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Suresh Sundaresan, René Stulz, Jeff Zwiebel, and seminar participants at AFR Summer Institute, Caltech,
Cheung Kong Graduate School of Business, Columbia University, University of Hong Kong, National Univer-
sity of Singapore, New York University Stern, Ohio State University, Sargent SRG Group, Summer Institute
of Finance Conference (2014), Shanghai University of Finance & Economics, Stanford Business School, Uni-
versity of British Columbia, University College London, University of Oxford, and University of Toronto for
helpful comments. First draft: 2012.
†Columbia University, NBER and CEPR. Email: pb2208@columbia.edu. Tel. 212-854-9245.
‡Columbia Business School and NBER. Email: neng.wang@columbia.edu. Tel. 212-854-3869.
§The School of Finance, Shanghai University of Finance and Economics (SUFE). Email:

yang.jinqiang@mail.sufe.edu.cn.



1 Introduction

Neither an entrepreneur in need of funding, nor anyone else for that matter, can legally agree

to enslave herself to a firm in exchange for financing by outside investors. This fundamental

observation has led Hart and Moore (1994) to formulate a theory of financial constraints

arising from the inalienability of human capital. In a stylized model of a firm with a single

fixed project producing deterministic cash flows over a finite time interval, where moreover

the entrepreneur’s human capital is certain, they show that there is a finite debt capacity

for the firm, which is given by the maximum repayment that the entrepreneur can credibly

commit to: any higher repayment and the entrepreneur would be better off abandoning the

firm. While they can uniquely determine the firm’s debt capacity their highly simplified

framework does not uniquely tie down the firm’s debt maturity structure. They show that

there is a continuum of optimal debt contracts involving more or less rapid debt repayment

paths. There is only a unique optimal debt contract when the entrepreneur and investors

have different discount rates. In addition, while their framework provides a new foundation

for a theory of corporate leverage, their model “does not have room for equity per se” [pp

865], as they acknowledge.

We generalize the framework of Hart and Moore (1994) along several important dimen-

sions: first, we introduce risky human capital and cash flows; second, we let the entrepreneur

be risk averse (by “entrepreneur,” we mean a representative agent for all undiversified agents

with inalienable human capital); third, we consider an infinitely-lived firm with ongoing in-

vestment; and, fourth we add a limited liability or commitment constraint for investors. In

this significantly more realistic yet still tractable framework we derive the optimal investment

and consumption policies, and show how this optimal financial contract can be implemented

using replicating portfolios of standard liquidity and risk management instruments such as

cash, credit line, futures, and insurance contracts. More concretely, the state variable in

the optimal financial contracting problem between risk-neutral investors and the risk-averse

entrepreneur is the promised wealth to the entrepreneur per unit of capital, w, and the value

of the firm to investors per unit of capital is p(w). Moreover, under the optimal contract the

firm’s investment and financing policies and the entrepreneur’s consumption are all expressed

as functions of w. As Table 1 below summarizes, we show that this contracting problem can
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be reformulated as a dual implementation problem with corporate savings per unit of capi-

tal, s = −p(w), as the state variable and where the objective function is the entrepreneur’s

payoff given by m(s) = w. The key observation in this transformation is that the firm’s opti-

mal financial contracting problem then can be represented as a more operationally grounded

liquidity and risk-management policies with endogenously determined liquidity constraints.

Table 1: Equivalence between primal contracting and dual implementation

Primal Dual

Contracting Implementation

State Variable w s

Value Function p(w) m(s)

A first reason for considering this more involved framework is to explore how the Hart

and Moore theory of debt based on the inalienability of human capital generalizes and how

the introduction of risky human capital modifies the theory. But, more importantly, our

framework reveals that Hart and Moore’s focus on the notion of a firm’s “debt capacity”

is reductive. As it turns out, this is only one of the relevant metrics of the firm’s optimal

financial policy when human capital is risky. What matters more generally for optimal

corporate policies is not just the limit on a credit-line commitment the firm has secured

with its investors s, but the size of the firm’s financial slack (s− s) at any moment in time.

Accordingly, inalienability of risky human capital is not just a foundation for a theory of

debt capacity, but also a foundation for a theory of corporate liquidity and risk management.

More concretely, our analysis can shed new light on corporate policies that at first sight

appear to be inconsistent with the theoretical framework of Hart and Moore, such as the

large observed retained cash pools at corporations such as Apple, Google and other high-tech

firms. One novel explanation our analysis suggests is that these cash pools are necessary

to make credible compensation promises to retain highly valued employees with attractive

alternative job opportunities. These employees are largely paid in the form of deferred stock

compensation. When their stock options vest and are exercised the company may need to

engage in a stock repurchase program so as to avoid excessive stock dilution. But such a
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repurchase requires funding, which could explain why these companies retain so much cash.

There are hints of the relevance of corporate liquidity in Hart and Moore’s discussion of their

theory1, however they do not emphasize the importance of this variable. Also, as a result

of the absence of any risk in their framework they overlook the importance of the firm’s

hedging policy.

We introduce risk via both productivity and capital depreciation shocks. These shocks

give rise to risky inalienable human capital thus generating a sequence of stochastic dynamic

limited-commitment constraints for the entrepreneur. That is, whether the entrepreneur is

willing to stay with the firm now depends on the history of realized productivity and capital

shocks. When there is a positive shock, the entrepreneur’s human capital is higher and she

must receive a greater promised compensation to be induced to stay. But the entrepreneur is

averse to risk and has a preference for smooth consumption. These two opposing forces give

rise to a novel dynamic optimal contracting problem between the infinitely-lived risk-averse

entrepreneur and the fully diversified (or risk-neutral) investors.

A key step in our analysis is to show that the optimal long-term contracting problem

between investors and the entrepreneur can be reduced to a recursive formulation with a

single key endogenous state variable w, the entrepreneur’s promised certainty equivalent

wealth W under the optimal contract scaled by the firm’s capital stock K. The optimal re-

cursive contract then specifies three state-contingent policy functions: i) the entrepreneur’s

consumption-capital ratio c(w); ii) the firm’s investment-capital ratio i(w), and; iii) the

firm’s risk exposure x(w) or hedging policy. This contract maximizes investors’ payoff while

providing insurance to the entrepreneur and retaining her. The optimal contract thus in-

volves a particular form of the well-known tradeoff between risk sharing and incentives in

a model of capital accumulation and limited commitment. Here the entrepreneur’s inalien-

ability of human capital constraint at each point in time is in effect her incentive constraint.

She needs to be incentivized to stay rather than deploy her human capital elsewhere.

If the entrepreneur were able to alienate her human capital, the optimal contract would

simply provide her with a constant flow of consumption and shield her from any risk. Under

1For example, on pages 864-865 they wrote: “There is some evidence that firms borrow more than they
strictly need to cover the cost of their investment projects, in order to provide themselves with a “financial
cushion.” This fits in with our prediction in Proposition 2 about the nature of the slowest equilibrium
repayment path; indeed, it is true of most paths.”
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this contract the firm’s investment policy reduces to the standard ones prescribed by the

q-theory models under the Modigliani-Miller (MM) assumption of perfect capital markets.

But with inalienable human capital the entrepreneur must be prevented from leaving. To

retain the entrepreneur in the states of the world where the entrepreneur may find her outside

option to be greater than her promised certainty equivalent wealth W , the optimal contract

must promise her sufficiently high w thus exposing her to productivity and capital shocks.

Following the characterization of the optimal dynamic corporate policy (c(w), i(w), x(w))

we proceed with the implementation of this policy in terms of familiar standard dynamic

financing securities. In particular, we show that the optimal contract can be implemented

by delegating control over the firm and transferring equity ownership to the entrepreneur

in exchange for a credit line with an endogenously determined stochastic limit S. The key

endogenous state variable for this implementation problem is s = S/K, the ratio between

financial slack S and the firm’s capital stock K. The entrepreneur maximizes her life-time

utility by optimally choosing consumption-capital ratio c(s), investment-capital ratio i(s),

and hedge φ(s) as a function of s. In other words, the optimal long-term contract under

risky inalienable human capital can be implemented via a sequence of short-term contracts,

which take the form of a continuously revised credit line combined with optimal cash man-

agement and dynamic hedging policies. This implementation is simply a particularly realistic

illustration of the general result of Fudenberg, Holmstrom and Milgrom (1990) that optimal

long-term agency contracts with moral hazard can be implemented via a sequence of short-

term contracts. It is also analogous to the implementation results via dynamically replicating

portfolios of Arrow-Debreu equilibria of Merton (1973) and Duffie and Huang (1985).

The optimal contract provides the entrepreneur with a (locally) deterministic consump-

tion stream as long as the capital stock does not grow too large. When the capital stock

increases as a result of investment or positive shocks to the point where the entrepreneur’s

inalienability of human capital constraint may be violated the contract provides a higher

consumption stream to the entrepreneur. As long as investors can perfectly commit to an

optimal stochastic credit-line limit S (what we refer to as the one-sided commitment prob-

lem), the entrepreneur’s consumption and wealth are positively correlated with the capital

stock under the optimal contract, and the firm will generally underinvest relative to the

first-best MM benchmark of fully alienable human capital.
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In the two-sided commitment problem, where a limited liability constraint for investors

must also hold, we obtain further striking results. The firm may now overinvest and the

entrepreneur may overconsume (compared with the first-best benchmark). The intuition is

as follows. In order to make sure that investors do not have incentives to default on their

promised future utility for the entrepreneur, the entrepreneur’s scaled promised wealth w

cannot be too high otherwise the investors will end up with negative valuations for the firm.

As a result, the entrepreneur needs to substantially increase investment and consumption in

order to satisfy the investors’ limited-liability constraint.

Related literature. Our paper provides foundations for a dynamic theory of liquidity and

risk management based on risky inalienable human capital. As such it is obviously related

to the early important contributions on corporate risk management by Stulz (1984), Smith

and Stulz (1985) and Froot, Scharfstein, and Stein (1993). Unlike our setup, they consider

static models with exogenously given financial frictions to show how corporate cash and risk

management can create value by relaxing these financial constraints.

Our paper is also evidently related to the corporate security design literature, which

seeks to provide foundations for the existence of corporate financial constraints, and for the

optimal external financing by corporations through debt or credit lines. This literature can

be divided into three separate strands. The first approach provides foundations for external

debt financing in a static optimal contracting framework with either asymmetric information

and costly monitoring (Townsend, 1979, and Gale and Hellwig, 1985) or moral hazard (Innes,

1990, and Holmstrom and Tirole, 1997).

The second more dynamic optimal contracting formulation derives external debt and

credit lines as optimal financial contracts in environments where not all cash flows generated

by the firm are observable or verifiable.2

The third approach which is closely related to the second provides foundations for debt

financing based on the inalienability of human capital (Hart and Moore, 1994, 1998). Harris

and Holmstrom (1982) is an early important paper that generates non-decreasing consump-

2See Bolton and Scharfstein (1990), DeMarzo and Fishman (2007), Biais, Mariotti, Plantin, and Rochet
(2007), DeMarzo and Sannikov (2006), Piskorski and Tchistyi (2010), Biais, Mariotti, Rochet, and Villeneuve
(2010), and DeMarzo, Fishman, He and Wang (2012). See Sannikov (2012) and Biais, Mariotti, and Rochet
(2013) for recent surveys of this literature.
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tion profile in a model where workers are unable to commit to long-term contracts. Berk,

Stanton, and Zechner (2010) incorporate capital structure and human capital bankruptcy

costs into Harris and Holmstrom (1982). Rampini and Viswanathan (2010, 2013) develop a

model of corporate risk management building on similar contracting frictions. A key result

in their model is that hedging may not be an optimal policy for firms with limited capital

that they can pledge as collateral. For such firms hedging demand, in effect, competes for

limited collateral with investment demand. They show that for growth firms the return on

investment may be so high that it crowds out hedging demand. Li, Whited, and Wu (2014)

structurally estimate optimal contracting problems with limited commitment along the line

of Rampini and Viswanathan (2013) providing empirical evidence in support of these class

of models.

The latter two approaches are often grouped together because they yield closely related

results and the formal frameworks are almost indistinguishable under the assumption of

risk-neutral preferences for the entrepreneur and investors. However, as our analysis with

risk-averse preferences for the entrepreneur makes clear, the two frameworks are different,

with the models based on non-contractible cash flows imposing dynamic incentive constraints

that restrict the set of incentive compatible financial contracts, while the models based on

inalienable human capital only impose (dynamic) limited-commitment constraints for the

entrepreneur. With the exception of Gale and Hellwig (1985) the corporate security design

literature makes the simplifying assumption that the contracting parties are risk neutral. By

allowing for risk-averse entrepreneurs, we not only generalize the results of this literature

on the optimality of debt and credit lines, but we are able to account for the fundamental

role of corporate savings and risk management (via futures, options or other commonly used

derivatives), and also to provide micro-foundations for executive compensation contracts.

A closely related paper to ours is by Ai and Li (2013) that analyzes a similar contract-

ing framework to study corporate investment and managerial compensation but with very

different economic motivation and focus. We show that liquidity and risk management op-

timally implements the optimal contracting solution and also we characterize the dynamics

of optimal corporate liquidity and risk management. Additionally, we incorporate stochastic

productivity shocks and focus on the implications due to the inalienability of risky human

capital. Also closely related is Lambrecht and Myers (2012), who consider an intertempo-
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ral model of a firm run by a risk-averse entrepreneur with habit formation, and derive the

firm’s optimal dynamic corporate policies. They show that the firm’s optimal payout policy

resembles the famous Lintner (1956) payout rule of thumb.

Our financial implementation of the optimal financial contract is also related to the port-

folio choice literature featuring illiquid productive assets and under-diversified investors in an

incomplete-markets setting. Building on Merton’s intertemporal portfolio choice framework,

Wang, Wang, and Yang (2012) study a risk-averse entrepreneur’s optimal consumption-

savings decision, portfolio choice, and capital accumulation when facing uninsurable id-

iosyncratic capital and productivity risks. Unlike Wang, Wang, and Yang (2012), our model

features optimal liquidity and risk management policies that arise endogenously from an

underlying financial contracting problem.

Our framework also provides a micro-foundation for the dynamic corporate savings mod-

els that take external financing costs as exogenously given. Hennessy and Whited (2005,

2007), Riddick and Whited (2009), and Eisfeldt and Muir (2014) study corporate invest-

ment and savings with financial constraints. Bolton, Chen, and Wang (2011, 2013) study

the optimal investment, asset sales, corporate savings, and risk management policies for a

firm that faces external financing costs. It is remarkable that although these models are

substantially simpler and more stylized the general results on the importance of corporate

liquidity and risk management are broadly similar to those derived in our paper based on

more primitive assumptions. Conceptually, our paper shows that to determine the dynam-

ics of optimal corporate investment, a critical variable in addition to the marginal value

of capital (marginal q) is the firm’s marginal value of liquidity. Indeed, we establish that

optimal investment is determined by the ratio of marginal q and the marginal value of liq-

uidity, which reflects the tightness of external financing constraints.3 Our model thus shares

a similar focus on the marginal value of liquidity as Bolton, Chen, and Wang (2011, 2013)

and Wang, Wang, and Yang (2012).

Our paper also relates to the macroeconomics literature that studies the implications

of dynamic agency problems for firms’ investment and financing decisions. Green (1987),

Thomas and Worrall (1990), Marcet and Marimon (1992), Kehoe and Levine (1993) and

3Pinkowitz and Williamson (2004), Faulkender and Wang (2006), Pinkowitz, Stulz, andWilliamson (2006),
Dittmar and Mahrt-Smith (2007), and Bolton, Schaller, and Wang (2014) empirically measure the marginal
value of cash.
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Kocherlakota (1996) are important early contributions on optimal contracting under limited

commitment.4 Alvarez and Jermann (2000, 2001) study welfare and asset pricing implica-

tions of endogenously incomplete markets due to limited contract enforcement constraints.

Albuquerque and Hopenhayn (2004), Quadrini (2004) and Clementi and Hopenhayn (2006)

characterize firms’ financing and investment decisions under limited commitment and/or

asymmetric information. Lorenzoni and Walentin (2007) study q theory of investment under

limited commitment. Grochulski and Zhang (2011) consider a risk sharing problem un-

der limited commitment. Finally, Miao and Zhang (2013) develop a duality-based solution

method for limited commitment problems.

2 The Model

We consider an optimal long-term contracting problem with limited commitment to par-

ticipate between an infinitely-lived risk-neutral investor (the principal) and a financially

constrained, infinitely-lived, risk-averse entrepreneur (the agent). The investor provides the

entrepreneur, who has a proprietary business idea but no funds, with both the initial capital

stock K0 and on-going funding commitments to the venture. We begin by describing the

production technology and the entrepreneur’s preferences before formulating the dynamic

optimal contracting problem between the two agents.

2.1 Capital Accumulation and Production Technology

We adopt the stochastic capital accumulation specification used in Cox, Ingersoll, and Ross

(1985) and Jones and Manuelli (2005), among others. The firm’s capital stock K accumulates

as follows:

dKt = (It − δKt)dt+ σKKtdZt, (1)

where I is the firm’s rate of gross investment, δ ≥ 0 is the expected rate of depreciation, Z is

a standard Brownian motion, and σK is the volatility of the capital depreciation shock. The

firm’s capital stock can be interpreted as either tangible capital (property, plant and equip-

ment), firm-specific intangible capital (patents, know-how, brand value, and organizational

4See Ljunqvist and Sargent (2004) Part V for a textbook treatment on this class of macro models.
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capital), or any combination of these.

Production requires combining the entrepreneur’s inalienable human capital with the

firm’s capital stock. The investor’s outside option value at time 0 is denoted by F ∗0 ; this is

the value of the capital stock K0 in an alternative use. When the investor’s capital stock and

the entrepreneur’s human capital are united the firm’s revenues are given by AtKt, where

{Kt; t ≥ 0} is the firm’s stochastic capital stock process and {At; t ≥ 0} is a stochastic

productivity shock process. To keep the analysis simple, we model {At; t ≥ 0} as a two-

state Markov switching process. Specifically, At ∈
{
AL, AH

}
with 0 < AL < AH . Let λn be

the transition intensity out of state n = L or H to the other state.5 In other words, given

a current value of At = AL the firm’s productivity changes to AH with probability λLdt,

and if At = AH the firm’s productivity changes to AL with probability λHdt in the time

interval (t, t + dt). The productivity process {At; t ≥ 0} is observable to both the investor

and entrepreneur, and is also contractible. To reiterate, the entrepreneur’s human capital is

critical: Without the entrepreneur’s human capital, the capital stock K0 would not generate

any cash flows and the investors would only be able to collect the outside option value F ∗0 .

Investment involves both a direct purchase cost and an adjustment cost, so that the firm’s

cash flows (after capital expenditures) are given by:

Yt = AtKt − It −G(It, Kt), (2)

where the price of the investment good is normalized to unity and G(I,K) is the standard

adjustment cost function in the q-theory of investment. Importantly, Yt can be negative,

which means that the investor would be financing investment It and associated adjustment

costs G from other sources than just current realized revenue AtKt. We follow the q-theory

literature and assume that the firm’s adjustment cost G(I,K) is homogeneous of degree one

in I and K, so that G(I,K) takes the following homogeneous form:

G (I,K) = g(i)K, (3)

5Piskorski and Tchistyi (2010) consider a model of mortgage design in which they use a Markov-switching
process to describe interest rates. DeMarzo, Fishman, He, and Wang (2012) use a Markov-switching process
to model the persistent productivity shock.
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where i = I/K denotes the firm’s investment-capital ratio and g(i) is an increasing and

convex function. This homogeneity assumption (3) is made purely for tractability reasons.

As Hayashi (1982) has first shown, with this homogeneity property Tobin’s average and

marginal q are equal under perfect capital markets.6 However, as we will show, under limited

commitment to participate an endogenous wedge between Tobin’s average and marginal q

will emerge in our model.7

Hart and Moore (1994) is a special case of our model when we set: i) σK = 0 so that there

are no shocks to the capital stock; ii) δ = 0, so that the capital stock does not depreciate; iii)

It = 0, so that there is no endogenous capital accumulation; iv) At = A > 0, so that there

are no shocks to earnings; and v) t ∈ [0, T ], with T < ∞, so that the horizon is finite. In

other words, our framework adds to the basic Hart and Moore (1994) setup an endogenous

capital accumulation process and shocks to both productivity and capital.

2.2 Preferences

We also generalize the Hart and Moore (1994) setup by introducing risk aversion for the

entrepreneur. We assume that the infinitely-lived entrepreneur has a standard concave utility

function over positive consumption flows {Ct; t ≥ 0} given by:

Vt = Et
[∫ ∞

t

ζe−ζ(v−t)U(Cv)dv

]
, (4)

where ζ > 0 is the entrepreneur’s subjective discount rate, Et [ · ] is the time-t conditional

expectation, and U(C) takes the standard constant-relative-risk-averse (CRRA) utility form:

U(C) =
C1−γ

1− γ
, (5)

6Lucas and Prescott (1971) analyze dynamic investment decisions with convex adjustment costs, though
they do not explicitly link their results to marginal or average q. Abel and Eberly (1994) extend Hayashi
(1982) to a stochastic environment and a more general specification of adjustment costs.

7An endogenous wedge between Tobin’s average and marginal q also arises in cash-based optimal financing
and investment models such as Bolton, Chen, and Wang (2011) and optimal contracting models such as
DeMarzo, Fishman, He, and Wang (2012).
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where γ > 0 is the coefficient of relative risk aversion. We normalize the flow payoff with ζ

in (4), so that the utility flow is ζU(C), as is standard in dynamic contracting models.8

2.3 Entrepreneur’s Human Capital and Outside Option

The entrepreneur’s human capital is inalienable and she can at any time leave the firm.

When the entrepreneur exits she obtains an outside payoff of V̂n(Kt) (in utils) in state

n ∈ {L,H}. In other words, V̂n(Kt) is the entrepreneur’s endogenous outside option: it

depends on both accumulated capital Kt and the firm’s productivity An at the moment of

exit. The entrepreneur’s inalienability-of-human-capital constraint at each point in time t is

therefore given by:

Vt ≥ V̂n(Kt) , t ≥ 0. (6)

Effectively, the entrepreneur’s inalienability of human capital generates an outside option

value which is the endogenous lower bound on her continuation utility, V̂n(Kt), which in

turn constrains the set of feasible consumption and investment policies.

This inalienability-of-human-capital constraint can be interpreted in several ways.

1. A first interpretation is that when she quits the entrepreneur can find a new investor

to finance a new firm whose initial size is a fraction α ∈ (0, 1) of the on-going firm’s

current capital stock. We assume that the production function remains the same at

the new firm as in the existing firm. In this narrative, there is no misappropriation

involved and the entrepreneur’s outside option simply reflects the market value of her

accumulated human capital. The key insight here is that the entrepreneur’s outside

option offers her a larger fraction of a smaller firm upon exit, which the incumbent

financier has to take into account in the optimal contract.

2. A second interpretation is that the entrepreneur may abscond with a fraction α ∈ (0, 1)

of the firm’s capital stock and start a new firm.

8For example, see Sannikov (2008). We can generalize these preferences to allow for a coefficient of relative
risk aversion that is different from the inverse of the elasticity of intertemporal substitution, à la Epstein and
Zin (1989). Indeed, as Epstein-Zin preferences are homothetic, allowing for such preferences in our model
will not increase the dimensionality of the optimization problem.
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3. A third common interpretation is that the entrepreneur appropriates the capital stock

and continues operating in autarky. She then forgoes intertemporal consumption-

smoothing opportunities. She therefore trades off the benefit of appropriation with the

cost of losing consumption smoothing.9

In our analysis, we will adhere to the first interpretation. We discuss the last interpreta-

tion with the entrepreneur living in autarky as the outside option in Appendix D.

2.4 The Contracting Problem

We assume that the output process Yt is publicly observable and verifiable. In addition,

we assume that the entrepreneur cannot privately save, as is standard in the literature on

dynamic moral hazard (see Bolton and Dewatripont, 2005 chapter 10). The contracting game

begins at time 0 with the investor making a take-it-or-leave-it long-term contract offer to the

entrepreneur. The contract specifies an investment process {It; t ≥ 0} and a consumption

allocation process {Ct; t ≥ 0} to the entrepreneur, both of which depend on the entire history

of productivity shocks {At; t ≥ 0} and capital stock {Kt; t ≥ 0}.

At the moment of contracting at time 0 the entrepreneur also has a reservation utility

V ∗0 , so that the optimal contract must also satisfy the constraint:

V0 ≥ V ∗0 . (7)

Without loss of generality, we let V ∗0 ≥ V̂n(K0) for n ∈ {L,H}. The investor’s problem at

time 0 is thus to choose dynamic investment It and consumption Ct to maximize the time-0

discounted value of cash flows,

F0 = max
I, C

E0

[∫ ∞
0

e−rt(Yt − Ct)dt
]
, (8)

subject to the capital accumulation process (1), the production function (2), the entrepreneur’s

inalienability-of-human-capital constraint (6) at all t, and the entrepreneur’s time-0 partic-

ipation constraint (7). Additionally, we require that the investor’s value at time 0, F0, is

9This interpretation is commonly used in the international macro literature. See Bulow and Rogoff (1989).
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(weakly) greater than investors’ second-best option F ∗0 .

The participation constraint (7) is always binding under the optimal contract. Otherwise,

the investor can always increase his payoff by lowering the agent’s consumption and still

satisfy all other constraints. However, the entrepreneur’s inalienability-of-human-capital

constraints (6) will often not bind as the investor dynamically trades off the benefits of

providing the entrepreneur with risk-sharing/consumption smoothing and the benefits of

extracting higher contingent payments from the firm.

By varying the entrepreneur’s outside option V ∗0 , we can trace out the constrained Pareto

optimal frontier, which is the best attainable outcome given the inalienability-of-human-

capital constraint. We may interpret each point on the constrained Pareto optimal frontier

as an outcome of the bargaining game between the investor and the entrepreneur.

3 The Full-Commitment Benchmark

Before characterizing the optimal contract under inalienability of human capital, we deter-

mine the solution under full commitment by both investors and the entrepreneur. In that

case our contracting problem generates the first-best outcome. The risk-neutral investor

maximizes the present discounted value of the venture’s cash flows by asking the risk-averse

entrepreneur to choose the first-best investment rule while providing perfect risk-sharing to

the risk-averse entrepreneur, achieving the reservation utility V ∗0 .

Given the stationarity of the economic environment and the homogeneity of the produc-

tion technology with respect to K, there is an optimal productivity-dependent investment-

capital ratio in = I/K in state n ∈ {L,H} that maximizes the present value of the venture.

The following proposition summarizes the main results under full commitment.

Proposition 1 In each state n ∈ {L,H}, the firm’s value QFB
n (K) is proportional to K:

QFB
n (K) = qFBn K, where qFBn is Tobin’s q in state n. In state H, qH solves:

(r + δ) qFBH = max
i

(
AH − i− g(i)

)
+ λH

(
qFBL − qFBH

)
, (9)

and the maximand for (9), denoted by iFBH , is the first-best investment-capital ratio. The
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entrepreneur is perfectly insured with a deterministic consumption stream:

Ct = C0 e
−(ζ−r)t/γ , t ≥ 0 . (10)

Homogeneity implies that return and present value relations hold for both the whole firm

and for each unit of capital K. The first term on the right side of (9), AH − i− g(i), is the

firm’s unit cash flow, and the second term, λH
(
qFBL − qFBH

)
, is the expected unit capital gain

over the interval of time dt. At the optimum, the expected rate of return on capital is given

by the sum of the discount rate r and the expected deprecation rate of capital δ, explaining

the left side of (9). A similar (and symmetric) valuation equation holds in state L for qFBL .

Under MM and with homogeneity properties, Tobin’s average q in state n, qFBn , is also the

marginal value of capital, often referred to as marginal q. Adjustment costs create a wedge

between the value of installed capital and newly purchased capital, so that that qFBn 6= 1 in

general. We can express Tobin’s q via the first-order condition for investment:

qFBn = 1 + g′(iFBn ), n ∈ {L,H}, (11)

which states that marginal q is equal to the marginal cost of investing, 1 + g′(i), at the

optimum investment level iFBn . By jointly solving (9) and (11) and the similar two equations

for state L, we obtain the values for qFBn and iFBn , where n ∈ {L,H}.

Next we turn to the entrepreneur’s consumption. With full commitment, the risk-averse

entrepreneur is fully insured by the risk-neutral investors and therefore, the entrepreneur’s

consumption is given by (10), independent of the firm’s investment dynamics. To the extent

that the investor and entrepreneur have different discount rates, ζ 6= r, the optimal contract

will be structured so that the entrepreneur’s consumption changes exponentially at a rate

−(ζ−r)/γ per unit of time, where 1/γ should be interpreted as the elasticity of intertemporal

substitution. Thus, depending on the sign of (ζ−r) the entrepreneur’s consumption may grow

or decline deterministically over time. It is only when the investor and the entrepreneur are

equally impatient (ζ = r) that the entrepreneur’s consumption is constant over time under

the optimal full-commitment contract.

The only unknown that remains to be solved is the initial consumption C0. For a given
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level of the entrepreneur’s utility V , we can calculate the corresponding certainty equivalent

wealth by inverting the expression V (W ) = U(bW ) and obtain:

W = U−1(V )/b, (12)

where U−1( · ) is the inverse of the utility function (5) and b is a constant given by:10

b = ζ

[
1

γ
− r

ζ

(
1

γ
− 1

)] γ
γ−1

. (13)

Because the entrepreneur’s time-0 participation constraint (6) is binding the initial certainty

equivalent wealth W ∗
0 must satisfy: W ∗

0 = U−1(V ∗0 )/b, so that we obtain

C0 = χW ∗
0 =

(
ζ

b

) 1
γ

((1− γ)V ∗0 )
1

1−γ , (14)

where χ is the marginal propensity to consume (MPC) given by

χ = r + γ−1 (ζ − r) . (15)

The entrepreneur’s utility, denoted by V FB
t , is then given by:

V FB
t = U(bWt) = U(bCt/χ) ∼ V ∗0 e

−(ζ−r)(1−γ)t/γ , (16)

where U( · ) is given by (5). For the special case where ζ = r, the entrepreneur’s utility is

time-invariant, V FB
t = U(C0) = V0, as consumption is flat at all times.

In summary, with full commitment, the first-best investment-capital ratio iFB depends

on the current state n ∈ {L,H} but is independent of capital shocks. Moreover, the investor

perfectly insures the entrepreneur’s consumption. As we will show next, the entrepreneur’s

inability to fully commit to the venture significantly alters this solution.

10As a special case, when γ = 1, we have b = ζe
r−ζ
ζ .
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4 Optimal Dynamic Contracting

The first-best outcome is not achievable when the entrepreneur has inalienable human capi-

tal. The intuition is as follows. Under the first-best setting the firm’s capitalKt stochastically

grows over time. When it reaches the cut-off values K
H

t or K
L

t for which V̂n(Kt) > V FB
t ,

when respectively Kt > K
H

t in state H, and Kt > K
L

t in state L, and where V FB
t is given

by (16), the entrepreneur’s limited-commitment constraint will be violated and she will walk

away. To prevent such an outcome the investor writes a second-best contract where he com-

mits to a consumption flow {Ct : t ≥ 0} for the entrepreneur such that Vt ≥ V̂n(Kt) at

all times t in both states H and L. Since V̂n(Kt) is a stochastic process, this second-best

contract will inevitably expose the entrepreneur to consumption risk. Accordingly, the op-

timal dynamic contracting problem under limited commitment involves a specific form of

the classic agency tradeoff between insurance of the agent’s consumption risk and incentive

provision for the agent to stay with the firm.

An important difference from the standard dynamic moral hazard problem is that the

entrepreneur’s and investors’ dynamic limited-commitment constraints often will not bind.

The reason is that if the contract were to always hold the entrepreneur or the investors down

to respective limited-commitment constraints then the entrepreneur’s promised consumption

would be excessively volatile, reducing total ex-ante surplus.

4.1 Formulating the optimal recursive contracting problem

The second-best dynamic contracting problem includes: i) a contingent investment plan

{It; t ≥ 0}, and ii) consumption promises {Ct; t ≥ 0} to the entrepreneur that maximize the

present value of the firm for investors. As is well known (see e.g. DeMarzo and Sannikov,

2006), an important simplification of the contracting problem is to summarize the entire

history of the contract in the entrepreneur’s promised utility Vt conditional on the history

up to time t. Under the optimal contract the dynamics of the agent’s promised utility can

then be written in the recursive form below. The sum of the agent’s utility flow ζU(Ct−)dt

and change in promised utility dVt has the expected value ζVtdt, or:

Et− [ζU(Ct−)dt+ dVt] = ζVt−dt . (17)
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To see why (17) must hold, we first construct a stochastic process, {Ût, t ≥ 0}, from the

agent’s utility V and consumption C processes as follows:

Ût =

∫ t

0

e−ζvζU(Cv)dv + e−ζtVt = Et
[∫ ∞

0

ζe−ζvU(Cv)dv

]
. (18)

Second, we know that {Ût; t ≥ 0} is a martingale: Et[Ûs] = Ût for all s and t such that s > t.

Third, applying Ito’s formula to the process Û given in (18), and using the property that a

martingale’s drift is zero, we then obtain (17). In other words, delivering a marginal unit of

consumption to the entrepreneur lowers her promised utility V by reducing its drift ζVt− by

the amount ζU(Ct−), and hence we have the following equivalent representation of (17):

Et− [dVt] = ζ (Vt− − U(Ct−)) dt. (19)

Next, given that there are two shocks–the capital shock (via the Brownian motion Z)

and the productivity shock (via the two-state Markov chain)– we may write the stochastic

differential equation (SDE) for dV implied by (17) as the sum of: i) the expected change

(i.e., drift) term Et− [dVt]; ii) a martingale term driven by the Brownian motion Z; and iii)

a martingale term driven by the productivity shock. Accordingly, if we denote by Nt the

cumulative number of productivity changes up to time t, and adopt the convention that the

current productivity state at time t− is H, we may write the dynamics of the entrepreneur’s

promised utility process V as follows:

dVt = ζ(Vt− − U(Ct−))dt+ xt−Vt−dZt + ΓH(Vt−, A
H)(dNt − λHdt) , (20)

where {xt; t ≥ 0} controls the diffusion volatility of the entrepreneur’s promised utility V ,

and ΓH(Vt−, A
H) controls the endogenous adjustment of promised utility V conditional on

the change of productivity from AH to AL. That is:

1. the first term on the right side of (20) is the expected change of dVt as implied by (17),

2. the second term is the unexpected change due to capital shock Z, and

3. the last term captures the mean-zero unexpected component of dVt due to the change of
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productivity. Indeed, given that λH is the probability per unit of time of a productivity

switch from AH to AL, the expected value of (dNt − λHdt) is zero.

Finally, we can write investors’ objective as a value function F (K,V,An) with three state

variables: i) the entrepreneur’s promised utility V ; ii) the venture’s capital stock K; and,

iii) the state of productivity n ∈ {L,H}.

The optimal contract then specifies investment I, consumption C, risk exposure x, and

insurance adjustment of promised utility Γn, to solve the following optimization problem,

F (Kt, Vt, A
n) = max

C, I, x,Γn
Et
[∫ ∞

t

e−r(v−t)(Yv − Cv)dv
]
, (21)

subject to the entrepreneurs’ inalienability-of-human-capital constraints (6) for all time t,

and the entrepreneur’s initial participation constraint (7).

We next characterize the investor’s optimization problem in the interior region and then

describe the boundary conditions.

The interior region. For expositional simplicity, suppose that the current state is H.

Then, the following Hamilton-Jacobi-Bellman (HJB) equation holds:

rF (K,V,AH) = max
C, I, x,ΓH

{
Y − C + (I − δK)FK + σ2

KK
2FKK/2

+[ζ(V − U(C))− λHΓH ]FV +
(xV )2

2
FV V + σKxKV FV K

+λH [F (K,V + ΓH , A
L)− F (K,V,AH)]

}
. (22)

The right-hand side of (22) gives the expected change of the investor’s value function

F (K,V,AH). The first term is the venture’s flow profit (Y − C) for the investor, which

can be negative. In this case, the investor is financing operating losses; The second term

reflects the expected change of the investor’s value F (K,V,AH) resulting from the expected

(net) capital accumulation (I − δK); The third term represents the expected change in the

investor’s value resulting from the volatility of the capital shock; The fourth and fifth terms in

turn reflect the change in investor’s value from the drift and volatility of the entrepreneur’s

promised utility V ; The sixth term captures how the investor’s value is affected by the
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(perfect) correlation between K and V ;11 Finally, the last term captures the effect of the

persistent productivity shock on the value function. Importantly, in addition to the direct

effect on the investor’s value F , the productivity switch from AH to AL also has an indirect

effect on the investor’s value F due to the endogenous adjustment of the entrepreneur’s

promised utility from V to V + ΓH . As investors earn the rate of return r at all times, the

sum of all terms on the right side of (22) must equal rF (K,V,AH), which is given on the

left-hand side of (22).

Differentiating the right-hand side of (22) with respect to C, I, and x we then obtain the

following first-order conditions (FOCs):

ζU ′(C∗) = − 1

FV (K,V,AH)
, (23)

FK(K,V,AH) = 1 +GI(I
∗, K), and (24)

x∗ = − σKKFV K
V FV V (K,V,AH)

. (25)

FOC (23) characterizes the entrepreneur’s optimal consumption C∗, which must equalize

the entrepreneur’s marginal utility of consumption ζU ′(C∗) with −1/FV , which is positive

as FV < 0. Multiplying (23) through by −FV , we observe that at the optimum the agent’s

normalized marginal utility of consumption, −FV ζU ′(C), has to equal unity, the risk-neutral

investor’s marginal cost of providing a unit of consumption.

FOC (24) characterizes optimal investment, which is obtained when the marginal benefit

of investing, FK(K,V,An), is equal to the marginal cost of investing, 1 +GI(I,K).

FOC (25) characterizes the optimal exposure of the promised utility V to the shock Z.

As we show later, x is closely tied to the firm’s optimal risk management policy.

Finally, we turn to the optimal choice of ΓH , the discrete change in the entrepreneur’s

promised utility contingent on the change of productivity from H to L. Whenever feasible,

the optimal contract equates investors’ marginal cost of delivering compensation just before

and after the productivity change, so that:

FV (K,V + Γ∗H , A
L) = FV (K,V,AH) , (26)

11As there is only one exogenous diffusion shock in the model, V and K are locally perfectly correlated.
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which is the FOC with respect to ΓH implied by (22). Note that the second-order condition

(SOC) with respect to ΓH is given by FV V (K,V + Γ∗H , A
L) < 0 which implies that F is

concave in V at Γ∗H . The condition (26) only holds when neither the entrepreneur’s limited-

commitment constraint nor the investor’s limited-liability constraint bind. When either

constraint binds, we will have inequalities rather than equalities for the FOC with respect

to ΓH . We return to the corner-solution case later with a more detailed discussion.

Next we turn to the boundary conditions, where either the entrepreneur’s limited-commitment

constraint or the investors’ limited-liability constraint bind.

Boundary conditions. First we define the endogenous lower boundary Vn(Kt) where the

entrepreneur is indifferent between continuing within the contracting relationship with the

investor and walking away with the outside option. Given the entrepreneur’s outside option

value V̂n(Kt), we require:

Vn(Kt) = V̂n(Kt) . (27)

Second, we can also define an endogenous upper boundary condition for the promised

utility to the entrepreneur V n(K) at which the investor’s limited-liability condition binds

(in the two-sided limited-commitment problem):

F (K,V n(K), An) = 0 . (28)

Note that to fully solve our problem, we need to specify the entrepreneur’s outside option

value V̂n(Kt). However, without loss of generality, we will assume that

V̂n(Kt) = V n(αKt) , (29)

where V n( · ) is given by (28).

The economic logic behind (29) is that when the entrepreneur starts afresh at time τ with

a new venture whose initial capital stock will be of size αKτ provided by the new investor.

Equality (29) holds if she is able to raise on-going funding at competitive terms so that the

new investor earns zero profit.

The methodological reason for this assumption is that we can then solve for an endogenous
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outside option value so that the equilibrium value V and the outside option value V̂ are

consistent and simultaneously determined under the same economic environment.

4.2 The Entrepreneur’s Promised Certainty Equivalent Wealth W

How do we link the entrepreneur’s promised utility V , the key state variable characterizing

the optimal contract, to variables that are empirically measurable? As we will show, it is

possible to formulate the optimal contract as a problem of liquidity and risk management that

can be implemented via standard financial instruments. The corporate liquidity policy can

be implemented through a combination of retained earnings and a line of credit commitment

by investors. And the risk management policy can be implemented using a combination of

futures hedging positions and insurance claims held by investors.

A helpful simplification towards the contracting formulation in terms of corporate liquid-

ity and risk management is to express the entrepreneur’s promised utility in units of con-

sumption rather than utils. This involves mapping the promised utility V into the promised

(certainty-equivalent) wealth W , defined as the solution to the equation U(bW ) = V , where

b is the constant given by (13). Doing so transforms the investor’s value function F (K,V,An)

in terms of V into the value function P (K,W,An) in terms of W via the following identity:

P (K,W,An) ≡ F (K,U(bW ), An) = F (K,V,An) , n ∈ {L, H}. (30)

As is shown in the appendix, we can reformulate the HJB equation for F (K,V,An)

(with the corresponding FOCs for C, I, x, Γn, and boundary conditions) into an equivalent

HJB equation for P (K,W,An) with associated FOCs and boundary conditions by using the

identity in (30) and applying Ito’s formula to P (K,W,An).

5 Implementation: Liquidity and Risk Management

Having characterized the optimal contract in terms of the entrepreneur’s promised certainty-

equivalent wealth W , we show next how to implement the optimal contract via commonly

used financial instruments. Similarly to DeMarzo and Fishman (2007), DeMarzo and San-
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nikov (2006), and Biais, Mariotti, Plantin, and Rochet (2007), where the optimal finan-

cial contract can be implemented through a line of credit, in our setup the entrepreneur’s

inalienability-of-human-capital constraints naturally give rise to a dual optimization prob-

lem for the entrepreneur with endogenous liquidity constraints. More precisely, we show that

the optimal contracting solution can be implemented as a dynamic entrepreneurial finance

problem, where the entrepreneur owns the firm’s capital stock and chooses consumption and

corporate investment by optimally managing liquidity via short-term borrowing/savings on

a bank account and by optimally hedging the firm’s risk from operations subject to endoge-

nous liquidity constraints (implied by the contracting problem). Under this implementation

the investor holds a claim on the firm through the credit line granted to the firm.12

Liquidity management. Consider first the entrepreneur’s liquidity management problem.

We endow the entrepreneur with a bank account and let St denote the account’s time-t

balance. Naturally St < 0 corresponds to an overdraft or draw-down on a line of credit (LOC)

granted by the bank to the entrepreneur. In the implementation problem the entrepreneur

can borrow on this LOC at the risk-free rate r up to a maximal value of Sn(Kt), which we refer

to as the endogenously determined liquidity capacity of the firm in state n. This borrowing

limit ensures that the entrepreneur does not walk away from the firm in an attempt to evade

her debt obligations. Then, as long as the entrepreneur works at the firm, the firm’s credit

line is risk free and hence can be financed at the risk-free rate. The liquidity buffer St in the

risk-free savings/credit account becomes the state variable in the implementation problem,

but as the optimal contracting problem highlights, liquidity management alone will only

provide partial insurance to the entrepreneur. To replicate the optimal contracting outcome,

additional insurance instruments are needed to which we turn next.

Risk management against capital shocks. One instrument the entrepreneur can use to

hedge the capital risk Z is a standard futures contract.13 Since investors are risk neutral the

12It is well known that implementation is not unique. To simplify the exposition we focus on one intuitive
implementation and later discuss alternative ways of implementing the dynamic optimal contract.

13Bolton, Chen, and Wang (2011) analyze the optimal corporate risk management for a financially con-
strained firm. In that model, they also analyze the dynamic futures trading strategies but their model is not
a dynamic contracting framework.
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futures price involves no premium given that the futures contract payoffs have zero mean.14

Moreover, since profits/losses of the futures position are only subject to diffusion shocks

that are instantaneously credited/debited from the entrepreneur’s bank account, there is no

default risk. We normalize the payoff of a unit long position in the futures contract to be

σKdZt. Given any admissible futures position φtKt that the entrepreneur takes to hedge the

firm’s risk exposure to the capital risk Z, we obtain an instantaneous payoff φtKtσKdZt.

Insurance against productivity shocks. Finally, the entrepreneur can take out a con-

tingent claim to hedge the risk with respect to changes in the productivity state. Suppose

that the current productivity state is H. If the entrepreneur takes a unit long position in

the contingent claim she pays an insurance premium λH per unit of time and receives a

unit payment from the insurer when the state switches from H to L. Given that insurers

are risk neutral, the actuarially fair premium per unit of time for this insurance is then λH .

Let πH(S,AH)K denote the entrepreneur’s demand for this insurance contract in state H.

She then pays a total insurance premium πH(S,AH)KλH per unit of time and receives a

lump-sum payment πH(S,AH)K when the state switches from H to L (i.e. when dNt = 1).

Therefore, the total stochastic exposure of this contingent claim is πH(S,AH)Kt(dNt−λHdt)
where dNt ∈ {1, 0}. Again, here we assume investors are risk neutral and hence there is no

risk premium in the insurance contract.15

Liquidity dynamics. With these three financial instruments the entrepreneur’s savings

balance, denoted by St, evolves as follows in state n, where n ∈ {L,H}:

dSt = (rSt + Yt − Ct)dt+ φtKtσKdZt + πn(S,An)Kt(dNt − λndt), (31)

as long as the limit on the LOC granted by the bank is not violated:

St ≥ Sn(Kt). (32)

14In the standard asset pricing framework, futures have zero value and its payoff has zero mean under the
risk-neutral measure. We can generalize our analysis to the setting with risk premium via a standard change
of measure. Details are available upon request.

15We can extend the model to incorporate a stochastic discount factor (SDF) capturing a risk premium
for the stochastic change of the productivity shock.
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The first term in (31), rSt + Yt − Ct, is simply the sum of the firm’s interest income rSt

and net operating cash flows, Yt − Ct. In the absence of any risk management and hedging,

rSt + Yt − Ct is simply the rate at which the entrepreneur saves or draws on the LOC at

the risk-free rate r. The second term φtKtσKdZt in (31) is the exposure from hedging the

capital shock Z via the futures position φtKt. The third term, πn(S,An)Kt(dNt − λndt),

captures the effect of the insurance contract against productivity changes. Note that λn is

the insurance premium per unit for risk-neutral investors in state n and the unit insurance

payment is triggered if and only if dNt = 1.

Dynamic entrepreneurial finance. The implementation problem can now be formulated

asfollows: In each period the entrepreneur optimally chooses consumption Ct, investment

It, futures position φtKt and insurance demands, πHKt and πLKt, to maximize her util-

ity function given in (4)-(5), subject to the liquidity accumulation dynamics (31) and the

endogenous credit limits (32) implied by the inalienability-of-human-capital constraints.16

This dual optimization problem for the entrepreneur is equivalent to the primal problem

for the investor in (22) if and only if the borrowing limits, Sn(K), are such that:

Sn(K) = −P (K,Wn, A
n) , n ∈ {L,H}, (33)

where P (K,Wn, A
n) is the investors’ value when the entrepreneur’s inalienability-of-human-

capital constraint binds, that is, when W = Wn. Accordingly, we characterize the imple-

mentation solution for the dual problem by first solving the investors’ problem in (22), and

then imposing the constraint in (33).

Guided by the observation in the full-commitment case that the value function of the

entrepreneur inherits the CRRA form of the entrepreneur’s utility function, we conjecture

(and later verify) that the entrepreneur’s value function J(K,S,An) takes the form:

J(K,S,An) =
(bM(K,S,An))1−γ

1− γ
, n ∈ {L,H} , (34)

16The implementation of the contracting problem can be achieved in a decentralized market setting where
the bank, the futures counterparty, and the insurance seller need no coordination among themselves. All
three financiers will break even.
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where M(K,S,An) is the entrepreneur’s certainty equivalent wealth and the normalization

constant b is given by U(bM) = J . In the Appendix, we provide the HJB equation that

characterizes M(K,S,An) together with the corresponding boundary conditions.

To summarize, the primal optimal contracting problem gives rise to the investor’s value

function F (K,V,An), with the promised utility to the entrepreneur V as the key state vari-

able. By expressing the entrepreneur’s promised utility in units of consumption rather than

utils, the investor’s value function can be rewritten in terms of the entrepreneur’s promised

certainty-equivalent wealth W : P (K,W,An). The dual problem for the entrepreneur gives

rise to the entrepreneur’s value function J(K,S,An), with S = −P (K,W,An) as the key

state variable. Or, again expressing the entrepreneur’s value in units of consumption, the

entrepreneur’s value function is her certainty equivalent wealth M(K,S,An) and the relevant

state variable is her savings S = −P , as Table 1 in the introduction summarizes. Again,

the key attraction of the dual formulation is that it frames the optimal financial contracting

problem in terms of a more operational liquidity and risk management problem for the firm.

To simplify the exposition of the key economic mechanism in our model, we next analyze

the case with capital (diffusion) risk only, which is the special case with AL = AH = A.

6 No Productivity Shocks

In this section we consider the special case when the firm’s productivity is constant, AL =

AH = A, so that the only shock is the diffusion capital shock Z.

By using our model’s homogeneity property, we show that the investors’ value function

P (K,W ) and the entrepreneur’s certainty equivalent wealth M(K,S) can be written as:

P (K,W ) = p(w) ·K, (35)

where w = W/K is the entrepreneur’s certainty-equivalent wealth scaled by the firm’s capital

stock K, and p(w) is the scaled value function of investors, and

M(K,S) = m(s) ·K , (36)
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where s = S/K is the entrepreneur’s savings S scaled by the firm’s capital stock K, and

m(s) is the scaled promised (certainty equivalent) wealth.17 The other variables are also

scaled by K, so that c(s) is the consumption-capital ratio, i(s) the investment-capital ratio,

and φ(s) the hedge ratio. In the interior region we then have:

dst = µs(st)dt+ σs(st)dZt , (37)

where the drift and volatility processes µs( · ) and σs( · ) for s are given by

µs(s) = (A− i(s)− g(i(s))− c(s)) + (r + δ − i(s))s− σKσs(s), (38)

σs(s) = (φ(s)− s)σK . (39)

Note from (39) that the volatility of savings can be controlled by the futures position φ(s).

In particular, by setting φ(s) = s the entrepreneur can make sure that he faces no risk with

respect to the growth of savings µs(s). However, it is generally not optimal to do so.

The following proposition summarizes the solution.

Proposition 2 In the region where s > s, the entrepreneur’s scaled promised wealth m(s)

solves the equation:

0 = max
i(s)

m(s)

1− γ

[
γχ(m′(s))

γ−1
γ − ζ

]
− δm(s) + [(r + δ)s+ A]m′(s)

+i(s)(m(s)− (s+ 1)m′(s))− g(i(s))m′(s)− γσ2
K

2

m(s)2m′′(s)

m(s)m′′(s)− γm′(s)2
, (40)

subject to the following boundary conditions:

lim
s→∞

m(s) = qFB + s , (41)

m(s) = αm(0) , (42)

lim
s→s

σs(s) = 0 and lim
s→s

µs(s) ≥ 0 . (43)

17Wang, Wang, and Yang (2012) solve an entrepreneur’s optimal consumption-savings, business invest-
ment, and portfolio choice problem with endogenous entry and exit decisions. By exploiting homogeneity,
they derive the optimal investment policy in a q-theoretic context with incomplete markets. In our model,
we optimally implement the solution of the optimal contacting problem.
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The ODE given by (40) characterizes the entrepreneur’s scaled promised wealth m(s)

in the interior region s > s. As the entrepreneur’s savings become infinitely large the en-

trepreneur’s promised wealth must be equal to the first-best value of investment and savings.

At that point the entrepreneur’s inability to commit no longer affects firm value, as the en-

trepreneur’s self insurance is sufficient to achieve the first-best resource allocation outcome.

In this limit the marginal value of liquidity is simply unity as a financially unconstrained

entrepreneur does not pay a premium for liquid assets, and the entrepreneur values a unit

of capital K at its first-best maximal value qFB.

At the other endogenous boundary, s, where the entrepreneur runs out of liquidity, the

entrepreneur’s promised wealth m(s) equals αm(0), the entrepreneur’s certainty-equivalent

wealth per unit of capital under the outside option.

Finally, the third condition (43) ensures that the entrepreneur does not quit as s ap-

proaches s. This condition ensures that the volatility of s evaluated at s is zero and that

the drift µs(s) is weakly positive, so as to guarantee that the constraint s ≥ s is satisfied at

all times and that the entrepreneur will not run out of liquidity.

Remark: Note that for these scaled variables the primal and dual optimization problems are

linked as follows: s = −p(w). That is, the inalienability-of-human-capital constraint maps

to the endogenous liquidity constraint in the dual problem.

6.1 Parameter Choices and Calibration

Our model with no productivity shocks is parsimonious with only eight parameters. Three

parameters essential for the contracting tradeoff between risk sharing and limited commit-

ment are the entrepreneur’s coefficient of relative risk aversion γ, the volatility of the capital

shocks σK , and the parameter measuring the degree of human capital inalienability α. The

other five parameters (the risk-free rate r, the entrepreneur’s discount rate ζ, the depreci-

ation rate δ, the adjustment cost θ, and the productivity parameter A) are basic to any

dynamic model with investment. We choose plausible parameter values to highlight the

model’s mechanism and main insights.

Thus, we take the widely used value for the coefficient of relative risk aversion, γ = 2;

the annual risk-free interest rate r = 5%; and, the entrepreneur’s annual subjective discount
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rate set to equal to the risk-free rate, ζ = r = 5%. As for investment, we rely on the

parameter findings suggested by Eberly, Rebelo, and Vincent (2009): we set the annual

productivity A at 20% and the annual volatility of capital shocks at σK = 20%. While our

model is equally tractable for any homogeneous adjustment cost function g(i), we choose the

following widely-used quadratic adjustment cost function for illustrational simplicity,

g (i) =
θi2

2
, (44)

which gives explicit formulas for Tobin’s q and optimal i in the first-best MM benchmark:

qFB = 1 + θiFB, and iFB = r + δ −
√

(r + δ)2 − 2
A− (r + δ)

θ
. (45)

Fitting the first-best values of qFB and iFB to the sample averages, we set the adjustment

cost parameter at θ = 2 and the (expected) annual capital depreciation rate at δ = 12.5%.

These parameters imply qFB = 1.2 and an annual investment-capital ratio of iFB = 0.1.

Finally, we choose the fraction of capital stock that the entrepreneur may start out with

when she quits, α, to be 0.8, in line with some empirical estimates.18

The parameter values for our baseline case are summarized in Table 2. Note that all

parameter values are annualized when applicable.

6.2 Promised Wealth W and Liquidity S

The primal contracting and dual implementation problems are linked as follows:

s = −p(w) and w = m(s) , (46)

where p(w) is the scaled investors’ value in the contracting problem, and m(s) is the en-

trepreneur’s scaled certainty equivalent wealth as a function of s in the implementation

formulation. Thus, liquidity s for the entrepreneur is the payoff the investor is giving up

18See Li, Whited, and Wu (2014) for the empirical estimates of α. The averages are 1.2 for Tobin’s q and
0.1 for the investment-capital ratio, respectively, for the sample used by Eberly, Rebelo, and Vincent (2009).
The imputed value for the adjustment cost parameter θ is 2 broadly in the range of estimates used in the
literature. See Hall (2004), Riddick and Whited (2009), and Eberly, Rebelo, and Vincent (2009).
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Table 2: Summary of Parameters

This table summarizes the parameter values used for numerical illustration.

A. Baseline model with no productivity shocks

Parameters Symbol Value
Risk-free rate r 5%
The entrepreneur’s discount rate ζ 5%
The entrepreneur’s relative risk Aversion γ 2
Capital depreciation rate δ 12.5%
Volatility of capital depreciation shock σK 20%
Quadratic adjustment cost parameter θ 2
Firm’s productivity A 20%
Inalienability of human capital parameter α 80%

B. General model with productivity shocks

Parameters Symbol State H State L

Firm’s productivity An 20% 18%
State transition intensity λn 10% 0

through the promised wealth w to the entrepreneur. More formally, (46) implies that the

composition of −p and m, denoted by −p ◦m, yields the identity function: −p(m(s)) = s.

Scaled promised wealth w and scaled investors’ value p(w). Figure 1 plots the

investor’s scaled value p (w) and the sensitivity of the value to changes in promised wealth

p′ (w) = PW in Panels A and B respectively. In the first-best MM world, compensation to the

entrepreneur is simply a one-to-one transfer away from investors, as we see from the dotted

lines: p(w) = qFB − w = 1.2 − w and p′(w) = −1. With inalienability of human capital,

investors’ value p(w) is decreasing and concave in w. That is, as w increases the entrepreneur

is less constrained so that the marginal value p′(w) decreases. Additionally, p(w) approaches

qFB − w, and p′(w) → −1, as w → ∞. That is, the first-best payoff obtains when the

entrepreneur is unconstrained. However, the entrepreneur’s inability to fully commit not to

walk away ex post imposes a lower bound w on w. For our parameter values, w ≥ w = 0.944.

Note finally that despite being risk neutral, the investor effectively behaves in a risk-

averse manner due to the entrepreneur’s inalienability-of-human-capital constraints. This is

reflected in the concavity of the investors’ scaled value function p(w). This concavity property
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Figure 1: Investors’ scaled value p(w) and the marginal value of w, p′(w). For the
limited-commitment case, w ≥ w = 0.944, and p(w) is decreasing and concave in w. The
dotted line depicts the full-commitment MM results: p(w) = qFB − w and p′(w) = −1.

is an important difference of the limited commitment problem relative to the neoclassical

problem, where volatility has no effect on firm value.

Scaled liquidity s and the entrepreneur’s scaled certainty-equivalent wealth m(s).

Figure 2 plots the entrepreneur’s scaled savingsm(s) and the marginal value of liquiditym′(s)

in Panels A and B respectively. As one might expect m(s) is increasing and concave in s.

The higher the firm’s financial slack s the less the entrepreneur is likely to want to walk away

and hence the higher the value of m(s) in the long-term bilateral relationship. Moreover, as

s increases the entrepreneur is less constrained so that the marginal value of savings m′(s)

decreases (m′′(s) < 0). In the one-sided limited-commitment case the entrepreneur’s scaled

wealth m(s) approaches qFB + s and m′(s)→ 1 as s→∞.19 The entrepreneur’s LOC limit,

or in other words, her risk-free debt capacity s = −p(w) is given by −0.214.

We next discuss the optimal policy rules.

19See Wang, Wang, and Yang (2012) for similar conditions in a model with exogenously-specified
incomplete-markets model of entrepreneurship.
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Figure 2: The entrepreneur’s scaled certainty equivalent wealth m(s) and marginal
(certainty equivalent) value of liquidity, m′(s). For the limited-commitment case,
s ≥ s = −0.214, and m(s) is increasing and concave. The dotted line depicts the full-
commitment MM results: m(s) = qFB + s and the sensitivity m′(s) = 1.

6.3 Investment, Consumption, Liquidity and Risk Management

We first analyze the firm’s investment decisions, then the entrepreneur’s optimal consump-

tion, and finally corporate liquidity and risk management.

6.3.1 Investment, marginal q, and the marginal value of liquidity m′(s).

We can simplify the FOC for investment to:

1 + g′(i(s)) =
JK
JS

=
MK

MS

=
m(s)− sm′(s)

m′(s)
, (47)

where the first equality is the investment FOC, the second equality follows from the definition

of the value function in (34), and the last equality follows from the homogeneity property of

M(K,S) in K. Under perfect capital markets the entrepreneur’s certainty equivalent wealth

is given by M(K,S) = m(s) ·K = (qFB+s) ·K and the marginal value of liquidity is MS = 1

at all times. Hence in this case, the FOC (47) specializes to the classical Hayashi condition

for optimal investment, where the marginal cost of investing 1 + g′(i(s)) equals marginal q.

Under limited commitment, MS > 1 in general and the FOC (47) then states that the
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marginal cost of investing (on the left-hand side) equals the ratio between (a) marginal q,

measured by MK , and (b) the marginal value of liquidity measured by MS. Unlike in the

classical q theory of investment, here financing matters and MS measures the (endogenous)

marginal cost of financing generated by limited commitment constraints.

Figure 3 illustrates the effect of inalienability of human capital on marginal q and in-

vestment i(s). The dotted lines in Panels A and B of Figure 3 give the first-best qFB = 1.2

and iFB = 0.1, respectively. With limited commitment, i(s) is lower than the first-best

benchmark iFB = 0.1 for all s, and increases from −0.03 to iFB = 0.1 as s increases from

the left boundary s = −0.214 towards ∞. This is to be expected: increasing financial slack

mitigates the severity of under-investment for a financially constrained firm. Note however
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Figure 3: Marginal q, MK = m(s)−sm′(s), and the investment-capital ratio i(s). For
the limited-commitment case, the firm always under-invests and i(s) increases with s. The
dotted line depicts the full-commitment MM results where the marginal equals qFB = 1.2
and the first-best investment-capital ratio i(s) = iFB = 0.1.

that, surprisingly, marginal q (that is, MK) decreases with s from 1.22 to 1.18 in the credit

region s < 0. What is the intuition? When the firm is financing its investment via credit at

the margin (when S < 0), increasing K moves a negative-valued s closer to the origin thus

mitigating financial constraints, which is an additional benefit of accumulating capital.20

But why does a high marginal-q firm invest less in the credit region s < 0? And how do

we reconcile an increasing investment function i(s) with a decreasing marginal q function,

20Formally, this result follows from dMK/ds = −sm′′(s) < 0 when s < 0 and from the concavity of m(s).
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MK = m(s) − sm′(s) in the credit region s < 0? The reason is simply that in the credit

region (s < 0) a high marginal-q firm also faces a high financing cost. When s < 0 the

marginal q and the marginal financing cost m′(s) are perfectly correlated. And investment

is determined by the ratio between the marginal q and m′(s) as we have noted. At the left

boundary s = −0.214 marginal q is 1.22 and m′(s) is 1.30 both of which are high. Together

they imply that i(−0.214) = −0.03, which is low compared with the first-best iFB = 0.10.

More generally, we consider a measure of investment-cash sensitivity given by i′(s). Tak-

ing the derivative of investment-capital ratio i(s) in (47) with respect to s, we have

i′(s) = −1

θ

m(s)m′′(s)

m′ (s)2 > 0. (48)

As m(s) is concave in s regardless of whether s ≥ 0 or s < 0, i(s) is increasing in liquidity.21

6.3.2 Consumption
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Figure 4: Consumption-capital ratio c(s) and the MPC c′(s). For the limited-
commitment case, the entrepreneur always under-consumes compared with the full-
commitment case and c(s) increases with s. The dotted line depicts the full-commitment
consumption-smoothing results: c(s) = χ(s+ qFB) and the MPC c′(s) = χ = 5%.

21See Bolton, Chen, and Wang (2011) for related discussions on how cash and credit influence the behaviors
of investment, marginal q, and marginal value of liquidity.

33



The entrepreneur’s optimal consumption rule c(s) is given by:

c(s) = χm′(s)−1/γm(s) , (49)

where χ is given in (15). Figure 4 plots the optimal consumption-capital ratio c(s), and

the MPC c′(s) in Panels A and B respectively. The dotted lines in Panels A and B of

Figure 4 give the first-best c(s) = (s + qFB) and MPC c′(s) = 5%, respectively. The solid

blue plot gives the entrepreneur’s consumption, which is lower than the first-best benchmark.

Additionally, the higher the financial slack s the higher is c(s) as seen in the figure. Moreover,

we have m(s) → qFB + s and the marginal value of liquidity m′(s) → 1 as s → ∞, so that

c(s)→ χ
(
qFB + s

)
, the permanent-income consumption benchmark. Panel B shows that the

MPC c′(s) decreases significantly with s and approaches the permanent-income benchmark

χ = 5% as s → ∞. Thus, financially constrained entrepreneurs deep in debt (with s close

to s) have MPCs that are substantially higher than the permanent-income benchmark.

Next we turn to the firm’s optimal hedging policy.

6.3.3 Hedging via Futures

Before delving into the analysis, we first review the entrepreneur’s total wealth holdings in

our implementation, which consist of three parts: (1) a 100% equity stake in the underlying

business; (2) a mark-to-market futures position; and (3) a liquidity asset holding in the

amount of s (negative when the firm is borrowing.)

The entrepreneur’s optimal futures position φ(s) is given by

φ(s) =
sm′′(s)m(s) + γm′(s)(m(s)− sm′(s))

m(s)m′′(s)− γm′(s)2
. (50)

Figure 5 plots the futures position φ(s). First, under full commitment, the risk-averse

entrepreneur is fully insured against the idiosyncratic business risk by taking a perfectly

offsetting short futures position φ(s) = −qFB = −1.2. See the dotted line in Figure 5.

With limited commitment the entrepreneur cannot fully hedge her equity exposure. How

does φ(s) depend on s in this case? The solid line gives the futures position φ(s): As the firm

becomes less constrained (s increases) the entrepreneur increases the futures hedging position
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Figure 5: Futures hedging position φ(s). For the limited-commitment case, the en-
trepreneur partially hedges her firm’s equity exposure by shorting futures, φ(s) < 0. Note
that hedging and liquidity are complements in that |φ(s)| increases with s. The dotted line
depicts the entrepreneur’s full-commitment hedging results with φ(s) = −qFB = −1.2.

|φ(s)|. Thus, a less constrained firm has a larger hedging position (after controlling for firm

size), and in the limit as s→∞ the entrepreneur can fully diversity the idiosyncratic business

risk by taking a short futures position: φ(s) = −qFB = −1.2, attaining the full-commitment

perfect insurance benchmark. Note that here liquidity and hedging are complements.

6.4 Shorting Stocks: An Alternative Implementation

An alternative implementation could be through the holdings of a risky liquid asset that is

perfectly correlated with the shock Z. Let dRt denote the incremental return for this risky

asset. Given that investors are risk neutral we may write down dRt as follows,

dRt = rdt+ σKdZt . (51)

Without loss of generality, we choose the volatility of this new risky asset to be σK .

Let Ωt denote the entrepreneur’s holdings of this liquid risky asset, and her remaining

liquid wealth be St − Ωt, which is invested in a risk-free savings account earning r. Since

the entrepreneur can costlessly and continuously rebalance her portfolio, we may write the
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evolution of the entrepreneur’s total liquid wealth St as follows:

dSt = (r(St − Ωt) + Yt − Ct)dt+ Ωt(rdt+ σKdZt)

= (rSt + Yt − Ct)dt+ ΩtσKdZt . (52)

Comparing (52) with (31) it is straightforward to conclude that the entrepreneur’s posi-

tion ω(s) = Ω/K under this new implementation is the same as the futures position φ(s) in

the previous implementation, ω(s) = φ(s). Unlike in the futures implementation, however,

the entrepreneur collects the short-sale proceeds, −Ω, and invests the total liquidity assets

S − Ω in the savings account earning interest at the rate of r.
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Figure 6: Optimal hedge ω(s) and savings s−ω(s). For the limited-commitment case, the
entrepreneur partially hedges her firm’s equity exposure by shorting the perfectly correlated
stock, ω(s) < 0. Note that ω(s) equals the futures hedging position φ(s). The dotted line
depicts the entrepreneur’s full-commitment hedging results with ω(s) = −qFB = −1.2.

Figure 6 plots the hedging position via the risky liquid asset, ω(s) in Panel A and the

entrepreneur’s total risk-free asset holdings, s−ω(s), which earn the risk-free rate r in Panel

B. By construction, the risky asset position is the same as the futures hedging position

given that the risky asset and the futures contract have the same risk exposures σKdZ. As

for the futures position, the entrepreneur takes a short position in the risky asset whose

return is given by (51) in order to partially hedge the risk exposure to the underlying illiquid

business project. While savings under the futures hedging are simply given by s, the savings
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in this new implementation equal s − ω(s) 6= s, given that the short position ω(s) (per

unit of capital) generates sales proceeds in the amount of −ω(s) > 0. Panel B of Figure 6

illustrates that in both cases, the entrepreneur stochastically saves, s − ω(s) > 0. In sum,

this implementation reveals that borrowing can also take the somewhat unconventional form

in corporate finance of shorting a liquid risky asset.

7 Two-sided Limited Commitment

Under the one-sided commitment solution investors must be able to commit to incurring

losses. As Figure 1 illustrates p(w) takes negative values when w exceeds 1.18. To be able

to retain the entrepreneur, investors then promise such a high wealth w to the entrepreneur

that they end up committing to making losses in these states of the world. But, what if they

cannot commit to such loss-making wealth promises to the entrepreneur? What if investors

are protected by limited liability and cannot commit to a long-term contract that yields a

negative net present value at some point in the future? We explore this issue in this section

and derive the optimal contract when neither the entrepreneur nor investors are able to

fully commit. Specifically, we introduce the additional set of constraints for investors that

guarantee at any time t that investors receive a non-negative payoff value under the contract:

Ft ≡ Et
[∫ ∞

t

e−r(v−t)(Yv − Cv)dv
]
≥ 0 . (53)

As it turns out, solving the two-sided limited commitment problem does not involve

major additional complexities. The main change relative to the one-sided problem is that

the upper boundary is now s = 0. Indeed, any promise of strictly positive savings s > 0

is not credible as this involves a negative continuation payoff for investors. Accordingly, we

replace condition (41) with the following condition:

lim
s→0

σs(s) = 0 and lim
s→0

µs(s) ≤ 0 . (54)

As before, the volatility σs( · ) must be zero at s = 0 and the drift needs to be weakly negative

to pull s to the interior so as to ensure that s will not violate the constraint s ≤ 0.
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7.1 Investment and Risk Management
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Figure 7: Optimal investment-capital ratio i(s) and futures hedging φ(s). For the
two-sided limited-commitment case, over-investment (compared with the first-best level) is
optimal −0.2 < s ≤ 0 and hedging is non-monotonic in s.

Figure 7 reports the two-sided limited-commitment solution for investment and futures

hedging in Panels A and B, respectively. Comparing the two-sided and one-sided limited

commitment solutions for investment in Panel A, we observe that the limited-liability con-

straint for investors prevents the entrepreneur from owning positive liquid wealth, so that

there is only a credit region in the two-sided case: s ≤ 0. This is necessary for the investors

to have positively-valued stake in the firm. Remarkably, in this case the firm may either

under-invest or over-invest compared with the first-best benchmark. The firm under-invests

when s < −0.2 but over-invests when −0.2 < s ≤ 0. Whether the firm under-invests or

over-invests depends on the net effects of the entrepreneur’s limited-commitment and the in-

vestors’ limited-liability constraints. For sufficiently low values of s (when the entrepreneur is

deep in debt) the entrepreneur’s constraint matters more and hence the firm under-invests.

For values of s sufficiently close to zero, the investors’ limited-liability constraint has a

stronger influence on investment as the investors’ value is close to zero. To ensure that s

will drift back into the credit region the entrepreneur needs to “save” in the form of the

illiquid productive asset (by increasing K) by borrowing more. By over-investing, the firm

optimally chooses to keep s between s and 0. In summary, given that the entrepreneur
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cares about the total compensation W = w ·K and given that investors are constrained by

their ability to promise the entrepreneur w beyond an upper bound, investors reward the

entrepreneur along the extensive margin, firm size K, which induces over-investment but

allows the entrepreneur to build more human capital.

Panel B of Figure 7 plots the futures hedging position φ(s). It illustrates that φ(s) is non-

monotonic in s for the two-sided case: Although the entrepreneur can afford to build larger

hedging positions when s is larger, investors find these large hedging positions incompatible

with their limited-liability constraints. To prevent investors from reneging on their promises

volatility must be turned off at s = 0, which is achieved by setting φ(s) = s at s = 0, as

implied by the volatility boundary condition (39) for σ(s). This nonlinear hedging result

illustrates the complexity of firms’ liquidity and risk management policies and point to the

subtle interaction between a firm’s risk management and its financial slack.

7.2 Generalizing Investors’ Outside Option (Hart and Moore, 1994)

The limited-lability constraints given in (53) implicitly assume that when investors pull the

plug on the firm the unit liquidation value of capital ` is equal to zero. How is the two-

sided limited-commitment solution affected when the liquidation value of capital ` is strictly

positive, as in Hart and Moore (1994)? We explore this question in this subsection. We only

need to modify the investors’ limited-liability constraints (53) as follows:

Ft ≥ `Kt , (55)

where ` > 0 and Ft is investors’ value at time t. With these new limited-commitment

constraints for investors, the boundary condition (42) must then be replaced with the new

boundary condition m(s) = αm(−`). Figure 8 plots the entrepreneur’s scaled value m(s)

and optimal investment i(s) for three different values of `: 0, 0.2, and 0.4.

While a higher liquidation value might at first appear to facilitate contracting it has the

opposite effect in the two-sided limited-commitment problem. The reason is that investors,

going forward, have a higher temptation to pull the plug when the liquidation value of capital

is higher. Panel A shows that m(s) decreases with `. Additionally, the domain [s,−`] shifts
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Figure 8: The effect of investors’ outside option value, `. Panels A and B plot the
entrepreneur’s scaled certainty equivalent wealth m(s) and the investment-capital ratio i(s),
respectively. The dotted, solid and dashed lines correspond to the three different levels of
liquidation: ` = 0, ` = 0.2, and ` = 0.4.

to the left as ` increases. For ` = 0.2 and ` = 0.4, we have −0.410 ≤ s ≤ −0.2, and

−0.571 ≤ s ≤ −0.4, respectively. Panel B demonstrates another important insight from this

comparative statics: A higher capital liquidation value ` reduces over-investment. Given

that the contracting surplus is lower for a higher value of `, investors are less keen to retain

the entrepreneur by letting her build her human capital through overinvestment. All in all,

these two predictions of our model go against the received wisdom from the static models

on financial constraints based on the limited pledgeability of cash flows (see Tirole, 2006).

8 Persistent Productivity Shocks: Insurance

In this section we consider the general case where the firm may be subject to persistent

observable productivity shocks. Due to their persistence, it is natural to assume that these

productivity shocks are observable and can be contracted on.22 A key new contractual di-

mension emerges in this more general setting: the optimality of contingent capital financial

22See DeMarzo, Fishman, He, and Wang (2012) for a model of optimal investment in a q-theoretic context
with persistent shocks and agency frictions along the line of DeMarzo and Fishman (2007) and DeMarzo
and Sannikov (2006).
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contracts. We derive below the optimal one-sided limited-commitment contract under per-

sistent productivity shocks and the consequences for investment, consumption, liquidity and

risk management. As we will show, persistent productivity shocks will naturally give rise

to a demand for insurance against the persistent productivity shock, a form of contingent

capital financing arrangement. Equivalently, we show that default on a debt claim when

productivity decreases from a high level H to a lower level L can be an optimal outcome.

We spell out the solution of the optimal contracting problem in the Appendix and illustrate

an intuitive financial implementation with commonly used securities below.

8.1 Implementation: Liquidity and Risk management

Again appealing to the homogeneity property of our model, we write the entrepreneur’s

certainty equivalent wealth function in state n ∈ {L,H}, M(K,S,An), as follows:

M(K,S,An) = mn(s) ·K . (56)

Given the consumption-capital ratio cn(s), the investment-capital ratio in(s), the hedge

ratio φn(s), and the endogenous contingent transfer of liquidity πn(s) when productivity

switches out of state n, we can write the dynamic evolution of liquidity s as follows:

dst = µsn(st)dt+ σsn(st)dZt + πn(s)dNt , (57)

where the drift and volatility processes µsn( · ) and σsn( · ) for s are given by:

µsn(s) = (An − πn(s)λn − in(s)− g(in(s))− cn(s)) + (r + δ − in(s))s− σKσsn(s), (58)

σsn(s) = (φn(s)− s)σK . (59)

The one-sided limited-commitment case. The following proposition summarizes the

solution for the case where only the entrepreneur cannot commit her human capital.
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Proposition 3 In the region s > sH , the scaled value mH(s) satisfies the following ODE:

0 = max
iH , πH

mH(s)

1− γ

[
γχm′H(s)

γ−1
γ − ζ

]
− δmH(s) +

[
(r + δ)s+ AH − λHπH

]
m′H(s)

+iH(mH(s)− (s+ 1)m′H(s))− g(iH)m′H(s)− γσ2
K

2

mH(s)2m′′H(s)

mH(s)m′′H(s)− γm′H(s)2

+
λHmH(s)

1− γ

((
mL(s+ πH)

mH(s)

)1−γ

− 1

)
, (60)

subject to the following boundary conditions:

lim
s→∞

mH(s) = qFBH + s , (61)

mH(sH) = αmH(0) , (62)

lim
s→sH

σsH(s) = 0 and lim
s→sH

µsH(s) ≥ 0 . (63)

An analogous ODE equation for mL(s) and set of boundary conditions must also hold in

state L. We thus jointly solve mH(s) and mL(s) given their state dependence.

The two-sided limited-commitment case. Again, we simply modify the upper bound-

ary condition in Proposition 3. The upper boundary is now given by s = 0 rather than the

natural limiting boundary s→∞ in the one-sided case. We thus replace condition (61) with

the following conditions at the new upper boundary s = 0:

lim
s→0

σsH(s) = 0 and lim
s→0

µsH(s) ≤ 0 . (64)

8.2 Insurance: Hedging against productivity shocks

For illustration, we consider the simplest setting where the productivity jump from H to L

is permanent and irreversible, so that λL = 0. We set λH = 0.1 and choose the productivity

levels to be AL = 0.18 and AH = 0.2. All the other parameter values remain unchangedl.

Figure 9 plots the entrepreneur’s insurance demand πH(s) in state H against the produc-

tivity change from state H to L. As we see for all levels of s, the entrepreneur pays a positive

but time-varying insurance premium λHπH(s) per unit of time in state H to investors in or-
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Figure 9: Insurance demand (against the productivity change from H to L) πH(s).
Parameter values: AL = 0.18, AH = 0.2, λL = 0, and λH = 0.1.

der to receive a lump-sum insurance payment in the amount of πH > 0 from investors at the

moment when the productivity state switches from H to L. By doing so, the entrepreneur

equates the marginal utility before and after the productivity changes whenever feasible. In-

terestingly, the insurance demand πH(s) is non-monotonic in s as it first increases and then

decreases with s. The intuition is as follows. For a severely constrained entrepreneur whose

s is close to the left boundary s, the entrepreneur has limited funds to purchase insurance.

Therefore, insurance πH(s) increases as s moves towards the origin turning less negative.

As s approaches the origin sufficiently closely, the entrepreneur’s demand for insurance

πH(s) decreases for the following reasons. First, the entrepreneurial firm has more liquidity

to self-insure and hence demand for additional liquidity decreases. Second, the entrepreneur’s

decreasing marginal utility also suggests that the entrepreneur’s demand for insurance de-

creases with liquidity, ceteris paribus. Finally, the investors’ limited-liability constraint re-

quires that πH(s) ≤ −s, which, in turn, truncates the insurance demand. For these reasons,

the insurance demand πH(s) is non-monotonic in liquidity s as shown in Figure 9.
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9 Simulation

To deepen understanding of the dynamics of consumption and investment, and value of capi-

tal under the optimal contract it is helpful to focus on simulated sample paths of productivity

and capital shocks. Figures 10 display the simulation results. In order to value capital stock,

we first define the total value of capital and Tobin’s average q.

Total value of capital and Tobin’s average q. As capital generates payoffs for both

investors and the entrepreneur, we calculate the total value of capital via Pn (K,W ) + W .

Alternatively, we may calculate the total value of capital, the firm’s enterprise value, in

our implementation problem as Mn (K,S) − S, the difference between the entrepreneur’s

certainty equivalent wealth Mn (K,S) and corporate savings S.

Tobin’s q, defined as the ratio between value of capital and capital stock, is given by

qn =
Pn (K,W ) +W

K
= pn (w) + w, (65)

=
Mn (K,S)− S

K
= mn (s)− s, n ∈ {L,H} . (66)

The second line follows from sn = −pn(w) and wn = mn(s). Note that the two definitions of

average q (contracting-based and implementation-based) give the same value of capital and

average q. For the first-best benchmark, we uncover the definition of q as in Hayashi (1982).

Panel A plots simulated sample paths for shocks A and Z. As the right vertical axis

exhibits, the productivity shock At drops from AH = 0.2 to AL = 0.18 in year t = 9.

The left vertical axis in Panel A plots the realized capital shock Z. All other panels are

derived from this simulation of Z and A shocks. Panel B reports the sample path for

consumption Ct for the one-sided and two-sided limited-commitment in addition to the

full-commitment case. As expected, under full commitment by both parties, consumption

C shall be constant at all times to achieve perfect risk sharing. For the one-sided case,

consumption C is non-decreasing, remains flat for a period of time, and adjusts upward only

when the inalienability-of-human-capital constraint binds. For the two-sided case, we see

that consumption can either increase or decrease depending on whose limited-commitment

constraints are more costly in a forward-looking sense.
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Figure 10: Simulated sample paths, policy functions, and valuation of capital for
both the one-sided and two-sided cases.
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Panel C plots the investment-capital ratio i. Particularly striking is the extent of over-

investment in the two-sided case. Note also that in the one-sided case the firm eventually

builds sufficient slack that it most reaches the first-best investment level iFB = 1.5% under

state L by year 17. Intuitively, in the one-sided case, the entrepreneur eventually owns more

than the whole firm driving the investors into the region with negative present value.

As one expects, Tobin’s q in the one-sided case is somewhat lower than under the first-

best as underinvestment distorts value of capital. Note also Tobin’s q is substantially lower

for the two-sided case than for the one-sided case as investment is much more inefficient

(featuring both over- and under-investment in the former case), as shown in Panel D.

Panel E plots the dynamics of the capital stock K in the three cases. Note, in particular,

that capital K turns out to be higher in the two-sided case due to the over-investment

incentives built into the contract. Finally, Panel F reveals that the firm’s capitalization

qn · K for the two-sided case may be either higher or lower than for the full-commitment

case. However, capital K is always higher under full commitment than under the one-

sided commitment. Judging whether corporate investment is efficient or not based on total

valuation of capital can be misleading.

10 Deterministic Case à la Hart and Moore

The Hart and Moore (1994) model can be viewed as a special case of our model with σK = 0

and AL = AH = A. When scaled consumption ct and scaled investment it are set, the

entrepreneur’s (scaled) liquidity s then grows deterministically as follows:

µs(st) ≡
dst
dt

= (r + δ − it)st + A− it − g(it)− ct . (67)

Let µsFB(st) denote the first-best drift µs(st) such that it = iFB given in (45) and ct = cFB =

χ(st + qFB). It is straightforward to show that we then have:

µsFB(st) =
(
δ − iFB − γ−1(ζ − r)

)
mFB(st) . (68)
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As the entrepreneur’s first-best scaled wealth is nonnegative, (mFB(st) = (st + qFB) > 0) it

immediately follows that the drift µsFB(st) ≥ 0 if and only if the following condition holds:

Condition A: iFB ≤ δ +
r − ζ
γ

, (69)

where iFB is given by (45).

There are then two mutually exclusive cases depending on the sign of µsFB(st) and equiv-

alently whether Condition A is satisfied or not. In both cases the entrepreneur’s scaled

certainty equivalent wealth m(s) satisfies the following ODE in the interior region:

0 =
m(s)

1− γ

[
γχ(m′(s))

γ−1
γ − ζ

]
− δm(s) + [(r + δ)s+ A]m′(s) (70)

+i(s)(m(s)− (s+ 1)m′(s))− g(i(s))m′(s) .

The differences in the two cases are only reflected in the boundary conditions. In the case

where Condition A holds we then obtain the following solution.

Proposition 4 When Condition A given in (69) is satisfied we have µsFB(st) ≥ 0 and:

1. in the one-sided case the entrepreneur chooses the first-best investment and consump-

tion policies despite being financially constrained and her wealth is m(s) = s+ qFB;

2. in the two-sided case, investors’ limited-liability constraint implies

µs(0) = 0 . (71)

Figure 11 plots the marginal value of financial slack m′(s) and investment-capital ratio

i(s) under Condition A. If the first-best allocation is feasible under the optimal contract at all

times then it must then be the optimal solution. Hence, the question: under what conditions

is the first-best allocation feasible? It is in the one-sided case but only when Condition A

given in (69) is satisfied. If µsFB(st) > 0 then st increases with time t under the first-best

investment and consumption policies. Therefore, the entrepreneur’s limited-commitment

constraint never binds, so that the first-best outcome is achieved.
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Figure 11: The marginal value of liquidity m′(s) and investment-capital ratio i(s):
The deterministic case with σK = 0 and where Condition A is satisfied. Solutions
for the one-sided case coincide with those for the first-best case in the region s ≥ s =
−qFB = −1.2. For the two-sided case, the firm over-invests in the entire admissible region
s = −0.244 ≤ s ≤ 0 compared to the first-best benchmark.

Figure 11 shows that solutions for the one-sided case coincide achieve the first-best level.23

However, the one-sided limited commitment truncates the support of s by requiring s ≥ s

where s = −qFB = −1.2. Otherwise, the entrepreneur’s net worth (qFB + s)K is negative.

In the two-sided case the optimal contract requires that st ≤ 0 in order to satisfy that

investors’ limited liability. How to make the drift of s, µs( · ), negative? The entrepreneur

does this by increasing investment and consumption, as liquidity now has a negative effect on

m(s). Over-supply of corporate liquidity causes the entrepreneur to over-consume and over-

invest, which we see from Panel B. Finally, the marginal value of liquidity m′(s) decreases

with and the degree of over-investment increases as s approaches towards zero.

We next consider the other case when Condition A given in (69) is violated.

Proposition 5 When Condition A given in (69) is violated, we have µsFB(st) < 0 and

23Technically, the solution for our deterministic case is an initial value problem rather than a boundary
value problem. We solve the problem starting from s = 0 for the two-sided case. We have two unknowns m(0)
and m′(0) which can be solved from two equations, the ODE (70) and µs(0) = A− i(0)− g(i(0))− c(0) = 0.
Note that i(s) and c(s) are also functions of m(s) and m′(s). Once we have the value of m(0) and m′(0), we
can then use the ODE (70) to solve m(s) for the entire range of s as an initial value problem.
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1. in the one-sided case, the following conditions hold at the lower boundary s:

m(s) = αm(0) , (72)

µs(s) = 0 . (73)

2. in the two-sided case, conditions (72) and (73) hold also but only in the range s ≤ s ≤ 0.
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Figure 12: The marginal value of liquidity m′(s) and investment-capital ratio i(s):
The deterministic case with σK = 0 and where Condition A is violated. Produc-
tivity A = 0.205 implies iFB = 0.15 and qFB = 1.3 for the first-best case. For the one-sided
case, the firm optimally under-invests approaching the first-best level, i(s) = iFB, as s→∞.
For the two-sided case, the solution is the same as the one for the one-sided case but the
support of s is truncated at the origin, i.e., −0.250 = s ≤ s ≤ 0.

Figure 12 plots the marginal value of liquidity m′(s) and investment-capital ratio i(s)

when Condition A is violated. For this case productivity A = 0.205 which is higher than

A = 0.2 for Figure 11. The corresponding first-best investment-capital ratio iFB increases

from 0.1 to 0.15, and hence Condition A is violated (µsFB(st) < 0). Therefore, targeting the

first-best investment and consumption allocation drains valuable liquidity s. Accordingly,

both consumption and investment are below the first-best benchmark. The drift µs(s) only

approaches zero as the firm reaches the endogenous left limit s where µs(s) = 0. In fact, s

is an absorbing boundary and the firm will permanently stay at s upon reaching that point.
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Moreover, the lower is s the more valuable is liquidity, as reflected in the higher marginal

value of liquidity m′(s), and the lower is investment (see Panels A and B).

In the two-sided case, perhaps surprisingly, the solution is identical to that for the one-

sided case. The intuition is as follows. In the parameter region where that Condition A

is violated, the drift for the one-sided case is already weakly negative for all values of s.

Therefore, investors’ limited-liability constraints never bind and thus have no additional

effect on the optimal contract other than constraint the support of s to the left of the origin.

0 5 10 15 20 25 30

−0.2

−0.1

0

t

A. Dynamic of liquidity: s

 

 

A=0.2

A=0.205

0 5 10 15 20 25 30

0.1

0.12

0.14

B. Dynamic of investment: i(s)

t

FB, A=0.205
↑

FB, A=0.2
↓

Figure 13: Deterministic dynamics of liquidity s and investment i: The two-sided
limited-commitment cases. When A = 0.2, Condition A is satisfied. The firm increases
its investment is, accumulates slack and pays down its credit borrowing over time until the
investors’ limited-liability constraint binds in year 16, reaching the steady state with st = 0
and it = 0.12 for t ≥ 16. With A = 0.205, Condition A is violated. The firm decreases its
investment is and increases its use of credit line over time until the entrepreneur’s limited-
commitment constraint binds in year 9.8 with st = −0.250 and it = 0.126 for t ≥ 9.8.

Dynamic implications. Next we describe the deterministic dynamics of our model. Fig-

ure 13 plots the dynamics of liquidity st and investment it with s0 = −0.2 for the two-sided

case. When A = 0.20, Condition A (69) is satisfied. The firm always over-invests and it
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increases from i0 = 0.107 to i16 = 0.12, then stays flat at that level for all t ≥ 16. De-

spite over-investment, the firm’s scaled liquidity st increases from s0 = −0.2 to s16 = 0 and

thereafter stays permanently at the origin.

When A = 0.205, Condition A given is violated. The firm always under-invests and

it decreases from i0 = 0.134 to i9.8 = 0.126, then stays flat at that level for all t ≥ 9.8.

Investment is financed by the firm depleting its liquidity over time from s0 = −0.2 to

s9.8 = −0.250, at which point it stays flat permanently at s = −0.250. In sum, the firm’s

investment decisions are always distorted over time and reach the most distorted levels as

the limited-commitment constraints permanently bind in the long run.

While our deterministic model shares key features with Hart and Moore (1994), it dif-

fers from the Hart and Moore setup in several significant ways. First, unlike in Hart and

Moore (1994) the firm’s debt capacity constraint only occasionally binds in our formulation.

Second, our model generates a unique repayment path for investors and an evolution equa-

tion for liquidity s, while Hart and Moore have a continuum of repayment paths. These

differences are due to the facts that: i) the entrepreneur is risk averse and therefore values

consumption smoothing, and ii) the firm faces convex capital adjustment costs and therefore

values investment smoothing. Third, our deterministic model allows for dynamic capital

accumulation while Hart and Moore (1994) only have a one-shot investment decision at time

0. Fourth, Hart and Moore (1994) only generates the under-investment result and does not

deliver over-investment results.

11 Conclusion

Our generalization of Hart and Moore (1994) to introduce risky human capital, risk aversion,

and ongoing consumption reveals the optimality of corporate liquidity and risk management

for financially constrained firms. Most of the existing corporate security design literature

has confined itself to showing that debt financing and credit line commitments are optimal

financial contracts. By adding risky human capital and risk aversion for the entrepreneur,

two natural assumptions, we show that corporate liquidity and hedging policies are also an

integral part of an optimal financial contract. When productivity shocks are persistent, we

find that insurance contracts and/or equilibrium default by the entrepreneur on her debt
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obligations is part of an optimal contract. We have thus shown that the inalienability-

of-human-capital constraint naturally gives rise to a role for corporate liquidity and risk

management, dimensions that are typically absent from existing macroeconomic theories of

investment under financial constraints following Kiyotaki and Moore (1997).

Although our framework is quite rich, we have imposed a number of strong assumptions,

which are worth relaxing in future work. For example, one interesting direction is to allow

for equilibrium separation between the entrepreneur and the investors. This could arise,

when after an adverse productivity shock the entrepreneur no longer offers the best use of

the capital stock. Investors may then want to redeploy their capital to other more efficient

uses. By allowing for equilibrium separation our model could be applied to study questions

such as the expected and optimal life-span of entrepreneurial firms, the optimal turnover of

managers, or the optimal investment in firm-specific or general human capital.
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Appendices

A The Full-Commitment Benchmark

Under full commitment, consumption and investment decisions can be separated. First, investors

optimally choose investment I to maximize the firm’s value defined by

Q(At,Kt) = max
I

Et
[∫ ∞

t
e−r(v−t)Yvdv

]
. (A.1)

Let Qn denote the firm’s value function in state n. Using dynamic programming, we have

rQH(K) = max
I

AHK − I −G(I,K) + (I − δK)Q′H +
σ2
KK

2

2
Q′′H + λH (QL −QH) . (A.2)

The FOC with respect to investment I gives 1 +GI(I,K) = Q′H . Using the homogeneity property,

we conjecture that the value function QFBH (K) is given by

QFBH (K) = qFBH ·K . (A.3)

By substituting (A.3) into (A.2) and (??), we obtain (9) and (11).

Now we turn to the consumption rule. First, the entrepreneur’s value function V (W ) solves:

ζV (W ) = max
C

ζU(C) + (rW − C)V ′(W ) . (A.4)

where rW − C is the rate of savings. The FOC with respect to consumption C is given by

V ′(W ) = ζU ′(C) . (A.5)

The entrepreneur’s value function V (W ) takes the following standard homothetic form:

V (W ) =
(bW )1−γ

1− γ
= U(bW ) , (A.6)

where b is a constant to be determined. By substituting (A.6) and (A.5) into (A.4), we obtain a

linear consumption rule, C = χW , where χ is the MPC out of wealth and given by (15) and the
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constant b is given by (13). Therefore, wealth accumulation follows

dWt = (rWt − χWt)dt = −(ζ − r)
γ

dt , (A.7)

which implies the following exponential processes for wealth and consumption:

Wt = W0e
−(ζ−r)t/γ and Ct = χWt = χW0e

−(ζ−r)t/γ = C0e
−(ζ−r)t/γ .

By using (A.6), we obtain (14) and (15).

B Contracting and Implementation

The key step in the reduction of the original contracting problem to a one-dimensional problem is to

recognize that the investors’ value is homogeneous of degree one in K and W , so that P (K,W,An) =

pn(w)K, where w = W/K. This allows us to focus on the investors’ scaled value pn(w).

B.1 Dynamics of the entrepreneur’s scaled promised wealth w

Using Ito’s lemma, we have the following dynamics for W :

dWt =
∂W

∂V
dVt +

1

2

∂2W

∂V 2
< dVt, dVt > , (B.1)

=
dVt
VW
− VWW

2V 3
W

< dVt, dVt > , (B.2)

where < dVt, dVt > denotes the quadratic variation of V , (B.2) uses ∂W/∂V = 1/VW , and

∂2W

∂V 2
=
∂V −1

W

∂V
=
∂V −1

W

∂W

∂W

∂V
= −VWW

V 2
W

1

VW
= −VWW

V 3
W

. (B.3)

Substituting the dynamics of V given by (20) into (B.2) yields

dWt =
1

VW
[ζ(Vt− − U(Ct−))dt+ xt−Vt−dZt + Γn(Vt−, A

n)(dNt − λndt)]−
VWW (xt−Vt−)2

2V 3
W

dt .

(B.4)
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Using the dynamics for W and K, we obtain:

dwt = d

(
Wt

Kt

)
= µwn (w)dt+ σwn (w)dZt + ψndNt , (B.5)

where the drift and volatility processes µw( · ) and σw( · ) for w are given by

µwn (w) =
ζ

1− γ

(
w + cn(w)

(
cn(w)

ζp′n(w)

)−γ
bγ−1

)
− w(in(w)− δ) +

γw

2

(
x

1− γ

)2

+ σKσ
w
n (w)

− λnw

1− γ

[(
1 +

ψn
w

)1−γ
− 1

]
, (B.6)

and

σwn (w) = w

(
σK −

x

1− γ

)
. (B.7)

We next summarize the results on investors’ scaled value pn(w).

The one-sided limited-commitment case.

Proposition 6 In the region w > wH = αwH , investors’ scaled value pH(w) in state H solves:

rpH(w) = AH +
χγ

1− γ
(
−p′H(w)

)1/γ
w + iH(w)(pH(w)− wp′H(w)− 1)− g(iH(w)) +

ζ

1− γ
wp′H(w)

−δ(pH(w)− wp′H(w)) +
σ2
Kw

2

2

γp′H(w)p′′H(w)

wp′′H(w) + γp′H(w)
− λHw

1− γ

[(
1 +

ψH
w

)1−γ
− 1

]
p′H(w)

+λH [pL(w + ψH)− pH(w)] , (B.8)

subject to the following boundary conditions:

lim
w→∞

pH(w) = qFBH − w , (B.9)

pH(wH) = 0 , (B.10)

lim
w→αwH

σwH(w) = 0 and lim
w→αwH

µwH(w) ≥ 0 . (B.11)

We briefly comment on the boundary conditions. First, (B.9) states that as w approaches infin-

ity, the entrepreneur’s limited commitment does not bind, and the first-best resource allocation is

achieved. The right boundary condition (B.10) provides the condition that new investors (financing
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the entrepreneur upon the latter quitting) make zero profits. The left boundary condition (B.11)

sets the volatility of wt to zero and the drift to be non-negative at w = wH to ensure that the

entrepreneur will stay with current investors.

The two-sided limited-commitment case. When investors face the limited-liability con-

straint, the contract requires the volatility at the endogenous upper boundary wH = 0 to be

zero and additionally the drift to be non-positive in order for the investors not to walk away from

the contractual agreement:

lim
w→wH

σwH(w) = 0 and lim
w→wH

µwH(w) ≤ 0 . (B.12)

The arguments for (B.12) are essentially the same as those we have sketched out for the lower

boundary wH = αwH .

Derivation for Proposition 6. Applying the Ito’s formula to (30) and transforming (22) for

F (K,V,AH) into the following HJB equation for P (K,W,AH), we obtain

rP (K,W,AH) = max
C,I,x,ΨH

{
Y − C +

ζ(U(bW )− U(C))− λH [U(b(W + ΨH))− U(bW )]

bU ′(bW )
PW

+(I − δK)PK +
σ2
KK

2

2
PKK +

(xU(bW ))2

2

PWWU
′(bW )− PW bU ′′(bW )

U ′(bW )3

+σK
xKU(bW )

bU ′(bW )
PWK + λH [P (K,W + ΨH , A

L)− P (K,W,AH)]

}
, (B.13)

where ΨH = U−1(V+ΓH)−U−1(V )
b . And then using the FOCs for I, C, and x respectively, we obtain

1 +GI(I,K) = PK , (B.14)

U ′(bW ) = −ζ
b
PWU

′(C) , (B.15)

x = − σKPWKbU
′(bW )

U(bW )[PWW − PW bU ′′(bW )/U ′(bW )]
. (B.16)

Whenever feasible, the optimal adjustment of W to account for the productivity change satisfies

U ′(b(W + ΨH))

U ′(bW )
=
PW (K,W + ΨH , A

L)

PW (K,W,AH)
. (B.17)
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When the entrepreneur’s limited-commitment constraint binds, ΨH = WL −W . And when the

investor’s limited-liability constraint binds, ΨH = WL −W .

Substituting P (K,W,AH) = pH(w)K and the optimal policies into the PDE (B.13), we obtain

the ODE (B.8). The constraint Vt ≥ V̂n(Kt) implies Wt ≥ wnKt where wn is denoted by wn =

U−1(V̂n(Kt))
bKt

. To ensure Vt+dt ≥ V̂n(Kt+dt) with probability one, the drift of Vt/V̂n(Kt) should be

weakly positive (negative) if Vt > 0 (Vt < 0) and the volatility of Vt/V̂n(Kt) should be zero at the

boundary Vt = V̂n(Kt). To summarize, the condition (B.11) ensures that the entrepreneur will not

walk away at the left boundary wn and the right boundary condition (B.12) ensures that investors

will stay. Finally, condition (28) implies (B.10) and condition (27) implies wn = αwn.

B.2 Derivations for Proposition 2 and Proposition 3

Because Proposition 2 is the special case of Proposition 3 by setting AH = AL = A and λH = λL = 0

in Proposition 3, we will thus only sketch out the arguments for Proposition 3.

Applying the Ito’s formula to s = S/K, we obtain the following dynamics for s in state n:

dst = d

(
St
Kt

)
= µs(s)dt+ σs(s)dZt + πndNt , (B.18)

where

µsn(s) = (An − πn(s)λn − in(s)− g(in(s))− cn(s)) + (r + δ − in(s))s− σKσsn(s) , (B.19)

σsn(s) = (φn(s)− s)σK . (B.20)

Now, we apply the HJB equation to the entrepreneur’s value function J(K,S,AH) as follows:

ζJ(K,S,AH) = max
C,I,φ,πH

ζU(C) + (I − δK)JK +
σ2
KK

2

2
JKK (B.21)

+(rS +AK − I −G(I,K)− C − λHπHK)JS + σ2
KK

2φJKS

+
K2σ2

Kφ
2

2
JSS + λH(J(K,S + πHK,A

L)− J(K,S,AH)) .
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Substituting the conjectured value function (34) for J(K,S,AH) into (B.22), we have:

0 = max
C,I,φ,πH

ζM

(
C
bM

)1−γ − 1

1− γ
+ (I − δK)MK + (rS +AK − I −G(I,K)− C − λHπHK)MS

+
σ2
KK

2

2

(
MKK −

γM2
K

M

)
+ σ2

KφK
2

(
MKS −

γMKMS

M

)
+
K2φ2σ2

K

2

(
MSS −

γM2
S

M

)
+
λHM(K,S,AH)

1− γ

((
M(K,S + πHK,A

L)

M(K,S,AH)

)1−γ

− 1

)
. (B.22)

Using the homogeneity property of M(K,S,AH) = mH(s) ·K, we then obtain the ODE (60).

At Sn(K) the entrepreneur’s inalienability-of-human-capital constraint binds, which implies

J(K,Sn, A
n) = V̂n(K) = J(αK, 0, An) . (B.23)

By substituting the value function (34) into (B.23), we obtain M(K,Sn, A
n) = M(αK, 0, An),

which implies (62). To ensure that the entrepreneur does not walk away at the left boundary, we

require (63) by using essentially the same argument as the one we have used for pn(w) in the optimal

contacting problem. The boundary conditions (62) and (63) are necessary for both t cases. The

upper boundaries differ for the two cases. For the one-sided case, we also require (61) as s → ∞.

For the two-sided case, we require (64) for investors not to renege on the contract.

C Equivalence between the Primal and Dual Problems

We provide a sketch of the arguments underlying the equivalence result between the two problems.

First, we postulate the following relations between s and w hold in both n ∈ {L,H}:

s = −pn(w), and mn(s) = w . (C.1)

Then, the standard chain rule implies:

m′n(s) = − 1

p′n(w)
, m′′n(s) = − p′′n(w)

p′n(w)3
. (C.2)

Substituting (C.1) and (C.2) into the ODE (60) for mn(s), we obtain the ODE (B.8) for pn(w).
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Similarly, substituting (C.1) and (C.2) into the boundary condition (43) for mn(s), we obtain

(B.12), the boundary condition for pn(w). Substituting (C.1) into the boundary condition (41), we

obtain lims→∞ pn(w) = qFBn −w. Finally, by using (C.1) and (C.2), we may show that the optimal

consumption and investment policies for the primal and dual problems are indeed equivalent.

D Autarky as the Entrepreneur’s Outside Option

In this appendix, we consider an alternative specification for the entrepreneur’s outside option. The

entrepreneur may divert the firm’s capital stock and manage it by herself. However, by doing so,

the entrepreneur will permanently live in autarky (Bulow and Rogoff, 1989). We show that our

model still gives rise to a theory of liquidity and risk management with an endogenous credit limit.

Let Ĵ(Kt) denote the entrepreneur’s value function under autarky defined as follows,

Ĵ(Kt) = max
I

Et
[∫ ∞

t
ζe−ζ(v−t)U(Cv)dv

]
, (D.1)

where autarky implies that the entrepreneur’s consumption C equals output Yt, in that

Ct = Yt = AtKt − It −G(It,Kt) . (D.2)

The following proposition summarizes the main results.

Proposition 7 Under autarky, the entrepreneur’s value function Ĵ(K) is given by

Ĵ(K) =
(bM̂(K))1−γ

1− γ
, (D.3)

where b is given by (13) and M̂(K) is the entrepreneur’s certainty equivalent wealth given by

M̂(K) = m̂K , (D.4)

where

m̂ =
(ζ(1 + g′(̂i))(A− î− g( î) )−γ)

1
1−γ

b
, (D.5)
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and î is the optimal investment-capital ratio solving the following implicit equation:

ζ =
A− î− g(̂i)

1 + g′(̂i)
+ (̂i− δ)(1− γ)−

σ2
Kγ(1− γ)

2
. (D.6)

Similar to the analysis in Section 6, we show that the lower boundary s satisfies:

m(s) = m̂. (D.7)

For both the one-sided and two-sided cases, we only need to replace the boundary condition (42)

in Proposition 2 with (D.7) and keep all the other conditions unchanged. Note that the lower

boundary s, determined by (D.7), is independent of the upper boundary s.
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Figure 14: Autarky as the entrepreneur’s outside option: No productivity shocks.
Panels A and B plot the marginal (certainty equivalent) wealth of s, m′(s), and the investment-
capital ratio i(s), respectively. The solid and dashed lines correspond to the one-sided and two-
sided cases, respectively. For both cases, m(s) is increasing and concave. For the one-sided case,
s ≥ −0.764. For the two-sided case, −0.720 ≤ s ≤ 0.

Figure 14 plots the entrepreneur’s marginal value of liquidity m′(s) and the optimal investment-

capital ratio i(s) for both one-sided and two-sided limited-commitment cases. The general patterns

reported in the text remain valid. For example, for the one-sided case, the firm always under-

invests and the marginal value of liquidity m′(s) is always greater than one. Additionally, the

degree of underinvestment weakens and the marginal value of liquidity m′(s) decreases, both of

which eventually approach the first-best levels iFB = 0.10 and unity, respectively, as s → ∞.
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Finally, for the two-sided case, the firm may choose to over-invest (compared with the first-best

benchmark) as the marginal value of liquidity m′(s) could be less than unity due to the investors’

limited commitment.

E Comparative statics: Risk aversion
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Figure 15: Effects of the entrepreneur’s risk aversion. Panels A and B plot the marginal
(certainty equivalent) wealth of s, m′(s), and the investment-capital ratio i(s), respectively. The
dotted, solid, and dashed lines correspond to three different levels of risk-aversion, γ → 0+, γ = 2,
and γ = 4, respectively.

Figure 15 illustrates the effect of risk aversion on the marginal value of liquidity m′(s) and

investment-capital ratio i(s) in Panel A and B, respectively. First, the more risk-averse the en-

trepreneur the less the firm invests ceteris paribus. And additionally, liquidity is more valuable

for more risk-averse entrepreneurs, implying that the marginal value of liquidity m′(s) increases

with γ. As γ → 0+, marginal value of liquidity approaches unity and investment approaches the

first-best level iFB. Finally, we see that liquidity capacity |s| decreases with risk aversion. For

example, liquidity limit s = −0.24 for γ → 0+, s = −0.214 for γ = 2, and s = −0.205 for γ = 4.
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