
e1|1
)

= c. (1)

3 Dynamic bidding

Section 3.1 characterizes the unique symmetric threshold equilibrium (STE) when there

are K bidding rounds, as well as the limit as K → ∞. Section 3.2 then explores the

welfare and revenue effects of dynamic bidding.

3.1 Symmetric threshold equilibrium

Theorem 1. The K-round bidding game has a unique symmetric threshold equilibrium,

with entry thresholds (e1|K , ..., eK|K) satisfying r + c < eK|K < ... < e1|K < e0|K = V and
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characterized by the following system of equations:

(eK|K − r)G(eK|K) = cG(eK−1|K) (2)∫ ek|K

ek+1|K
(v−i − r)dG(x) = c(G(ek−1|K)−G(ek|K)) for k = 1, ..., K − 1 (3)

where by convention e0|K = V .

Proof. The proof is in the Appendix.

Discussion: (2) is the equilibrium zero-profit condition for bidders having value vi = eK|K ,

akin to Samuelson (1985)’s condition (1). Similarly, (3) is the equilibrium indifference

condition for bidders having value vi = ek|K between bidding in round k and waiting

until round k + 1, for any k = 1, ..., K − 1. (Entering in round k forces bidder i to incur

a loss of c whenever others also enter in round k, i.e. when v−i ∈ (ek|K , ek−1|K), while

deterring others from entering leads bidder i to pay v−i − r less whenever others would

have entered in round k + 1, i.e. when v−i ∈ (ek+1, ek).

Corollary 1 to Theorem 1. In the unique STE, the ex ante probability that the first

bid arrives in round k is decreasing in k.

Proof. The first bid arrives in round k when maxi vi ∈ [ek|K , ek−1|K), i.e. with probability

F (ek−1|K)N − F (ek|K)N . Since e0|K > e1|K > ... > eK|K , F (ek−1|K)N − F (ek|K)N is

decreasing in k if and only if G(ek−1|K) − G(ek|K) = F (ek−1|K)N−1 − F (ek|K)N−1 is

decreasing in k. (Details for this step are straightforward and omitted.) Note that

conditions (2,3) can be rewritten as

eK|K − r

c
=

G(eK−1|K)

G(eK|K)
(4)

E[v−i − r|v−i ∈ (ek+1|K , ek|K)]

c
=

G(ek−1|K)−G(ek|K)

G(ek|K)−G(ek+1|K)
(5)
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for all k = 1, ..., K − 1. Since ek+1|K > r + c, the right-hand side of (5) is greater than

one, implying G(ek−1)−G(ek) > G(ek)−G(ek+1) for all k = 1, ..., K − 1, as desired.

Corollary 2 to Theorem 1. eK|K is decreasing in K.

Proof. Suppose for the sake of contradiction that eK
′|K′ ≥ eK|K for some K ′ > K. This

implies G(eK
′|K′) ≥ G(eK|K) and, by (4), G(eK

′−1|K′ )

G(eK
′|K′ )

≥ G(eK−1|K)

G(eK|K)
. So, eK

′−1|K′ ≥ eK−1|K

and G(eK
′−1|K′) − G(eK

′|K′) ≥ G(eK−1|K) − G(eK|K). By (5), this then recursively im-

plies both eK
′−t|K′ ≥ eK−t|K and G(eK

′−t|K′)−G(eK
′−t+1|K′) ≥ G(eK−t|K)−G(eK−t+1|K)

for all t = 2, ..., K. Why? Consider t = 2. Since eK
′|K′ ≥ eK|K and eK

′−1|K′ ≥

eK−1|K , E[v−i − r|v−i ∈ (eK
′|K′ , eK

′−1|K′)] ≥ E[v−i − r|v−i ∈ (eK|K , eK−1|K)]. Since

G(eK
′−1|K′)−G(eK

′|K′) ≥ G(eK−1|K)−G(eK|K), condition (5) for k = K−1 then implies

that G(eK
′−2|K′) − G(eK

′−1|K′) ≥ G(eK−2|K) − G(eK−1|K). eK
′−2 ≥ eK−2 then follows

immediately from eK
′−1 ≥ eK−1. Repeating this argument recursively, using condition

(5) for k = K− 2, ..., 1, establishes that eK
′−K|K′ ≥ e0|K = V . But this is a contradiction

since, by Theorem 1, eK
′−K|K′ < V .

Theorem 2. ek|K is increasing in K for all k, with {ek|∞ = limK→∞ ek|K : k = 1, 2, ...}

determined recursively by

(e1|∞ − r)G(e1|∞)−
∫ e1|∞

r+c

G(x)dx = c (6)

(ek|∞ − r)G(ek|∞)−
∫ ek|∞

r+c

G(x)dx = cG(ek−1|∞) for k = 2, 3, ... (7)

Proof. Step One: Derive analogues to (6,7) for all finite K. By a standard Envelope

Theorem argument, each bidder’s interim expected equilibrium payoff in the unique STE

takes the integral form

ΠK(vi) =

∫ vi

eK|K
G(x)dx for all vi ≥ eK|K , (8)
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where G(x) is the probability that each bidder wins given value vi = x. (A bidder with

value vi < eK|K never enters and earns zero expected payoff.) At the same time, at each

threshold ek|K , we can also express ΠK(ek|K) = (ek|K − r)G(ek|K)− cG(ek−1|K) since the

threshold type ek|K only wins if no one else enters in round k. In particular, for every K

and k ≤ K, ek|K must be the (unique) solution in vi to

(vi − r)G(vi)−
∫ vi

eK|K
G(x)dx = cG(ek−1|K), (9)

where (ek−1|K , eK|K) are viewed in parameters that vary with K.

Step Two: ek|K is increasing in K for all k. The fact that ek|K is increasing in K emerges

as a simple comparative static of this solution. Consider first k = 1. Since e0|K = V for

all K, the right-hand side of (9) does not depend on K. On the other hand, since eK|K

is decreasing in K (Corollary 2 to Theorem 1), the left-hand side of (9) is decreasing in

K. Since d[(vi−r)G(vi)]
dvi

−
d[
∫ vi

eK|K
G(x)dx]

dvi
= (vi − r)g(vi) > 0, the solution e1|K of (9) must

therefore be increasing in K. The rest of the proof is by induction on k. As long as

ek−1|K is increasing in K, the right-hand side of (9) is increasing in K while, as in the

k = 1 case, the left-hand side of (9) is decreasing in K. So, the solution ek|K of (9) must

be increasing in K, and the limit ek|∞ exists for all k.

Step Three: limK→∞ eK|K = r + c. Let v = limK→∞ eK|K . Suppose for the sake of

contradiction that v > r + c, and fix v̂ ∈ (r + c, v). Since eK|K is decreasing in K,

a bidder with value v̂ must find it unprofitable to enter in every round k of every K-

round bidding game. Entering in round k would allow a bidder with value v̂ to win at

the reserve price with (ex ante) probability G(ek|K) while incurring cost c with prob-

ability G(ek−1|K). For this to be unprofitable, the conditional probability that some-

one else enters in round k must be sufficiently high, namely, G(ek−1|K)−G(ek|K)

G(ek−1|K)
≥ v̂−r−c

v̂−r .

Now, consider any K > v̂−r
G(r+c)(v̂−r−c) and define k̂ ∈ arg mink(G(ek−1|K) − G(ek|K)).
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Since e1|K > ... > eK|K , mink(G(ek−1|K) − G(ek|K)) ≤ 1
K

< G(r+c)(v̂−r−c)
v̂−r . So, v̂−r−c

v̂−r >

G(ek̂−1|K)−G(ek̂|K)
G(r+c)

> G(ek̂−1|K)−G(ek̂|K)

G(ek̂−1|K)
and entering in round k̂ is profitable for a bidder with

value v̂, a contradiction.

To complete the proof, note that (4) and (5) follow from (9) for k = 1 and k > 1,

respectively, by continuity in the limit as eK|K → r + c.

Discussion: The limit-thresholds (e1|∞, e2|∞, ...) provide a lower bound of sorts on bidding

activity in each round. Since ek|∞ > ek|K for all (k,K), any bidder with value vi > e1|∞

always bid in the first round, no matter how many rounds there may be, anyone with

value vi ∈ (e2|∞, e1|∞) bids no later than the second round, and so on. Because the

system (6,7) characterizes the limit-thresholds recursively, they are easy to compute. For

instance, suppose that there are two bidders with i.i.d. values uniformly distributed on

[0, 1], the reserve price is zero, and the bidding cost c = 1
6
. The simultaneous-entry

threshold eS solves (1): (eS)2 − c = 0, or eS =
√
c ≈ .408. By contrast, e1|∞ solves (6):

(e1|∞)2 − c =
∫ e1|∞

c
xdx, or e1|∞ =

√
2c− c2 ≈ .552. Another interesting fact here is that

e2|∞ =
√

2e1|∞c− c2 ≈ .396 < eS. So, any bidder who waits until after the second round

to bid in any K-round game would not bid at all if bids were sealed.

3.2 Welfare and revenue effects of dynamic bidding

This section investigates the welfare and revenue effects of having multiple bidding rounds

(K > 1) compared to having sealed bids (K = 1). The main findings are that dynamic

bidding (i) increases expected revenue under an optimal reserve price (Proposition 1) and

(ii) increases both interim expected surplus and expected total welfare under any fixed

reserve price (Proposition 2).
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Proposition 1. If the seller can commit to a reserve price, expected revenue is strictly

higher when K > 1 than when K = 1.

Proof. Let eS(r), eK|K(r) denote the simultaneous-entry threshold in the 1-round game

and the K-th round entry threshold for some K > 1, respectively, viewed as functions of

the reserve price r. By inspection and comparison of (1) and (2), eK|K(r) < eS(r) for all

r < V . Moreover, it is straightforward to show that eK|K(r) is continuous and strictly

increasing in r.

Let rS denote the optimal reserve price when bids are sealed. Define r̂ > rS so

that eK|K(r̂) = eS(rS), and note that the K-round game with reserve r̂ has strictly

less equilibrium entry than the 1-round game with reserve rS. (Bidders with values in

(eK|K(r̂), e1|K(r̂)) always enter when bids are sealed, but stay out when maxi vi > e1|K(r̂)

in the K-round game.) On the other hand, the object’s allocation is identical in both cases

– the object is sold to the highest-value bidder when maxi vi > eS(rS) and otherwise not

sold – as is interim expected surplus by (8) since eS(rS) = eK|K(r̂). Expected revenue

must therefore be strictly higher in the K-round game with reserve r̂, by an amount

equal to the expected cost savings of having less equilibrium entry. This completes the

proof since seller expected revenue in the K-round game is even higher under an optimal

reserve.

Proposition 2. For any given reserve price, bidders’ interim expected surplus and ex-

pected total surplus are each strictly higher in the unique STE when K > 1 than when

K = 1.

Proof. The fact that bidders’ interim expected surplus ΠK(vi) is increasing in K follows

immediately from (8), since eK|K is decreasing in K. The rest of the proof focuses on

expected total surplus.
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NO EFFECT

NEW SALE SAME WINNER

MORE ENTRY LESS ENTRY

vK ... vk
∗+1 vS vk

∗ ... v1

NO L S E

Figure 1: How having multiple bidding rounds changes equilibrium entry and sales.

Let k∗ be the last bidding round in the K-round game in which all entrants would

have entered in the simultaneous-move game, i.e., vk
∗ ≥ vS > vk

∗+1. Figure 1 illustrates

the effect of moving from one to K rounds on equilibrium outcomes, in terms of entry

and sales. For convenience, the value-space is divided into four regions {E, S,L,NO}

with mnemonic labels: when maxi vi = v(1) ∈ E = (vk
∗
, V ), some bidder enters Early (in

rounds 1, ..., k∗) in the K-round game and would enter simultaneously; when v(1) ∈ S =

(vS, vk
∗
), no one enters Early but at least one bidder would enter Simultaneously; when

v(1) ∈ L = (vk
∗−1, vS), no one enters Simultaneously but someone would enter Late (in

rounds k∗ + 1, ..., K); finally, when v(1) ∈ NO = [0, vK), no one ever enters.

Step 1: when v(1) ∈ E, total welfare rises. When v(1) ∈ E, the winner enters in round

k̂ ≤ k∗ and is the same as under simultaneous entry. Ex post total welfare is (weakly)

higher since bidders with values in (vS, vk̂) do not enter the auction.

Step 2: when v(1) ∈ S, expected total welfare falls by the same amount as L-type bidders’

surplus falls. When v(1) ∈ S, the winner enters in round k∗+ 1 and is the same as under

simultaneous entry. Ex post total welfare is (weakly) lower, however, since bidders with

values in (vk
∗+1, vS) ⊂ L enter and lose, when they would not have under simultaneous

bidding. Since these L-type bidders do not win, their surplus falls and, importantly, falls

by exactly the same amount in aggregate as total welfare falls.
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Step 3: when v(1) ∈ L, expected total welfare rises by more than L-type bidders’ surplus

rises. When v(1) ∈ L, the seller’s revenue is higher in the K-round game, obviously, since

no entry would have occurred under simultaneous entry. The overall change in expected

total welfare in this event is therefore strictly greater than the change in type-L bidders’

surplus.

Step 4: when v(1) ∈ L ∪ S, expected total welfare rises. Combining Steps 2-3, the net

welfare effect of having multiple bidding rounds when v(1) ∈ L ∪ S is greater than the

net effect on type-L bidders in this event. Note that type-L bidders earn zero surplus

when v(1) ∈ E, whether or not preemptive bidding is allowed. So, the net effect of having

multiple bidding rounds on type-L bidders when v(1) ∈ L ∪ S is positive iff its effect

on type-L bidders’ interim expected surplus is non-negative. As shown in Part One,

however, bidders’ interim expected surplus is greater when there are multiple bidding

rounds.

All together, we conclude that expected total welfare is strictly higher when there

are multiple bidding rounds, conditional on the event v(1) ∈ L ∪ S ∪ E. This completes

the proof, since bidder surplus and revenue are zero in the remaining event v(1) ∈ NO in

which no sales ever occur.

4 Concluding Remarks

A standard argument in favor of conducting a sealed-bid auction is that sealed bids can

make it more difficult for bidder-cartels to monitor and enforce a collusive agreement

(Marshall and Marx (2012)). This paper emphasizes a countervailing upside associated

with making bidding activity observable during the auction, that such “dynamic bidding”

facilitates bidder coordination and hence reduces excess entry. This improved coordina-
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tion increases bidder interim expected surplus and total expected welfare for any given

reserve price (Propositions ??-2) and increases expected revenue when the seller sets an

optimal reserve (Proposition 1). That said, equilibrium entry remains excessive, even in

the limit as the number of bidding rounds goes to infinity, with a positive measure of

high-value bidders entering immediately in the first round (Theorem 2).5

If bidders can costlessly communicate with the seller, this remaining entry inefficiency

can be easily addressed.6 Consider a class of mechanisms that specify who should pay the

entry cost as well as who wins and what price they pay. The optimal mechanism in this

context can be implemented by conducting a “virtual auction” based on bidders’ costless

reports, inducing only the winner of this virtual auction to pay the entry cost, and then

charging this winner the final price in the virtual auction. Working to identify optimal

mechanisms when communication is costly is a worthwhile goal for future research. For

recent progress on this problem, see e.g. Mookherjee and Tsumagari (2012).

Appendix

Proof of Theorem 1

Part One: (2,3) are sufficient for STE. Consider bidder i’s best response, if all bidders j 6=

i adopt (e1|K , ..., eK|K)-threshold strategies where (e1|K , ..., eK|K) satisfy (2, 3). Suppose

first that v−i < eK−1, so that round K can be reached with no prior bids (if bidder i does

5This pooling feature of the equilibrium differentiates this paper’s signaling mechanism from those in

other auction models, such as Daley, Schwarz, and Sonin (2012), in which bidders can perfectly signal

their value by burning money.
6Others who have explored how costless communication can help coordinate entry when participation

is costly include Campbell (1998) and Miralles (2010), who allow for cheap talk among the bidders before

the auction, and Quint and Hendricks (2013), who allow for indicative bidding.
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not bid prior to round K). By entering in round K, bidder i wins at the reserve price

when v−i < eK and wins at price v−i when v−i ∈ (eK ,min{vi, eK−1}), yielding expected

payoff (expressed for convenience in ex ante terms)

XK(vi) = (vi − r)G(eK)− cG(eK−1) if vi ≤ eK (10)

= (vi − r)G(eK) +

∫ min{vi,eK−1}

eK
(vi − v−i)dG(v−i)− cG(eK−1) if vi ≥ eK

Note that XK(vi) is strictly increasing in vi and, by (2), XK(eK) = 0. So, entering in

round K is bidder i’s best response if and only vi ≥ eK .

Next, suppose that v−i < ek−1, so that round k = 1, ..., K − 1 can be reached with

no prior bids. Relative to waiting and entering in round k + 1, entering in round k has

three effects, depending on others’ values.

Case #1: v−i < ek+1. No one else enters in round k or would enter in round k + 1, so

bidder i wins at the reserve price (for ex post payoff vi − r − c) whether he enters in

round k or waits to enter in round k + 1.

Case #2: v−i ∈ (ek+1, ek). Bidder i is better off entering in round k, since doing so deters

others from entering in round k + 1. Such entry deterrence allows bidder i to win at the

reserve price rather than at price v−i when vi ≥ v−i (for ex post gain v−i− r), or to avoid

losing the auction when vi < v−i (for ex post gain vi − r). Overall, then, bidder i’s (ex

ante) expected gain due to entering in round k when v−i ∈ (ek+1, ek) is

Y k(vi) =

∫ ek

ek+1

(v−i − r)dG(v−i) if vi ≥ ek (11)

= (vi − r)(G(ek)−G(max{vi, ek+1})) +

∫ max{vi,ek+1}

ek+1

(v−i − r)dG(v−i) if vi ≤ ek

Case #3: v−i ∈ (ek, ek−1). Bidder i is at least weakly worse off entering in round k,

since there is an option value to waiting and observing what others’ round-K bids before
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deciding whether to enter the auction. In particular, waiting until round k + 1 allows

bidder i to avoid incurring a loss of c−max{0, vi− v−i} when v−i > ek and v−i > vi− c.7

Overall, bidder i’s (ex ante) expected loss due entering in round k when v−i ∈ (ek, ek−1)

is

Zk(vi) = c(G(ek−1)−G(ek)) if vi ≤ ek (12)

=

∫ min{ek−1,vi}

max{ek,vi−c}
(c− vi + v−i)dG(v−i) + c(G(ek−1)−G(min{ek−1, vi})) if ek ≤ vi ≤ ek−1 + c

= 0 if vi ≥ ek−1 + c

(To parse (12) in the most complex case when vi ∈ (ek, ek−1 + c), note that (i) round-k

entry leads to a loss of c when others also enter and bidder i loses, i.e. when v−i ∈

(ek, ek−1) and v−i > vi, and (ii) round-k entry leads to a loss of c− vi + v−i when others

also enter and bidder i wins at a price greater than vi − c, i.e. when v−i ∈ (ek, ek−1),

v−i < vi, and v−i > vi − c.)

By (3), Xk(ek) = Y k(ek). Note further by inspection of (11,12) that, for any v′′ >

ek > v′, Y k(v′′) = Y k(ek) > Y k(v′) and Zk(v′′) < Zk(eK) = Zk(v′). So, Y k(vi) ≥ Zk(vi)

for all vi ≥ ek while Y k(vi) < Zk(vi) for all vi < ek. So, bidder i’s best response is to

enter in round k when vi ≥ ek but not enter in round k when vi < ek.

So far, I have shown that bidder i’s best response if any round k is reached with no

prior bids is to enter (and bid truthfully8 ) if and only if vi ≥ ek. To complete the proof,

7If bidder i waits until round k + 1 and v−i > ek but v−i < vi − c, bidder i will jump in and outbid

the highest round-k bidder once round k + 1 is reached. So, in this case, he wins at price v−i whether

he bids in round k or waits until round k + 1.
8Bidding more than one’s true value could be optimal, if such overbidding deters others from bidding

later. However, since any round-k bid greater than ek is sufficient to deter all future entry, and bidder

i’s value vi ≥ ek whenever he enters in round k, truthful bidding is sufficient to deter all future entry.

Moreover, as usual, truthful bidding ensures that bidder i only wins in round k when his value exceeds
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observe that if bidder i follows this rule in all subgames with no prior bids, bidder i’s best

response is never to bid in subgames with prior bids. Why? Suppose that the first bids

received were in round k′ < k and that bidder i has not bid prior to round k. All bids

submitted in round k′ are at least ek
′

but, since bidder i did not bid in rounds 1, ..., k′,

bidder i’s own value must be less than ek
′
. Clearly, then bidder i prefers not to bid.

All together, then, bidder i’s best response when all others adopt (e1, ..., eK)-threshold

strategies is to do so as well. This completes the proof that (2,3) are necessary and

sufficient for existence of a STE with thresholds (e1, ..., eK).

Part Two: Uniqueness of STE. To establish uniqueness, I need to show that (2,3) has

a unique solution. Note that (2,3) can be re-written as

G(eK−1) = G(eK)

(
eK − r

c

)
and (13)

G(ek−1)−G(ek) = (G(ek)−G(ek+1))
E[v−i − r|v−i ∈ [ek+1, ek]]

c
(14)

for all k = 1, ..., K − 1. (Recall that e0 = V , so this is a system of K equations with K

unknowns.)

Suppose for a moment that eK = r + c. If so, (2) implies that eK−1 = r + c while

(3) implies that eK−2 = ... = e1 = e0 = r + c. This is a contradiction, clearly, since

e0 = V > r + c. Similarly, for eK > r + c, (2) determines eK−1 as a function of eK

(call it eK−1(eK)) while (3) inductively determines the other thresholds (eK−2, ..., e1, e0)

as functions (eK−2(eK), ..., e1(eK), e0(eK)) of eK . ((14) determines eK−2 as a function of

(eK−1, eK). Since eK−1 is determined by eK , so is eK−2. Repeating this logic inductively

determines eK−3, ..., e1, e0 as functions of eK .)

(e0 = V , e1∗, ..., eK∗) solves (2,3) if and only if (i) e1∗ = e1(eK∗), ..., eK−1∗ = eK−1(eK∗)

and (ii) e0(eK∗) = V or, equivalently, G(e0(eK∗)) = 1. Next, note that (13) implies that

the price that he will pay to win.
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G(eK−1(eK))−G(eK) > 0 is continuous and strictly increasing in eK , while (14) implies

by induction that G(ek−1(eK)) − G(ek(eK)) is continuous and strictly increasing in eK ,

for all k = 1, ..., K − 1. In particular, G(e0(eK)) is continuous and strictly increasing in

eK . So, there is a unique solution eK∗ to G(e0(eK∗)) = 1 and hence a unique solution

(e1∗, ..., eK∗) to (2,3).
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