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Abstract

Complementarities of preferences have been known to jeopardize the stability of

two-sided matching, yet they are a pervasive feature of many markets. We revisit

the stability issue with such preferences in a large market. Workers have preferences

over firms while firms have preferences over distributions of workers and may exhibit

complementarity. We demonstrate that if each firm’s choice changes continuously as

the set of available workers changes, then there exists a stable matching even with

complementarity. Building on this result, we show that there exists an approximately

stable matching in any large finite economy. We apply our analysis to show the

existence of stable matchings in probabilistic and time-share matching models with

a finite number of firms and workers.

1 Introduction

Since the celebrated work by Gale and Shapley (1962), matching theory has taken a center

stage in market design and more broadly, economic theory. In particular, its successful
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application in medical matching and school choice has fundamentally changed how these

markets are organized. A key desideratum in the design of such matching markets is

“stability”—that the mechanism admits no incentives for its participants to “block” (i.e.,

side-contracting around) the suggested matching. Stability is crucial for long-term sustain-

ability of a market; unstable matching would be undermined by the parties side-contracting

around it either during or after a market.1 When one side of the market is under centralized

control, as with school choice, blocking by a pair of agents on both sides is less of a concern;

but even in this case, stability is desirable from a fairness standpoint, as it would eliminate

justified envy—envy that cannot be explained away by the preferences of the agents on the

other side. In the school choice application, if schools’ preferences rest on the test score

or other priority that a student feels entitled to, eliminating justified envy appears to be a

necessary requirement.

Unfortunately, a stable matching exists only under limited market conditions. It is well

known that existence of a stable matching is not generally guaranteed unless the preferences

of participants, say firms, are substitutable.2 In other words, complementarity can lead to

nonexistence of a stable matching.

This is a serious limitation on the applicability of centralized matching mechanisms,

since complementarities of preferences are a pervasive feature of many matching markets.

Firms often seek to hire workers with complementary skills. For instance, in professional

athletic leagues, teams demand athletes that complement one another in skills as well as

in the positions they play. Some public schools in New York City seek diversity of their

student bodies in their skill levels. US colleges tend to exhibit a desire to assemble a

class that is complementary and diverse in terms of their aptitudes, life backgrounds, and

demographics.

Unless we can get a handle on complementarities, we would not know how to organize

such markets, and the applicability of centralized matching will remain severely limited.

The limitation is particularly pertinent for many decentralized markets that may poten-

tially benefit from centralization. College admissions and graduate admissions are obvious

examples. Decentralized matching leaves much to be desired in terms of efficiencies and

1Table 1 in Roth (2002) shows that unstable matching algorithms tend to die out while stable ones

survive the test of time.
2Substitutability here means that a firm’s demand for a worker never grows with more workers being

available. More precisely, if a firm does not wish to hire a worker from a set of workers, then it never

prefers to hire that worker from a bigger (in the sense of set inclusion) set of workers. Existence of a

stable matching under substitutable preferences is established by Sönmez and Ünver (2010), Hatfield and

Milgrom (2005), Hatfield and Kojima (2008), and Hatfield and Kominers (2010).

2



fairness, and of the yield management burden put on the institutions (see Che and Koh

(2013)). Despite the potential benefit from centralizing these markets, the exact benefit as

well as the method of centralized matching remains unclear, given the instability that may

arise from complementary preferences of the participants.

This paper takes a step toward accommodating complementarities and other forms of

general preferences. The general impossibility means, however, that the notion of stability

needs to be weakened in some way. Our approach is to consider a large market. Specifically,

we consider a market which consists of a large number of workers/students on one side

and a finite number of firms/colleges with large capacities on the other, and ask whether

stability can be achieved in an “asymptotic” sense—i.e., whether participants’ incentives

for blocking disappears as the number of workers and firms’ capacities grow large. Large

markets we envision approximate college admissions and labor markets. Our stability

notion also preserves the motivation behind the original notion of stability: as long as the

incentive for blocking is sufficiently weak, the instability and fairness concerns will not be

so serious as to jeopardize the mechanism.

We first consider a continuum model in which there are a finite number of firms and

a continuum of workers. Each worker desires to match with at most one firm. Firms

have preferences over groups of workers, and importantly, their preferences may exhibit

complementarities. A matching is a distribution of workers across firms. The model gen-

eralizes Azevedo and Leshno (2011) who assume responsive preferences (a special case of

substitutable preferences) for the firms.

Our main result is that there exists a stable matching if firms’ preferences exhibit

continuity—that is, the set of workers chosen by each firm varies continuously as the set

of workers available to that firm changes. This result is quite general since continuity

is satisfied by a rich class of preferences including those exhibiting complementarities.3

The existence of a stable matching follows from two results: (i) a stable matching can be

characterized as a fixed point of a suitably defined mapping over a functional space, and

(ii) such a fixed point exists given the continuity assumption. The construction of our fixed

point mapping differs from the existing matching literature such as Adachi (2000), Hatfield

and Milgrom (2005), and Echenique and Oviedo (2006), among others. The existence of

a fixed point is established by using the Kakutani-Fan-Glicksberg fixed point theorem—a

generalization of Kakutani’s fixed point theorem to functional spaces—which appears to

be new to the matching literature.

3For instance, it allows for Leontief-type preferences with respect to alternative types of workers,

desiring to hire all types in equal size (or density).
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When firm preferences satisfy substitutability (but not necessarily continuity), we show

that the set of stable matchings is nonempty and forms a complete lattice. In particu-

lar, there exist worker-optimal (firm-pessimal) and firm-optimal (worker-pessimal) stable

matchings. A version of the rural hospital theorem also holds given an appropriate version

of the law of aggregate demand. While these results are well known for finite markets and

can thus be expected from the existing matching theory, we also provide a novel condition

that generalizes the full support assumption of Azevedo and Leshno (2011) and guarantees

the uniqueness of stable matching under substitutable preferences.

Building on our analysis on the continuum model, we show that there is a sense in

which it serves as a legitimate approximation of large finite economies. More specifically

we demonstrate that, for any large finite economy that is sufficiently close to our continuum

economy (in terms of the distribution of worker types and firms’ preferences), there exists

an approximately stable matching in the sense that the incentives for blocking is arbitrarily

small.

Although the basic model assumes that firm preferences are strict, our framework can be

extended to allow for indifferences in the firms’ preferences. Accommodating indifferences

is particularly important in the school choice context, in which preferences are given by

coarse priorities that put many students in the same priority class. To accommodate this

extension, we represent a firm’s preference as a choice correspondence (as opposed to a

function). We then extend both the fixed point characterization (via a correspondence

defined on a functional space) and the proof of the existence the existence result.

Equipped with this generalization, we can extend the “fractional” matching models to

allow for general preferences. These models study how schools/firms and students/workers

can share time or match probabilistically in a stable manner (see Sotomayor (1999), Alkan

and Gale (2003), and Kesten and Ünver (2014), among others). Our continuum model lends

itself to studying such a probabilistic/time share environment; we can simply interpret types

in different subsets within the type space as probabilistic/time units belonging to alternative

(finite) workers. Our novel contribution is to allow for more general preferences including

complementarities as well as indifferences. As mentioned, accommodating indifferences

is important in school choice design, and complementarities are also relevant since some

schools (as those in NYC) seek diversity in their student bodies. We also establish existence

of a strongly stable matching suggested defined by Kesten and Ünver (2014), in this more

general environment.
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Relationship with the Literature

The present paper is connected with several strands of literature. Most importantly, it is

related to the growing literature on matching and market design. Since the seminal contri-

butions by Gale and Shapley (1962) and Roth (1984), stability has been recognized as the

most compelling solution concept in matching markets.4 As argued and demonstrated by

Sönmez and Ünver (2010), Hatfield and Milgrom (2005), Hatfield and Kojima (2008), and

Hatfield and Kominers (2010) in various situations, the substitutability condition is neces-

sary and sufficient for guaranteeing the existence of a stable matching when the number of

agents is finite. Our paper contributes to this line of studies by showing that substitutabil-

ity is not needed for the existence of a stable matching once there is a continuum of agents

on one side of the market and, moreover, there exists an approximately stable matching in

large finite markets.

Our study was inspired by a recent research on matching with a continuum of agents

by Azevedo and Leshno (2011).5 As in our paper, they assume that there are a finite

number of firms and a continuum of workers and, among other things, show the existence

and uniqueness of a stable matching in that setting. The crucial difference relative to the

current work is that they assume firms have responsive preferences (which is a special case

of substitutability). One of our contributions is that, while almost universally assumed in

the literature, restrictions on preferences such as responsiveness or even substitutability are

unnecessary for guaranteeing the existence of a stable matching in the continuum markets.

Also, one of the uniqueness results by Azevedo and Leshno (2011) is obtained as a special

case of our uniqueness result under substitutable, not necessarily responsive, preferences.

An independent study by Azevedo and Hatfield (2012) also analyzes matching with a

continuum of agents.6 Like the current paper, their study finds that a stable matching

exists even when not all agents have substitutable preferences. There are a number of

notable differences between their study and ours, however. First, they consider a large

4See Roth (1991) and Kagel and Roth (2000) for empirical and experimental evidence on the importance

of stability in labor markets, and Abdulkadiroğlu and Sonmez (2003) for the interpretation of stability as

a fairness concept in school choice.
5Also related, although formally different, are various recent studies on large matching markets, such

as Roth and Peranson (1999), Immorlica and Mahdian (2005), Kojima and Pathak (2008), Kojima and

Manea (2008), Manea (2009), Che and Kojima (2010), Lee (2012), Liu and Pycia (2013), Che and Tercieux

(2013), Ashlagi, Kanoria and Leshno (2014), Kojima, Pathak and Roth (2013), and Hatfield, Kojima and

Narita (2014b).
6Although less related, our study also has some analogy with Azevedo, Weyl and White (2012). They

show the existence of competitive equilibrium in an exchange economy with continuum agents and indivis-

ible objects.
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number (more precisely, continuum) of firms each employing a finite number of workers, so

they consider a continuum of agents on both sides of the market. By contrast, we consider

a finite number of firms each employing a large number (continuum) of workers. These two

models provide complementary approaches for studying large markets. In the school choice

context, for example, in many school districts, there are usually a small number of schools

each admitting hundreds of students, which fits well with our modeling approach. But in

a large school district such as New York City, the number of schools is also large, so their

model may offer a reasonably good approximation. Second, Azevedo and Hatfield (2012)

assume that there are finite number of firm and worker types. This enables them to use

Brouwer’s fixed point theorem to characterize the stable matching. We put no restriction

on the number of workers’ types. The general preferences require a topological fixed point

theorem from functional analysis. This type of mathematics has never been applied to

discrete two-sided matching literature to our knowledge, and we view the introduction of

these tools to the matching literature as one of our methodological contributions. Our

model also has an advantage of subsuming the previous work by Azevedo and Leshno

(2011) as well as many others mentioned above, which assume a continuum of worker

types. Finally, they also consider many-to-many matchings, although our applications to

time-share and probabilistic matching models allow for many-to-many matching. And they

also consider matching with contracts, while our study focuses on the case with a fixed term

of contract, as assumed in the standard matching literature.

Our methodological contribution is also related to another recent advance in matching

theory based on the monotone method. In the one-to-one matching context, Adachi (2000)

defines a certain operator whose fixed points are equivalent to stable matchings. His work

has been generalized in many directions by such papers as Fleiner (2003), Echenique and

Oviedo (2004, 2006), Hatfield and Milgrom (2005), Ostrovsky (2008), and Hatfield and

Kominers (2010). We also define an operator whose fixed points are equivalent to stable

matchings. A crucial difference is, however, that these previous studies impose restrictions

on preferences (e.g., responsiveness or substitutability) so that the operator is monotone,

which enables one to apply Tarski’s fixed point theorem to show existence of stable match-

ings. By contrast, we do not impose responsiveness or substitutability restrictions and

instead rely on the continuum of workers, along with continuity of firms’ preferences, to

guarantee continuity of the operator (in an appropriately chosen topology). That approach

allows us to use (a generalization of) Kakutani fixed point theorem, a more familiar tool

in traditional economic theory such as the existence proofs of general equilibrium and the

Nash equilibrium in mixed strategies.

The current paper is also related with the literature on matching with couples. Like a
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firm in our model, a couple can be seen as a single agent with complementary preferences

over contracts, as pointed by Hatfield and Kojima [Any suggestion on the last phrase; should

we cite??]. Roth (1984) and unpublished work by Sotomayor show that there does not

necessarily exist a stable matching if there exists a couple. Klaus and Klijn (2005) provide a

condition to guarantee the existence of stable matchings. A more recent work by ? presents

conditions under which the probability that a stable matching exists even in the presence

of couples converges to one as the market becomes infinitely large, and similar conditions

have been further analyzed by Ashlagi, Braverman and Hassidim (2014). Pycia (2012)

and Echenique and Yenmez (2007) study many-to-one matching with complementarity

as well as peer effect. Our paper is different from these studies in various respects, but

it complements these papers by formalizing a sense in which finding a stable matching

becomes easier in a large market even in the presence of complementarities.

The remainder of this paper is organized as follows. Section 2 provides an example

that illustrates the main contribution of our paper. Section 3 describes a matching model

in the continuum economy. Section 4 establishes the existence of a stable matching under

general, continuous preferences and also under substitutable preferences. In Section 5, we

use this existence result to show that an approximately stable matching can be found in

any large finite economy. In Section 6, we extend our analysis to the case where firms may

have multi-valued choice mappings (that is, choice correspondences), and apply it to time

share/probabilistic matching models.

2 Illustrative Example

Before proceeding, we illustrate the main contribution of our paper using an example.

We first illustrate how complementary preferences may lead to non-existence of a stable

matching when there are a finite number of agents. To this end, suppose that there are

two firms f1 and f2 and two workers θ and θ′. The agents have the following preferences:

θ : f1 � f2;

θ′ : f2 � f1;

f1 : {θ, θ′} � ø;

f2 : {θ} � {θ′} � ø.

That is, worker θ prefers f1 to f2, and worker θ′ prefers f2 to f1; firm f1 prefers employing

both workers to employing no one, which the firm in turn prefers to employing only one

of them; and firm f2 prefers worker θ to θ′, which it in turn prefers to employing neither.
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Firm f1 has a “complementary” preference, and this creates instability. To see this, recall

stability requires that there be no blocking coalition. Due to f1’s complementary preference,

it must employ either both workers or neither in any stable matching. The former case is

unstable since worker θ′ prefers firm f2 to firm f1, and f2 prefers θ′ to being unmatched,

thus they can block the matching. The latter is also unstable since, in such a case, f2

will only hire θ, leaving θ′ unemployed; and this outcome will be blocked by f1 forming a

coalition with θ and θ′, benefiting all members of the coalition.

Can stability be restored if the market becomes large? As long as the market remains

finite, the answer is no. To see this, consider a scaled-up version of the above model: there

are q workers of type θ and q workers of type θ′, and they have the same preferences as

above. Firm f2 prefers type-θ workers to type-θ′ workers, and wishes to hire in that order

but at most up to q workers. Firm f1 has a complementary preference for hiring exactly

identical numbers of type-θ and type-θ′ workers (with no capacity limit). Formally, if x

and x′ are the numbers of available workers of types θ and θ′, respectively, then firm f1

would choose min{x, x′} workers of each type.

As long as q is odd (including the original economy with q = 1), there exists no stable

matching.7 To see this, first note that if firm f1 hires more than q/2 workers of each type,

then firm f2 has a vacant position, so f2 can block with a type-θ′ worker who prefers f2

to f1. If f1 hires fewer than q/2 workers of each type, then some workers will remain

unmatched (since f2 hires at most q workers). If a type-θ worker is unmatched, then f2

will form a blocking coalition with that worker. If a type-θ′ worker is unmatched, then firm

f1 will form a blocking coalition by adding that worker along with a θ worker (possibly

matched with f2).

Consequently, “exact” stability is not guaranteed even in a large market. Nevertheless,

one may hope to achieve approximate stability. This is indeed the case with the above

example; the “magnitude” of instability diminishes as the economy grows large. To see

this, let q be odd and consider a matching in which f1 hires q+1
2

workers of each type while

f2 hires q−1
2

workers of each type. This matching is unstable because f2 has one vacant

position it wants to fill and a type-θ′ worker who is matched to f1 prefers f2. However, note

that this is the only possible block of this matching, and it involves only one worker. As

the economy grows large, if the additional single worker becomes insignificant for firm f2

relative to its size—and this is what the continuity of a firm’s preference captures—, then

the payoff consequence of forming such a block must also become insignificant, suggesting

7Here we sketch the argument, which is in Appendix A in fuller form. When q is even, a matching in

which each firm hires q
2 of each type of workers is stable.

8



that the instability problem becomes insignificant as well.

This can be seen most clearly in the limit of the above economy. Suppose there is a

unit mass of workers, half of whom (in Lebesgue measure, say) are of type θ and the other

half are of type θ′. Their preferences are the same as before. And suppose firm f1 wishes

to maximize min{x, x′}, where x and x′ are the measures of type-θ and type-θ′ workers,

respectively. Firm f2 can hire at most 1
2
, and prefers to fill as much of this quota as possible

with type-θ workers and fill the remaining quota with type-θ′ workers. In this economy,

there is a (unique) stable matching in which each firm hires exactly one half of workers of

each type. To see this, note that any blocking coalition involving firm f1 requires taking

away a positive, and identical, measure of type-θ′ and type-θ workers from firm f2, which

is impossible since type-θ′ workers will object to it. Also, any blocking coalition involving

firm f2 requires taking away a positive measure type-θ workers away from firm f1 and

replacing the same measure of type-θ′ workers in its workforce, which is impossible since

type-θ workers will object to it. Our analysis below will show that the continuity of firms’

preferences, to be defined more clearly, is responsible for guaranteeing existence of a stable

matching in the continuum economy and approximate stability in the large finite economies

in this example.

3 Model of a Continuum Economy

Agents and their measures. There exist a finite set F = {f1, . . . , fn} of firms and a

unit mass of workers. Let ø be the null firm, representing the workers’ option of not being

matched with any firm, and define F̃ := F ∪ {ø}. The workers are identified with types

θ ∈ Θ, where Θ is a compact metric space. Let Σ denote a Borel σ-algebra of space Θ. Let

X be the set of all nonnegative measures such that for any X ∈ X , X(Θ) ≤ 1. Assume that

the entire population of workers is distributed according to a finite, nonnegative (Borel)

measure G ∈ X on (Θ,Σ). That is, for any E ∈ Σ, G(E) is the measure of workers

belonging to E. Assume G(Θ) = 1 for normalization. For illustration, the limit economy of

the example in the previous section is a continuum economy with F = {f1, f2}, Θ = {θ, θ′},
and G(θ) = G(θ′) = 1/2. In the sequel, we shall use this as our leading example for the

purpose of illustrating various concepts we develop.

Any subset of the population, or subpopulation, is represented by a nonnegative

measure X on (Θ,Σ) such that X(E) ≤ G(E) for all E ∈ Σ. Let X ⊂ X denote the set of

all subpopulations. We further say that a nonnegative measure X̃ ∈ X is a subpopulation

of X ∈ X , denoted X̃ @ X, if X̃(E) ≤ X(E) for all E ∈ Σ. We use XX to denote the set
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of all subpopulations of X.

Given the order @, for any X, Y ∈ X , we define X ∨ Y (join) and X ∧ Y (meet) to

be the supremum and infimum of X and X ′, respectively.8 That X ∨ Y and X ∧ Y are

well-defined, i.e. they are also measures belonging to X , follows from the following lemma,

whose proof is in Appendix B.1.

Lemma 1. The partially ordered set (X ,@) is a complete lattice.

The join and meet of X and Y in X can be illustrated via a couple of examples. In

our leading example with two types of workers, given X := (x, x′), Y := (y, y′), we have

X ∨ Y = (max{x, y},max{x′, y′}), and X ∧ Y = (min{x, y},min{x′, y′}). Consider next a

continuum economy with types Θ = [0, 1] and suppose the measure G admits a bounded

density g for all θ ∈ [0, 1]. In this case, it easily follows that for X, Y @ G, their densities

x and x′ are well defined,9 and Z := (X ∨ Y ) and Z ′ := (X ∧ Y ) admit densities z and z′

defined by z(θ) = max{x(θ), y(θ)} and z′(θ) = min{x(θ), y(θ)} for all θ, respectively.

Further, for X, Y @ G, we let (X + Y )(·) := (X(·) + Y (·)) ∧ G(·) and (X − Y )(·) :=

(X(·)− Y (·)) ∨ 0, which ensures that X + Y,X − Y ∈ X .

Consider the space of all (signed) measures (of bounded variation) on (Θ,Σ). We endow

this space with a weak* topology and its subspace X with the relative topology. Given a

sequence of measures (Xk) and a measure X on (Θ,Σ), we write Xk
w∗−→ X to indicate that

(Xk) converges to X as k → ∞ under weak* topology, and simply say that (Xk) weakly

converges to X.10

Agents’ preferences. We now describe agents’ preferences. Each worker is assumed

to have a strict preference over F̃ . Let P denote the (finite) set of all possible worker

preferences, and let P ∈ P denote its generic element (i.e., a particular worker preference).

We write f �P f ′ to indicate that f is strictly preferred to f ′ according to P . For each

8That is, X ∨ Y for instance is the smallest measure of which both X and Y are subpopulations. One

can show that for all E ∈ Σ,

(X ∨ Y )(E) = sup
D∈Σ

X(E ∩D) + Y (E ∩Dc),

which is a special case of Lemma 1 in Appendix D.
9Since |X([0, θ′])−X([0, θ])| ≤ |G([0, θ′])−G([0, θ])| ≤ N |θ′ − θ|, where N := sups g(s), so X([0, θ)) is

Lipschitz continuous, and its density is well defined.
10 We use the term “weak convergence” since it is common in statistics and mathematics, though weak*

convergence is a more appropriate term from the perspective of functional analysis. As is well known,

Xk
w∗

−→ X if
∫

Θ
hdXk →

∫
Θ
hdX for all bounded continuous function h. See Theorem 13 in Appendix C

to see some implications of this convergence.
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P ∈ P , let ΘP ⊂ Θ denote the set of all worker types whose preference is given by P ,

and assume that ΘP is measurable and G(∂ΘP ) = 0, where ∂ΘP denotes the boundary of

ΘP .11 Since all worker types have strict preferences, Θ can be partitioned into the sets in

PΘ ≡ {ΘP : P ∈ P}.
We next describe firms’ preferences. We do so indirectly by defining a firm f ’s choice

function, Cf : X → X , where Cf (X) is a subpopulation of X for any X ∈ X and

satisfies the following revealed preference property: for any X,X ′ ∈ X with X ′ @ X,

if Cf (X) @ X ′, then Cf (X
′) = Cf (X).12 Note we are assuming that the firm’s demand is

unique given any set of available workers. In Section 4.2, we consider a generalization of the

model in which the firm’s choice is not unique. Let Rf : X → X be a rejection function

defined by Rf (X) := X − Cf (X). By convention, we let Cø(X) = X, ∀X ∈ X , meaning

that Rø(X)(E) = 0 for all X ∈ X and E ∈ Σ. In our leading example, the choice functions

of firms f1 and f2 are given respectively by Cf1(x1, x
′
1) = (min{x1, x

′
1},min{x1, x

′
1}) and

Cf2(x2, x
′
2) = (min{x2,

1
2
},min{1

2
− x2, x

′
2}), when xi of type θ-workers and x′i of type-θ′

workers are available to firm fi, i = 1, 2.

In sum, continuum matching model is summarized as a tuple (G,F,PΘ, CF ).

Remark 1. Our model takes firms’ choice functions as a primitive, which gives us some

flexibility in describing their preferences, in particular preferences over alternatives that

are not chosen. This approach is also adopted by other studies in matching theory, which

include Alkan and Gale (2003) and Aygün and Sönmez (2013) among others. An alterna-

tive, albeit more restrictive, approach would be to assume that each firm is endowed with

a complete, continuous preference relation over X . Maximization with such a preference

will result in an upper hemicontinuous choice correspondence defined over X .13 Assuming

a unique optimal choice will then give us a choice function (which is also continuous), al-

though, as will be shown in Section 4.2, our results generalize to the case in which each

firm’s choice is not unique.

11Formally, ∂E := E ∩ Ec, where E and Ec are the closure of E and its complement, respectively.

This means that if Θ is discrete as in our leading example, then we have E = E and Ec = Ec, so

E ∩ Ec = E ∩ Ec = ∅. Hence, the assumption is satisfied.
12This property must hold if the choice is made by a firm optimizing with a well-defined preference

relation. See for instance Hatfield and Milgrom (2005), Fleiner (2003), and Alkan and Gale (2003) for

some implicit or explicit use of the revealed preference property in matching theory literature. Recently,

Aygün and Sönmez (2013) have clarified the role of this property in the context of matching with contracts.
13This also relies on the fact that the set of alternatives X is compact, a fact we establish in the proof

of Theorem 3.
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Matchings, and their efficiency and stability requirements. A matching is M =

(Mf )f∈F̃ such that Mf ∈ X for all f ∈ F̃ and
∑

f∈F̃ Mf = G. Firms’ choice functions can be

used to define a partial order on firms’ preferences over matchings. For any two matchings,

M and M ′, we say that M ′
f �f Mf (or firm f prefers M ′

f to Mf ) if M ′
f = Cf (M

′
f ∨Mf ).

14

We also say M ′
f �f Mf if M ′

f �f Mf and M ′
f 6= Mf . The resulting preference (partial)

order amounts to taking a minimal stance on the firms’ preferences, limiting attention to

those revealed via their choices. Given this preference order, we say M ′ �F M if M ′
f �f Mf

for each f ∈ F .

To discuss workers’ welfare, fix any matching M and any firm f . Let

D�f (M) :=
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ ·) and D�f (M) :=
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ ·) (1)

denote the measure of workers assigned to firm f or better (according to their preferences)

and the measure of workers assigned to firm f or worse (again according to their prefer-

ences), respectively, where Mf ′(ΘP ∩·) denotes a measure that takes the value Mf ′(ΘP ∩E)

for each E ∈ Σ. Starting from M as a default matching, the latter measures the number

of workers who are available to firm f for possible rematching. Meanwhile, the former

measure is useful for characterizing the workers’ overall welfare. For any two matchings M

and M ′, we say that M ′ �Θ M if for each f ∈ F̃ , D�f (M ′) @ D�f (M). That is, if, for each

firm f , the measure of workers assigned to f or better is larger in one matching than the

other, then we can say that the workers’ overall welfare is higher in the former matching.

Equipped with these notions, we can define Pareto efficiency and stability.

Definition 1. A matching M is Pareto efficient if there exists no matching M ′ 6= M

such that M ′ �F M and M ′ �Θ M .

Definition 2. A matching M = (Mf )f∈F̃ is stable if

1. For all P ∈ P, we have Mf (ΘP ) = 0 for any f satisfying ø �P f ; and for each f ∈ F ,

Mf = Cf (Mf ), and

2. There exist no f ∈ F and M ′
f ∈ X such that M ′

f �f Mf and M ′
f @ D�f (M).

Condition 1 of this definition, called individual rationality, means that each matched

worker prefers the matching over being unmatched, and that each firm never wishes to

unilaterally drop some of its matched workers. Condition 2, called no blocking, requires

that there be no firm and a set of workers who are not matched together but want to do

so. When Condition 2 is violated by f and M ′
f , we say that f and M ′

f block M .

14This is known as the Blair order in the literature. See Blair (1984).
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Remark 2 (Equivalence to group stability). We say that a matching M is group stable

if Condition 1 of Definition 2 holds and, in addition,

2’. There exist no F ′ ⊆ F and M ′
F ′ ∈ X |F

′| such that M ′
f �f Mf and M ′

f @ D�f (Mf )

for all f ∈ F ′.

This definition is a strengthening of our stability concept, as it requires that the match-

ing be immune to blocks by coalitions potentially involving multiple firms. Such stability

concepts with coalitional blocks are analyzed by Sotomayor (1999), Echenique and Oviedo

(2006), and Hatfield and Kominers (2010), among others. Clearly any group stable match-

ing is stable, because if Condition 2 of stability is violated by a firm f and M ′
f , then

Condition 2’ of group stability is violated by a singleton set F ′ = {f} and M ′
{f}. The

converse also holds. To see why, note that if Condition 2’ of group stability is violated

by F ′ ⊆ F and M ′
F ′ , then Condition 2 of stability is violated by any f and M ′

f such that

f ∈ F ′ and M ′
f 6= Mf , because M ′

f �f Mf and D�f (M) by assumption.15

As in the standard finite market, stability implies Pareto efficiency:

Proposition 1. If a matching is stable, then it is Pareto efficient.

Proof. See Appendix B.2.

4 Existence of s Stable Matching in the Continuum

Economy

A key to finding a stable matching is to identify the “available” workers for each firm—

namely, the workers willing to match with each firm. The optimal choice by a firm from

the available workers then identifies those the firm hires in a stable matching, since any

better set of workers the firm may approach for hiring—i.e., to form a blocking coalition

15By requiring M ′f @ D�f (Mf ) for all f ∈ F ′ in Condition 2’, our group stability concept is implicitly

assuming that workers who are considering participating in a blocking coalition with f ∈ F ′ use the current

matching M−f as the reference point. This means that workers are available to firm f as long as they prefer

f to their current matching. However, given that a more preferred firm f ′ ∈ F ′ may be making offers to

workers in D�f (Mf ) as well, the set of workers available to f may be smaller. Such a consideration would

result in a weaker notion of group stability. Any such concept, however, will be equivalent to our notion of

stability, because in this remark we establish that even the most restrictive notion of group stability, i.e.,

the concept using D�f (Mf ) in Condition 2’, is equivalent to stability, while stability is weaker than any

group stability concept described above.
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with—would include the workers that are unavailable to that firm (in the sense that they

have a better choice than the firm), thus meeting a key requirement of stability.

How does one then identify available workers for a firm? The process of identifying

available workers involves a fixed-point flavor: For a set (or more precisely a measure) of

workers to be available to f , they must have no better choice than f , so to identify the

former, one must identify the set of firms available to the workers. But this in turn requires

one to identify the workers that are available to these latter firms.

It is thus natural to search for a stable matching as a fixed point of a mapping—or more

intuitively, the stationary point of a process that repeatedly revises the set of available

workers to the firms, based on the preferences of the workers and the firms. Formally, we

define a map: T : X n+1 → X n+1, where T (X) = (Tf (X))f∈F̃ for each X ∈ X n+1. For each

f ∈ F̃ , the map Tf : X n+1 → X is defined by

Tf (X)(E) :=
∑

P :fP−=∅

G(ΘP ∩ E) +
∑

P :fP− 6=∅

RfP−
(XfP−

)(ΘP ∩ E), (2)

where fP− ∈ F̃ , called the immediate predecessor of f , is a firm that is ranked im-

mediately above firm f according to P .16 The map can be interpreted as a tâtonnement

process whereby an auctioneer quotes “budget” of workers that firms can choose from.

The auctioneer, just like the classical Walrasian one, revises the budget quotes based on

the preferences of the market participants, shrinking the budget for a firm f (i.e., making

smaller work force available to it) when more workers are demanded by the firms that they

rank ahead of f , and expanding otherwise. Once the process converges, reaching a fixed

point, workers who are “truly” available to firms—in the sense of being compatible with

the preferences of other market participants—will have been found.

Alternatively, the mapping can be seen as a process by which firms rationally adjust their

beliefs about available workers based on the preferences of the other market participants.

The fixed point of the mapping then captures the workers firms can iteratively rationalize as

being available to them. To illustrate, fix a firm f . Consider first the worker types θ ∈ ΘP

for which f is at the top of their preference T (i.e., fP− = ∅). Firm f can rationally believe

all such workers are available to that firm, which explains the first term of (11). Consider

next the worker types θ ∈ ΘP for which f is the second-best according to P . Firm f can

rationally believe that among them only those who would be rejected by their top choice

firm are available to it, which explains the second term of (11). Now, consider the worker

types for which f is their third-best. Firm f analogously rationalizes as being available to

16An immediate predecessor off is formally defined such that fP− �P f and if f ′ �P f for f ′ ∈ F̃ , then

f ′ �P fP− .
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it only those among them who would be rejected by their first-best and second-best firms.

But the workers who would be rejected by the first-best are available to the second-best,

according to the earlier rationalization. This in turn rationalizes f ’s belief that the workers

available to f are precisely those who are available but unacceptable to the second-best

firm. In general, for any worker types, the same iterative process of belief rationalization

establishes the validity of (11).

Remark 3. Our map can be rewritten to mimic Gale and Shapley’s deferred acceptance

algorithm, where the firms and workers take turns to reject dominated proposals in each

round. Specifically, we can write T = Ψ ◦ Φ, where, for each profile X = (Xf )f∈F̃ ∈ X n+1

of workers, the map

Φf (X) := G−Rf (Xf )

returns the workers that are not rejected by each firm, and for Y = (Yf ) ∈ X n+1, the

subsequent map

Ψf (Y ) := G−
∑
P∈P

YfP− (ΘP ∩ ·),

returns workers available for each firm f—more specifically, those that remain after re-

moving the workers who would be accepted by firms they consider better than f . The map

written in this way resembles those developed in the context of the finite matching markets

(e.g., see Adachi (2000), Hatfield and Milgrom (2005), and Echenique and Oviedo (2006)),

but the construction here differs due to dealing with a richer space of worker types. As will

be also clear, this new construction is needed for a new method of proof for characterizing

the fixed point.

Theorem 1. A matching M is stable if and only if there is a fixed point X = T (X) such

that Mf = Cf (Xf ),∀f ∈ F̃ . Also, any such X and M satisfy Xf = C�f (M),∀f ∈ F̃ .

Proof. This result follows as a corollary of Theorem 12. For details, see Appendix C.

Example 1. To illustrate how a stable matching can be found from T mapping, consider

our leading example. We can denote candidate measures of available workers by 4-tuple:

(Xf1 , Xf2) = (x1, x
′
1;x2, x

′
2) ∈ [0, 1

2
]4, where Xf1 = (x1, x

′
1) are the measures of workers of

types θ and θ′ available to f1 and Xf2 = (x2, x
′
2) are the measures of workers of types θ and

θ′ available to f2. Since f1 is most preferred by θ and f2 is most preferred by θ′, according

to our T , all of these workers are available to the respective firms. So, we can without

loss set x1 = G(θ) = 1
2

and x′2 = G(θ′) = 1
2

and consider (1
2
, x′1;x2,

1
2
) as our candidate

measures. To compute T (1
2
, x′1;x2,

1
2
), we first consider the choice by each firm given the

respective available worker sets. Note Cf1(1
2
, x′1) = (x′1, x

′
1), so Rf1(1

2
, x′1) = (1

2
− x′1, 0).
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Similarly, Cf2(x2,
1
2
) = (x2,

1
2
− x2), so Rf2(x2,

1
2
) = (0, x2). Now applying our formula in

(11), we get T (1
2
, x′1;x2,

1
2
) = (1

2
, x2; 1

2
− x′1, 1

2
). So, (1

2
, x′1;x2,

1
2
) is a fixed point of T only if

(1
2
, x′1;x2,

1
2
) = (1

2
, x2; 1

2
− x′1, 1

2
), or x′1 = x2 = 1

4
. The optimal choice from the fixed point

then gives a stable matching M = (1
4
, 1

4
; 1

4
, 1

4
). One can easily see that this is the limit of

the approximately stable matching ( q+1
4q
, q+1

4q
; q−1

4q
, q−1

4q
) in the finite market example studied

in Section 2 as q →∞.

4.1 General Preferences

We now introduce a condition on the firms’ preferences that ensures existence of a stable

matching.

Definition 3. Firm f ’s preference is continuous if, for any sequence (Xk)k∈N and X in

X such that Xk
w∗−→ X, it holds that Cf (Xk)

w∗−→ Cf (X).

As suggested by the name, continuity of a firm’s preferences means that the firm’s

choice changes continuously with the distribution of workers available to it. Under this

assumption, we obtain a general existence result as follows:

Theorem 2. If each firm’s preference is continuous, then there exists a stable matching.

Proof. This result follows as a corollary of Theorem 3. For details, see Appendix C.

To gain some intuition, note that in a continuum economy, the measures of worker

matched with firms can change continuously. Therefore, a matching can occur in a way that

balances out the number of workers demanded by different firms even with complementary

preferences. This helps eliminate blocks that lead to non-existence of stable matchings.

To prove that T admits a fixed point, we first demonstrate that continuity of firms’

preferences implies that mapping T is also continuous. We also verify that X is a compact

and convex set. Continuity of T and compactness and convexity of X allow us to apply the

Kakutani-Fan-Glicksberg fixed-point theorem to guarantee that T has a fixed point. Then,

the existence of a stable matching follows from Theorem 1, which shows the equivalence

between the set of stable matchings and the set of the fixed points of T .

Many complementary preferences are compatible with continuous preferences and thus

with existence of a stable matching. Recall Example 1. In that example, firm f1 has

a Leontief type preference, for it wishes to hire an equal measure of workers of types θ

and θ′ (so, in particular, the firm wants to hire type-θ workers only if type-θ′ workers are

also available, and vice versa). As seen in Example 1, a stable matching exists despite

the extreme complementarity. And the reason has to do with the continuityAs the firm’s
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preferences are clearly continuous in that example, the existence of a stable matching in

that example is implied by Theorem 2.

A stable matching may fail to exist even in the continuum economy unless all firms have

continuous preferences, as the following example illustrates.

Example 2 (Role of continuity). Consider the following economy, which is modified from

Example 1. There are worker types θ and θ′ (each with measure 1/2) and firms f1 and

f2. Firm f1 wants to hire only measure 1/2 of each worker types together, and would like

to be unmatched otherwise; meanwhile, firm f2’s choice function is continuous: it exhibits

“responsive” preferences preferring type-θ workers to type-θ′ workers and in turn prefers

the latter to leaving a position vacant, and faces a capacity of measure 1/2.

Then, Cf1 violates continuity, while Cf2 does not. As before, we assume

θ : f1 � f2;

θ′ : f2 � f1.

No stable matching exists in this environment. To see this, consider the following two cases:

1. Suppose f1 hires measure 1/2 of each type of workers. For such a matching, none

of the capacity of f2 is filled. Thus such a matching is blocked by f2 and type-θ′

workers (note that every type-θ′ worker is currently matched with f1, so they are

willing participate in the block).

2. Suppose f1 hires no worker. Then, the only candidate for a stable matching is one in

which f2 hires measure 1/2 of type-θ workers (or else, f2 and unmatched workers of

type θ would block the matching). Then, since f1 is most preferred by all θ workers,

and type-θ′ workers prefer f1 to ø, the matching is blocked by a coalition of measure

1/2 of type-θ workers, measure 1/2 of type-θ′ workers, and f1.

The continuity assumption is important for existence of a stable matching, as this

example shows that nonexistence can happen even if only one firm f has a discontinuous

choice function. This example also suggests that non-existence can reemerge once some

“lumpiness” is reintroduced into the continuum economy (i.e., one firm can only hire a

certain minimum mass of workers). However, this kind of lumpiness is not very natural in

a continuum economy, although it is a natural consequence of the fact that each worker is

indivisible in a finite economy.
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4.2 Stable Matching with Choice Correspondence

In this section, we extend our analysis to the case in which a firm’s choice from a subpop-

ulation of available workers is not necessarily unique. In other words, we allow a firm’s

choice to be a correspondence (multi-valued function). There are at least three motivations

for this generalization. First, there is a continuum of workers in our environment, and

in such a situation it is natural to assume that a firm may be indifferent between some

distributions and choose more than one distribution as most preferred. Second, indiffer-

ences appear to be inherent in some applications. In school choice, for instance, schools

are often required by law to regard many students to have the same priority,17 in which

case the choice is multi-valued. Lastly, as will be seen in Section 7, our model turns out

to have a connection with probabilistic and time share matching models. In that model,

a distribution of workers corresponds to time shares/probabilities with which workers are

matched to firms, and indifferences naturally arise between distributions that represent the

same matching in terms of time shares/probabilities.

Let Cf : X ⇒ X be a choice correspondence: i.e., for any X ∈ X , Cf (X) ⊂ X is

the set of subpopulations of X that are the most preferred by f among all subpopulations

of X. By convention, we let Cø(X) = {X},∀X ∈ X . Then, let Rf (X) := X − Cf (X), or

equivalently Rf (X) = {Y ∈ X |Y = X −X ′ for some X ′ ∈ Cf (X)}. We assume that for

any X ∈ X , Cf (X) is nonempty. Assume further that Cf (·) satisfies the revealed preference

property: For any X,X ′ ∈ X with X ′ @ X, if Cf (X)∩XX′ 6= ∅, then Cf (X
′) = Cf (X)∩XX′

(recall XX′ is the set of subpopulations of X ′). Define a function D�f : X n+1 → X for each

f ∈ F to be the same as the one in (1).

Definition 4. A matching M is stable if

1. For all P ∈ P and E ∈ Σ, we have Mf (ΘP ∩ E) = 0 for any f satisfying ø �P f ;

and for each f ∈ F , Mf ∈ Cf (Mf ), and

2. There exist no f ∈ F and M ′
f ∈ X such that M ′

f @ D�f (M), M ′
f ∈ Cf (M ′

f ∨Mf ),

and Mf /∈ Cf (M ′
f ∨Mf ).

Clearly, this definition is a generalization of Definition 2 to the case of choice corre-

spondences. The existence of a stable matching then follows from imposing appropriate

17In the public school choice program in Boston, for instance, a student’s priority at a school is based

only on coarse criteria such as the student’s residence and whether her sibling is currently enrolled at that

school. Consequently, at each school, many students are equipped with the same priority (Abdulkadiroğlu

et al., 2005).
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conditions on the firms’ choice correspondences that allow for the existence of a fixed-point

for a correspondence operator defined similarly to the mapping T in Section 4.18

The notion of continuous preferences is naturally extended to the following:

Definition 5. The firm f ’s choice correspondence Cf is upper hemicontinuous if, for

any sequences (Xk)k∈N and (X̃k)k∈N in X such that Xk w∗−→ X, X̃k w∗−→ X̃, and X̃k ∈
Cf (X

k), ∀k, we have X̃ ∈ Cf (X).

Theorem 3. Suppose that for each f ∈ F , Cf is convex-, closed-valued, and upper hemi-

continuous. Then, there exists a stable matching.

Proof. See Appendix C.

This result shows that our main result — that there exists a stable matching when there

are a continuum of workers — does not hinge on the restrictive assumption that each firm’s

choice is unique. On the contrary, this result holds for a wide range of specifications that

allow for indifferences and choice correspondences. As will be seen in the next section, this

generalization turns out to be useful when analyzing a model of probabilistic and time-share

matchings, which may appear to be unrelated to our model at a first glance.

4.3 Substitutable Preferences

A class of preferences studied extensively in the matching theory literature are substi-

tutable preferences. A well-known set of results, including existence of a stable matching,

obtain under these preferences. We show that the same set of results follow in our con-

tinuum economy model with a suitable formulation of substitutable preferences. Since the

arguments establishing these results are by now fairly standard, we shall be brief in our

treatment of this case. One novel issue, though, is the question of uniqueness of a stable

matching. Azevedo and Leshno (2011) show that multiplicity of stable matchings disap-

pear in the large economy if firms have rich preferences over workers or if their quotas are

generic. This striking result is obtained with the restricted preference domain of “respon-

sive” preferences. We provide a condition for uniqueness of a stable matching under general

substitutable preferences. We begin by defining the class of preferences:

Definition 6. Firm f ’s preference is substitutable if Rf (X) @ Rf (X
′) whenever X @ X ′.

18For details, refer to Appendix C.
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In words, substitutability means that a firm rejects more of any given worker types when

facing a bigger set of workers. Importantly, the assumption excludes the kind of comple-

mentary preferences studied in the previous section. At the same time, the substitutable

preferences are not a special case of the preferences considered in Section 4.1 either, since

continuity of preferences need not be satisfied here.

Again, by Theorem 1, the fixed points of the map T characterize the stable matchings.

Since we do not assume continuity of the choice mappings, however, Theorem 2 does not

apply. Instead, as shown in the proof of the next theorem, substitutability of the firms’

preferences implies that the map T is monotone increasing with respect to the partial order

@F̃ . Next, recall from Lemma 1 a partially ordered set (X ,@), which makes the partially

ordered set (X n+1,@F̃ ) a complete lattice, where XF̃ @F̃ X ′
F̃

if Xf @ X ′f for all f ∈ F̃ .

Hence, Tarski’s fixed point theorem yields existence as well as the lattice structure of stable

matchings.

To describe the lattice structure, it is also worth describing the extreme points based on

the preference orders defined earlier. We say that a stable matching M is firm-optimal

(resp., firm-pessimal) if M �F M (resp., M �F M) for every stable matching M . A

matching M is worker-optimal (resp., worker-pessimal) if M �Θ M (resp., M �Θ M)

for every stable matching M . The result is then stated as follows:

Theorem 4. When the firms’ preferences are substitutable, (i) the set X ∗ of fixed points of

T is nonempty, and (X ∗,@F̃ ) is a complete lattice; and (ii) there exists a firm-optimal (and

worker-pessimal) stable matching M = (Cf (Xf ))f∈F , where X = sup@F X
∗, and a firm-

pessimal (and worker-optimal) stable matching M = (Cf (Xf ))f∈F , where X = inf@F X ∗.

Proof. See Appendix D.1.

As has been noted by Hatfield and Milgrom (2005), the algorithm finding the fixed

point corresponds to the Gale and Shapley’s deferred acceptance algorithm, although the

algorithm may not terminate in finite rounds in our continuum model.

Consider an additional restriction on the preferences.

Definition 7. Firm f ’s preference exhibits the law of aggregate demand if for any

X,X ′ ∈ X , with X @ X ′, Cf (X)(Θ) ≤ Cf (X
′)(Θ).19

This property simply ensures that a firm demands more workers (in terms of cardinality)

when more workers (in terms of set inclusion) becomes available. This property is needed

to obtain the next two results.
19This property is an adaptation of the same property to our continuum economy that appears in the

literature such as Hatfield and Milgrom (2005), Alkan (2002), and Fleiner (2003).
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Theorem 5 (Rural hospital theorem). If firms’ preferences exhibit substitutability and the

law of aggregate demand, then for any stable matching M , we have Mf (Θ) = M f (Θ) for

each f ∈ F and Mø = Mø.

Proof. See Appendix D.2.

The result implies that the measure of workers matched with each firm f ∈ F as well

as the measure of unmatched workers is identical across all stable matchings.

We next introduce a condition that would ensure uniqueness of a stable matching. The

condition refers to some new notation. For any matching M and subset F ′ of firms, let

M f
F ′ be a subpopulation of workers, defined by

M f
F ′(E) :=

∑
P∈P

∑
f ′:f�P f ′,f ′ 6∈F ′

Mf ′(ΘP ∩ E) for each E ∈ Σ,

who are matched outside firms F ′ and available to firm f under M .

Definition 8 (Rich preferences). The firms’ preferences are rich if for any individually

rational matching M̂ 6= M such that M̂ �F M , there exists f ∗ ∈ F such that M f∗ 6=
Cf∗(M f∗ + M̂ f∗

F̄
), where F̄ := {f ∈ F |M̂f �f M f}.20

In words, the condition is explained as follows. Consider any (individually rational)

matching M̂ that is preferred to the worker-optimal matching M by all firms, strictly by

firms in F̄ ⊂ F . Then, the richness condition requires that, at matching M , there must

exist a firm that would be happy to match with some workers who are not hired by the

firms in F̄ but are willing to match with the firm under M̂ . Since firms are more selective

at M̂ than at M , it is intuitive that a firm would demand at the latter matching some

workers that the more selective firms would not demand at the former matching. The

presence of such worker types requires richness of the preference palette of firms as well

as workers—hence the name. This point will be seen more clearly when one considers (a

general class of) responsive preferences, and we shall illustrate this in an example later.

Theorem 6. If firms’ preferences are rich and substitutable and exhibit the law of aggregate

demand, then there exists a unique stable matching.

Proof. See Appendix D.3.

Checking the rich preference condition requires identifying the worker-optimal matching

M , which can be done by adapting the worker-proposing DA to the continuum economy

20Recall that (Mf∗ + M̂f∗

F̄
)(·) is defined as (Mf∗(·) + M̂f∗

F̄
(·)) ∧G(·).
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and running it in a given environment.21 Once M is found, it is often straightforward

to inspect the existence of M̂ and f ∗ that satisfy the stated property, as Example 3 will

illustrate later. The rich preference condition can also be useful for identifying (possibly

stronger) sufficient conditions for uniqueness. Specifically, a full support condition that

Azevedo and Leshno (2011) have shown to yield a unique stable matching when firms have

responsive preferences will be shown to be sufficient for our rich preferences condition in a

more general environment in which firms have responsive preferences but may face caps on

the number of workers they can hire from different groups of workers. Such group specific

quotas, typically based on socio-economic status or other characteristics, may arise from

affirmative action or diversity considerations. As is pointed out by Abdulkadiroğlu and

Sonmez (2003), the resulting preferences (or choice functions) may violate responsiveness

but they nonetheless satisfy substitutability.

Responsive preferences with affirmative action. Assume that there is a finite set

T of “ethnic types“ that describe characteristics of a worker such as ethnicity, gender,

and socio-economic status, such that type θ is mapped to T via some measurable function

τ : Θ → T . For each t ∈ T , a (measurable) set Θt := {θ ∈ Θ|τ(θ) = t} of agents has an

ethnic type t. Each firm f faces (maximum) quota qf for the workers and qtf for workers

in ethnic type t. We assume qf ≤
∑

t∈T q
t
f , allowing for the possibility that quota for

some ethnic type may not bind. Aside from the quotas, a firm’s preference is responsive

and described by a continuous score function sf : Θ → [0, 1], with the interpretation

that firm f prefers a type-θ′ worker to a type-θ worker if and only if sf (θ
′) > sf (θ).

We assume that G is absolutely continuous and admits density g in the interior of Θ.22

Such firms are said to have responsive preferences with affirmative action. The

corresponding choice functions are defined formally in Appendix D.4. As shown there,

the choice function exhibits substitutability and satisfies the law of aggregate demand.

Consistent with Azevedo and Leshno (2011), the optimal choice by a firm is characterized

by the cutoffs, possibly different across alternative ethnic types. The full support condition

defined by Azevedo and Leshno (2011) in the context of pure responsive preferences is

easily generalized to the current environment:

21Note that we may need to take M as the limit of the algorithm in case it does not finish in a finite

time. See a leading example of Azevedo and Leshno (2011), for instance.
22This assumption is reasonable, and is implied by the firms’ preferences to involve no ties over a positive

measure of worker types. One can define a worker’s type as θ = (P, t, s1, ..., sn), where P , t, and si are

respectively the worker’s preference, his ethnic type, and the firm i’s score of the worker. For firm i’s

preference to involve no ties among a positive measure of worker types, the marginal distribution of its

scores, si, must not involve a mass point. This requires the distribution of θ to be absolutely continuous.
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Definition 9 (Full Support). Firms’ preferences have full support if for each preference

P ∈ P, any ethnic type t ∈ T , and for any non-empty open cube S ⊂ [0, 1]n, the worker

types

Θt
P (S) := {θ ∈ ΘP ∩Θt | (sf (θ))f∈F ∈ S}

have a positive measure; i.e., G(Θt
P (S)) > 0.

Our full support condition boils down to the full support condition of Azevedo and

Leshno (2011) without affirmative action constraint, if T is a singleton set.

Proposition 2. If firms have responsive preferences with affirmative action that satisfy the

full support condition, then the preferences are rich.

Proof. See Appendix D.5.

Proposition 2 and Theorem 6 then imply the following:

Corollary 1. Suppose the firms’ preferences are responsive with affirmative action, and

satisfy the law of aggregate demand. If the full support condition holds, then there exists a

unique stable matching.

Lastly, the next example demonstrates that the law of aggregate demand is also crucial

for the uniqueness result: if the firm preferences violate the law of aggregate demand, then

uniqueness of a stable matching does not necessarily hold even if the firm preferences are

rich.

Example 3 (Necessity of LoAD for uniqueness). Consider a continuum economy with

worker types θ1 and θ2 (each with measure 1/2) and firms f1 and f2. Preferences are as

follows:

1. Firm f1 wants to hire as many workers of type θ2 as possible if no worker of type θ1

is available, but if any positive measure of type θ1 workers is available, then f wants

to hire only type θ1 workers and no type θ2 workers at all, and f wants to hire only

up to measure 1/3 of type θ1 workers.

2. The preference of firm f2 is symmetric, changing the roles of worker types θ1 and

θ2. More specifically, Firm f2 wants to hire as many workers of type θ1 as possible

if no worker of type θ2 is available, but if any positive measure of type θ2 workers is

available, then f wants to hire only type θ2 workers and no type θ1 workers at all,

and f wants to hire only up to measure 1/3 of type θ2 workers.
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3. Worker preferences are as follows:

θ1 : f2 � f1 � ø,

θ2 : f1 � f2 � ø.

Clearly, the firm preferences are substitutable. To check the rich preference, note first that

M =

(
f1 f2

1
2
θ2

1
2
θ1

)
,

where the notation is such that measure 1/2 of type θ1 workers are matched to f2 and

measure 1/2 of type θ2 workers are matched to f1.23 Then, under any matching M̂ 6= M

that satisfies M̂f = Cf (M̂f ∨M f ) for all f , some firm, say f1, must be matched with a

positive measure of θ1 workers. Given that M̂ is individually rational, this implies that f1 is

not matched with any θ2 workers. Also, since f2 is matched with no more than measure 1/3

workers of θ2 under any individual rational matching, at least measure 1/6 of θ2 workers

are unemployed under M̂ , which means that these workers belong to M̂ f2

F̄
since they prefer

f2 to ø and ø /∈ F̄ . If they are available to f2 in addition to M f2
, then f2 would choose

not to be matched with any θ1 workers, to whom it is matched under M f2
. Thus, the

rich preference condition is satisfied. Finally, firm preferences violate the law of aggregate

demand because, for instance, the choice of f1 from measure 1/2 of θ2 is to hire all of them,

but even adding a measure ε < 1/2 of type θ1 workers rejects all θ2 workers. As it turns

out, there is a firm-optimal stable matching that is different from M and given as follow:

M =

(
f1 f2

1
3
θ1

1
3
θ2

)
.

5 Approximate Stability in Finite Economies

As we have seen in the illustrative example of Section 2, no matter how large the economy

is, as long as it is finite, there does not necessarily exist a stable matching. This motivates

us to look for an approximately stable matching in a large finite economy. In this section,

we build on the existence of a stable matching in the continuum economy to demonstrate

that an approximate stability can be achieved if the economy is finite but sufficiently large.

In order to analyze economies of finite sizes, we consider a sequence of economies (Γq)q

indexed by a positive integer q. In each economy Γq, there is a set of n firms f1, . . . , fn, which

23That this is a worker-optimal matching follows from the fact that the worker-proposing DA ends in

the first round where each worker applies to his preferred firm while the firm accepts him.
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is fixed across all q. There are also q workers, each with a type in Θ. The worker distribution

is normalized with the economy’s size. Formally, let the (normalized) population Gq of

workers in Γq be defined so that Gq(E) represents the number of workers with type in E

divided by q. Any subpopulation Xq @ Gq is then a discrete distribution over types that is

similarly normalized, i.e. a step-function whose steps are multiples of 1/q. Let X q denote

the set of all such subpopulations. Note that Gq, and thus every Xq ∈ X q, belongs to X ,

though it does not have to be an element of X , i.e. subpopulation of G.

In order to formalize the approximate stability concept, we assume that in economy

Γq, each firm f evaluates the set of workers it matches with using its preferences as in

the continuum economy, but with the distribution of workers normalized by the economy’s

size. In particular, we first endow firms with cardinal utility functions over distributions

of workers. Let uf : X → R denote the continuous utility function of firm f , with uf (X)

being the firm’s utility from matching with a subpopulation of workers X ∈ X .24 That

there is a single utility function for each firm defined on the space X , which includes

worker distributions in any finite economy as well as continuum economy, means that the

preferences of the firms remain constant (or consistent) over a sequence of economy (Γq)q

and its limit Γ. Each firm’s choice function in Γq is modified to choose the most preferred

subpopulation among the discrete distributions — the chosen subpopulation should be a

step function with each step being a multiple of 1
q

that maximizes utility uf of f .

Given any ε > 0, we say that a matching is ε-stable if, for any block, the utility gain

for any blocking firm is less than ε. Formally,

Definition 10. A matching M in an economy Γq is ε-stable if, for any f and M ′
f ∈ X q

that block M , uf (M
′
f ) < uf (Mf ) + ε.

Remark 4. For ε > 0, we say that matching M is ε-Pareto efficient if there exists no

matching M ′ 6= M and firm f ∈ F such that M ′ �F , M ′ �Θ M , and uf (M
′
f ) ≥ uf (Mf )+ε.

By an argument analogous to Pareto efficiency of a stable matching presented in Section 3,

it is easy to see that any ε-stable matching is ε-Pareto efficient.

Let us say that a sequence of economies (Γq)q converges to a continuum economy Γ

if the measure Gq of worker types converges weakly to the measure G of the continuum

economy, that is, Gq w∗−→ G.

24To guarantee the existence of such a utility function, we may assume as in Remark 1 that each firm

is endowed with a complete, continuous preference relation. Then, since the set of alternatives, X , is a

compact metric space, such a preference can be represented by a continuous utility function according to

the Debreu representation theorem (Debreu, 1954).
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Theorem 7. Fix any ε > 0 and a sequence of economies (Γq)q that converges to a contin-

uum economy. For any sufficiently large q, there exists an ε-stable matching in Γq.

Proof. See Appendix E.

Below we revisit the example in Section 2 to give a concrete example of an approximately

stable matching.

Example 4. Recall the finite economy described in Section 2.25 If the index q is odd,

then a stable matching does not exist. Let us consider the following matching: firm f1

matches with q+1
2

workers of each type and firm f2 matches with all remaining workers,

i.e. q−1
2

workers of each type. Given this matching, it is straightforward to see that there

is no blocking coalition involving firm f1. Also, the only blocking coalition involving firm

f2 entails taking only a single worker of type θ′ away from firm f1. If q is large, then

this deviation will only result in a small utility gain for firm f2, so the above matching is

ε-stable. In fact, any finite matching converging to the stable matching of the continuum

economy, found in the example of Section 2, will suffice for our purpose.

6 Incentive Compatibility

In this section, we study incentives for truthful reporting under stable mechanisms. Fol-

lowing the literature, we adopt strategy-proofness as the criterion.

Let the type of each worker be a pair θ = (a, P ), where a is interpreted as a “productivity

type” while P is a “preference type”; a describes the worker’s productivity or skills, while P

is the preference of the worker over the firms and the outside option as before. We assume

that a worker’s preference does not affect firms’ preferences and is private information,

whereas the productivity type affects firms’ preferences and is observable to the firms. Let

A and P be the sets of productivity types and preference types, respectively, and Θ = A×P .

We assume that A is a finite set.26 This implies that Θ is a finite set, so the population G

25With a slight abuse of notation, this example assumes that there are a total of 2q workers (q workers

of θ and θ′ each) rather than q. Of course, this is done for purely expositional purposes.
26Finiteness of A is necessitated by our use of weak* topology and the construction of strategy-proof

mechanisms below. To illustrate the difficulty, suppose A were a unit interval, say, and G has a well

defined density. Our construction below would require that the density associated with firms’ choice

mappings satisfy a certain population-proportionality property. Convergence in our weak* topology does

not preserve this restriction on density. As a consequence, the operator T may violate upper hemicontinuity,

which may result in the failure of the nonempty-valuedness of our mechanism. It may be possible to address

this issue by strengthening the topology, but whether the resulting space satisfies conditions that would

guarantee the existence of a stable matching is an open question.
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of worker types is a discrete distribution. We say that a worker of type θ ∈ Θ is present

at G if G(θ) 6= 0 and absent if G(θ) = 0.

Adopting the model in Section 4.2, we assume that the choice behavior of each firm

f is described by a choice correspondence Cf that satisfies upper hemi-continuity and

the revealed-preference property. In addition, to formalize the notion that firms’ prefer-

ences depend solely on workers’ productivity types, we assume that each firm has a unique

choice about the worker distribution in terms of productivity types, but regards all worker

populations with the same distributions of productivity types as equally desirable. For-

mally, we assume that for any Y ∈ Cf (X) and Z v X, we have Z ∈ Cf (X) if and only

if
∑

P∈P Z(a, P ) =
∑

P∈P Y (a, P ) := Γaf (X) for all a ∈ A. It follows that Cf satisfies

convex-valuedness and closed-valuedness.27

As before, a matching is described by a profile M = (Mf )f of subpopulations of workers

matched with alternative firms or the outside option (note that given discreteness of G,

each matching M can be expressed as a profile of discrete distributions). We assume

that all workers of the same (reported) type are treated ex ante identically. Hence, given

matching M , a worker of type (a, P ) who is present at G is matched to f ∈ F̃ with

probability
Mf (a,P )

G(a,P )
. Note that

∑
f∈F̃

Mf (a,P )

G(a,P )
= 1 holds by construction, giving rise to a

valid probability distribution over F̃ .

A mechanism is a function ϕ from the set of worker populations to the set of matchings.

We assume that the workers evaluate lotteries via the partial order given by first-order

stochastic dominance, and say that mechanism ϕ is strategy-proof for workers if, for

each population G, productivity type a ∈ A, preference types P and P ′ in P such that

both (a, P ) and (a, P ′) are present at G, and f ∈ F̃ , we have∑
f ′:f ′�P f

ϕf ′(G)(a, P )

G(a, P )
≥

∑
f ′:f ′�P f

ϕf ′(G)(a, P ′)

G(a, P ′)
. (3)

Some comments on our modeling assumptions are in order. First, a worker can misreport

only her preference type, and not her productivity type: this assumption is the same as in

the standard setting in the literature. Second, unlike in finite population models, the worker

cannot alter the population G by unilaterally misreporting her preferences, because there

27Closed-valuedness of Cf is straightforward. To see that Cf is convex-valued, let Y, Z ∈ Cf (X) and

λ ∈ (0, 1) and consider a convex combination W := λY + (1− λ)Z. Then

1.
∑
P∈PW (a, P ) = λ

∑
P∈P Y (a, P ) + (1− λ)

∑
P∈P Z(a, P ) = λΓaf (X) + (1− λ)Γaf (X) = Γaf (X),

2. For each θ ∈ Θ, Y (θ) ≤ X(θ) and Z(θ) ≤ X(θ), so W (θ) = λY (θ) + (1− λ)Z(θ) ≤ X(θ).

Therefore the convex combination W is also in Cf (X), implying convex-valuedness of Cf .
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are a continuum of workers. Third, we only impose the restriction (3) for types (a, P ) and

(a, P ′) who are present at G. For the true worker type (a, P ), this is the same assumption

as in the standard strategy-proofness concept for finite markets. For the misreported type

(a, P ′), this assumption is made for expositional simplicity, because the concept of the

mechanism in our model does not specify allocations for absent types. Note, however, that

if ϕ is a mechanism that is individually rational (which is the case for stable mechanisms)

and strategy-proof for workers in the above sense, then it is easy to specify the outcomes

for absent types under ϕ so as to eliminate incentives for misreporting to be an absent type.

Specifically, one can simply specify that the mechanism assigns any worker of an absent

type to the outside option with probability one.

Now we are ready to analyze incentive properties of stable mechanisms in large markets.

First, the following example shows that an arbitrary stable mechanism need not be strategy-

proof for workers even in a market with continuum of workers.

Example 5. Let there be two firms f and f ′, as well as continuum (with measure one) of

workers with one productivity type, A = {a}. Let

P : f, f ′; P ′ : f,

and G be a distribution such that G(a, P ) = G(a, P ′) = 1/2. The choice correspondences

of f and f ′ are such that f chooses up to capacity 1/2 of workers while f ′ rejects every

worker (the firm f is indifferent about which type of workers to choose because there is

only one productivity type a).28 Consider a stable matching mechanism which maps the

aforementioned worker population to matching M such that Mf (a, P ) = Mø(a, P ′) = 1/2

and Mf (a, P
′) = Mf ′(a, P ) = Mf ′(a, P

′) = Mø(a, P ) = 0. Then, a worker whose type is

(a, P ′) is matched with ø with probability one if she reports her true preferences P ′, while

she is matched to f with probability one if she reports preferences P . Therefore, each type

(a, P ′) worker has incentives to misreport her preferences to be P . Thus, this mechanism

is not strategy-proof for workers.

The above example notwithstanding, we next show that there exists a stable mechanism

that is strategy-proof for workers. To do so, we first define a correspondence B from X to

28In this example, firm f ′ plays no role except making the incentive problem nontrivial: note that

without f ′, there would be only one preference type. We chose this, perhaps somewhat artificial, example

only for simplicity. It is straightforward to make an example in which f ′ finds some worker subpopulations

acceptable.
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itself that is given by

B(X) := {X ′ @ X | for each a ∈ A, there is some αa ∈ [0, 1] such that

X ′(a, P ) = min{X(a, P ), αaG(a, P )} for all P ∈ P}. (4)

The correspondence B(X) requires each firm to hire workers with different preference types

(and the same productivity type) in proportion to their population sizes at G, namely

proportion αa of G(a, P ) from each worker type (a, P ), except for worker types (a, P )

whose available measure X(a, P ) falls short of αaG(a, P ), of which the entire measure is

chosen. We then modify the choice correspondence of each firm f ∈ F to

C̃f (X) = Cf (X) ∩B(X), (5)

while we let C̃ø = Cø.

In Section 7, we study a setup that is more general than the current one in that the sets

of indifferent workers (or indifference classes) are allowed to vary across firms. Under the

more general setup, we establish that C̃f is a singleton correspondence (i.e., a function) and

satisfies the revealed preference property (Lemma 6 of Appendix G). Given the revealed

preference property, one can define stability in the model (G,F,PΘ, C̃F ) with each C̃f

defined in equation (5). Then, Theorem 9 of Section 7 shows that a matching M in the

model (G,F,PΘ, CF ) is stable ifM is stable in the model (G,F,PΘ, C̃F ).29 Finally, Theorem

10 of Section 7 shows that there exists a stable matching in the model (G,F,PΘ, C̃F ).

These results guarantee that there exists a stable matching in the model (G,F,PΘ, CF )

that corresponds to choices by firms whose choice functions are given by C̃F . Intuitively, a

stable matching we just identified satisfies the additional property that each firm seeks to

select workers with different preference types and common productivity type in proportion

to the sizes of their populations. Given these results, let ϕ be a mechanism that finds a

stable matching identified in Theorem 10, i.e., a stable matching corresponding to C̃F , and

refer to ϕ as a population-proportional stable mechanism.

Theorem 8. Any population-proportional stable mechanism is strategy-proof for workers.

Proof. Denote the population-proportional stable mechanism by ϕ. Suppose for contra-

diction that there exist a, P, P ′, and f for which inequality (3) fails. Then, let f be the

most preferred firm (or the outside option) at P among those for which inequality (3) fails.

Then, ∑
f ′:f ′�P f

ϕf ′(G)(a, P )

G(a, P )
<

∑
f ′:f ′�P f

ϕf ′(G)(a, P ′)

G(a, P ′)
, (6)

29In fact, Theorem 9 establishes a stronger result that M is strongly stable in (G,F,PΘ, CF ).
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while ∑
f ′:f ′�P fP−

ϕf ′(G)(a, P )

G(a, P )
≥

∑
f ′:f ′�P fP−

ϕf ′(G)(a, P ′)

G(a, P ′)
,

so it follows that

ϕf (G)(a, P )

G(a, P )
<
ϕf (G)(a, P ′)

G(a, P ′)
. (7)

By the definition of a population-proportional stable mechanism, inequality (7) holds only

if

ϕf (G)(a, P ) = X(a, P ), (8)

where

X(a, P ) =
∑

f ′:f�P f ′
ϕf ′(G)(a, P ) (9)

by the characterization theorem of stable matchings, Theorem 1. Equalities (8) and (9)

imply ∑
f ′:f�P f ′

ϕf ′(G)(a, P ) = 0,

and thus, because
∑

f ′∈F̃
ϕf ′ (G)(a,P )

G(a,P )
= 1 as ϕ(G) is a matching, we obtain

∑
f ′:f ′�P f

ϕf ′(G)(a, P )

G(a, P )
= 1.

This inequality contradicts inequality (6) because the right hand side of inequality (6)

cannot be strictly larger than 1 as ϕ(G) is a matching, which completes the proof.

Remark 5. Even with a continuum of workers, no stable mechanism is strategy-proof

for the firms. To show this fact, consider the following example.30 Let F = {f1, f2},
Θ = {θ, θ′}, and G(θ) = G(θ′) = 1/2. Worker preferences are given as follows:

θ :f2 � f1 � ø,

θ′ :f1 � f2 � ø.

30This example is a continuum-population variant of an example in Section 3 of Hatfield, Kojima and

Narita (2014a). See also Azevedo (2014) who shows that stable mechanisms are manipulable via capacities

even in markets with continuum of workers.
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Firm preferences are responsive; f1 prefers θ to θ′ to vacant positions, and wants to be

matched with workers of up to measure 1; and f2 prefers θ′ to θ to vacant positions, and

wants to be matched with workers of up to measure 1/2.

Let ϕ be any stable mechanism. Given the above input, the following matching is the

unique stable matching:

M ≡

(
f1 f2

1
2
θ′ 1

2
θ

)
.

Matching M is clearly stable because it is individually rational and every worker is matched

to her most preferred firm. To see the uniqueness, note first that in any stable matching,

every worker has to be matched to a firm (if there is a positive measure of unmatched

workers, then there is also a vacant position in firm f1, and they block the matching).

All workers of type θ′ are matched with f1, because otherwise f1 and θ′ workers who are

not matched with f1 block the matching (note that f1 has vacant positions to fill with θ′

workers). Given this, all workers of type θ are matched with f2, because otherwise f2 and θ

workers who are not matched with f2 block the matching (note that f2 has vacant positions

to fill with type θ workers).

Now, assume that f1 misreports its preferences, declaring that θ is the only acceptable

worker type, while it still has a responsive preferences and wants to be matched to the

same measure as before, 1. And assume that preferences for other agents are unchanged.

Then, it is easy to verify that the unique stable matching is

M ′ ≡

(
f1 f2

1
2
θ 1

2
θ′

)
.

Therefore, firm f1 prefers its outcome at M ′ to the one at M , proving that no stable

mechanism is strategy-proof for the firms.

7 Time Share/Probabilistic Matching Models

As mentioned above, our model turns out to have a connection with time share and prob-

abilistic matching models. In both models, there is a finite set of workers with a set of

firms remaining to be finite. In the time-share model, a matching between firms and work-

ers corresponds to the time that they spend together while, in the probabilistic matching

model, it corresponds to the probabilities that they are matched to one another. Proba-

bilistic matching is often used in allocation problems without money such as school choice,
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while time-share models have been proposed as a solution to labor matching markets in

which part-time jobs are available (see Biró, Fleiner and Irving (2013) for instance). We

will follow the time share interpretation for the remainder of this Section.

To describe the time share matching model, we use the same framework as in the

continuum matching model, while assuming that the type space Θ is finite and Σ = 2Θ

(that is, the power set of Θ). In the time share model, each θ ∈ Θ represents an individual

worker while the (discrete) measure G(θ) represents his endowment of time.31 Likewise,

firm f being matched with a subpopulation X @ G means that it hires each worker θ ∈ Θ

for the amount of time equal to X(θ).

Each worker θ ∈ Θ has a strict preference over firms, denoted as �θ. Then, ΘP =

{θ ∈ Θ :�θ= P} for each P ∈ P and PΘ = {ΘP : P ∈ P}, as defined earlier. For firms’

preferences, we allow each firm to be indifferent among a set of workers. To be concrete,

we let a partition {Θ1
f , ...,Θ

Kf
f } of Θ denote the set of indifference classes for each firm f .

The partition means that firm f is indifferent to redistributing the total time contracted

with workers within each group Θk
f . Let If = {1, ..., Kf} be the associated index set. Then,

the firm f ’s preference is represented by a choice correspondence Cf : X ⇒ X satisfying

the revealed preference and the following property: For any Y ∈ Cf (X) and Z v X,

Z ∈ Cf (X) if and only if
∑

θ∈Θkf
Z(θ) =

∑
θ∈Θkf

Y (θ) for all k ∈ If . In other words, each

firm f has a unique optimal choice up to the time share allocation within each indifference

class. This preference is analogous to the one described in Section 6 where each indifference

class consists of the workers with the same productivity type so all firms have the same

indifference classes. In contrast to that model, indifferent classes are allowed to vary across

firms in the current setup. By extending the notation Γaf (X) in Section 6, we let Γkf (X)

denote the firm f ’s unique choice of total time share with workers in the indifference class

Θk
f : That is, Γkf (X) =

∑
θ∈Θkf

Y (θ) for any Y ∈ Cf (X). Let Γf (X) = (Γkf (X))k∈If .

A time share model described so far is denoted by (G,F,PΘ, CF ). Notice that our time

share model has the same structure as the fractional matching model that is also known as

random or aggregate matching model in the literature.32

Given the choice correspondence framework, the notion of stability follows the one in

Definition 4. Notice that the stability in the time share model corresponds to ex ante

31In the probabilistic matching model, it is natural to assume that G(θ) = 1/|Θ| for all θ ∈ Θ (after

normalization to ensure G(Θ) = 1), since G(θ) represents the total probability with which the agent θ can

be matched with firms.
32This literature includes Hylland and Zeckhauser (1979), Roth, Rothblum and Vande Vate (1993),

Alkan and Gale (2003), Bäıou and Balinski (2000), Echenique et al. (2013), and Kesten and Ünver (2014)

among others.
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stability, if one interprets the time share as probability share. That is, if any worker (or

student) were to shift shares from a less preferred to a more preferred firm (school), the

latter must necessarily be worse off. In this sense, stability, in particular no blocking

coalition condition, involves the notion of fairness or no justified envy. What this condition

reduces to when preferences are all responsive (as is the case in the existing literature) is

that whenever a worker θ enjoys a positive share with a firm f , then all workers preferred

by f more than θ have zero share with firms they prefer less than f .

The existence of a stable matching in the time share model follows from Theorems 3 in

a straightforward manner.

Corollary 2. Suppose that Γf is continuous for each f ∈ F . Then, there exists a stable

matching in the time share model.

Proof. By Theorem 3, it suffices to show that Cf is convex- and closed-valued, and upper

hemicontinuous.

To show first that Cf is convex-valued, for any given X, consider any X ′, X ′′ ∈ Cf (X).

Note first that X ′, X ′′ v X implies λX ′ + (1 − λ)X ′′ v X. Also, for any λ ∈ [0, 1] and

k ∈ If , ∑
θ∈Θkf

(λX ′ + (1− λ)X ′′)(θ) = λ
∑
θ∈Θkf

X ′(θ) + (1− λ)
∑
θ∈Θkf

X ′′(θ) = Γf (X),

where the second equality holds since the assumption thatX ′, X ′′ ∈ Cf (X) implies Γkf (X) =∑
θ∈Θkf

X ′(θ) =
∑

θ∈Θkf
X ′′(θ). Thus, λX ′ + (1− λ)X ′′ ∈ Cf (X).

To show the upper hemicontinuity, consider two sequences (X`)`∈N and (X̃`)`∈N con-

verging to some X and X̃, respectively, such that for each `, X̃` ∈ Cf (X
`), i.e. X̃` v

X` and Γkf (X
`) =

∑
θ∈Θkf

X̃`(θ), ∀k ∈ If . Since Γf is continuous, we have Γkf (X̃) =

lim`→∞ Γkf (X̃
`) = lim`→∞

∑
θ∈Θkf

X̃`(θ) =
∑

θ∈Θkf
X̃(θ), which (together with the fact that

X̃ v X) means that X̃ ∈ Cf (X), establishing the upper hemicontinuity of Cf . The proof

of closed-valuedness is similar and hence omitted.

As mentioned before, a matching can be interpreted as a profile of probability shares.

In particular, for probabilistic matching, say in the school choice context, stability involves

the notion of fairness or no justified envy in an ex ante sense. In such an environment

with indifference of school preferences/priority, the following stronger notion of fairness,

proposed by Kesten and Ünver (2014), is of interest.

Definition 11. A matching M in the time share model is strongly stable if (i) it is stable

and (ii) for any f ∈ F and any θ, θ′ ∈ Θk
f , if

Mf (θ)

G(θ)
<

Mf (θ′)

G(θ′)
, then

∑
f ′∈F̃ :f ′≺θf Mf ′(θ) = 0.
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In words, strong stability means the following. Suppose a worker θ is in the same

indifference class as θ′ with respect to firm f ’s preference. If θ worker enjoys a strictly

lower share of her time endowment with f than θ′ does, then it must be that θ has no share

with any firm she prefers strictly less than f . In that sense, the workers in the same priority

class should not be discriminated against one another. This is an additional requirement

not implied by the stability alone (which requires fairness across workers that a firm is not

indifferent between).

In the remainder of this section, we establish the existence of a strongly stable matching.

To do so, we extend the correspondence B in (4), and denote it by Bf , by imposing the

population proportionality on each firm f ’s indifference classes. That is, for any X @ G and

X ′ ∈ Bf (X), there is some αk ∈ [0, 1] for each k ∈ If such that X ′(θ) = min{X(θ), αkG(θ)}
for all θ ∈ Θk

f . Note that this mapping differs from B only in that the indifference classes

can vary across firms. Then, as in Section 6, we modify each firm f ’s choice correspondence

Cf into C̃f (z) = Cf (z) ∩Bf (z). We also let C̃ø = Cø.

Using this choice correspondence, we establish the equivalence between the set of

strongly stable matchings in the original time share model and the set of stable match-

ings in a modified time share model:

Theorem 9. A matching M in the time share model (G,F,PΘ, CF ) is strongly stable if

and only if M is stable in the time share model (G,F,PΘ, C̃F ).

Proof. See Section G.

Given this equivalence result, we are now ready to show the existence of a strongly

stable matching.

Theorem 10. Suppose that Γf is continuous. Then, there exists a strongly stable matching

in the time share model (G,F,PΘ, C̃F ).

Proof. See Section G.

This result generalizes the existence result of a strongly stable matching in the school

choice context as studied by Kesten and Ünver (2014). They consider a school choice prob-

lem in which schools may regard multiple students as having the same priority. In that

environment, they define probabilistic matchings that satisfy our strong stability property

(which they call strong ex ante stability), and show their existence, in the environment in

which schools have responsive preferences with ties. Our contribution here lies in formaliz-

ing a strongly stable matching and establishing its existence with general preferences that

may violate responsiveness or even substitutability. Our result could be useful for school
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choice environments in which the schools may need a balanced student body in terms of

gender, ethnicity, income, or skill levels. For example, in New York City, the so-called

Education Option (EdOpt) school programs are required to assign 16 percent, 68 percent,

and another 16 percent of the seats to the top performers, middle performers, and the lower

performers, respectively (Abdulkadiroğlu, Pathak and Roth, 2005). Strong stability will

ensure ex ante fairness in the sense that it not only implements the desired mix of students

but also will ensure fairness in the treatment of students relative to the schools’ objective.

8 Matching with Contracts

The preceding sections assumed that the terms of employment contracts are exogenously

given. In many applications, however, they are decided endogenously. To study such a

situation, we generalize our basic model by introducing a continuum-population version of

the “matching with contracts” model due to Hatfield and Milgrom (2005).

Let Ω denote a finite set of all available contracts with its typical element denoted as ω.

Assume that Ω is partitioned into subsets, {Ωf}f∈F̃ , where Ωf is a set of contacts for firm

f ∈ F̃ and Ωø = {ωø}. Think of each contract as containing information about associate

firm and terms of hire. Let f(ω) ∈ F̃ denote the identity of firm associated with contract

ω. Thus, f(ω) = f if and only if ω ∈ Ωf . We use P ∈ P to denote workers’ ranking or

preference defined over Ω. Let ωP− ∈ Ω denote a contract that is an immediate predecessor

of ω according to preference P , that is, ωP− is the contract with the property ωP− �P ω and

ω′ �P ωP− for all ω′ �P ω (if such a contract exists). As before, ΘP denotes a subset of

types in Θ whose preference is given as P .

For any ω ∈ Ωf , let Xω ∈ X denote the subpopulation of workers who are available

to firm f under the contract ω. Given any profile Xf = (Xω)ω∈Ωf ∈ X |Ωf |, each firm f ’s

choice is described by a map Xf 7→ Cf (Xf ) = (Cω(Xf ))ω∈Ωf ∈ Yf (Xf ), where

Yf (Xf ) := {(Yω)ω∈Ωf ∈ X |Ωf | |
∑
P∈P

∑
ω′∈Ωf :ω′�Pω

Yω′(ΘP ∩ ·) @ Xω(·),∀ω ∈ Ωf}.

For any profile of subpoulations in Yf (Xf ), the measure of workers who are hired by f

under any contract ω ∈ Ωf or worse cannot exceed the measure of workers, Xω, who are

available under ω. The requirement that the output of Cf should belong to Yf is based on

the premise that each firm f is aware of workers’ preferences and also believes (correctly)

that only those workers who are available under ω ∈ Ωf can be hired under the contracts

that are weakly inferior to ω, and thus put an upper bound on the measure of workers hired
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under the latter contracts. As before, we let Cø(Xø) = Xø, and let Rω(Xf ) = Xω−Cω(Xf )

for each ω ∈ Ωf and Rf (Xf ) = (Rω(Xf ))ω∈Ωf .

A matching is M = (Mω)ω∈Ω such that Mω ∈ X for all ω ∈ Ω and
∑

ω∈ΩMω = G.

Let Mf = (Mω)ω∈Ωf ∈ X |Ωf | denote a profile of subpopulations who are matched with f .

From Mf , one can derive a subpopulation of workers within firm f that are available for f

to match with under each contract ω ∈ Ωf :

M�ω
f (·) :=

∑
P∈P

∑
ω′∈Ωf :ω′�Pω

Mω′(ΘP ∩ ·). (10)

That is, all workers matched with f under the contracts that are no better than ω are

available for matching under ω. Let M�
f = (M�ω

f )ω∈Ωf . Note that M�
f does not take into

account those workers who are matched with firms other than f and available for f . A

subpopulation of all workers—not only those within firm f—who are available to f ∈ F̃
under contract ω ∈ Ωf is denoted as before by

D�ω(M)(·) =
∑
P∈P

∑
ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ ·).

Let D�f (M) = (D�ω(M))ω∈Ωf .

Definition 12. A matching M = (Mω)ω∈Ω is stable if

1. Mω(ΘP ) = 0 for all P ∈ P and ω ∈ Ω satisfying ωø �P ω; and for each f ∈ F ,

Mf = Cf (M
�
f ), and

2. There exist no f ∈ F and M̃ f ∈ X |Ωf |,M̃ f 6= Mf such that

M̃ f = Cf (M̃
�
f ∨M

�
f ) and M̃ �

f @ D�f (M).

Note that this definition reduces to the notion of stability in Definition 2.

Let us now define a fixed-point map T = (Tω)ω∈Ω : X |Ω| → X |Ω|: For each ω ∈ Ω and

E ∈ Σ,

Tω(X)(E) :=
∑
P∈P

RωP−
(Xf(ωP−))(ΘP ∩ E), (11)

where RωP−
(Xf(ωP−))(ΘP ∩ E) = G(ΘP ∩ E) if ωP− = ∅.33

33 Note that f(ωP−) is a firm associated with the immediate predecessor of ω, which may or may not be

the same as f(ω).
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Theorem 11. If M = (Mω)ω∈Ω is stable, then X = (D�ω(M))ω∈Ω is a fixed point of

T . Conversely, if X = (Xω)ω∈Ω is a fixed point of T , then there is a stable matching

M = (Mω)ω∈Ω such that Mf = Cf (Xf ),∀f ∈ F̃ .

Proof. See Appendix F.

Given this characterization result, the existence of stable matching with contracts fol-

lows from assuming that for each f ∈ F , Cf : X |Ωf | → X |Ωf | is continuous, since it

guarantees that T : X |Ω| → X |Ω| is also continuous.

9 Discussions

Our analysis has so far focused on the existence of a desirable matching mechanism. Ex-

istence is clearly necessary to find a desired mechanism, but for practical implementation

one needs an algorithm that is computable and fast. Our map T not only characterizes

stable matchings but also is interpretable as a tâtonnement adjustment process for revising

the “budget quotes” that has a potential to be used as an actual mechanism. In fact, in

case of substitutable preferences T entails a monotonic process that converges regardless

of the initial state, and in particular corresponds to the celebrated and largely successful

Gale and Shapley’s deferred acceptance (DA) algorithms when the initial measures are set

at either the largest (firm-proposing DA) or at the smallest measures (worker-proposing

DA). Even for non-substitutable preferences, T may at least provide some meaningful clue

for finding a practical algorithm.

A reasonable starting point of this inquiry is to ask how often—or more precisely how

large is the set of initial states from which—the adjustment process of T converges. Our

leading example suggests that the answer to this question can be “almost never,” or more

precisely “except when the initial state itself is stable.” Recall from Example 1 that,

starting from any state (1
2
, x′1;x2,

1
2
), T moves us to a state (1

2
, 1

2
− x2;x′1,

1
2
). One can

continue further on the adjustment process, and notice that the process cycles back to the

initial state (chosen arbitrarily) in a few additional steps:

(1
2
, x′1;x2,

1
2
)→ (1

2
, x2; 1

2
−x′1, 1

2
)→ (1

2
, 1

2
−x′1; 1

2
−x2,

1
2
)→ (1

2
, 1

2
−x2;x′1,

1
2
)→ (1

2
, x′1;x2,

1
2
).

This example suggests at least there are situations in which T , without modification,

may not be relied upon to produce a desirable mechanism. The example also suggests that

some procedure for breaking a cycle is needed for the adjustment process like T to produce

a desirable outcome.
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A Analysis of the Example in Section 2

Let r be the number of workers with each of the two types who are matched to f . We

consider the following cases:

1. Suppose r > q/2. For any such matching, at least one position is vacant at firm f ′

because f ′ has q positions, but strictly more than q workers are matched to f out of

the total of 2q workers. Thus such a matching is blocked by f ′ and a type θ′ worker

who is currently matched to f .

2. Suppose r < q/2. Consider the following cases.

(a) Suppose that there exists a type θ worker who is unmatched. Then such a

matching is unstable because that worker and firm f ′ block it (note that f ′

prefers θ most).

(b) Suppose that there exists no type θ worker who is unmatched. This implies that

there exists a type θ′ worker who is unmatched (because there are 2q workers in

total, but firm f is matched to strictly fewer than q workers by assumption, and

f ′ can be matched to at most q workers in any individually rational matching).

Then, since f is the most preferred by all θ workers, a θ′ worker prefers f to ø,

and there is some vacancy at f because r < q/2, the matching is blocked by a

coalition of a type θ worker, a type θ′ worker, and f .

B Preliminaries for the Continuum Economy Model

B.1 Proof of Lemma 1

For any subset Y ⊂ X , define

Y (E) := sup{
∑
i

Yi(Ei) | {Ei} is a finite partition of E in Σ and

{Yi} is a finite collection of measures in Y ,∀i},∀E.

and Y analogously (by replacing “sup” with “inf”). We prove the lemma by showing that

Y = supY ∈ Y and Y = inf Y ∈ X .

First of all, note that Y and Y are monotonic, i.e. for any E ⊂ D, we have Y (D) ≥ Y (E)

and Y (D) ≥ Y (E), whose proof is straightforward and thus omitted.

We next show that Y and Y are measures. We only prove the countable additivity of

Y , since the other properties are straightforward to prove and also since a similar argument
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applies to Y . To this end, consider any countable collection {Ei} of disjoint sets in Σ and

let D = ∪Ei. We need to show that Y (D) =
∑

i Y (Ei). For doing so, consider any finite

partition {Di} of D and any finite collection of measures {Yi}. Letting Eij = Ei ∩Dj, for

any i, the collection {Eij}j is a finite partition of Ei in Σ. Thus, we have∑
i

Yi(Di) =
∑
i

∑
j

Yi(Eij) ≤
∑
i

Y (Ei).

Since this inequality holds for any finite partition {Di} of D and collection {Yi}, we must

have Y (D) ≤
∑

i Y (Ei). To show that the reverse inequality also holds, for each Ei,

we consider any finite partition {Eij}j of Ei in Σ and collection of measures {Yij}j in

Y . We prove that Y (D) ≥
∑

i

∑
j Yij(Eij), which would imply Y (D) ≥

∑
i Y ij(Ei) as

desired since the partition {Eij}j and collection {Yij}j are arbitrarily chosen for each i.

Suppose not for contradiction. Then, we must have Y (D) <
∑k

i=1

∑
j Yij(Eij) for some

k. Letting E := ∪ki=1(∪jEij), this implies Y (D) <
∑k

i=1

∑
j Yij(Eij) ≤ Y (E), where the

second inequality holds by the definitioin of Y . This contradicts with the monotonicity of

Y since E ⊂ D.

We now show that Y and Y are the supremum and infimum of Y , respectively. It is

straightforward to check that for any Y ∈ Y , Y @ Y and Y @ Y . Consider any X,X ′ ∈ X
such that for all Y ∈ Y , Y @ X and X ′ @ Y . We show that Y @ X and X ′ @ Y . First,

if Y 6@ X to the contrary, then there must be some E ∈ Σ such that Y (E) > X(E). This

means there are a finite partition {Ei} of E and a collection of measures {Yi} in Y such that

Y (E) ≥
∑
Yi(Ei) > X(E) =

∑
X(Ei). Thus, for at least one i, we have Yi(Ei) > X(Ei),

which contradicts the assumption that for all Y ∈ Y , Y @ X. An analogous argument can

be used to show X ′ @ Y .

B.2 Proof of Proposition 1

Suppose that matching M is not Pareto efficient. Then by definition of Pareto efficiency,

there exists M ′ 6= M such that M ′ �F M and M ′ �Θ M . Let f ∈ F be a firm such that

M ′
f 6= Mf . By assumption, M ′ �f M .

Next, since M ′ �Θ M , for each f , D�f (M ′) A D�f (M), or∑
f ′:f ′�P f

M ′
f ′(ΘP ∩ E) ≥

∑
f ′:f ′�P f

M ′
f ′(ΘP ∩ E), ∀E ∈ Σ.

This implies that ∑
f ′:f ′�P fP−

M ′
f ′(ΘP ∩ E) ≥

∑
f ′:f ′�P f

MfP−
(ΘP ∩ E),∀E ∈ Σ,
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where fP− refers to the firm that is ranked immediately above f according to P (whenever

it is well defined),34 or equivalently∑
f ′:f ′�P f

M ′
f ′(ΘP ∩ E) ≥

∑
f ′:f ′�P f

MfP−
(ΘP ∩ E),∀E ∈ Σ.

This in turn implies that, for each f and P ,∑
f ′:f ′�P f

M ′
f ′(ΘP ∩ E) ≤

∑
f ′:f ′�P f

MfP−
(ΘP ∩ E),∀E ∈ Σ,

or equivalently, for each f ,

D�f (M ′) @ D�f (M).

By definition, M ′
f @ D�f (M ′), so we have M ′

f @ D�f (M).

Collecting the observations made so far, we conclude that f and M ′
f block M , implying

that M is not stable. Therefore, we have established that stability implies Pareto efficiency.

C Existence of Stable Matchings: Proof of Theorems

1, 2 and 3

Since Theorem 1 and 2 follow as corollaries from their counterparts (Theorem 12 and 3) in

the correspondence case, we only consider the case where Cf and thus Rf are correspon-

dences.

Let us extend the mapping T to the case of correspondence as follows: For any X ∈
X n+1,

T (X) = {X̃ ∈ X n+1 | X̃f (·) =
∑
P∈P

YfP− (ΘP ∩ ·),∀f ∈ F̃ ,

for some (Yf )f∈F̃ such that Yf ∈ Rf (Xf ),∀f ∈ F̃ , },

where YfP− (ΘP ∩ ·) = G(ΘP ∩ ·) if f is a top-ranked firm at P .

First, we obtain the characterization of stable matchings as fixed points of T , from

which Theorem 1 follows as a corollary since the above T mapping coincides with that in

(11), as can be easily verified.

Theorem 12. A matching M ∈ X n+1 is stable if and only if there is a fixed point X ∈ T (X)

such that Mf ∈ Cf (Xf ),∀f ∈ F̃ . Also, any such X and M satisfy Xf = D�f (M), ∀f ∈ F̃ .

34This is defined later as an immediate predecessor. Formally, fP− �P f and if f ′ �P f , then f ′ �P fP− .
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Proof. (“Only if” part): Suppose M is a stable matching in X n+1. Define X = (Xf )f∈F̃
as

Xf (E) = D�f (M)(E) =
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E),∀E ∈ Σ.

We prove that X is a fixed point of T . Let us first show that for each f ∈ F̃ , Xf ∈ X . It

is clear that as each Mf ′(ΘP ∩ ·) is nonnegative and countably additive, so is Xf (·). It is

also clear that since (Mf )f∈F̃ is a matching, Xf @ G. Thus, we have Xf ∈ X .

We next claim that Mf ∈ Cf (Xf ) for all f ∈ F̃ . This is immediate for f = ø since

Mø @ Xø = Cø(Xø). To prove the claim for f 6= ø, suppose for a contradiction that

Mf /∈ Cf (Xf ), which means that there is some M ′
f ∈ Cf (Xf ) such that M ′

f 6= Mf . Note

that Mf @ Xf and thus (M ′
f ∨ Mf ) @ Xf . Then, by the revealed preference, we have

Mf /∈ Cf (M
′
f ∨ Mf ) and M ′

f ∈ Cf (M
′
f ∨ Mf ) or M ′

f �f Mf , which means that M is

unstable since M ′
f @ Xf = D�f (M), yielding the desired contradiction.

We next prove X ∈ T (X). The fact that Mf ∈ Cf (Xf ),∀f ∈ F̃ means that Xf −Mf ∈
Rf (Xf ),∀f ∈ F̃ . We set Yf = Xf −Mf for each f ∈ F̃ and obtain for any E ∈ Σ∑

P∈P

YfP− (ΘP ∩ E) =
∑
P∈P

(
XfP−

(ΘP ∩ E)−MfP−
(ΘP ∩ E)

)

=
∑
P∈P

 ∑
f ′∈F̃ :f ′�P fP−

Mf ′(ΘP ∩ E)−MfP−
(ΘP ∩ E)


=
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E) = Xf (E),

where the second and fourth equality follows from the definition ofXfP−
andXf , respectively,

while the third from the fact that fP− is an immediate predecessor of f . The above equation

holds for every firm f ∈ F̃ , we conclude that X ∈ T (X), i.e. X is a fixed point of T .

(“If” part): Let us first introduce some notations. Let fP+ denote an immediate

successor of f ∈ F̃ at P ∈ P : that is, fP+ ≺P f , and for any f ′ ≺P f , f ′ �P fP+ . Also,

let XfP+
(ΘP ∩ ·) ≡ 0 for the firm f that is ranked last at P . Note that for any f, f̃ ∈ F̃ ,

f = f̃P− if and only if f̃ = fP+ .

Suppose now that X ∈ X n+1 is a fixed point of T . For each firm f ∈ F̃ and E ∈ Σ,

define

Mf (E) = Xf (E)−
∑
P∈P

XfP+
(ΘP ∩ E). (12)

41



We first verify that for each f ∈ F̃ , Mf ∈ X . First, it is clear that for each f ∈ F̃ , as

both Xf (·) and XfP+
(ΘP ∩ ·) are countably additive, so is Mf . It is also clear that for each

f ∈ F̃ , Mf @ Xf .

Let us next show that for all f ∈ F̃ , P ∈ P , and E ∈ Σ,

Xf (ΘP ∩ E) =
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E), (13)

which means that Xf = D�f (M). To do so, consider first a firm f that is ranked last at P .

By (12) and the fact that XfP+
(ΘP ∩ ·) ≡ 0, we have Mf (ΘP ∩ E) = Xf (ΘP ∩ E). Hence,

(13) holds for such f . Consider now any f ∈ F̃ which is not ranked last, and assume for an

inductive argument that (13) holds true for fP+ , so XfP+
(ΘP ∩E) =

∑
f ′∈F̃ :f ′�P fP+

Mf ′(ΘP ∩
E). Then, by (12), we have

Xf (ΘP ∩ E) = Mf (ΘP ∩ E) +XfP+
(ΘP ∩ E) = Mf (ΘP ∩ E) +

∑
f ′∈F̃ :f ′�P fP+

Mf ′(ΘP ∩ E)

=
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E),

as desired.

To show that M = (Mf )f∈F̃ is a matching, let f be a top-ranked firm at P and note

that by definition of T , if X̃ ∈ T (X), then X̃f (ΘP ∩ ·) = G(ΘP ∩ ·). Since X ∈ T (X), we

have for any E ∈ Σ

G(ΘP ∩ E) = Xf (ΘP ∩ E) =
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E) =
∑
f ′∈F̃

Mf ′(ΘP ∩ E),

where the second equality follows from (13). Since the above equation holds for every

P ∈ P , M is a matching.

Let us now fix any f ∈ F̃ and show that Mf ∈ Cf (Xf ), which is equivalent to showing

Xf −Mf ∈ Rf (Xf ). Recall that XfP+
(ΘP ∩ E) = Yf (ΘP ∩ E) for all P ∈ P and E ∈ Σ.

Then, (12) implies

Xf (·)−Mf (·) =
∑
P∈P

XfP+
(ΘP ∩ ·) =

∑
P∈P

Yf (ΘP ∩ ·) = Yf (·) ∈ Rf (Xf ),

as desired, where the last inclusion relationship follows from the definition of T .

We now prove that (Mf )f∈F̃ is stable. To prove the first part of Condition 1 of Definition

4, note first that Mø ∈ Cø(Xø) = {Xø}. Then, for every P ∈ P and E ∈ Σ,∑
f :f≺P ø

Mf (ΘP ) =
∑

f :f�P ø

Mf (ΘP )−Mø(ΘP ) = Xø(ΘP )−Mø(ΘP ) = 0,
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where the middle equality follows from (13). The above equation means that for each

f ≺P ø, we have Mf (ΘP ) = 0, as desired. The second part of Condition 1 of Definition 4

(i.e. Mf ∈ Cf (Mf )) follows from the revealed preference property since Mf @ Xf by (13)

and Mf ∈ Cf (Xf ).

It only remains to check Condition 2 of Definition 4. Suppose for a contradiction that

it fails. Then, there exist f and M ′
f such that

M ′
f @ D�f (M), M ′

f ∈ Cf (M ′
f ∨Mf ), and Mf /∈ Cf (M ′

f ∨Mf ). (14)

So M ′
f @ D�f (M) = Xf . Since then Mf @ (M ′

f ∨ Mf ) @ Xf and Mf ∈ Cf (Xf ), the

revealed preference property implies Mf ∈ Cf (M ′
f ∨Mf ), contradicting (14). We have thus

proven that M is stable.

We now prove Theorem 3, from which Theorem 2 follows as a corollary since, if T is

a single-valued mapping, then the convex- and closed-valuedness hold trivially while the

upper hemi-continuity is equivalent to continuity. To prove existence, by Theorem 12, it

suffices to show that the mapping T has a fixed point. To this end, we establish a series of

Lemmas.

We now establish the compactness of X and the upper-hemi continuity of T . Recall

that X is endowed with weak* topology. The notion of convergence in this topology, i.e.

weak convergence, can be stated as follows: A sequence of measures (Xk)k∈N in X weakly

converges to a measure X ∈ X , written as Xk
w∗−→ X, if and only if

∫
Θ
hdXk →

∫
Θ
hdX for

all h ∈ C(Θ), where C(Θ) is the space of all continuous functions defined on Θ. The next

result provides some conditions that are equivalent to weak convergence.

Theorem 13. Let X and (Xk)k∈N be finite measures on Σ. The following conditions are

equivalent:35

(a) Xk
w∗−→ X;

(b)
∫

Θ
hdXk →

∫
Θ
hdX for all h ∈ Cu(Θ), where Cu(Θ) is the space of all uniformly

continuous functions defined on Θ.

(c) lim infkXk(A) ≥ X(A) for every open set A ⊂ Θ, and Xk(Θ)→ X(Θ);

(d) lim supkXk(A) ≤ X(A) for every closed set A ⊂ Θ, and Xk(Θ)→ X(Θ);

35This theorem is a modified version of “Portmanteau Theorem” that is modified to deal with any finite

(i.e. not necessarily probability) measures. See Theorem 4.5.1 of Ash (1977) for this result, for instance.
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(e) Xk(A) → X(A) for every set A ∈ Σ such that X(∂A) = 0 (∂A denotes the boundary

of A).

Lemma 2. The space X is convex and compact. Also, for any X ∈ X , XX is compact.

Proof. Convexity of X follows trivially.

To prove the compactness of X , let C(Θ)∗ denote the dual (Banach) space of C(Θ) and

note that C(Θ)∗ is the space of all (signed) measures on (Θ,Σ), given Θ is a compact metric

space.36 Then, by Alaoglu’s Theorem, the closed unit ball of C(Θ)∗, denoted U∗, is weak*

compact.37 Clearly, X is a subspace of U∗ since for any X ∈ X , ‖X‖ = X(Θ) ≤ G(Θ) = 1.

The compactness of X will thus follow if X is shown to be a closed set. To prove this, we

prove that for any sequence (Xk)k∈N in X and X ∈ C(Θ)∗ such that Xk
w∗−→ X, we must

have X ∈ X , which will be shown if we prove that 0 ≤ X(E) ≤ G(E) for any E ∈ Σ. Let

us first make the following observation: every finite (Borel) measure X on the metric space

Θ is normal,38 which means that for any set E ∈ Σ,

X(E) = inf{X(O) : E ⊂ O and O ∈ Σ is open} (15)

= sup{X(F ) : F ⊂ E and F ∈ Σ is closed}. (16)

To show first that X(E) ≤ G(E), consider any open set O ∈ Σ such that E ⊂ O. Then,

since Xk ∈ X for every k, we must have Xk(O) ≤ G(O) for every k, which, combined with

(c) of Theorem 13 above, implies that X(O) ≤ lim infkXk(O) ≤ G(O). Given (15), this

means that X(E) ≤ G(E).

To show next that X(E) ≥ 0, consider any closed set F ∈ Σ such that F ∈ Σ. Since

Xk ∈ X for every k, we must have Xk(F ) ≥ 0, which, combined with (d) of Theorem 13

above, implies that X(F ) ≥ lim supkXk(F ) ≥ 0. Given (16), this means X(E) ≥ 0.

The proof for the compactness of XX is analogous and hence omitted.

36More precisely, C(Θ)∗ is isometrically isomorphic to the space of all signed measures on (Θ,Σ) ac-

cording to the Riesz Representation Theorem (see ? for instance).
37The closed unit ball is defined as U∗ := {X ∈ C∗(Θ) : ‖X‖ ≤ 1}, where ‖X‖ is the dual norm, i.e.,

‖X‖ = sup{
∣∣∫

Θ
hdX

∣∣ : h ∈ C(Θ) and max
θ∈Θ
|h(θ)| ≤ 1}.

If X is a nonnegative measure, then the supremum is achieved by taking h ≡ 1, and thus ‖X‖ = X(Θ).

It is well known (see Riesz’s Theorem in page 261 of ? for instance) that if C(Θ)∗ is infinite dimensional,

then U∗ is not compact under the norm topology (i.e., the topology induced by the dual norm). On the

other hand, U∗ is compact under the weak* topology, which follows from Alaoglu’s Theorem (see ? for

instance).
38See Theorem 12.5 of Aliprantis and Border (2006).
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Lemma 3. The map T is a correspondence from X n+1 to itself. Also, it is convex-valued,

upper hemi-continuous, and closed-valued.

Proof. To show that T maps from X n+1 to itself, observe that for any X ∈ X n+1 and

X̃ ∈ Tf (X), there is Yf ∈ Rf (Xf ) for each f ∈ F̃ such that for all E ∈ Σ,

X̃(E) =
∑
P∈P

YfP− (ΘP ∩ E) ≤
∑
P∈P

XfP−
(ΘP ∩ E) ≤

∑
P∈P

G(ΘP ∩ E) = G(E),

which means that X̃ ∈ X , as desired.

To prove that T is convex-valued, it suffices to show that for each f ∈ F̃ , Rf is convex-

valued. Consider any X ∈ X and Y ′, Y ′′ ∈ Rf (X). There are some X ′, X ′′ ∈ Cf (X)

satisfying Y ′ = X −X ′ and Y ′′ = X −X ′′. Then, the convexity of Cf (X) implies that for

any λ ∈ [0, 1], λX ′+(1−λ)X ′′ ∈ Cf (X) so λY ′+(1−λ)Y ′′ = X−(λX ′+(1−λ)X ′′) ∈ Rf (X).

To establish the upper hemi-continuity of T , we first establish the following claim:

Claim 1. For any sequence (Xk)k∈N ⊂ X that weakly converges to X ∈ X , a sequence

(Xk(ΘP ∩ ·))k∈N also weakly converges to X(ΘP ∩ ·) for all P ∈ P.

Proof. Let XP and XP
k denote X(ΘP ∩ ·) and Xk(ΘP ∩ ·), respectively. Note first that for

any X ∈ X , we have XP ∈ X for all P ∈ P . Due to Theorem 13, it suffices to show that

XP and (XP
k )k∈N satisfy the condition (c) of Theorem 13. To do so, consider any open set

O ⊂ Θ. Then, letting Θ◦P denote the interior of ΘP ,

lim inf
k
XP
k (O) = lim inf

k
Xk(Θ

◦
P ∩O) +Xk(∂ΘP ∩O)

= lim inf
k
Xk(Θ

◦
P ∩O) ≥ X(Θ◦P ∩O) = XP (O),

where the second equality follows from the fact that Xk(∂ΘP ∩O) ≤ Xk(∂ΘP ) ≤ G(∂ΘP ) =

0, the lone inequality from Xk
w∗−→ X, (c) of Theorem 13, and the fact that ∂Θ◦P ∩O is an

open set, and the last equality from repeating the first two equalities with X instead Xk.

Also, we have

XP
k (Θ) = Xk(ΘP )→ X(ΘP ) = XP (Θ),

where the convergence is due to Xk
w∗−→ X, (e) of Theorem 13, and the fact that X(∂ΘP ) ≤

G(∂ΘP ) = 0. Thus, the two requirements in condition (c) of Theorem 13 are satisfied, so

XP
k

w∗−→ XP , as desired.

It is also straightforward to observe that if Cf is upper hemi-continuous, then Rf is also

upper hemi-continuous.
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We now prove the upper hemi-continuity of T by considering any sequences (Xk)k∈N

and (X̃k)k∈N in X n+1 weakly converging to some X and X̃ in X n+1, respectively, such that

X̃k ∈ Tf (Xk) for each k. To show that X̃ ∈ T (X), let Xk,f and X̃k,f denote the components

of Xk and X̃k, respectively, that correspond to f ∈ F̃ . Then, we can find Yk,f ∈ Rf (Xk,f )

for each k and f such that X̃k,f (·) =
∑

P∈P Yk,fP− (ΘP ∩ ·), which implies that for all f ∈ F̃
and P ∈ P , X̃k,fP+

(ΘP ∩ ·) = Yk,f (ΘP ∩ ·) since f is the immediate predecessor of fP+ at P .

As X̃k,f
w∗−→ X̃f , ∀f ∈ F̃ , by assumption, we have X̃k,fP+

(ΘP ∩ ·)
w∗−→ X̃fP+

(ΘP ∩ ·) by Claim

1, which means that Yk,f (ΘP ∩ ·)
w∗−→ X̃fP+

(ΘP ∩ ·) for all f ∈ F̃ . This in turn implies that

Yk,f (·) =
∑

P∈P Yk,f (ΘP ∩ ·)
w∗−→
∑

P∈P X̃fP+
(ΘP ∩ ·). Now let Yf (·) =

∑
P∈P X̃fP+

(ΘP ∩ ·).
We then have X̃f (ΘP ∩ ·) = YfP− (ΘP ∩ ·) and thus X̃f (·) =

∑
P∈P YfP− (ΘP ∩ ·). Also, since

Xk,f
w∗−→ Xf and Yk,f

w∗−→ Yf , we must have Yf ∈ Rf (Xf ) by the upper hemi-continuity of

Rf , which means X̃ ∈ T (X), as desired.

The proof for the closed-valuedness of T is analogous to that for the upper hemi-

continuity of T and hence omitted.

Proof of Theorem 3. Thanks to Lemmas 2 and 3, we can invoke Kakutani-Fan-Glicksberg’s

fixed point theorem to conclude that the mapping T , which is defined on a convex set X n+1,

has a nonempty set of fixed points.39

D Substitutable Preferences Case

D.1 Proof of Theorem 4

The part (i) immediately follows from Tarski’s fixed point theorem and the fact that each

Rf is monotonic in @F̃ due to the substitutability of f ’s preference and thus T is monotonic

as well.

We next prove part (ii). To see that the stable matching M is firm-optimal, observe

first that for any stable matching M , there is some X ∈ X ∗ such that Mf = Cf (Xf ) for

all f ∈ F̃ . Thus, we have Mf @ Xf @ Xf , which implies that M f = Cf (Mf ∨M f ) by the

revealed preference since M f = Cf (Xf ) and (Mf ∨M f ) @ Xf . Thus, M f �f Mf for each

f ∈ F , as desired. To show that M is worker-pessimal, fix any stable matching M . Then,

by Theorem 1, there is some X ∈ X ∗ (i.e., a fixed point of T ) such that Mf = Cf (Xf ) and

39For Kakutani-Fan-Glicksberg’s fixed point theorem, refer to Theorem 16.12 and Corollary 16.51 in

Aliprantis and Border (2006).
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Xf = D�f (M) for all f ∈ F̃ . Thus, for each P ∈ P and E ∈ Σ,

TfP+ (X)(ΘP ∩ E) = XfP+
(ΘP ∩ E) = D�f

P
+ (M)(ΘP ∩ E) =

∑
f ′∈F̃ :f ′≺P f

Mf ′(ΘP ∩ E).

Similarly, for X, we have TfP+ (X)(ΘP ∩E) =
∑

f ′∈F̃ :f ′≺P f M f ′(ΘP ∩E). Since Tf is mono-

tonic and X @ X, we obtain∑
f ′∈F̃ :f ′�P f

M f ′(ΘP ∩ E) =G(ΘP ∩ E)− TfP+ (X)(ΘP ∩ E)

≤G(ΘP ∩ E)− TfP+ (X)(ΘP ∩ E) =
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E) (17)

for all P ∈ P , E ∈ Σ, and f ∈ F̃ , as desired.

D.2 Proof of Theorem 5

Let M be a stable matching. Then, there exists X ∈ X ∗ such that Mf = Cf (Xf ) for each

f ∈ F . Since X @ X, by the law of aggregate demand, we have

M f (Θ) = Cf (Xf )(Θ) ≥ Cf (Xf )(Θ) = Mf (Θ),∀f ∈ F. (18)

Next since M is worker pessimal, (17) holds for any f ∈ F̃ . Let wP := øP− be the

immediate predecessor of ø (i.e., the worst individually rational firm) for types in ΘP .

Then, setting f = wP in (17), we obtain∑
f ′∈F

M f ′(ΘP ∩ E) =
∑

f ′∈F̃ :f ′�PwP

M f ′(ΘP ∩ E)

≤
∑

f ′∈F̃ :f ′�PwP

Mf ′(ΘP ∩ E) =
∑
f ′∈F

Mf ′(ΘP ∩ E),∀E ∈ Σ,

or equivalently ∑
f ′∈F

M f ′(E) ≤
∑
f ′∈F

Mf ′(E),∀E ∈ Σ. (19)

Since this inequality must hold with E = Θ, combining it with (18) implies that Mf (Θ) =

M f (Θ) for all f ∈ F , as desired.

Further, we must have
∑

f∈F M f =
∑

f∈F Mf , which means that Mø = Mø. To prove

this, suppose otherwise. Then, by (19), we must have
∑

f ′∈F M f ′(E) <
∑

f ′∈F Mf ′(E)

for some E ∈ Σ. Also, by (19),
∑

f ′∈F M f ′(E
c) ≤

∑
f ′∈F Mf ′(E

c). Combining these two

inequalities, we obtain
∑

f ′∈F M f ′(Θ) <
∑

f ′∈F Mf ′(Θ), which contradicts with (18).
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D.3 Proof of Theorem 6

Suppose otherwise. Then there exists a stable matching M that differs from the worker-

optimal stable matching M . Let X and X be respectively fixed points of T such that

Mf = Cf (Xf ), M f = Cf (Xf ) and Xf @ Xf , for each f ∈ F .

First of all, by Theorem 5,
∑

f∈F Mf =
∑

f∈F M f . Next, since Xf @ Xf for each

f ∈ F , we have (M f ∨Mf ) @ Xf . Revealed preference then implies that, for each f ∈ F ,

Mf = Cf (M f ∨Mf )

or M �F M . Moreover, since M 6= M , the set F̄ := {f ∈ F |Mf �f M f} is nonempty. But

then by the rich preferences, there exists f ∗ ∈ F such that

M f∗ 6= Cf∗(M f∗ +M f∗

F̄
).

For each f ∈ F \F̄ , Mf = M f , by definition of F̄ , and Theorem 5 guarantees that Mø = Mø.

Consequently, we have for each E ∈ Σ, that

M f∗

F̄
(E) =

∑
P∈P

∑
f ′:f∗�P f ′,f ′ 6∈F̄

Mf ′(ΘP ∩ E) =
∑
P∈P

∑
f ′:f∗�P f ′,f ′ 6∈F̄

M f ′(ΘP ∩ E) = M f∗

F̄
(E).

It then follows that

M f∗ 6= Cf∗(M f∗ +M f∗

F̄
). (20)

Letting M̂f∗ := Cf∗(M f∗ + M f∗

F̄
), we have M̂f∗ @ (M f∗ ∨ M̂f∗) @ (M f∗ + M f∗

F̄
). The

revealed preference condition then implies that

M̂f∗ = Cf∗(M f∗ ∨ M̂f∗).

By (20), we then have M̂f∗ �M f∗ . Further, M̂f∗ @ (M f∗+M
f∗

F̄
) @ D�f

∗
(M). We therefore

have a contradiction to the stability of M .

D.4 Choice Functions Representing Responsive Preferences with

Affirmative Action

For any firm f and subpopulation X @ G available to f , we can define firm f ’s optimal

choice from X as a solution to the following problem:

[C] max
Y @X

∫
sf (θ)dY

subject to

Y (Θ) ≤ qf , and Y (Θt) ≤ qtf ,∀t ∈ T.
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As in Theorem 2, one can show that the feasible set is compact. Since its objective

function is continuous in X (by the definition of weak convergence, given continuity of

s(·)), the maximum is well defined. Further, the set of optimal choices is closed, so it is

compact.

We next show that an optimal choice can be found in a class of feasible subpopulations

with a cutoff structure. For each t ∈ T , let p̃tf := inf{s ∈ [0, 1]|X(Θt ∩ {θ ∈ Θ|sf (θ) ≥
s}) ≤ qtf}. Then, we say Y is the optimal cutoff rule for firm f at X if Y (Θt ∩ {θ ∈
Θ|sf (θ) ≥ ptf}) = X(Θt∩{θ ∈ Θ|sf (θ) ≥ ptf}), and Y (Θt∩{θ ∈ Θ|sf (θ) < ptf}) = 0, where

ptf := max{pf , p̃tf}, and “the common cutoff” pf is the supremum of the set of common

cutoffs that maximize Y (Θ) subject to Y (Θ) ≤ qf and Y (Θt) ≤ qtf ,∀t ∈ T . Note that the

optimal cutoff rule is uniquely determined.

Claim 2. The optimal cutoff rule for firm f at X is its optimal choice from X.

Proof. For any feasible solution Y to [C], consider a cutoff rule Ŷ , given by Ŷ (Θt ∩
{θ|sf (θ) ≥ ptf} ∩E) = X(Θt ∩ {θ|sf (θ) ≥ ptf} ∩E) for each E ∈ Σ, and Ŷ (Θt ∩ {θ|sf (θ) <
ptf} ∩ E) = 0, for each E ∈ Σ, for some cutoff score ptf , for each t ∈ T . In words, a cutoff

rule selects all workers above a certain cutoff score and rejects all workers below that score.

As the cutoff score ptf rises, Ŷ (Θt) falls continuously (since Ŷ , being a subpopulation of G,

is absolutely continuous), and it equals X(Θt) when ptf = 0 and zero when ptf = 1. Hence,

there exists ptf ∈ [0, 1] such that Ŷ (Θt) = Y (Θt).

Since both Y and Ŷ , being subpopulation of G which has density, have density functions

say y and ŷ, respectively. In that case, ŷ(θ) = x(θ) ≥ y(θ) if sf (θ) ≥ ptf and ŷ(θ) = 0 ≤ y(θ)

if sf (θ) < ptf . Hence,∫
Θt
sf (θ)ŷ(θ)dθ −

∫
Θt
sf (θ)y(θ)dθ =

∫
Θt
sf (θ)(ŷ(θ)− y(θ))dθ

≥
∫

Θt
ptf (ŷ(θ)− y(θ))dθ = ptf [Ŷ (Θt)− Y (Θt)] = 0.

In short, Ŷ is feasible and yields a weakly higher value of objective than does Y . It follows

that an optimal choice can be found in the class of cutoff rules. Moreover, if Y differs from

Ŷ for a positive measure, the inequality is strict. This implies that an optimal choice must

coincide with a cutoff rule almost everywhere (i.e., for every positive measure set).

Fix any optimal choice Y that is a cutoff rule. If Y (Θt) < qtf for some t, then there

exists an optimal cutoff rule in which ptf ≤ pt
′

f for all t′ 6= t. To see this, suppose an optimal

choice has ptf > pt
′

f , where t′ is the ethnic type with the lowest cutoff at the optimal choice.

We can assume without loss of generality that pt
′

f = inf{sf (θ)|θ ∈ Θt′ , y(θ) > 0}, or else
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we can raise pt
′

f slightly without any consequence. If X(Θt ∩ {θ ∈ Θ|sf (θ) ∈ [pt
′

f , p
t
f )}) = 0,

then we can lower ptf without consequence to pt
′

f , so the claim holds. If X(Θt ∩ {θ ∈
Θ|sf (θ) ∈ [pt

′

f , p
t
f )}) > 0, then we can slightly lower ptf and slightly raise pt

′

f so as to keep all

constraints satisfied, which increases the value of the objective, producing a contradiction.

This observation implies that there exists a common cutoff pf that applies to all t whose

quota is not binding, and the cutoffs for ethnic types with binding quotas are weakly higher

than pf . Hence, we can write ptf := max{pf , p̃tf}, where p̃tf is defined above.

The common cutoff pf should be chosen to maximize Y (Θ) subject to Y (Θ) ≤ qf and

Y (Θt) ≤ qtf ,∀t ∈ T , or else it can be lowered to increase the employment (and thus increase

the value of the objective). Let P t
f be the set of maximizers,40 and let p̄tf := supP t

f . Then,

p̄tf ∈ P t
f due to the compactness of the optimal choices: Any sequence of the optimal cutoff

rules with common cutoff ptf ∈ P t
f converging to the cutoff rule with common cutoff p̄tf

must be optimal as well, so its limit must be optimal given the compactness of the optimal

choices.

Based on Claim 2, we define a choice function Cf to be an optimal cutoff rule. The

resulting choice function then satisfies the revealed preference axiom: If X @ X ′ and

Cf (X
′) @ X, then Cf (X

′) is also an optimal cutoff rule at X.

Next, it is routine to see that Cf satisfies the law of aggregate demand. If X @ X̂,

then the optimal cutoff rule at the latter leads to the firm choosing a weakly higher mass

of workers than the optimal cutoff rule at X.

It is also easy to see Cf exhibits substitutability. Again fix X @ X̂. We show that

Rf (X) @ Rf (X̂), where Rf is defined before. For non-triviality, assume Rf (X)(Θ) > 0.

Let (p̂tf )t be the cutoffs associated with Cf (X̂) and let (ptf )t be the cutoffs associated with

Cf (X). Note first if the quota for t is binding at the optimal choice from X, we can only

have p̂tf ≥ ptf , or else the quota for t will be violated at X̂. There are two cases. First,

suppose first Cf (X)(Θ) < qf . In this case, no mass of agents from X is rejected at Cf (X)

except for violating quotas for ethnic types, and those who are rejected for violating the

ethnic type quotas must be rejected as well at Cf (X̂) since their cutoffs are weakly higher.

Hence, Rf (X) @ Rf (X̂). Suppose next Cf (X)(Θ) = qf . In this case, the common cutoff

p̂f at Cf (X̂) must be weakly higher than the common cutoff pf at Cf (X). If not, then

feasibility of Cf (X̂) implies that there exists t such that its quota is binding at Cf (X)

40The set P tf may not be a singleton. Suppose for instance that the measure of available workers is

strictly smaller than the capacity of a firm, and say the firm has no affirmative action constraint and the

infimum score of the available workers is say sm > 0. Then any ptf ∈ [0, sm] will be an optimal cutoff, since

selecting all available workers is optimal for the firm.
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but not at Cf (X̂). But then p̂tf > ptf ≥ pf > p̂f , which implies that Cf (X̂) violates the

property of the optimal cutoff rule at X̂. Since all cutoffs are uniformly higher at Cf (X̂),

we conclude that Rf (X) @ Rf (X̂).

D.5 Proof of Proposition 2

To simplify notation, let M = M , i.e., worker-optimal matching. Fix any individually

rational matching M̂ such that M̂ �F M and assume that F̄ := {f ′ ∈ F |M̂f ′ �f Mf ′}
is nonempty. For any f, t, let M t

f := Mf (Θ
t ∩ ·) and M̂ t

f := M̂f (Θ
t ∩ ·). Since G is

absolutely continuous, for any f, t, both M t
f and M̂ t

f , being its subpopulations, admit

densities, denoted respectively by mt
f and m̂t

f . Let ptf and p̂tf respectively denote the

optimal cutoffs associated with Mf = Cf (Mf ) and M̂f = Cf (Mf ∨ M̂f ).

Because Cf satisfies the law of aggregate demand (as established above in Appendix

D.4), M̂f = Cf (M̂f ∨Mf ) and Mf = Cf (Mf ) imply Mf (Θ) ≤ M̂f (Θ) for each f ∈ F .

Then, Proposition 2 follows from proving a sequence of claims.

Claim 3. Mø = M̂ø.

Proof. Suppose to the contrary that Mø 6= M̂ø. Then, with their densities denoted by mø

and m̂ø, Eø = {θ ∈ Θ |mø(θ) > m̂ø(θ)} must be a non-empty set of positive (Lebesgue)

measure, due to the fact that Mø(Θ) = G(Θ) −
∑

f∈F Mf (Θ) ≥ G(Θ) −
∑

f∈F M̂f (Θ) =

M̂ø(Θ). Also, letting Êf = {θ ∈ Θ | m̂f (θ) > mf (θ)}, there must be at least one firm f

for which Eø ∩ Êf is a non-empty set of positive measure, since otherwise we would have∑
f ′∈F̃ mf ′(θ) >

∑
f ′∈F̃ m̂f ′(θ) for all θ ∈ Eø, a contradiction. Now fixing such a firm f and

letting Ẽ = Eø ∩ Êf , define

m̃f (θ) =

min{mf (θ) +mø(θ), m̂f (θ)} if θ ∈ Ẽ

mf (θ) otherwise.

and let M̃f denote the corresponding measure. Note that m̃f (θ) > mf (θ) for all θ ∈ Ẽ, and

also that (Mf ∨ M̃f ) = M̃f 6= Mf and M̃f @ (Mf ∨ M̂f ). Letting M ′
f = Cf (M̃f ), we show

below that f and M ′
f are a blocking coalition for M , contradicting the stability of M .

First of all, it follows from the revealed preference that Cf (Mf ∨M ′
f ) = M ′

f . To show

that M ′
f 6= Mf , note first that m̂f (θ) > mf (θ),∀θ ∈ Ẽ means (M̂f ∨Mf )(Ẽ) = M̂f (Ẽ), so

Rf (Mf ∨ M̂f )(Ẽ) = (Mf ∨ M̂f )(Ẽ)− Cf (Mf ∨ M̂f )(Ẽ) = M̂f (Ẽ)− M̂f (Ẽ) = 0.

Then, since f has a substitutable preference and M̃f @ (Mf∨M̂f ), we have Rf (M̃f )(Ẽ) = 0,

which means M ′
f (Ẽ) = Cf (M̃f )(Ẽ) = M̃f (Ẽ) 6= Mf (Ẽ). It only remains to show that
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M ′
f @ D�f (M). For this, note that since M̂ is individually rational and m̂f (θ) > 0,∀θ ∈ Ẽ,

we have f �θ ø,∀θ ∈ Ẽ. Given the definition of M̃f , this implies that M̃f @ D�f (M) and

thus M ′
f @ M̃f @ D�f (M).

Meanwhile,
∑

f∈F Mf =
∑

f∈F M̂f since Mø = M̂ø as shown in the above claim. Hence,

we conclude that Mf (Θ) = M̂f (Θ) for each f ∈ F .

We then prove the next claim.

Claim 4. For each f ∈ F̄ , there must be some t such that ptf < p̂tf .

Proof. Suppose to the contrary that p̂tf ≤ ptf (< 1) for all t ∈ T . Since
∑

t∈T M
t
f (Θ) =

Mf (Θ) = M̂f (Θ) =
∑

t∈T M̂
t
f (Θ) and Mf 6= M̂f , there must exist t ∈ T such that the set

{θ ∈ Θt|sf (θ) > ptf ≥ p̂tf and mt
f (θ) > m̂t

f (θ)} has a positive measure. A contradiction

then arises since, due to the fact that Cf selects all workers of type t whose scores are above

the optimal cutoff p̂tf and that M̂f = Cf (M̂f ∨Mf ), the measure of type θ ∈ Θt workers

selected when M̂f ∨Mf is available is equal to m̂t
f (θ) = max{m̂t

f (θ),m
t
f (θ)} for all θ ∈ Θt

with sf (θ) ≥ p̂tf , which cannot be smaller than mt
f (θ).

Claim 5. For any f ∈ F̄ and t ∈ T , if p̂tf = 0, then M̂f (Θ
t ∩ ·) = Mf (Θ

t ∩ ·).

Proof. Let us first observe that for any f ∈ F̄ and t, if M̂f (Θ
t) < Mf (Θ

t), then we have

p̂tf > ptf since, as we argued in the proof of Claim 4, the fact that M̂f = Cf (M̂f ∨Mf )

implies that m̂t
f (θ) = max{m̂t

f (θ),m
t
f (θ)} ≥ mt

f (θ) for all θ ∈ Θt with sf (θ) ≥ p̂tf . We also

know that if M̂f (Θ
t) < qtf , then p̂tf = p̂f ≤ p̂t

′

f , for all t′ ∈ T . Hence, if M̂f (Θ
t) < Mf (Θ

t)

for f ∈ F̄ and t, then ptf < p̂tf ≤ p̂t
′

f , for all t′ ∈ T .

Fix now any f ∈ F̄ and t ∈ T for which p̂tf = 0. Since it means p̂tf ≤ ptf , we must have

M̂f (Θ
t) ≥ Mf (Θ

t) according to the above argument. If, in addition, M̂f (Θ
t) > Mf (Θ

t),

then the fact that M̂f (Θ) = Mf (Θ) implies that there must exist t′ such that M̂f (Θ
t′) <

Mf (Θ
t′). This means that pt

′

f < p̂t
′

f ≤ p̂tf = 0, a contradiction. Hence, M̂f (Θ
t) = Mf (Θ

t).

Given p̂tf = 0 (i.e. the lowest possible score), we must have max{m̂t
f (θ),m

t
f (θ)} = m̂t

f (θ)

for all θ ∈ Θt. In order that M̂f (Θ
t) = Mf (Θ

t), we must then have m̂t
f (θ) = mt

f (θ) for

(almost) all θ ∈ Θt, which leads to the desired conclusion.

Claim 6. For any t ∈ T , if there is some f ∈ F̄ such that p̂tf > ptf , then we must have

p̂tf ′ > 0,∀f ′ ∈ F̄ .

Proof. Fix a firm f ∈ F̄ with p̂tf > ptf . Suppose to the contrary that the set F̄0 = {f ′ ∈
F̄ |p̂tf ′ = 0} is nonempty, and note that f 6∈ F̄0. Then, let us define F̄+ = F̄\F̄0 and consider

the set

{θ ∈ Θ|f �θ f ′′,∀f ′′ 6= f, sf (θ) ∈ (ptf , p̂
t
f ), and sf ′(θ) < p̂tf ′ ∀f ′ ∈ F̄+ \ {f}}.
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Since M is stable, all worker types in this set must be matched with f under M , which

implies that they cannot be matched with any firm in F̃\F̄ under M̂ since M̂f = Mf for

each f ∈ F\F̄ by assumption and also since M̂ø = Mø by Claim 3. Moreover, these workers

cannot be matched with any firm f ′ ∈ F̄+ under M̂ since their scores are below p̂tf ′ . It thus

follows that they must be matched with firms in F̄0 under M̂ while being matched with

f /∈ F̄0 under M , which contradicts Claim 5.

Claim 7. Rich preferences hold.

Proof. Fix any f ∈ F̄ and t ∈ T (given by Claim 4) such that ptf < p̂tf , and let

Θ̃t
f := {θ ∈ Θ|f �θ f ′′,∀f ′′ 6= f, sf (θ) ∈ (ptf , p̂

t
f ), and sf ′(θ) < p̂tf ′ ∀f ′ ∈ F̄ \ {f}}

be a set of ethnic type t workers who prefer f to all other firms and have scores that will

make them employable at f under M but not under M̂ and not employable at all other

firms in F̄ under M̂ . Let M ′ :=
∑

t∈T G(Θ̃t
f ∩ ·) denote the measure of these workers. The

full support assumption and the fact (given by Claim 6) that p̂tf ′ > 0,∀f ′ ∈ F̄ implies that

M ′(Θ) > 0.

We show that these workers are not employed by any firm in F̄ under either M̂ or M .

It is easy to see that these workers are not employed by any firm in F̄ under M̂ since their

scores are below the cutoffs of these firms at M̂ . Since
∑

f∈F Mf =
∑

f∈F M̂f , and since

Mf = M̂f for each f ∈ F \ F̄ , we must have
∑

f∈F̄ Mf =
∑

f∈F̄ M̂f . It thus follows that

these workers are not employed by firms in F̄ under matching M either.

Next, note that the above argument implies M ′ @ M̂ f

F̄
. Since p̂tf > ptf , firm f will wish

to replace some of its workers with these workers under M . Hence, Mf 6= Cf (Mf + M̂ f

F̄
),

so the rich preferences property follows.

E Proof of Theorem 7

Let Γ be the limit continuum economy which the sequence (Γq)q converges to. For any

population G, fix a sequence (Gq) of finite-economy populations such that Gq w∗−→ G. Let

Θq = {θq1, θ
q
2, . . . , θ

q
q̄} ⊂ Θ be the support for Gq.41 We say that Xq is feasible in Γq

if, for each θ ∈ Θq, Xq(θ) is a multiple of 1/q and Xq @ Gq. We first prove a couple of

preliminary results.

41Note that we allow for possibility that there are more than one worker of the same type even in finite

economies, so q̄ may be strictly smaller than q.
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Lemma 4. For any r > 0, there is a finite number of open balls, B1, . . . , BL that have

radius smaller than r with a boundary of zero measure (i.e. G(∂B`) = 0,∀`) and cover Θ.

Proof. Let B(θ, r) = {θ′ ∈ Θ | ‖θ′ − θ‖ < r} and S(θ, r) = {θ′ ∈ Θ | ‖θ′ − θ‖ = r}, where

‖ · ‖ is a metric for the space Θ. For all θ ∈ Θ and r > 0, there must be some rθ ∈ (0, r)

such that G(S(θ, rθ)) = 0,42 which means that ∂B(θ, rθ) = S(θ, rθ) has a zero measure.

Consider now a collection {B(θ, rθ) | θ ∈ Θ} of open balls that covers Θ. The compactness

of Θ then guarantees the existence of a finite cover, as desired.

Lemma 5. Suppose Gq w∗−→ G and X @ G. Then, there exists a sequence {Xq} such that

Xq is feasible in Γq and Xq w∗−→ X.

Proof. Consider a decreasing sequence (εk)k of real numbers converging to 0. Then, ac-

cording to Lemma 4, we can find a finite cover {Bk
` }`=1,...,Lk for each k such that for each

`, Bk
` has a radius smaller than εk and G(∂Bk

` ) = 0. For each k, define Ak1 = Bk
1 and

Ak` = Bk
` \ (∪`−1

`′=1B
k
`′) for each ` ≥ 2. So, for each k, {Ak`} constitutes a partition of Θ.

It is straightforward to see that G(∂Ak` ) = 0,∀`, since G(∂Bk
` ) = 0,∀`. Given this and

Gq w∗−→ G, condition (e) of Theorem 13 implies that for each k, there exists sufficiently

large q, denoted qk, such that for all q ≥ qk

1

q
<

εk
Lk

and |G(Ak` )−Gq(Ak` )| <
εk
Lk
,∀` = 1, . . . , Lk. (21)

Let us choose (qk)k to be a sequence that strictly increases with k.

Now we can construct Xq as follows: (i) Xq @ Gq and (ii) for each k and q ∈
{qk, . . . , qk+1 − 1},

Xq(Ak` ) = max

{
m

q

∣∣∣∣ m ∈ N and
m

q
≤ min{X(Ak` ), G

q(Ak` )}
}

for each ` = 1, . . . , Lk.

We now show that for all k and q ∈ {qk, . . . , qk+1 − 1}, we have

|X(Ak` )−Xq(Ak` )| <
εk
Lk
.

To see this, consider first the case X(Ak` ) < Gq(Ak` ). Then, by definition of Xq and

(21), we have 0 ≤ X(Ak` ) − Xq(Ak` ) < 1
q
< εk

Lk
. In case X(Ak` ) ≥ Gq(Ak` ), we have

Xq(Ak` ) = Gq(Ak` ) ≤ X(Ak` ) ≤ G(Ak` ), which implies by (21)

|X(Ak` )−Xq(Ak` )| ≤ |G(Ak` )−Gq(Ak` )| <
εk
Lk
.

42To see this, note first that B(θ, r) = ∪r̃∈[0,r)S(θ, r̃) and G(B(θ, r)) <∞. Then, G(S(θ, r̃)) > 0 for at

most countably many r̃’s, since otherwise the set Rn ≡ {r̃ ∈ [0, r) |G(S(θ, r̃)) ≥ 1/n} has to be infinite for

at least one n, which yields G(B(θ, r)) ≥ G(∪r̃∈Rn
S(θ, r̃)) ≥ ∞n , a contradiction.
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We are now ready to prove that Xq w∗−→ X. We do so by invoking (b) of Theorem 13,

according to which Xq w∗−→ X if and only if |
∫
hdXq −

∫
hdX| → 0 as q → ∞, for any

uniformly continuous function h ∈ Cu(Θ).

Hence, to begin, fix any h ∈ Cu(Θ), and fix any ε > 0. Next we define for each k and

q ∈ {qk, . . . , qk+1 − 1}

h̄q,k` ≡
∑

θ∈Θq∩Ak`
Xq(θ)h(θ)∑

θ∈Θq∩Ak`
Xq(θ)

=

∑
θ∈Θq∩Ak`

Xq(θ)h(θ)

Xq(Ak` )

if Xq(Ak` ) > 0, and if Xq(Ak` ) = 0, then define h̄q,k` ≡ h(θ) for some arbitrarily chosen

θ ∈ Ak` .
Note Cu(Θ) is endowed with the sup norm ‖ · ‖∞ and ‖h‖∞ is finite for any h ∈ Cu(Θ).

Hence, there exists K ∈ N sufficiently large such that, for all k > K and q ∈ {qk, . . . , qk+1−
1}, we have ‖h‖∞εk < ε/2, and

Lk∑
`=1

sup
θ∈Ak`

|h̄q,k` − h(θ)|X(Ak` ) <
ε

2
,∀` = 1, . . . , Lk, (22)

which is possible since h is uniformly continuous, Ak` ⊂ Bk
` , and Bk

` has a radius smaller

than εk with εk converging to 0 as k →∞.

Then, for any q > Q := qK , there exists k > K with q ∈ {qk, . . . , qk+1 − 1} such that∣∣∣∣∫ hdXq −
∫
hdX

∣∣∣∣
=

∣∣∣∣∣
Lk∑
`=1

h̄q,k` Xq(Ak` )−
∫
hdX

∣∣∣∣∣
≤

∣∣∣∣∣
Lk∑
`=1

h̄q,k` (Xq(Ak` )−X(Ak` ))

∣∣∣∣∣+

∣∣∣∣∣
Lk∑
`=1

h̄q,k` X(Ak` )−
∫
hdX

∣∣∣∣∣
≤

Lk∑
`=1

‖h‖∞|Xq(Ak` )−X(Ak` )|+

∣∣∣∣∣
Lk∑
`=1

∫
h̄q,k` 1Ak`

dX −
Lk∑
`=1

∫
h1Ak` dX

∣∣∣∣∣
≤‖h‖∞εk +

Lk∑
`=1

sup
θ∈Ak`

|h̄q,k` − h(θ)|X(Ak` )

≤ ε
2

+
ε

2
= ε,

where the third inequality follows from (21) while the fourth from (22).

By Theorem 2, there exists a stable matching M in the continuum economy. Now,

construct M q by the following procedure.
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1. Define M q
f1

as the Xq in Lemma 5 with respect to X := Mf1 .

2. Define M q
f2

as the Xq in Lemma 5 with respect to X := Mf2 , while replacing G with

G−Mf1 , and Gq with Gq −M q
f1

. (This is possible since Gq −M q
f1

w∗−→ G−Mf1 .)

3. Generally, for any k ∈ {1, 2, . . . , n}, inductively define M q
fk

as the Xq in Lemma 5

with respect to X := Mfk , while replacing G with G −
∑

k′<kMfk′
, and Gq with

Gq −
∑

k′<kM
q
fk′

.

Noting that the number of firms is finite, we have M q w∗−→M . Thus, by continuity of firms’

utility functions, for any f ∈ F and ε > 0,

uf (M
q
f ) > uf (Mf )−

ε

2
, (23)

for any sufficiently large q. Let D�f (M q) be the subpopulation of workers in economy Γq

who weakly prefer f to their match in M q.43 Since M q w∗−→ M , we have D�f (M q)
w∗−→

D�f (M).44 Let M̃ q
f = Cf (D

�f (M q)). In words, M̃ q
f is the most profitable block of M q for

f in the continuum economy, that is, the optimal deviation in a situation where the current

matching is M q, but the firm can deviate to any subpopulation, not just a discrete distri-

bution. Then the above-mentioned property that D�f (M q)
w∗−→ D�f (M) and continuity

of Cf imply that M̃ q
f

w∗−→Mf . Thus, by continuity of firms’ utility functions,

uf (M̃
q
f ) < uf (Mf ) +

ε

2
, (24)

for any sufficiently large q. Let M ′
f be the most profitable block of M q for f in economy

Γq. Then M ′
f is the optimal deviation facing the same population Gq and matching M q as

when computing M̃f but with an additional constraint that the deviation is feasible in Γq

(multiples of 1/q), so uf (M
′
f ) ≤ uf (M̃f ). This and inequality (24) imply

uf (M
′
f ) < uf (Mf ) +

ε

2
. (25)

Combining inequalities (23) and (25), we obtain uf (M
′
f ) < uf (M

q
f ) + ε, completing the

proof.

43To be precise, D�f (Mq) is given as in (1) with G and X being replaced by Gq and Mq, respectively.
44This convergence can be shown using an argument similar to that which we have used to establish the

continuity of Ψ in the proof of Lemma 3.
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F Proof for Section 8

Proof of Theorem 11. (Proof of the first part): Suppose M is a stable matching in

X |Ω|. We prove that X = (D�ω(M))ω∈Ω is a fixed point of T . Let us first show that for

each ω ∈ Ω, Xω ∈ X . It is clear that as each Mω is countably additive, so is Mω(ΘP ∩ ·),
which implies that Xω(·) = D�ω(M)(·) =

∑
P∈P

∑
ω′∈Ω:ω′�PωMω′(ΘP ∩ ·) is also countably

additive. It is also clear that since (Mω)ω∈Ω is a matching, Xω @ G. Thus, we have Xω ∈ X .

We next claim that Mf = Cf (Xf ) for all f ∈ F̃ . This is immediate for f = ø since

Mø = Xø = Cø(Xø). To prove the claim for f 6= ø, suppose for a contradiction that

Mf 6= Cf (Xf ), and let us denote M̃ f = Cf (Xf ). Note that due to the restriction that

Cf (Xf ) ∈ Yf (Xf ), we have M̃ �
f @ Xf and thus (M̃ �

f ∨M
�
f ) @ Xf . Then, by the revealed

preference, we have M̃ f = Cf (M̃
�
f ∨M

�
f ), which means that M is not stable since M̃ �

f @

Xf = D�f (M), yielding the desired contradiction.

We next prove X = T (X). The fact that Mω = Cω(Xf(ω)),∀ω ∈ Ω means that Xω −
Mω = Rω(Xf(ω)),∀ω ∈ Ω. Then, for each ω ∈ Ω and E ∈ Σ, we obtain∑

P∈P

RωP−
(Xf(ωP−))(ΘP ∩ E) =

∑
P∈P

(
XωP−

(ΘP ∩ E)−MωP−
(ΘP ∩ E)

)

=
∑
P∈P

 ∑
ω′∈Ω:ω′�PωP−

Mω′(ΘP ∩ E)−MωP−
(ΘP ∩ E)


=
∑
P∈P

∑
ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E) = Xω(E),

where the second and fourth equality follows from the definition of XωP−
and Xω, respec-

tively, while the third from the fact that ωP− is an immediate predecessor of ω. The above

equation holds for every firm ω ∈ Ω, we conclude that X ∈ T (X), i.e. X is a fixed point

of T .

(Proof of the second part): Let us first introduce some notations. Let ωP+ denote

an immediate successor of ω ∈ Ω at P ∈ P : that is, ωP+ ≺P ω, and for any ω′ ≺P ω,

ω′ �P ωP+. Also, let XωP+
(ΘP ∩ ·) ≡ 0 for any contract ω that is ranked last at P . Note

that for any ω, ω̃ ∈ Ω, ω = ω̃P− if and only if ω̃ = ωP+.

Suppose now that X = (Xω)ω∈Ω ∈ X |Ω| is a fixed point of T . For each contract ω ∈ Ω

and E ∈ Σ, define

Mω(E) = Xω(E)−
∑
P∈P

XωP+
(ΘP ∩ E). (26)
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We first verify that for each ω ∈ Ω, Mω ∈ X . First, it is clear that for each ω ∈ Ω, as

both Xω(·) and XωP+
(ΘP ∩ ·) are countably additive, so is Mω. It is also clear that for each

ω ∈ Ω, Mω @ Xω.

Let us next show that for all ω ∈ Ω, P ∈ P , and E ∈ Σ,

Xω(ΘP ∩ E) =
∑

ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E), (27)

which means that Xω = D�ω(M). To do so, consider first a contract ω that is ranked last at

P . By (26) and the fact that XωP+
(ΘP ∩·) ≡ 0, we have Mω(ΘP ∩E) = Xω(ΘP ∩E). Hence,

(27) holds for such ω. Consider now any ω ∈ Ω which is not ranked last, and assume for an

inductive argument that (27) holds true for ωP+, so XωP+
(ΘP ∩E) =

∑
ω′∈Ω:ω′�PωP+

Mω′(ΘP ∩
E). Then, by (26), we have

Xω(ΘP ∩ E) = Mω(ΘP ∩ E) +XωP+
(ΘP ∩ E) = Mω(ΘP ∩ E) +

∑
ω′∈Ω:ω′�PωP+

Mω′(ΘP ∩ E)

=
∑

ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E),

as desired.

To show that M = (Mω)ω∈Ω is a matching, let ω be a top-ranked contract at P . Then,

the definition of T and the fact that X is a fixed point of T imply that for any E ∈ Σ,

G(ΘP ∩ E) = Xω(ΘP ∩ E) =
∑

ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E) =
∑
ω′∈Ω

Mω′(ΘP ∩ E),

where the second equality follows from (27). Since the above equation holds for every

P ∈ P , M is a matching.

Let us now fix any ω ∈ Ωf and show that Mω = Cω(Xf(ω)), which is equivalent to

showing Xω −Mω = Rω(Xf(ω)). Recall that XωP+
(ΘP ∩ E) = Rω(Xf(ω))(ΘP ∩ E) for all

P ∈ P and E ∈ Σ. Then, (26) implies

Xω(·)−Mω(·) =
∑
P∈P

XωP+
(ΘP ∩ ·) =

∑
P∈P

Rω(Xf(ω))(ΘP ∩ ·) = Rω(Xf(ω))(·),

as desired.

We now prove that (Mω)ω∈Ω is stable. To prove the first part of Condition 1 of Definition

12, note first that Mωø = Cωø(Xø) = Xωø . Then, for every P ∈ P ,∑
ω:ω≺Pωø

Mω(ΘP ) =
∑

ω:ω�Pωø

Mω(ΘP )−Mωø(ΘP ) = Xωø(ΘP )−Mωø(ΘP ) = 0,
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where the middle equality follows from (27). The above equation means that for each

ω ≺P ωø, we have Mω(ΘP ) = 0, as desired. The second part of Condition 1 of Definition

12 (i.e. Mf = Cω(M�
f )) follows from the revealed preference property since Mf = Cf (Xf )

and also since (27) means M�ω
f @ Xω for each ω ∈ Ωf or M�

f @ Xf .

It only remains to check Condition 2 of Definition 12. Suppose for a contradiction that

it fails. Then, there exist f and M̃ f such that

Mf 6= M̃ f = Cf (M̃
�
f ∨M

�
f ) and M̃ �

f @ D�f (M). (28)

Since then (M̃ �
f ∨ M

�
f ) @ D�f (M) = Xf and Mf = Cf (Xf ), the revealed preference

property implies Mf = Cf (M̃
�
f ∨M

�
f ), contradicting (28). We have thus proven that M is

stable.

G Proofs for Section 7

First, we establish the following result:

Lemma 6. For any X @ G, C̃f (X) is nonempty and a singleton set. Also, C̃f satisfies

the revealed preference property.

Proof. We first establish that for X, C̃f (X) is a singleton set. To do so, for any X ∈ X ,

f ∈ F , k ∈ If , and αk ∈ [0, 1], define ζkf (αk) :=
∑

θ∈Skf
min{X(θ), αkG(θ)}. From now

on, we assume Cf (X) 6= {X} since, if Cf (X) = {X}, then we have C̃f (X) = {X}, a

singleton set as desired. We show that there exists a unique α̂k satisfying ζkf (α̂k) = Γkf (X),

which means that C̃f (X) is a singleton set. First, we must have α̂k < maxθ∈Skf X(θ)

since otherwise ζkf (α̂k) =
∑

θ∈Skf
X(θ) > Γkf (X) (which follows from the assumption that

Cf (z) 6= {X} and thus, for any X ′ ∈ Cf (X), X ′ @ X and X ′ 6= X). Next, observe that

ζkf (·) is strictly increasing in the range [0,maxθ∈Skf
X(θ)
G(θ)

). Then, the continuity of ζkf , along

with the fact that ζkf (0) = 0 and ζkf (maxθ∈Skf
X(θ)
G(θ)

) > Γkf (X), implies that there is a unique

α̂k ∈ [0,maxθ∈Skf
X(θ)
G(θ)

) satisfying ζkf (α̂k) = Γkf (X).

To show the revealed preference property, consider any X,X ′, X ′′ ∈ X such that

C̃f (X) = {X ′} and X ′ @ X ′′ @ X. Since we already know that Cf (·) satisfies the re-

vealed preference property, we have X ′ ∈ Cf (X ′′). It suffices to show that X ′ ∈ Bf (X
′′),

since it means C̃f (X
′′) = {X ′}, from which the revealed preference property follows. To do

so, note that X ′ ∈ Bf (X) means that X ′(θ) = min{X(θ), αkG(θ)} for each k and θ ∈ Skf .

Then, since X(θ) ≥ X ′′(θ) ≥ X ′(θ) and αkG(θ) ≥ X ′(θ), we have

X ′(θ) = min{X(θ), αkG(θ)} ≥ min{X ′′(θ), αkG(θ)} ≥ X ′(θ),
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so X ′(θ) = min{X ′′(θ), αkG(θ)} as desired.

Proof of Theorem 9. (“only if” part) Consider a strongly stable matching M in the

time share model (G,F,PΘ, CF ). We show that M is stable in the time share model

(G,F,PΘ, C̃F ). First, it is clear that M is individually rational for workers. To show

that the same is true for firms, i.e., Mf ∈ C̃f (Mf ) for each f ∈ F , note first that we have

Mf ∈ Cf (Mf ), since M is strongly stable and thus stable. That Mf ∈ Bf (Mf ) follows from

setting αk = 1, since then Mf (θ) ≤ αkG(θ) = G(θ),∀θ ∈ Θk
f so min{Mf (θ), α

kG(θ)} =

Mf (θ),∀θ ∈ Θk
f .

To show next that there is no blocking coalition, we first prove the following claim:

Claim 8. Fix any strongly stable matching M in the time share model (G,F,PΘ, CF ) and

let Xf = D�f (M). For each firm f ∈ F , there is some αk ∈ [0, 1] for each k ∈ If such that

Mf (θ) = min{Xf (θ), α
kG(θ)},∀θ ∈ Θk

f .

Proof. It suffices to show that for any k ∈ If and θ, θ′ ∈ Θk
f , if Mf (θ) < Xf (θ) and

Mf (θ
′) < Xf (θ

′), then
Mf (θ)

G(θ)
=

Mf (θ′)

G(θ′)
. Note first that

Xf (θ) = D�f (M)(θ) =
∑

f ′∈F̃ :f ′�θf

Mf ′(θ) = Mf (θ) +
∑

f ′∈F̃ :f ′≺θf

Mf ′(θ).

If Mf (θ) < Xf (θ) and Mf (θ
′) < Xf (θ

′), then we have
∑

f ′∈F̃ :f ′≺θf Mf ′(θ) > 0 and∑
f ′∈F̃ :f ′≺θ′f

Mf ′(θ
′) > 0. Given this, the strong stability implies that

Mf (θ)

G(θ)
=

Mf (θ′)

G(θ′)
.

Since M is stable in the time share model (G,F,PΘ, C̃F ), we have Mf ∈ Cf (Xf ) for

each f ∈ F with Xf = D�f (M). Then, for any M ′
f @ Xf , we have Mf ∈ Cf (M ′

f ∨Mf ) due

to the fact that Mf ∈ Cf (Xf ), (M ′
f ∨Mf ) @ Xf , and Cf satisfies the revealed preference.

The condition of no blocking coalition—i.e., Condition 2 of Definition 4—will then hold

if Mf ∈ Bf (M
′
f ∨Mf ), since it means Mf ∈ Cf (M

′
f ∨Mf ) ∩ Bf (M

′
f ∨Mf ) = C̃f (M

′
f ∨

Mf ). For this, for each k, we choose αk as in Claim 8 and show that for all θ ∈ Θk
f ,

Mf (θ) = min{max{M ′
f (θ),Mf (θ)}, αkG(θ)}. Let us first consider the case where Mf (θ) =

Xf (θ) < αkG(θ). Since M ′
f (θ) ≤ Xf (θ), we have max{M ′

f (θ),Mf (θ)} = Mf (θ) < αkG(θ)

and thus Mf (θ) = min{max{M ′
f (θ),Mf (θ)}, αkG(θ)}. For the other case where Mf (θ) =

αkG(θ) ≤ Xf (θ), observe that Mf (θ) = αkG(θ) = min{max{M ′
f (θ),Mf (θ)}, αkG(θ)} since

max{M ′
f (θ),Mf (θ)} ≥Mf (θ) = αkG(θ).

( “if” part) Consider a stable matching M = (Mf )f∈F̃ in (G,F,PΘ, C̃F ) and let Xf =

D�f (M) for each f ∈ F̃ . To show that M is strongly stable in the time share model

(G,F,PΘ, CF ), we first show that it is stable (i.e. Condition (i) of Definition 11). It is
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straightforward, thus omitted, to check the individual rationality. To check the condition

of no blocking coalition, suppose to the contrary that there is a blocking pair f and M ′
f ,

which means that M ′
f @ Xf , M

′
f ∈ Cf (M ′

f ∨Mf ), and Mf /∈ Cf (M ′
f ∨Mf ). Given this,

by Lemma 6, there exists M̃f such that C̃f (M
′
f ∨ Mf ) = {M̃f}. First, by the revealed

preference property of C̃f and the fact that M̃f @ (M̃f ∨ Mf ) @ (M ′
f ∨ Mf ), we have

M̃f ∈ C̃f (M̃f ∨Mf ) and Mf /∈ C̃f (M̃f ∨Mf ). Second, since Mf @ Xf and M ′
f @ Xf , we

have M̃f @ (M ′
f ∨Mf ) @ Xf . In sum, f and M̃f form a blocking pair in (G,F,PΘ, C̃F ),

which is a contradiction.

To show that Condition (ii) of Definition 11 also holds, suppose not. Then, there must

be some f , k, and θ, θ′ ∈ Θk
f for whom

Mf (θ)

G(θ)
<

Mf (θ′)

G(θ′)
and

∑
f ′:f ′≺θf Mf ′(θ) > 0. Fixing

any such f , k, and θ, let f ′ be any firm such that f ′ ≺θ f and Mf ′(θ) > 0. Letting

Θ′ = arg maxθ̃∈Θkf

Mf (θ̃)

G(θ̃)
, note that θ /∈ Θ′. We define a matching for firm f as follows: for

each θ̃ ∈ Θ,

M ′
f (θ̃) =


Mf (θ̃) + εMf ′(θ̃) if θ̃ = θ

ε′Mf (θ̃) if θ̃ ∈ Θ′

Mf (θ̃) otherwise

,

where ε, ε′ ∈ (0, 1) are chosen to satisfy
M ′f (θ̃)

G(θ̃)
<

M ′f (θ′)

G(θ′)
,∀θ′ ∈ Θ′, θ̃ /∈ Θ′ and

M ′
f (θ) +

∑
θ′∈Θ′

M ′
f (θ
′) = Mf (θ) +

∑
θ′∈Θ′

Mf (θ
′). (29)

Note first that M ′
f @ Xf , since f ′ ≺θ f and thus M ′

f @ (Mf (θ̃) + Mf ′(θ̃)1{θ̃=θ})θ̃∈Θ @

D�f (M) = Xf . Let us show next that M ′
f ∈ C̃f (M ′

f ∨Mf ). The fact that Mf ∈ C̃f (Xf )

(due to the stability of M) and Mf ∨M ′
f @ Xf , implies Mf ∈ C̃f (Mf ∨M ′

f ) by the revealed

preference. This means Mf ∈ Cf (Mf ∨M ′
f ), which can be combined with (29) to yield∑

θ∈Θkf

M ′
f (θ) =

∑
θ∈Θkf

Mf (θ) = Γkf (Mf ∨M ′
f ),∀k ∈ If

and thus M ′
f ∈ Cf (Mf ∨M ′

f ). To show M ′
f ∈ Bf (Mf ∨M ′

f ), we set αk = maxθ̃∈Θkf

M ′f (θ̃)

G(θ̃)

and observe that for all θ′ ∈ Θ′, min{(Mf ∨M ′
f )(θ

′), αkG(θ′)} = min{Mf (θ
′), αkG(θ′)} =

αkG(θ′) = M ′
f (θ
′) while for all θ̃ /∈ Θ′, min{(Mf∨M ′

f )(θ̃), α
kG(θ̃)} = min{M ′

f (θ̃), α
kG(θ̃)} =

M ′
f (θ̃), which implies M ′

f ∈ Bf (Mf ∨M ′
f ). Therefore, M ′

f ∈ C̃f (Mf ∨M ′
f ). A contradiction

follows since the fact that C̃f is single-valued and M ′
f 6= Mf implies Mf /∈ C̃f (M ′

f ∨Mf ).
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Proof of Theorem 10. By Theorem 9 and the Kakutani-Fan-Glicksberg fixed point the-

orem, it suffices to show that C̃f is closed- and convex-valued, and upper hemicontinuous.

The convexity and closed-valuedness of C̃f (X) for any X @ G follow directly from the

fact that C̃f (X) is a singleton set. In the rest of the proof, we prove the upper hemicon-

tinuity. By 16.25 Theorem of Aliprantis and Border (2006), the intersection of a family of

closed-valued upper hemicontinuous correspondences, one of which is also compact-valued,

is upper hemicontinuous. Since we already know that Cf (·) is closed- and compact-valued,

and upper hemicontinuous, we only need to prove that Bf (·) is upper hemicontinuous (given

that its closed-valuedness has been proved).45 To do so, consider sequences (X`)`∈N and

(X̃`)`∈N with X̃` ∈ Bf (X
`),∀`, converging to X and X̃, respectively. So, for each k ∈ If ,

there is a sequence (αk` )`∈N such that X̃`(θ) = min{X`(θ), αk`G(θ)},∀θ ∈ Θk
f . For each k,

let αk be a limit to which a subsequence of the sequence (αk` )`∈N converges. We claim that

X̃(θ) = min{X(θ), αkG(θ)},∀θ ∈ Θk
f . If X̃(θ) > min{X(θ), αkG(θ)}, then one can find

sufficiently large ` to make X̃`(θ), X`(θ), and αk` close to X̃(θ), X(θ), and αk, respectively,

so that X̃`(θ) > min{X`(θ), αk`G(θ)}, which is a contradiction. The same argument applies

to the case with X̃(θ) < min{X(θ), αkG(θ)}.
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Kesten, O., and U. Ünver. 2014. “A theory of school choice lotteries.” forthcoming,

Theoretical Economics.

Klaus, Bettina, and Flip Klijn. 2005. “Stable matchings and preferences of couples.”

Journal of Economic Theory, 121(1): 75–106.

Kojima, Fuhito, and Mihai Manea. 2008. “Incentives in the Probabilistic Serial Mech-

anism.” forthcoming, Journal of Economic Theory.

Kojima, Fuhito, and Parag A. Pathak. 2008. “Incentives and Stability in Large Two-

Sided Matching Markets.” forthcoming, American Economic Review.

Kojima, Fuhito, Parag A Pathak, and Alvin E Roth. 2013. “Matching with couples:

Stability and incentives in large markets.” Quarterly Journal of Economics, 128: 1585–

1632.

Lee, SangMok. 2012. “Incentive compatibility of large centralized matching markets.”

mimeo.

Liu, Qingmin, and Marek Pycia. 2013. “Ordinal Efficiency, Fairness, and Incentives in

Large Markets.” Unpublished mimeo.

Manea, Mihai. 2009. “Asymptotic Ordinal Inefficiency of Random Serial Dictatorship.”

forthcoming, Theoretical Economics.

Ostrovsky, Michael. 2008. “Stability in supply chain networks.” The American Economic

Review, 897–923.

65



Pycia, Marek. 2012. “Stability and preference alignment in matching and coalition for-

mation.” Econometrica, 80(1): 323–362.

Roth, Alvin E. 1984. “The Evolution of the Labor Market for Medical Interns and Resi-

dents: A Case Study in Game Theory.” Journal of Political Economy, 92: 991–1016.

Roth, Alvin E. 1991. “A natural experiment in the organization of entry-level labor

markets: regional markets for new physicians and surgeons in the United Kingdom.”

The American economic review, 415–440.

Roth, Alvin E. 2002. “The economist as engineer: Game theory, experimentation, and

computation as tools for design economics.” Econometrica, 70: 1341–1378.

Roth, Alvin E., and Elliot Peranson. 1999. “The Redesign of the Matching Market

for American Physicians: Some Engineering Aspects of Economic Design.” American

Economic Review, 89: 748–780.

Roth, Alvin E, Uriel G Rothblum, and John H Vande Vate. 1993. “Stable match-

ings, optimal assignments, and linear programming.” Mathematics of Operations Re-

search, 18(4): 803–828.
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