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Horizon Effects in Average Returns:

The Role of Slow Information Diffusion

Abstract

We show that when stocks incorporate information slowly, observed short-horizon
portfolio returns are downward-biased. Buy-and-hold strategies amplify the effect
when a systematic shock diffuses at heterogeneous speeds across different assets.
In contrast, existing theories analyze price noises that are independent of funda-
mentals, and buy-and-hold portfolio returns are unaffected. Confirming the new
predictions, downward bias in average returns reaches 10% annualized in daily
and monthly style portfolios and international indices. Slow reaction to market
information, identified by gradually declining lagged betas, is an important cause.
These findings have natural consequences for performance evaluation.



1. Introduction

When assessing a trading strategy or an asset pricing model, researchers can choose

daily, monthly, annual, or other intervals over which to evaluate returns.1 Accepted

wisdom holds that any return-measurement interval can be empirically valid, with daily

returns being most appropriate for investors with a daily horizon, monthly returns

matching to investors with a monthly horizon, and so forth.2

The microstructure literature offers a caveat: Short-horizon mean returns can be

biased. Blume and Stambaugh (“BS”, 1983) and Roll (1983) assume measurement

errors in prices uncorrelated with fundamental value, and show upward bias in the mean

returns of individual stocks and equally-weighted, periodically-rebalanced portfolios.

Asparouhova, Bessembinder, and Kalcheva (“ABK”, 2010, 2013) demonstrate a related

bias in Fama-MacBeth regressions and propose corrections.3 This literature provides

a key takeaway: The mean returns of well-diversified, value-weighted portfolios are

unbiased. Indeed, ABK’s corrections link portfolio weights to past returns, as occurs

naturally under value-weighting. They anticipate (p. 46) that new research considering

measurement errors correlated with fundamentals could be important.

We fill this gap by modelling cross-sectional heterogeneity in the speed at which

prices adjust to fundamentals. Early analysis of price-adjustment frictions includes

Fisher (1966), Scholes and Williams (1977), and Lo and MacKinlay (“LM”, 1990), who

1Monthly returns are traditional, as in Black, Jensen, and Scholes (1972), Fama and MacBeth (1973), and
Fama and French (1992, 1993). Jagannathan and Wang (2007) propose that annual returns more accurately
reflect the pricing of fundamental risks. Numerous studies use higher-frequency daily data (Lynch and Musto
(2003), Bollen and Busse (2005), Busse and Irvine (2006), Lewellen and Nagel (2006), Barber (2007), Li and
Yang (2011), Tetlock (2011), and Ang and Kristensen (2012)).

2Fama (1998, p. 294) comments regarding the choice of horizon, “Long-term investor experience is better
captured by compounding short-term returns to obtain long-term buy-and-hold returns... Investor experience
is interesting, and long-term [abnormal returns] are thus interesting. But formal tests for abnormal returns
should use the return metric called for by the model invoked to estimate expected... returns. The problem, of
course, is that discrete-time asset pricing models are silent on the relevant interval for expected returns.”

3Other work on noise uncorrelated with fundamentals includes Conrad and Kaul (1993), Canina, Michaely,
Thaler, and Womack (1998), Liu and Strong (2008), and Brennan and Wang (2010).
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study “nonsynchronous” trade.4 When securities do not trade simultaneously, observed

last transaction prices reflect common information with different delays, generating pos-

itive portfolio autocorrelations and cross-serial correlations, impacting beta estimates,

and biasing portfolio variance downwards. Empirical effects are however too large,

long-lasting, and robust to methodological corrections to be explained entirely by non-

synchronous trade.5 Broader explanations for slow price reaction include transaction

and information-processing costs, dynamic strategies of market-makers and informed

traders, and frictions in the movement of capital. Consistent with these explanations,

firm size, complexity, and various measures of investor attention influence the speed at

which stocks react to news.6 We refer to these phenomena collectively as “slow infor-

mation diffusion.” In the special case where stocks react to systematic information at

different speeds, we refer to “heterogeneous information diffusion.”

Slow information diffusion impacts average returns differently than the independent

price noise in BS, ABK, and other previous studies. First, slow information diffusion

implies a downward- rather than upward-bias in mean returns. Second, buy-and-hold

strategies, such as value-weighting, accentuate the downward bias when stocks incor-

porate systematic information with heterogeneous delay. The corrections suggested by

ABK, which depend on mimicking the properties of buy-and-hold portfolios, therefore

are not effective remedies.

To understand these theoretical results, consider first a single asset. Slow informa-

tion diffusion smooths observed returns relative to fundamentals, raising return auto-

correlations, and biasing variance downwards. Average logarithmic returns, which are

4Campbell, Lo, and MacKinlay (1997) provide a concise overview of the nonsynchronous trade literature.
5Fisher (1966) argues that price-adjustment delays cannot be explained by nonsynchronous trade alone.

Cohen, Hawawini, Maier, Schwartz, and Whitcomb (1983), Atchison, Butler, and Simonds (1987), Conrad and
Kaul (1988), LM, Mech (1993), Boudoukh, Richardson, and Whitelaw (1994), and others make similar points.

6See LM, Brennan, Jegadeesh, and Swaminathan (1993), Chan (1993), Badrinath, Kale, and Noe (1995),
Sias and Starks (1997), Hong and Stein (1999), Chordia and Swaminathan (2000), Hong, Lim, and Stein (2000),
Hirshleifer and Teoh (2003), Hou and Moskowitz (2005), Hou (2007), Cohen and Frazzini (2008), Dellavigna
and Pollet (2009), Hirshleifer, Lim, and Teoh (2009, 2011), Menzly and Ozbas (2010), Chordia, Sarkar, and
Subrahmanyam (2011), and Cohen and Lou (2012).
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additive, are unaffected.7 Average simple returns, however, require a Jensen’s inequal-

ity adjustment. Since variance is downward-biased, average simple returns must be

downward-biased as well.

Heterogeneous information diffusion causes an additional downward bias in buy-

and-hold portfolios. In the wake of a positive systematic shock to fundamentals, lagger

stocks become underweighted as they fall behind the news, while their future returns

must be relatively high to catch up with the news. Conversely, following a negative

systematic shock, laggers become overweighted and will underperform. This negative

cross-sectional correlation between portfolio weights and future returns contributes to

downward bias in average portfolio returns.

To further illuminate the link between autocorrelations and horizon effects in aver-

age returns, we develop an empirically accurate approximation for the relation between

average returns at different time scales. The formula builds on the standard Jensen’s in-

equality adjustment. The key drivers of horizon effects in average returns are the level of

portfolio volatility and variance ratios of long- to short-horizon volatility. When a vari-

ance ratio exceeds one, indicating persistence, the average short-horizon return rescaled

linearly or by compounding understates the corresponding longer-horizon return.

Consistent with predictions, we show large apparent downward bias in the short-

horizon returns of a variety of style portfolios and international indices. The mag-

nitudes exceed 10% annually in some style portfolios and international indices, with

effects strongest for the portfolios suggested by theory: small stocks, low-price stocks,

momentum losers, high volatility, and among international indices, emerging and fron-

tier markets. The effects are strongest at short horizons such as one day, but remain

7The literature on nonsynchronous trade concludes that implications for mean returns are innocuous based
on the properties of logarithmic returns. Scholes and Williams write, “. . .expectations of measured returns [. . .]
always equal true mean returns” (p. 113). LM state, “. . . nontrading does not affect the mean of observed
returns” (p. 187). In contrast, investors and empirical researchers often draw inferences from simple returns,
as for example when comparing simple means, calculating alphas from time-series regressions, or carrying out
standard cross-sectional asset pricing tests.

3



economically meaningful even in monthly returns for some portfolios.

Horizon effects in average returns naturally impact standard performance measures,

such as Jensen’s (1968) alpha. Controlling for “intervalling” effects in beta (e.g., Dim-

son, 1979), the alpha of the small-stock portfolio is 65 basis points per quarter and

insignificant in daily data, but 1.59 percent and significant in quarterly data. The low-

minus-high volatility portfolio generates a significant alpha of 1.75 percent per quarter

in daily data, but an insignificant alpha of 68 basis points in quarterly data.

We test whether the effects in short-horizon returns should be interpreted as a

downward bias due to slow information diffusion, as opposed to being driven by another

source such as positive autocorrelations from time-varying risk premia (e.g., Conrad and

Kaul, 1988). For each portfolio, we regress returns on the contemporaneous market

index and a set of lagged observations of the index. We use the ratio of the sum of the

lagged loadings to the sum of all loadings as a proxy for slow information diffusion, as in

Brennan, Jegadeesh, and Swaminathan (1993). Across portfolios, we find a statistically

significant relationship between the magnitude of horizon effects in average returns and

the importance of lagged market information.

We also structurally estimate the theoretical model of heterogeneous information

diffusion, which illuminates the key drivers of horizon effects. Using only five param-

eters, we closely match portfolio autocorrelations, lagged betas, variance ratios, and

horizon effects in average returns. More limited objectives have proven to be a signif-

icant challenge in earlier literature (e.g., LM; Boudoukh, Richardson, and Whitelaw,

“BRW”, 1994). Slow reaction to market information, identified by gradually declining

lagged betas, plays a key role in explaining the horizon effects in average returns.

In the process of these investigations, we assess the tradeability of the measured

average returns and demonstrate the robustness of horizon effects in subsamples of the

data. We also offer advice to empirical researchers on the implications of these findings
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for methodology, and illustrate potential corrections when using short-horizon returns.

2. A Model of Heterogeneous Information Diffusion

We model a cross-section of N stocks with heterogeneous delays in their price response

to news. The “fundamental value” of an individual stock has logarithmic returns

r∗it = rf +
K∑
k=1

βikfkt + εit, (1)

where rf is the riskless rate, βik are loadings, εit are idiosyncratic shocks, and the

realizations fkt represent systematic news. To simplify notation, we rewrite (1) as:

r∗it = rf +
K+N∑
k=1

βikfkt, (2)

where the idiosyncratic returns are recast as “factors” by the relation fK+i,t ≡ εit for

i ∈ {1, ..., N}, implying that βi,K+j = 1 for i = j and zero otherwise. The realizations

fkt are independent, normally distributed random variables with mean µk and standard

deviation σk. We normalize the mean of the idiosyncratic shocks to have no effect on

simple returns by the Jensen’s inequality adjustment µk = −1
2
σ2
k, k > K.

To model heterogeneous information diffusion in returns, we assign each firm i delay

parameters δik ∈ [0, 1) that determine speeds of adjustment to factor news,8 and we

track accumulated information “deficits” using state variables Dikt:

rit = rf +
K+N∑
k=1

(1− δik) (Dik,t−1 + βikfkt) (3)

Dikt = δik (Dik,t−1 + βikfkt) . (4)

When fundamental news arrives, it is added to any existing information deficit Dik,t−1.

A proportion (1 − δik) immediately incorporates into observed returns rit, leaving the

proportion δik to be revealed in the future.

8The model is similar quantitatively, but less tractable, if δik follows a Markov chain.
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In the remainder of this section, we derive analytical results under the simplifying

assumptions of a single common factor (K = 1) and two types of securities: “leaders”

incorporate fundamentals immediately (δik = 0); “laggers” have a common delay δik =

δ > 0. For notational convenience, we assume that rf = 0 and βi1 = 1 for all i. The

logarithmic returns of leaders then equal their fundamental returns:

r∗it = f1t + f1+i,t, (5)

while the returns of laggers follow:

rit = (1− δ) (Di1,t−1 + f1t +Di,1+i,t−1 + f1+i,t) (6)

Dikt = δ(Dik,t−1 + fkt). (7)

We obtain closed-form expressions for unconditional distributions:

Proposition 1 Lagger short-run log returns are unconditionally normal with E(rit) =

µ1 − 1
2
σ2

1+i = E(r∗it) and Var(rit) = 1−δ
1+δ

(σ2
1 + σ2

1+i) < σ2
1 + σ2

1+i = Var(r∗it). Mean simple

returns are E(erit) = eµ1+ 1
2 [ 1−δ1+δ ]σ2

1−
δ

1+δ
σ2
1+i < eµ1+ 1

2
σ2
1 = E(er

∗
it).

Leader and lagger logarithmic return means are equal. However, lagger logarithmic

returns are a weighted average of current and past factor realizations, which smooths

returns and reduces volatility. By Jensen’s inequality, the lagger average simple return

is also lower. In contrast, when noise is independent of fundamentals (e.g., BS, ABK),

Jensen’s inequality biases the mean return upwards.

We next characterize the returns of single-type stock portfolios.

Proposition 2 The returns rt on a well-diversified, value-weighted portfolio of lag-

gers are unconditionally normally distributed with E(rt) = µ1 = E(r∗t ) and Var(rt) =

1−δ
1+δ

σ2
1 < σ2

1 = Var(r∗t ). Average simple returns are E (ert) = eµ1+ 1
2 [ 1−δ1+δ ]σ2

1 < eµ1+ 1
2
σ2
1 =

E
(
er

∗
t

)
. The returns on a well-diversified, value-weighted portfolio of leaders are always

equal to the fundamental return r∗t .
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Similar to individual stocks, the lagger-portfolio logarithmic returns are unbiased, while

the variance and simple return are downward biased. In BS, ABK, and related studies,

value-weighting eliminates the bias in average returns in well-diversified portfolios, but

this does not apply to slow price adjustment. Slow reaction to idiosyncratic news

diversifies away, but slow reaction to systematic news, which is widely documented in

the literature (see footnote 6), does not.

We finally characterize the returns of a heterogeneous-type portfolio.

Proposition 3 Let RPt denote the simple return on a well-diversified, value-weighted

portfolio of leaders and laggers with a fraction π of leader stocks. The returns follow:

RPt = (1− wt−1)er
∗
t + wt−1e

rt , (8)

wt−1 =
1− π

πeD1,t−1 + 1− π
, (9)

where D1t is the common systematic delay state for laggers and wt−1 is the lagger

portfolio weight. The mean return is:

E(RPt) = E(1− wt−1)E
(
er

∗
t
)

+ E(wt−1)E (ert) + Cov (wt−1, e
rt) , (10)

where Cov (wt−1, e
rt) < 0.

The proposition identifies two important sources of bias.9 First, the downward bias in

lagger-portfolio returns (Proposition 2) carries through to the heterogeneous portfolio.

Second, the lagger portfolio weights covary negatively with their future expected re-

turns, as captured by the third term of (10). Following a high factor return, the lagger

weight is artificially low, while their future returns are expected to be high. Following a

negative systematic shock, laggers are overweighted and are expected to underperform.

This effect stems from different stocks adjusting at different speeds.

9Additionally, E(1− wt−1) 6= π, but this effect is small.
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3. Horizon Effects in Average Returns

To further clarify the link between autocorrelations, variances, and horizon effects in

average returns, we develop an approximation for the relation between average returns

at different time scales. Let R̄in ≡ E(Ri,t+1 . . . Ri,t+n) denote the mean gross return of

asset i over n periods. We consider geometrically and linearly rescaled means:

R̄RS
in ≡

[
R̄i1

]n
, (11)

R̄RSl
in ≡ 1 + n

(
R̄i1 − 1

)
, (12)

as well as the associated ratios:

νin ≡ R̄RS
in /R̄in, νnetin ≡ R̄RS

in − 1

R̄in − 1
= νin +

νin − 1

R̄in − 1
, (13)

νlin ≡ R̄RSl
in /R̄in, νl,netin ≡ R̄RSl

in − 1

R̄in − 1
= νlin +

νlin − 1

R̄in − 1
. (14)

Linearly rescaled returns are implicitly relevant whenever an empiricist calculates ab-

normal performance from a factor-model regression (see Section 4.1.1). Geometric

rescaling differs from linear rescaling by the effects of compounding.

The approximation is based on normally distributed single- and n-period logarithmic

returns: ri1t ∼ N (µi, σ
2
i ), rint ∼ N (nµi, σ

2
in). We show:

Proposition 4 The ratio of rescaled to buy-and-hold mean returns satisfies

νin = enσ
2
i (1−V Rin)/2, (15)

where V Rin ≡ σ2
in/ (nσ2

i ) is the variance ratio.

The return ratio νin is determined by the short-horizon variance σ2
i and the variance

ratio V Rin. Empirically, individual stock returns at short horizons tend to be nega-

tively autocorrelated and V Rin < 1, while portfolios have positive autocorrelations and

V Rin > 1 (Lo and MacKinlay, 1988). Proposition 4 connects variance ratios to mean
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returns: In individual stocks, independent measurement errors cause negative auto-

correlations and bias short-horizon means upwards (BS); in portfolios, systematic slow

information diffusion raises autocorrelations, causing downward bias in short-horizon

means (footnote 6 and Propositions 1-3).

For linearly rescaled mean returns, an analytical approximation analogous to Propo-

sition (4) is not available. However, for the range of horizons in this paper, when returns

are close to iid the effects of compounding should be small and νlin ≈ νin.10

Empirically, we can rescale an n-period return to a horizon of m periods:

R̄inm ≡ [E(Ri,t+1 . . . Ri,t+n)]m/n = R̄
m/n
in . (16)

If returns are iid, then R̄inm = R̄imm = R̄im for all n,m > 0. This suggests plotting

R̄inm versus the return-period length n, for a fixed rescaling horizon m, as a diagnostic.

When such a plot is approximately flat, horizon effects are small.

4. Empirical Evidence

We investigate the magnitude and causes of horizon effects in average returns using U.S.

style portfolios and international indices. Appendix B describes the data. Following

ABK and earlier authors, we use “initially equal-weighted” (“IEW”) and “initially

value-weighted” (“IVW”) portfolios. These weight at an initial date equally or by

value, and rebalance only due to turnover.11 Minimizing rebalancing reduces biases

caused by independent price noise.

4.1. Horizon Effects in U.S. Portfolios

Table 1 shows average returns R̄inm of horizon n geometrically rescaled to horizon m ≥

n. The values of n,m ∈ {1, 21, 63, 126, 252} correspond to daily, monthly, quarterly,

10For example, assuming a one percent average monthly return and independent observations, R̄RSi12 = 1.1268
and R̄RSli12 = 1.12, implying νlin = 1.12/1.1268 = 0.9939.

11IVW and standard value-weighting differ only due to corporate share issuances and repurchases, which
impact standard value weights, but do not impact IVW weights.
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semi-annual, and annual horizons. The table shows rescaled average returns for the

CRSP market index and top- and bottom-decile portfolios of stocks sorted by market

equity, book-to-market ratio, and momentum.

Following from Sections 2 and 3, we expect rescaled daily returns to be smaller

than buy-and-hold returns of longer horizons, with larger differences for portfolios that

are more volatile and more subject to slow information diffusion. The data support

these predictions. For the IEW small stock portfolio, the geometrically rescaled daily

means are below the buy-and-hold averages for monthly returns (1.41 percent versus

1.63), quarterly returns (4.30 versus 5.73), and annual returns (18.34 versus 25.87).

The magnitudes are even larger for IEW momentum losers: rescaled daily versus buy-

and-hold returns are 0.67 versus 1.00 at a monthly horizon, and 8.34 versus 14.97 for

an annual horizon. Similar results hold for IVW portfolios.

The apparent downward bias remains quantitatively important in monthly returns

for several portfolios. For example, the annualized monthly return of the IEW momen-

tum loser portfolio is 12.72, while the corresponding measures of quarterly, semi-annual,

and annual returns are all similar between 14.64 and 14.97.

To better visualize horizon effects, Figure 1 plots the average returns R̄inm versus the

measurement lengths n = 1, ..., 252 for fixed rescaling horizon m = 252 using equation

(16). Plots are shown for portfolios based on firm size, book-to-market, momentum,

price level, short-term reversal, volatility, illiquidity, and Z-score. All plots slope up-

wards at short horizons, and flatten out for larger n. In a number of portfolios (small

stocks, momentum losers, high volatility, high inverse price, low reversal), the difference

between R̄inm for n = 1 (daily) and the flat part of the graph is 5-6 percent annually,

or more. Many plots show strong upward slope even in monthly returns (n = 21); only

at a quarterly horizon (n = 63) do the plots reliably flatten out.12

12Throughout the paper we focus on geometric rescaling as in equation (16) since it accounts for compound-
ing. The Internet Appendix reproduces results using linear rescaling following equation (12), which is more
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In Table 2, we test the significance of the average return difference for horizons

n < m. We refer to the shorter-horizon average R̄inm as “rescaled” (“RS”), and to

the longer-horizon average R̄imm as “buy-and-hold” (“BH”). Panel A sets the shorter

interval to one day (n = 1, RS = R̄i,1,63). Panel B sets the shorter interval to one

month (n = 21, RS = R̄i,21,63). Following the evidence from Figure 1, we set the longer

interval to m = 63, i.e., BH = R̄i,63,63.13 The difference RS − BH is significantly

negative for all long-only portfolios in daily returns (Panel A), and almost all long-only

portfolios in monthly returns (Panel B).

Table 2 also provides the moments necessary to calculate the analytical approxima-

tion νnetin of RS/BH, given in Proposition 4. The formula is accurate, with a maximum

difference of 0.04 between the empirical value and the approximation.

Consistent with Proposition 4, portfolios with the highest autocorrelation do not

necessarily have the largest differences between rescaled and buy-and-hold returns. The

high-illiquidity portfolio has large autocorrelations (0.20 in daily returns), but the low

standard deviation constrains RS − BH to −0.36 quarterly. The low-illiquidity port-

folio exhibits similar RS − BH, achieved through a higher standard deviation paired

with lower autocorrelation. In contrast, the high- and low-volatility portfolios have

comparable autocorrelations (0.20 versus 0.17), but the standard deviation of the high-

volatility portfolio is about three times larger than that of the low-volatility portfolio.

As a result, an apparently small difference in rescaled daily means (3.08− 2.65 = 0.43)

translates to a large difference in actual quarterly returns: 4.52− 2.79 = 1.73.

prevalent in empirical work. As anticipated earlier, the differences between the two approaches are very small.
The Internet Appendix further shows horizon effects in other attribute-sorted and factor portfolios.

13The choice of m is material, driven by two effects. First, some plots in Figure 1 show declines in rescaled
averages from one quarter to one year, but this effect is small. The larger issue is that a one-year horizon
m = 252 has an effective sample size four times smaller than m = 63, cutting standard errors approximately
in half. In Panel A, the effects are strong and changing to m = 252 would not impact conclusions. In Panel B
the statistical, but not economic, significance of the results is sensitive to the choice of m.
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4.1.1. Horizon Effects in Alphas

Horizon effects in mean returns naturally have implications for the calculation of alphas

at different horizons. Consider Jensen’s (1968) alpha from n-period returns:

αin = R̄in −
[
R̄fn + βin

(
R̄Mn − R̄fn

)]
, (17)

A common practice for relating alphas at different horizons is linear rescaling: αRSin ≡

nαi1.14 We can decompose the difference of the two alphas:

Proposition 5 The difference between linearly-rescaled and buy-and-hold alphas is:

αRSin − αin ≈ (νlin − 1)R̄in − βi1(νlMn − 1)R̄Mn − (βi1 − βin)
(
R̄Mn − R̄fn

)
. (18)

Three components affect the difference: 1) horizon effects in the mean returns of port-

folio i, 2) horizon effects in the factor M , and 3) horizon effects in beta.

Table 3 shows daily, monthly, and quarterly rescaled alphas, and decomposes the

differences into the components of Proposition 5.15 The alpha differences are large

in many portfolios. For small stocks, the alpha is 0.65 percent per quarter based on

daily returns and 0.92 per quarter based on monthly returns, in both cases statisti-

cally insignificant. In quarterly returns, the alpha is a much larger 1.59 per quarter,

statistically significant at the 10% level.

In long-short portfolios, horizon effects sometimes offset. For example, high book-

to-market stocks have an alpha of 0.97 per quarter based on daily returns (Panel A),

and 1.87 based on quarterly returns (Panel C). Low book-to-market stocks have an

alpha of -1.72 per quarter based on daily returns, and -1.17 based on quarterly returns.

The long-short alpha is large and significant in either case (2.69 in daily data and 3.04

in quarterly data). However, daily data suggest that profitability stems largely from

the short side, whereas the long side drives profits in quarterly data.
14See, e.g., Lewellen and Nagel (2006), Barber (2007), Li and Yang (2011), and Ang and Kristensen (2012).
15To make the beta estimates more comparable, we use “sum” betas as suggested by Dimson (1979), with

63 lags for daily-return regressions and three lags for monthly-return regressions.
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In other cases, horizon effects do not offset in long-short portfolios leading to different

inferences about net alpha. For example, the portfolio that is long low-volatility stocks

and short high-volatility stocks generates a statistically significant alpha of 1.75 per

quarter based on daily data. The alpha falls to 1.03 per quarter in monthly data and

0.68 in quarterly data, insignificantly different from zero in both cases.

The decompositions in Panels D and E show that alpha differences are primarily

driven by component (1) of equation (18), horizon effects in portfolio means. These

reach as large as 2.43 per quarter. Component (2), due to horizon effects in the market-

portfolio mean, peaks at the smaller level of 0.26 per quarter. Component (3), due to

beta differences, reaches 0.71 per quarter. While a substantial prior literature has

focused on beta differences (e.g., Scholes and Williams, 1977; Dimson, 1979; Gilbert,

Hrdlicka, Kalodimos, and Siegel, 2014), our work is the first to demonstrate the impor-

tance of differences in mean returns across horizons.

4.2. Horizon Effects in International Portfolios

We conjecture that international indices based on country, region, and style might ex-

hibit significant horizon effects, driven by slow information diffusion. From Datastream,

we obtain US-dollar-denominated MSCI indices for 56 countries with at least ten years

of valid monthly data. Details are provided in the Internet Appendix.

We are interested in two questions. First, how large are horizon effects in inter-

national indices? Second, what causes the horizon effects? To help address these

questions, we sort countries according to their categorization by MSCI as a developing,

emerging, or frontier market. If slow information diffusion causes horizon effects and

the MSCI categories proxy for market efficiency, we expect the largest rescaled-return

differences in frontier markets, moderate effects in emerging markets, and small effects

in developed markets.
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Figure 2 plots the average return R̄inm against the horizon n, averaging across all

countries in each MSCI category. In developed markets, the plot is approximately flat

across all horizons. In emerging markets, 1-month returns appear to be downward

biased by about 1% relative to the flat part of the graph, and flattening occurs at

about 3-4 months. For the frontier markets, the apparent bias in 1-month returns is

about 3% annually, and leveling occurs at approximately 6-12 months. These findings

are consistent with slower information diffusion in less developed markets.

The distribution of horizon effects within MSCI categories is characterized in Table

4. For each country, we calculate a 12-month buy-and-hold return (BH), and a 1-

month return rescaled to an annual horizon (RS). We report means and quartiles of

the ratio RS/BH (Panel A) and the difference RS − BH (Panel B). The median of

RS/BH is 0.92 in developed markets, 0.82 in emerging markets, and 0.78 in frontier

countries. The median of RS−BH is 1.16 percent annually in developed markets, 2.22

in emerging markets, and 3.70 in frontier markets. Consistent with theory, the effects

are stronger in less developed markets where information is likely to diffuse slower.

To broaden our international sample, we use 49 MSCI regional indices and six

developed-market style portfolios from Ken French’s website.16 Table 5 confirms that

horizon effects are stronger in emerging-market regions. For example, in the small stock

portfolio the difference RS−BH is substantially larger in Asia Pacific excluding Japan

(4.24 percent per year) than in North America (0.08). Figure 3 shows histograms of

RS/BH for the international samples. The ratio is almost always below 1 and in many

cases substantially lower, confirming pervasive rescaling effects in international indices.

16These are formed on 1) size and book-to-market and 2) size and momentum in Asia Pacific excluding
Japan, Europe, Global, Japan, and North America. We compute returns following Fama and French (2012).
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4.3. Interpretation

We now address questions related to interpretation. First, are the seemingly low average

returns for some portfolios at short horizons tradeable? Second, should low short-

horizon mean returns be attributed to bias caused by slow reaction to fundamentals,

or could the effects be caused by an alternative mechanism such as fundamentals with

time-varying risk premia? The two questions are related, but not identical. ABK

discuss that measured short-horizon mean returns might deviate from the mean of

fundamentals due to “noise,” yet still be tradeable to some market participants.17

4.3.1. Are the Measured Returns Tradeable?

To address the tradeability of short-horizon returns, we compare horizon effects in

the non-investable international indices with a matched sample of investable exchange-

traded funds (“ETFs”) based on the indices. The approach of comparing properties of

a non-investable index with an investible counterpart follows tests in BRW.

Table 6 compares rescaled to buy-and-hold returns for indices and ETFs. In every

country, the difference RS − BH is smaller in the ETF than the index. Further, the

difference is statistically significant in more than half of the countries, indicating that

random chance is an unlikely explanation. Averaging across countries, the difference

RS −BH is -1.15 percent per year for the indices, and -0.54 per year for the ETFs. In

other words, approximately half of the horizon effects in the index returns with matched

ETFs can be attributed to a non-tradeable bias.
17Deviations of observed short-horizon means from fundamentals could represent zero-sum gains, available

to some investors with low trading costs, at the expense of others. The low short-horizon means we document
would require shorting thinly traded securities over short intervals. A more direct strategy would trade on the
short-run predictability in laggers.
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4.3.2. The Role of Slow Information Diffusion

To confirm the role of slow information diffusion, for each portfolio i we estimate:

rit = αi +
L∑
τ=0

βiτrM,t−τ + eit. (19)

Following Brennan, Jegadeesh, and Swaminathan (1993), we calculate delay measures

DELAYi ≡
∑L

τ=1 β̂iτ/
∑L

τ=0 β̂iτ , where we set L = 63 days or L = 3 months for U.S.

style portfolios, and L = 12 months for the international indices and ETF returns. We

then estimate cross-sectional regressions:

(RS/BH)i = c0 + c1DELAYi + ηi. (20)

If slow reaction to market information contributes to downward bias in short-horizon

returns, then the coefficient on DELAYi is negative.18

Table 7 shows results for different samples. The coefficient estimates on DELAYi are

all negative. The results for the index samples (1 to 3) are significant at conventional

levels and the ETF sample (4) has a p-value of 0.053. These results support that slow

information diffusion contributes to horizon effects.

4.3.3. Horizon Effects Over Time

One might speculate that if horizon effects in average returns are caused by slow in-

formation diffusion, the effects should diminish in more recent data. After all, recent

technological advances have increased the speed with which market participants can

respond to new information, and market liquidity has generally increased.19

On the other hand, the amount of information available to market participants, the

number of securities, and the complexity of the markets have all increased over time.

These offsetting forces could permit slow information diffusion to remain important

18Since the variable DELAYi is itself estimated, the standard errors-in-variables problem attenuates the
coefficient estimate towards zero, which should make it more difficult to detect a significant relationship.

19The cross-sectional average Amihud (2002) illiquidity measure has fallen significantly since the 1980s.
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even in recent data. Indeed, the references listed in footnote 6 all show that slow

information diffusion remains important in recent data.

To document any changes in the importance of horizon effects in average returns

over time, we carry out a sub-sample analysis. Figure 4 shows horizon effects in four

approximately twenty-year sub-periods for the portfolio of small stocks. The effects

are largest in the 1926-1949 period, where the difference between buy-and-hold annual

average return and rescaled daily mean is 8% per year. However, in the two most-recent

twenty-year periods, 1970-1989 and 1990-2009, the magnitude of the horizon effects are

also large, at 6% annually. Horizon effects have thus remained empirically important

throughout the sample, and are not simply an artifact of earlier trading technologies.

4.4. Recommendations and Corrections

If the low short-horizon average returns in some portfolios represent an econometric

bias, then how should empiricists proceed? Since fixed or exogenous portfolio weights

eliminate negative covariation between portfolio weights and future returns (third term

of equation (10)), one might anticipate that we would recommend corrections based

on pre-determined weights, including popular alternatives such as fundamental weight-

ing. To the contrary, no single weighting scheme can solve the problems caused by

both independent measurement errors and slow information diffusion. Frequent rebal-

ancing to fixed weights exacerbates the problem from independent measurement errors

(BS, ABK), while our results show that IEW, IVW, and other infrequently-rebalanced

portfolios can have biased means due to the effects of slow information diffusion.

One useful result is that the effects of slow information diffusion concentrate in

returns calculated at short horizons. We therefore recommend infrequent rebalancing,

consistent with BS and ABK, combined with the simple diagnostic of plotting the

return-measurement interval n versus the rescaled average R̄inm, as in Figure 1. If this
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plot is approximately flat, then horizon effects are not an issue. If the plot shows a

strong upward slope at short-horizons, then choosing a return-measurement interval on

the flat portion of the plot is a simple way to avoid potential concerns.

In some cases researchers may be specifically interested in short-horizon returns. In

terms of simple adjustments,20 Proposition 4 and and Table 2 show that one can obtain

a close approximation of long-run returns by adjusting the short-horizon variance:

R̄in ≈ R̄RS
in /e

nσ2
i (1−V Rin)/2. (21)

One issue is that this calculation requires long-horizon returns. If these are available it

is likely simpler to work directly with the average long-horizon return.

Researchers who are skeptical that horizon effects in mean returns are entirely due

to slow information diffusion may desire a more limited adjustment. In this case,

we suggest a natural adjustment that builds on methods researchers already use to

account for “intervalling” effects in beta estimation (e.g., Scholes and Williams, 1977).

Specifically, following estimation of (19), one can create the artificial return series that

would have been generated if all response to market information were instantaneous:

r̂it = α̂i +

(
L∑
τ=0

β̂iτ

)
rM,t + êit. (22)

By construction, the intercept and beta match the intercept and sum beta of (19).

The synthetic returns will however generally have higher variance than the observed

returns, because of the elimination of the smoothed response to market information.21

Through Jensen’s inequality, the variance change increases the means and alphas of the

simple return series er̂it− 1. This correction exactly adjusts for slow reaction to market

information, and is the logical consequence for mean returns and alphas of already

accepted methods of beta adjustment.

20A structural approach to modelling frictions such as trading costs, price impacts, and slow information
diffusion is possible, but challenging.

21The synthetic returns have higher variance than the observed returns when (
∑L
τ=0 β̂iτ )2 > (

∑L
τ=0 β̂

2
iτ ).
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To demonstrate these corrections, we calculate adjusted average returns for small-

capitalization and high-volatility portfolios. The variance ratio adjustment (21) in-

creases the average rescaled daily return from 4.30 to 5.38 percent per quarter in the

small-capitalization portfolio, and from 3.08 to 4.63 percent per quarter in the high-

volatility portfolio, in both cases nearly eliminating horizon effects relative to the buy-

and-hold return. The beta adjustment (22) gives a rescaled return of 5.11 percent per

quarter for the small capitalization portfolio, and 3.96 percent per quarter for the high

volatility portfolio, in both cases eliminating over half of the horizon effects.

5. Structural Estimation

To complete our analysis, we structurally estimate the model in Section 2 using only

five parameters. The model matches closely portfolio lagged betas, autocorrelations,

variance ratios, and average returns at a range of horizons. Narrower objectives have

received considerable attention, with limited success (e.g., LM, BRW).

5.1. Model Specification and Identification Strategy

In the model of Section 2, individual stock returns follow (2) to (4). For tractability, we

now assume that each stock i in a given style portfolio has a delay type θ(i), taking one

of Θ integer values. Stocks of the same type have identical delay parameters: δik = δjk

if θ(i) = θ(j). Delay parameters may also vary across factors k, providing empirical

flexibility and permitting different speeds of reaction to different types of news. Given

that type determines the delay parameters, we henceforth index by θ, i.e., δθk.

Stocks are assigned types according to independent draws from a discrete distri-

bution with probabilities 0 < πθ ≤ 1,
∑

θ πθ = 1. To simplify other aspects of the

cross-section, stocks are otherwise identical. In particular, in a given style portfolio

stocks have the same fundamental loadings: βik = βk for all i. We assume many

stocks, and form well-diversified sub-portfolios, each containing stocks of a single type.
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Following Lemma 2 in the Appendix, the returns of each type-θ sub-portfolio follow:

rθt = rft +
K∑
k=1

(1− δθk) (Dθk,t−1 + βkfkt) (23)

Dθkt = δθk (Dθk,t−1 + βkfkt) . (24)

We assume K = 2 sources of systematic fundamentals for each style portfolio.

The first factor (k = 1) represents market information. The second factor (k = 2)

captures portfolio-specific information that is orthogonal to the market. Without loss

of generality, we normalize the loading on the second factor to one, i.e., β2 = 1.

The case of a single type, Θ = 1, is naturally parsimonious. After calibrating the

market parameters µ1 and σ1 to an observable index, only four parameters remain: a

market loading β, the standard deviation of the second factor, σ2, and delay parameters

for market and non-market information, δ1 and δ2, where the arbitrary index for θ in

δθk is suppressed.22 When δ1 = δ2 the model collapses to a single factor, matching the

“lagger” portfolio in Proposition 2. Information diffusion is slow but not heterogeneous

across firms or factors, as in LM and earlier models that imply a fast geometric decline

in portfolio autocorrelations.23 Our model similarly implies a geometric decline in

autocorrelations when Θ = 1 and δ1 = δ2, as shown in Lemmas 1 and 2 of the Appendix.

When Θ = 1 but δ1 6= δ2, the model permits a richer autocorrelation structure.

The separate roles of δ1 and δ2 can be empirically identified by their effects on lagged

market betas. Slow reaction to market information, 0 < δ1 < 1, generates positive

portfolio autocorrelations through positive loadings on the lagged market. In contrast,

slow reaction to non-market information generates positive portfolio autocorrelations

without impacting loadings on the lagged market.

Differentiating between the two channels helps to reveal economic mechanisms. In

22The mean of the second factor is calibrated by matching the model-implied logarithmic return of the style
portfolio to its empirical value, which can be accomplished analytically given the other parameters.

23LM permit random occurrence of nontrading, but all firms have the same nontrading probability. For the
geometric decline of autocorrelations, see their equation 2.26.
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general, portfolio autocorrelations might be caused by slow reaction to information, or

alternatively by time-varying risk premia, e.g., Conrad and Kaul (1988). Existing lit-

erature gives evidence of slow price reactions that cannot be explained by time-varying

risk premia (see footnote 6). We similarly conjecture that time-varying risk premia are

not a likely explanation for horizon effects in average returns: The observed horizon

effects are most pronounced in the range of daily to quarterly frequencies, whereas

movements in risk-premia are more important at lower frequencies (e.g., Campbell,

Lo, and MacKinlay (1997)). Decomposing portfolio autocorrelations into market ver-

sus non-market contributions provides direct evidence. Market returns are observable,

and already embed time variation in market risk. Autocorrelations caused by lagged

loadings on the market strengthen evidence in favor of the “slow reaction” channel.

With two delay types, Θ = 2, we associate θ = 0 with stocks that incorporate

information immediately (δ01 = δ02 = 0). The model then has five parameters,

β, δ11, π0, σ2, δ12, and when δ11 = δ12 matches the analytically tractable case with “lead-

ers” and “laggers” in Proposition 3.

For Θ > 2, to obtain parsimony we draw on the literature on long-memory and

power laws in financial economics (Baillie, 1996; Calvet and Fisher, 2008, 2013; Gabaix,

2009). Observing Figure 1, a slow power-law decay may provide a good approxi-

mation of portfolio autocorrelations. We again associate the type θ = 0 with im-

mediate information incorporation (δ01 = δ02 = 0). Borrowing from Calvet and

Fisher (2001, 2004, 2007), the remaining types θ = 1, ...,Θ− 1 have equal probability,

π1 = ... = πΘ−1 = (1 − π0)/(Θ − 1), and the delay parameters are transformed into

half-lives with a geometric progression:

hθk ≡
ln 0.5

ln δθk
= 2θ−1h1k. (25)

Following Calvet and Fisher (2008), building on Granger (1980) and Ding and Granger

(1996), the equal-weighted aggregation of components with a geometric series of half-
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lives mimics a power-law decline in autocorrelations.24 While these are strong assump-

tions, our empirical work can determine their validity. Independent of the number of

delay types, the model has five parameters: Ψ ≡ (β, h11, π0, σ2, h12). With these limited

degrees of freedom, we match a broad set of empirical moments.

5.2. Simulated Method of Moments Estimation

Our empirical approach is a standard simulated method of moments estimation (Lee

and Ingram, 1991; Duffie and Singleton, 1993; Gourieroux, Monfort, and Renault,

1993). For a given style portfolio and parameter vector Ψ, we simulate from the model

10 portfolio returns of the same length as the data.25 For a given set of moments,

detailed below, we calculate the differences between the empirical moments and the

average moments over model simulations. The differences are squared and summed to

form an objective function, which is minimized by varying the parameter vector Ψ.26

Regarding motivation for moments, LM show that a model of the first-order auto-

correlation of returns has implications for higher-order autocorrelations and variance

ratios. It is natural to use such moments to estimate and evaluate the model. Addi-

tionally, we decompose autocorrelations into market and non-market channels, using

loadings on the market and its lags for identification. Finally, the ultimate goal is to

better understand horizon effects in average returns. We do not use these in estimation,

but evaluate the ability of the fitted model to match the observed horizon effects.

One issue is that structural estimation can sometimes appear as a “black box” with

24The base of the geometric progression is not essential, and is set to two for simplicity. In other related
work, BRW model multiple classes of firms with different nontrading probabilities and show enhanced first-order
autocorrelations relative to LM, but do not match the empirical level or consider higher order autocorrelations.
Their approach requires many parameters. By constraining parameters as suggested by the literature on power
laws, we obtain a parsimonious specification that can be structurally estimated across a range of horizons.

25This ensures that simulation error plays a negligible role in our results. Moment condition differences are
(1 + 1/nsim) times larger than the variance of a single draw, hence standard errors are only

√
1 + 1/nsim

larger due to simulation error versus the case where analytical formulas for the moments are available.
26The objective function uses an identity weighting matrix, as in Cochrane (2001). This permits meaningful

comparisons across versions of the model, since weights are constant, and has a simple economic interpretation.
The results are not sensitive to the exact weighting matrix, consistent with the close fit of the moments.
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the source of identification for individual parameters difficult to pin down. To avoid this,

we use a two-step procedure. Moment conditions from portfolio loadings on the market

and its lags contain information about only three parameters: the fundamental market

loading β, the delay parameter for market information, h11, and the probability π0.27

We estimate these three parameters in the first stage, using only market loadings as

instruments. In the second stage, we estimate σ2 and h21 using style portfolio variances

and autocorrelations. This approach clarifies the source of identification for each of the

parameters in the model but is not critical to our results; in untabulated results we

obtain nearly identical outcomes estimating all parameters in a single step.

We briefly describe the exact moments. In the first stage, we estimate (19) with

L = 63 lags. Moment conditions are the individual slope coefficients up to five lags,

βi0, · · · , βi5, and “sum” betas
∑J

τ=0 βiτ for the values J = 10, 21, 63. The second-stage

moment conditions are the one-day return variance, the first ten individual portfolio

autocorrelations, and sums of autocorrelations for lags 11− 20, ..., 41− 50, 51− 63.28

5.3. Structural Model Estimation Results

Table 8 gives estimation results for small and large stocks. Rows under the heading

“Simulated Market Returns” follow the specification of the model exactly. The first-

stage objective function ω1 shows that the fit of the beta regression (19) improves

monotonically with the number of types Θ for small stocks. The improvement can be

seen in Figure 5. With a single type Θ = 1 the geometric decline of the lagged betas

does not match the empirical values, but with Θ = 8 the model and empirical values fit

closely. The estimate of h11 is 0.46 when Θ = 8, implying that the longest delay has a

half life of approximately 30 days. For large stocks h11 is approximately zero, implying

27OLS estimates are unaffected by σ2 and h12, which determine residual variance and autocorrelations.
28The one-day variance is multiplied by 100, which ensures an almost exact match. The summed auto-

correlations are divided by the square root of the number of addends, which gives variability similar to the
individual autocorrelations. Variance ratios play a similar role to autocorrelations, and similar results can be
obtained using variance ratios rather than autocorrelations.
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that all types incorporate market information quickly.

The second-stage results, in both Table 8 and Figure 6, show that versions of the

model with Θ > 1 type are able to fit the autocorrelations of the small-stock portfolio

well. In all cases the persistence h21 of the second factor is less than h11 confirming the

importance of slow reaction to market information. The last two columns of Table 8

summarize horizon effects, giving the exact value of RS − BH and an approximation

based on Proposition 4. Since the model assumes normal distributions, the exact and

approximate values are identical (-3.15% annually for Θ = 8), whereas in the data the

approximate value is slightly closer to zero than the exact value (-4.91% versus -5.58%).

The model captures more than half of the horizon effects in the data.

Given the good fit of the model to autocorrelations, it seems surprising that horizon

effects are not closer to the data. To reconcile this, we estimate a second version of

the model, replacing the simulated iid market returns in the model with actual market

returns, while continuing to simulate the returns of the second factor. The results,

shown in Table 8 and Figures 5 and 6, give similar parameter estimates but a much

better match to variance ratios. The fit of this model to horizon effects in average

returns is summarized in Figure 7. With Θ = 1 delay type, about half of the horizon

effects are captured, and most of the horizon effects counterfactually concentrate at

very short horizons. With Θ = 8 types, the model fits the data very closely, especially

if one focuses on the normal approximations to both the model and the data.29

Empirical results for other US style portfolios are summarized in Table 9. Wherever

horizon effects are strong, the model with Θ = 8 components matches portfolio lagged

betas, autocorrelations, variance ratios, and horizon effects in mean returns. In these

cases, slow reaction to market information, h11 > 0, is necessary to match lagged betas,

and also drives portfolio autocorrelations and horizon effects in average returns. These

29Empirical differences caused by nonnormality are interesting but beyond the scope of this paper.
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results further support that slow information diffusion is an important contributor to

horizon effects in average returns.

6. Conclusion

When stocks adjust to new information slowly, average short-horizon portfolio returns

are biased. In contrast to existing literature assuming independent price noise, the bias

under slow information diffusion is downward rather than upward, and value weighting

does not eliminate the bias.

Consistent with theory, a broad range of style and international portfolios show

rescaling effects in daily and monthly average returns. The effects are large, up to

10% annually, statistically significant, and impact inferences about the performance

of investment strategies. Comparing horizon effects in non-investable indices versus

comparable investable ETF’s, we find that approximately half of the horizon effects

in indices are non-tradeable. We also show a statistically significant cross-sectional

link between exposure to lagged market information and the magnitude of a portfolio’s

horizon effects. We propose a simple diagnostic for determining the horizon at which

the impact of slow reaction becomes negligible, and corrections to average short-horizon

returns that account for slow reaction.

A parsimonious version of the model, using only five parameters, permits heteroge-

neous reaction to market and non-market factors. The model matches empirical lagged

betas, autocorrelations, variance ratios, and average returns across a range of horizons.

Narrower sets of these moments have proven challenging to understand in earlier lit-

erature (LM, BRW). We anticipate growing interest in the precise mechanisms driving

information diffusion over time and across stocks.
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Appendix A: Proofs

Lemma 1 The information deficits Dikt follow AR(1) processes and have unconditional

normal distributions with E (Dikt) = δ
1−δµk and Var (Dikt) = δ2

1−δ2σ
2
k.

Proof of Lemma 1: Let fkt = µk + σkξkt where the ξkt are independent standard

normals. Since 0 ≤ δ < 1, substituting fkt in equation (4) gives the result. �

Lemma 2 Denote by D1t the systematic information deficit of the lagger portfolio.

Returns of a well-diversified, value-weighted portfolio of laggers are given by

rt = (1− δ) (D1,t−1 + f1t) . (26)

Proof of Lemma 2: We assume a large number N of stocks i with identically dis-

tributed returns and initial price epi0 = 1. The value-weighted portfolio return at any

date t is:

ert =

∑N
i=1 e

pit∑N
i=1 e

pi,t−1

=
1
N

∑N
i=1 e

pit

1
N

∑N
i=1 e

pi,t−1

. (27)

For each stock, applications of equation (6), backward iteration using equation (7), and

the geometric series imply

pit = (1− δ)
t∑

τ=1

(f1τ + f1+i,τ +Di,1,τ−1 +Di,1+i,τ−1) , (28)

= (1− δ)

(
t−1∑
τ=0

τ∑
s=0

δsf1,t−τ +
t−1∑
τ=0

τ∑
s=0

δsf1+i,t−τ +
t−1∑
τ=0

δτDi,1,0 +
t−1∑
τ=0

δτDi,1+i,0

)

=
t−1∑
τ=0

(1− δτ+1)f1,t−τ +
t−1∑
τ=0

(1− δτ+1)f1+i,t−τ + (1− δt)Di,1,0 + (1− δt)Di,1+i,0.

We assume date-0 systematic delay states Di,1,0 = δ
1−δµ1 and that idiosyncratic delay

states Di,1+i,0 are drawn from their unconditional distributions. The first term of (28)

is independent of i and all random variables are independent. As N →∞,

1

N

N∑
i=1

epit → e
∑t−1
τ=0(1−δτ+1)f1,t−τE(e

∑t−1
τ=0(1−δτ+1)f1+i,t−τ )e

δ(1−δt)
1−δ µ1E(e(1−δt)Di,1+i,0), (29)
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where the expectation is taken at t = 0. Normal factors and delay states imply:

E(e
∑t−1
τ=0(1−δτ+1)f1+i,t−τ ) = e−

1
2
σ2
i

∑t−1
τ=0(1−δτ+1)+ 1

2
σ2
i

∑t−1
τ=0(1−δτ+1)2 = e−

1
2
σ2
i

∑t−1
τ=0 δ

τ+1(1−δτ+1)

E(e(1−δt)Di,1+i,0) = e
(1−δt) δ

1−δ (− 1
2
σ2
i )+ 1

2
(1−δt)2 δ2

1−δ2
σ2
i . (30)

Substituting into (29), calculating the limit of (27), and assuming large t confirms that

slow diffusion of idiosyncratic news diversifies away:

rt =
t−1∑
τ=0

(1− δτ+1)f1,t−τ −
t−2∑
τ=0

(1− δτ+1)f1,t−1−τ

= (1− δ)f1,t +
t−1∑
τ=1

(1− δτ+1)f1,t−τ −
t−1∑
τ=1

(1− δτ )f1,t−τ

= (1− δ)
t−1∑
τ=0

δτf1,t−τ = (1− δ) (D1,t−1 + f1t) . � (31)

Lemma 3 Denote by p∗t and pt the log prices of the well-diversified portfolios of leaders

and laggers, respectively, and by D1t the information deficit of the lagger portfolio.

Leader and lagger portfolio logarithmic prices are cointegrated: p∗t = pt +D1t.

Proof of Lemma 3: The proof is by induction. As before, p∗0 = p0 and D1,0 = 0, so

that p∗0 = p0 +D1,0 = 0. Assuming p∗t−1 = pt−1 +D1,t−1, equations (26) and (7) give:

pt +D1t = pt−1 + (1− δ)(D1,t−1 + f1t) + δ(D1,t−1 + f1t)

= pt−1 +D1,t−1 + f1t = p∗t−1 + f1t = p∗t . � (32)

Proof of Proposition 1: The unconditional mean and variance of lagger returns

follows by applying expectation and variance operator to both sides of equation (6) and

then substituting the expressions for E (Dikt) and Var (Dikt) from Lemma 1. The lagger

variance is bounded by the leader variance since 0 < δ < 1 implies that 0 < 1−δ
1+δ

< 1. �

Proof of Proposition 2: The unconditional mean and variance of lagger portfolio

returns follow by applying expectation and variance operator to both sides of equation

(26) and substituting the expressions for E (Dikt) and Var (Dikt) from Lemma 1. �
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Proof of Proposition 3: Using Lemma 3, the weight wt−1 in equation (9) is:

(1− π)ept−1

πep
∗
t−1 + (1− π)ept−1

=
(1− π)ept−1

πept−1+D1,t−1 + (1− π)ept−1
=

(1− π)

πeD1,t−1 + (1− π)
. (33)

Taking the expectation of (8) and applying the definition of covariance gives (10). �

Proof of Proposition 4: Normality of the returns at all horizons implies R̄RS
in =

en(µi+σ
2
i /2) and R̄in = enµi+σ

2
in/2. The ratio of these expressions gives equation (15). �

Proof of Proposition 5: First calculate

αRSin ≡ nαi1 = nR̄i1 −
[
nR̄f1 + β1

(
nR̄M1 − nR̄f1

)]
= (1 + n(R̄i1 − 1))

−
[
(1 + n(R̄f1 − 1)) + β1

(
(1 + n(R̄M1 − 1))− (1 + n(R̄f1 − 1))

)]
= νlinR̄in −

[
νlfnR̄fn + β1

(
νlMnR̄Mn − νlfnR̄fn

)]
. (34)

The difference αRSin − αin is then:

αRSin −
(
R̄in −

[
R̄fn + βn

(
R̄Mn − R̄fn

)])
(35)

= (νlin − 1)R̄in − β1(νlMn − 1)R̄Mn + (βn − β1)
(
R̄Mn − R̄fn

)
− (1− β1)(νlfn − 1)R̄nf .

The approximation (18) follows if rescaling has an insignificant impact on the average

return of the risk-free asset, νlfn ≈ 1. �

Appendix B: Descriptions of U.S. Style Portfolios

Using data from CRSP and Compustat, we form decile portfolios on characteristics, and

calculate returns for the top and bottom deciles. IEW returns invest $1 in each stock

at the beginning of each rebalancing period and holding the resulting portfolio until

the next rebalancing date. IVW returns invest in each stock an amount proportional

to its most recent market capitalization and hold until the next rebalancing date. The

characteristics and their formation details are:
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Market Equity: Following Fama and French (1993), we sort on July 1 of year τ by the

market value of equity at the end of τ − 1. Portfolios are held for 12 months, and the

sample period is 1926-2009.

Book-to-Market: Following Fama and French (1993), we sort on July 1 of year τ based

on the ratio of book value of equity to the end-of-calendar-year τ − 1 market value of

equity. Book equity is stockholders’ book equity plus balance sheet deferred taxes plus

investment tax credit less redemption value of preferred stock. If redemption value of

preferred stock is unavailable, we use liquidation value. If stockholders’ equity value is

unavailable, we compute it as the sum of book value of common equity and value of

preferred stock. If these items are not available, stockholders’ equity is the difference

between total assets and total liabilities. Portfolios are held for 12 months, and the

sample period is 1964-2009.

Momentum: At the beginning of each month t, we sort by cumulative returns in months

t− 12 to t− 2. Portfolios are held for one month, and the sample period is 1927-2009.

Price: At the beginning of each month t, we sort by price per share at the end of month

t− 2. Portfolios are held for one month, and the sample period is 1926-2009.

Short-term reversal: At the beginning of each month t, we sort by return in month

t− 1. Portfolios are held for one month, and the sample period is 1926-2009.

Volatility: At the beginning of each month t, we sort by their standard deviation of

daily stock returns estimated from months t − 13 to t − 2. Portfolios are held for one

month, and the sample period is 1927-2009.

Illiquidity: We sort on January 1 of year τ based on the Amihud (2002) price impact

measure estimated in year τ−1. The Amihud price impact measure is the average ratio

of absolute daily returns to daily dollar volume. Portfolios are held for 12 months, and

the sample period is 1927-2009.

Z-Score: We sort on July 1 of year τ based on the Altman (1968) bankruptcy predictor
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computed in the fiscal year ending in calendar year τ − 1. Portfolios are held for 12

months, and the sample period is 1964-2009.

Appendix C: Derivation of Standard Errors

We use the delta method to derive standard errors for tests involving R̄RS
n , in Tables

2, 5, and 6. For any function of variables h(·), the delta method gives Var (h(·)) =

(∇h)′Σ(∇h), where ∇h is the vector of partial derivatives and Σ is the covariance

matrix of the variables. Given a series of T gross returns, define:

XBH ≡



R1 × ...×Rn

Rn+1 × ...×R2n

...

RT−n+1 × ...×RT


XRSl ≡



(R1 − 1) + ...+ (Rn − 1) + 1

(Rn+1 − 1) + ...+ (R2n − 1) + 1

...

(RT−n+1 − 1) + ...+ (RT − 1) + 1


(36)

The means of XBH and XRSl are respectively R̄n and R̄RSl
n in equation (12). Denote

the variances and covariance by VBH , VRSl, and VRSl,BH .

To obtain Var(R̄RS
n ), set h(R̄RSl

n ) = ((R̄RSl
n − 1)/n) + 1)n and Σ = VRSl. The

expression simplifies to Var
(
R̄RS
n

)
= VRSl(((R̄

RSl
n −1)/n)+1)2(n−1). To obtain Var(R̄RS

n −

R̄n), set h(R̄RSl
n , R̄n) = ( R̄

RSl
n −1
n

+ 1)n − R̄n and

Σ =

 VRSl VRSl,BH

VRSl,BH VBH

 . (37)

For two series i and j, calculate Var([R̄RS
in − R̄in]− [R̄RS

jn − R̄jn]) by setting:

h
(
R̄RSl
in , R̄in, R̄

RSl
jn , R̄jn

)
=
(
R̄RSlin −1

n
+ 1
)n
− R̄in −

(
R̄RSljn −1

n
+ 1
)n

+ R̄jn, (38)

Σ =



ViRSl ViRSl,iBH ViRSl,jRSl ViRSl,jBH

ViRSl,iBH ViBH ViBHl,jRSl ViBH,jBH

ViRSl,jRSl ViBH,jRSl VjRSl VjRSl,jBH

ViRSl,jBH ViBH,jBH VjRSl,jBH VjBH


. (39)
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Table 1. Horizon Effects in Style Portfolios

Performance Holding Horizon Holding Horizon
Metric 1 day 1 mo 3 mo 6 mo 1 year 1 day 1 mo 3 mo 6 mo 1 year

A. CRSP Value-Weighted Index
Daily 0.04 0.84 2.55 5.17 10.61
Monthly 0.86 2.62 5.30 10.89
Quarterly 2.62 5.31 10.90
Semi-Annual 5.33 10.94
Annual 10.97

B. Market Capitalization, Initially Value-Weighted
Big Small

Daily 0.04 0.80 2.43 4.92 10.09 0.06 1.26 3.83 7.80 16.22
Monthly 0.81 2.45 4.95 10.14 1.46 4.44 9.07 18.97
Quarterly 2.49 5.04 10.32 5.12 10.49 22.09
Semi-Annual 5.06 10.37 10.43 21.95
Annual 10.49 22.65

C. Market Capitalization, Initially Equal-Weighted
Big Small

Daily 0.04 0.81 2.46 4.97 10.20 0.07 1.41 4.30 8.78 18.34
Monthly 0.83 2.52 5.10 10.46 1.63 4.98 10.21 21.46
Quarterly 2.58 5.22 10.71 5.73 11.78 24.94
Semi-Annual 5.19 10.64 11.78 24.94
Annual 10.69 25.87

D. Book-to-Market, Initially Value-Weighted
Value Growth

Daily 0.05 1.16 3.52 7.17 14.85 0.04 0.77 2.33 4.72 9.65
Monthly 1.20 3.63 7.39 15.33 0.78 2.37 4.79 9.80
Quarterly 3.64 7.42 15.38 2.42 4.90 10.04
Semi-Annual 7.31 15.16 4.96 10.16
Annual 15.37 10.52

E. Book-to-Market, Initially Equal-Weighted
Value Growth

Daily 0.06 1.36 4.13 8.42 17.55 0.02 0.48 1.44 2.90 5.89
Monthly 1.49 4.52 9.25 19.36 0.59 1.79 3.62 7.37
Quarterly 4.70 9.62 20.16 1.97 3.98 8.11
Semi-Annual 9.65 20.24 3.82 7.79
Annual 19.91 7.82

F. Momentum, Initially Value-Weighted
Winners Losers

Daily 0.07 1.51 4.60 9.41 19.71 -0.01 -0.15 -0.46 -0.91 -1.81
Monthly 1.51 4.61 9.44 19.77 0.03 0.09 0.18 0.37
Quarterly 4.72 9.67 20.27 0.37 0.75 1.51
Semi-Annual 9.76 20.47 0.73 1.47
Annual 20.26 1.82

G. Momentum, Initially Equal-Weighted
Winners Losers

Daily 0.08 1.71 5.23 10.74 22.62 0.03 0.67 2.02 4.09 8.34
Monthly 1.80 5.51 11.32 23.93 1.00 3.04 6.17 12.72
Quarterly 5.74 11.82 25.04 3.47 7.07 14.64
Semi-Annual 12.05 25.56 7.21 14.93
Annual 24.69 14.97

Notes: This table reports average buy-and-hold returns (BH, on the diagonal) as well as geometrically rescaled
short horizon returns (RS, above the diagonal). Returns are calculated using periods of n = 1, 21, 63, 126, and 252
days corresponding to Daily, Monthly, Quarterly, Semi-Annual, and Annual frequencies, and are scaled to the
corresponding Holding Horizon. Panel A shows averages of the value-weighted CRSP index, and the remaining
Panels show either initially equal-weighed (IEW) or initially value-weighted (IVW) averages of size, value, and
momentum portfolios. The Appendix provides a detailed description of the portfolios.



Table 2. Horizon Effects: Significance and Decomposition

A. Daily Performance Metric, Quarterly Holding Horizon

High Low HL High Low HL High Low HL High Low HL
Market Capitalization Book-to-Market Momentum Inverse Price

RS 2.46 4.30 -1.84 4.13 1.44 2.69 5.23 2.02 3.21 5.54 2.91 2.62
BH 2.58 5.73 -3.15 4.70 1.97 2.73 5.74 3.47 2.27 7.83 3.07 4.76
RS-BH -0.12 -1.43 1.31 -0.57 -0.53 -0.04 -0.51 -1.45 0.94 -2.29 -0.16 -2.14

[-2.25] [-3.13] [3.13] [-6.67] [-4.67] [-0.45] [-4.18] [-4.14] [3.00] [-3.93] [-4.32] [-3.77]
σRS 1.09 1.45 0.88 1.22 1.35 1.47 1.47 0.96
ρRS 0.08 0.13 0.25 0.19 0.15 0.25 0.23 0.13
VR 1.33 2.76 3.30 2.14 1.88 2.90 3.63 1.57
RS/BH 0.95 0.75 0.88 0.73 0.91 0.58 0.71 0.95
νnetin 0.95 0.79 0.88 0.73 0.91 0.62 0.75 0.94

Short-Term Reversal Volatility Illiquidity Z-Score
RS 3.07 3.06 0.01 3.08 2.65 0.43 3.18 2.94 0.25 3.54 1.30 2.25
BH 3.80 4.31 -0.50 4.52 2.79 1.73 3.54 3.31 0.23 3.82 2.25 1.57
RS-BH -0.73 -1.24 0.51 -1.44 -0.14 -1.30 -0.36 -0.37 0.01 -0.28 -0.96 0.68

[-5.14] [-4.12] [2.72] [-4.65] [-4.20] [-4.50] [-4.66] [-3.27] [0.20] [-4.85] [-5.08] [4.21]
σRS 1.30 1.41 1.73 0.66 0.92 1.48 0.87 1.16
ρRS 0.18 0.21 0.20 0.17 0.20 0.08 0.17 0.27
VR 2.30 2.77 2.40 2.06 2.29 1.52 2.17 3.20
RS/BH 0.81 0.71 0.68 0.95 0.90 0.89 0.93 0.58
νnetin 0.81 0.73 0.70 0.95 0.90 0.89 0.92 0.58

B. Monthly Performance Metric, Quarterly Holding Horizon

Market Capitalization Book-to-Market Momentum Inverse Price
RS 2.52 4.98 -2.46 4.52 1.79 2.73 5.51 3.04 2.47 6.77 3.02 3.75
BH 2.58 5.73 -3.15 4.70 1.97 2.73 5.74 3.47 2.27 7.83 3.07 4.76
RS-BH -0.06 -0.74 0.69 -0.17 -0.18 0.00 -0.23 -0.44 0.20 -1.06 -0.05 -1.01

[-1.35] [-2.22] [2.25] [-2.39] [-1.81] [0.01] [-2.56] [-1.87] [0.96] [-2.56] [-1.71] [-2.52]
σRS 5.39 9.18 6.49 7.42 7.53 10.41 10.84 5.12
ρRS 0.08 0.22 0.29 0.14 0.15 0.20 0.23 0.10
VR 1.14 1.44 1.27 1.21 1.26 1.21 1.41 1.15
RS/BH 0.98 0.87 0.96 0.91 0.96 0.87 0.86 0.98
νnetin 0.98 0.90 0.96 0.91 0.96 0.90 0.90 0.98

Short-Term Reversal Volatility Illiquidity Z-Score
RS 3.53 3.81 -0.29 4.12 2.75 1.36 3.41 3.15 0.26 3.74 1.99 1.75
BH 3.80 4.31 -0.50 4.52 2.79 1.73 3.54 3.31 0.23 3.82 2.25 1.57
RS-BH -0.28 -0.49 0.22 -0.41 -0.04 -0.37 -0.13 -0.16 0.03 -0.08 -0.26 0.18

[-2.75] [-2.32] [1.56] [-1.54] [-1.41] [-1.49] [-2.60] [-2.16] [0.61] [-1.97] [-1.45] [1.15]
σRS 8.03 9.41 11.31 4.01 5.72 7.73 5.37 8.64
ρRS 0.23 0.19 0.19 0.08 0.17 0.12 0.13 0.23
VR 1.26 1.30 1.17 1.18 1.25 1.17 1.19 1.21
RS/BH 0.93 0.89 0.91 0.99 0.96 0.95 0.98 0.89
νnetin 0.93 0.90 0.92 0.98 0.96 0.95 0.98 0.89

Notes: This table reports and decomposes the horizon effects in initially equally weighted style portfolios. In Panel
A, the rescaled (RS) performance measures are obtained from daily returns and compared to quarterly buy-and-
hold (BH) returns. Panel B compares monthly RS returns to quarterly BH returns. RS returns are computed by
geometrically rescaling the daily (Panel A) or monthly (Panel B) portfolio average returns to a quarterly frequency.
BH returns are computed as average of 63-day (quarterly) returns. t-statistics for the difference between RS and BH
returns are shown in square brackets and are calculated using the Delta method described in the Appendix. Also
reported are the standard deviation σRS and first-order autocorrelation ρRS of daily (Panel A) and monthly (Panel
B) returns, the relevant variance ratios (VR), as well as the empirically measured bias (RS/BH) and its analytical
approximation νnetin from Proposition 4. The Appendix provides a detailed description of the portfolios.



Table 3. Horizon Effects in Alphas

A. Daily Alphas and Betas

High Low HL High Low HL High Low HL High Low HL
Market Capitalization Book-to-Market Momentum Inverse Price

Alpha 0.02 0.65 -0.63 0.97 -1.72 2.69 1.95 -1.81 3.76 1.46 0.42 1.04
t (Alpha) [0.27] [1.28] [-1.21] [2.83] [-5.01] [6.75] [6.30] [-4.25] [7.91] [2.91] [3.25] [1.97]
Beta 0.99 1.72 -0.73 1.54 1.60 -0.06 1.38 1.77 -0.39 1.86 0.96 0.90

Short-Term Reversal Volatility Illiquidity Z-Score
Alpha -0.42 -0.62 0.20 -1.11 0.63 -1.75 0.48 -0.22 0.71 0.84 -2.10 2.94
t (Alpha) [-1.33] [-1.61] [0.49] [-2.20] [5.55] [-3.42] [2.33] [-0.86] [2.45] [3.83] [-4.57] [7.14]
Beta 1.55 1.66 -0.11 1.97 0.67 1.30 1.08 1.35 -0.28 1.14 1.82 -0.68

B. Monthly Alphas and Betas

Market Capitalization Book-to-Market Momentum Inverse Price
Alpha 0.03 0.92 -0.90 1.42 -1.40 2.82 2.18 -1.02 3.21 2.26 0.48 1.78
t (Alpha) [0.33] [1.41] [-1.34] [2.60] [-2.93] [5.20] [5.68] [-1.54] [4.69] [2.77] [3.42] [2.10]
Beta 0.99 1.90 -0.91 1.47 1.59 -0.12 1.36 1.82 -0.46 2.03 0.95 1.08

Short-Term Reversal Volatility Illiquidity Z-Score
Alpha -0.13 -0.09 -0.04 -0.34 0.69 -1.03 0.67 -0.10 0.76 1.04 -1.36 2.40
t (Alpha) [-0.33] [-0.17] [-0.09] [-0.49] [4.57] [-1.43] [3.03] [-0.29] [2.22] [3.50] [-1.76] [3.68]
Beta 1.58 1.72 -0.14 2.01 0.67 1.34 1.06 1.35 -0.29 1.12 1.73 -0.61

C. Quarterly Alphas and Betas

Market Capitalization Book-to-Market Momentum Inverse Price
Alpha -0.02 1.59 -1.61 1.87 -1.17 3.04 2.46 -0.95 3.41 2.92 0.59 2.33
t (Alpha) [-0.21] [1.73] [-1.72] [3.06] [-2.31] [4.87] [5.71] [-1.27] [4.40] [2.45] [3.55] [1.90]
Beta 1.01 1.91 -0.90 1.22 1.49 -0.26 1.33 1.96 -0.63 2.25 0.90 1.35

Short-Term Reversal Volatility Illiquidity Z-Score
Alpha 0.19 0.06 0.13 0.01 0.68 -0.68 0.73 -0.06 0.80 1.12 -1.00 2.11
t (Alpha) [0.44] [0.09] [0.26] [0.01] [3.78] [-0.79] [3.00] [-0.18] [2.04] [3.60] [-1.21] [2.89]
Beta 1.51 1.86 -0.35 2.04 0.69 1.34 1.07 1.38 -0.31 1.12 1.58 -0.46

D. Decomposition of the Difference Between Rescaled Daily and Quarterly Alphas

Market Capitalization Book-to-Market Momentum Inverse Price
Component 1 -0.14 -1.51 1.37 -0.64 -0.53 -0.12 -0.64 -1.47 0.83 -2.43 -0.19 -2.24
Component 2 0.14 0.24 -0.10 0.09 0.10 0.00 0.20 0.25 -0.06 0.26 0.13 0.12
Component 3 0.04 0.33 -0.29 -0.37 -0.13 -0.24 -0.08 0.34 -0.42 0.71 -0.10 0.81
Alpha Bias 0.04 -0.94 0.98 -0.90 -0.55 -0.35 -0.52 -0.86 0.35 -1.46 -0.16 -1.29

Short-Term Reversal Volatility Illiquidity Z-Score
Component 1 -0.77 -1.28 0.51 -1.48 -0.17 -1.31 -0.40 -0.40 0.01 -0.33 -0.95 0.63
Component 2 0.22 0.24 -0.02 0.24 0.08 0.16 0.15 0.19 -0.04 0.07 0.11 -0.04
Component 3 -0.07 0.36 -0.43 0.12 0.04 0.09 -0.01 0.05 -0.06 -0.03 -0.29 0.26
Alpha Bias -0.61 -0.68 0.07 -1.12 -0.05 -1.07 -0.25 -0.16 -0.09 -0.28 -1.10 0.82

E. Decomposition of the Difference Between Rescaled Monthly and Quarterly Alphas

Market Capitalization Book-to-Market Momentum Inverse Price
Component 1 -0.08 -0.82 0.75 -0.23 -0.18 -0.06 -0.33 -0.46 0.13 -1.21 -0.08 -1.13
Component 2 0.08 0.15 -0.07 0.05 0.06 0.00 0.10 0.14 -0.03 0.14 0.07 0.08
Component 3 0.04 0.02 0.02 -0.29 -0.12 -0.17 -0.06 0.25 -0.30 0.39 -0.09 0.48
Alpha Bias 0.04 -0.67 0.72 -0.45 -0.23 -0.22 -0.28 -0.08 -0.20 -0.66 -0.10 -0.55

Short-Term Reversal Volatility Illiquidity Z-Score
Component 1 -0.31 -0.54 0.22 -0.46 -0.06 -0.40 -0.16 -0.19 0.02 -0.12 -0.26 0.15
Component 2 0.12 0.13 -0.01 0.06 0.02 0.04 0.08 0.10 -0.02 0.04 0.06 -0.02
Component 3 -0.13 0.25 -0.39 0.05 0.04 0.00 0.02 0.05 -0.04 -0.01 -0.18 0.17
Alpha Bias -0.32 -0.15 -0.17 -0.34 0.01 -0.35 -0.07 -0.03 -0.03 -0.08 -0.36 0.28

Notes: This table reports in Panels A and B daily and monthly alphas linearly rescaled to a quarterly horizon. Buy-
and-hold quarterly alphas are shown in Panel C. Panels D and E decompose the differences between rescaled and
buy-and-hold alphas into three components following Equation (18). Component 1 is the bias in portfolio returns,
(νnetin − 1)(R̄BHin − 1), component 2 is the bias in factor returns, −βi(νnetMn − 1)(R̄BHMn − 1), and component 3 is the
beta difference, −(βi − βin)(R̄BHMn − 1). Daily and monthly betas are estimated with 63 and 3 Dimson (1979) lags,
respectively. The Appendix provides a detailed description of the portfolios.



Table 4. Horizon Effects in Country Index Portfolios

Developed Emerging Frontier

A. Ratio of rescaled and buy-and-hold average returns (RS/BH)
25th percentile 0.85 0.80 0.74
Median 0.92 0.82 0.78
75th percentile 0.97 0.95 0.91
Mean 0.90 0.86 0.81

B. Difference between rescaled and buy-and-hold average returns (RS-BH)
25th percentile -1.97 -4.45 -4.54
Median -1.16 -2.22 -3.70
75th percentile -0.52 -0.88 -2.19
Mean -1.26 -4.00 -3.81

Notes: This table reports quartiles and the mean of horizon effects in returns of MSCI country indices within
MSCI development classifications. Horizon effects are the ratio (Panel A) or the difference (percent annual,
Panel B) between geometrically rescaled average monthly returns compounded to annual frequency (RS) and
average annual buy-and-hold returns (BH). Countries are classified by MSCI as Developed, Emerging, or
Frontier. Developed countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,
Greece, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore,
Spain, Sweden, Switzerland, United Kingdom, and United States. Emerging countries are Brazil, Chile, China,
Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Malaysia, Mexico, Morocco, Peru, Philippines,
Poland, Russia, South Africa, South Korea, Taiwan, Thailand, and Turkey. Frontier countries are Argentina,
Croatia, Estonia, Jordan, Kenya, Lebanon, Mauritius, Nigeria, Pakistan, Slovenia, and Sri Lanka. The full set
of results is available in the Internet Appendix.



Table 5. Horizon Effects in Developed Market Factor Portfolios

Small Big SMB High Low HML Losers Winners WML

A. Asia Pacific Excluding Japan
RS 11.80 14.93 -3.13 17.63 9.32 8.31 19.12 9.30 9.83
BH 16.04 16.72 -0.68 20.46 12.82 7.64 22.34 12.66 9.68
RS-BH -4.24 -1.79 -2.45 -2.83 -3.50 0.66 -3.22 -3.37 0.15

[-2.34] [-1.55] [-2.97] [-1.76] [-2.32] [0.99] [-2.10] [-1.50] [0.08]
RS/BH 0.74 0.89 0.86 0.73 0.86 0.73

B. Europe
RS 9.42 10.32 -0.90 12.45 7.03 5.42 16.48 4.48 12.00
BH 10.92 10.86 0.07 13.48 8.50 4.97 17.62 6.18 11.43
RS-BH -1.51 -0.54 -0.97 -1.02 -1.47 0.45 -1.14 -1.71 0.57

[-1.59] [-0.73] [-2.91] [-1.00] [-1.88] [0.77] [-1.27] [-1.52] [0.87]
RS/BH 0.86 0.95 0.92 0.83 0.94 0.72

C. Global
RS 9.84 8.81 1.03 11.78 6.58 5.20 14.09 5.97 8.13
BH 10.64 9.21 1.43 12.20 7.73 4.47 14.85 7.00 7.85
RS-BH -0.80 -0.41 -0.40 -0.42 -1.15 0.73 -0.76 -1.03 0.27

[-1.19] [-0.70] [-1.50] [-0.60] [-1.78] [1.65] [-1.01] [-1.17] [0.42]
RS/BH 0.92 0.96 0.97 0.85 0.95 0.85

D. Japan
RS 2.94 3.15 -0.21 6.13 0.29 5.83 4.15 2.86 1.29
BH 4.21 3.83 0.39 6.56 2.51 4.05 6.20 3.44 2.76
RS-BH -1.27 -0.68 -0.59 -0.43 -2.21 1.78 -2.06 -0.58 -1.47

[-1.18] [-0.87] [-0.71] [-0.50] [-1.40] [1.18] [-1.29] [-0.51] [-0.81]
RS/BH 0.70 0.82 0.93 0.12 0.67 0.83

E. North America
RS 13.44 10.79 2.65 14.05 9.94 4.11 17.77 9.36 8.42
BH 13.52 11.25 2.27 14.41 10.58 3.83 18.04 10.07 7.98
RS-BH -0.08 -0.46 0.38 -0.36 -0.64 0.28 -0.27 -0.71 0.44

[-0.11] [-0.75] [1.16] [-0.50] [-0.90] [0.64] [-0.30] [-0.76] [0.58]
RS/BH 0.99 0.96 0.97 0.94 0.99 0.93

Notes: This table reports horizon effects in returns (percent annual) of the developed market factor portfolios.
Geometrically rescaled returns (RS) are average monthly returns compounded to annual frequency. Buy-and-hold
returns (BH) are average annual returns. t-statistics for the difference between RS and BH returns are shown
in square brackets and are calculated using the Delta method described in the Appendix. The sample period is
1991-2012.



Table 6. Horizon Effects in Non-Investable and Investable Country Portfolios

MSCI Index iShares ETF Index(RS-BH)

Country RS BH RS/BH RS-BH RS BH RS/BH RS-BH vs ETF(RS-BH) Years

Australia 13.07 14.11 0.93 -1.04 [-0.72] 12.38 12.79 0.97 -0.41 [-0.32] -0.63 [-1.99] 16
Brazil 24.00 28.73 0.84 -4.73 [-1.39] 21.91 26.39 0.83 -4.47 [-1.46] -0.26 [-0.38] 12
Canada 12.86 13.85 0.93 -0.98 [-0.90] 12.10 12.66 0.96 -0.56 [-0.57] -0.43 [-2.36] 16
France 9.01 9.48 0.95 -0.47 [-0.56] 8.35 8.51 0.98 -0.17 [-0.21] -0.30 [-2.10] 16
Germany 10.24 10.94 0.94 -0.70 [-0.64] 9.90 10.27 0.96 -0.37 [-0.35] -0.32 [-1.65] 16
Hong Kong 9.47 10.60 0.89 -1.13 [-0.74] 8.48 9.23 0.92 -0.75 [-0.49] -0.38 [-1.70] 16
Italy 7.56 8.11 0.93 -0.55 [-0.45] 6.89 7.15 0.96 -0.25 [-0.22] -0.30 [-1.46] 16
Japan 1.64 2.69 0.61 -1.05 [-1.33] 1.16 1.96 0.59 -0.81 [-0.92] -0.24 [-1.36] 16
Malaysia 8.51 12.06 0.71 -3.56 [-1.10] 10.58 10.85 0.98 -0.27 [-0.07] -3.29 [-1.04] 16
Singapore 10.43 12.85 0.81 -2.42 [-1.41] 8.48 9.74 0.87 -1.25 [-0.74] -1.17 [-0.93] 16
South Africa 19.65 18.97 1.04 0.68 [0.48] 18.96 17.77 1.07 1.19 [0.82] -0.51 [-1.64] 9
South Korea 23.05 22.81 1.01 0.24 [0.08] 21.79 21.23 1.03 0.56 [0.19] -0.32 [-1.63] 12
Spain 11.48 11.66 0.98 -0.18 [-0.19] 10.83 10.61 1.02 0.22 [0.24] -0.40 [-1.69] 16
Sweden 13.81 15.71 0.88 -1.90 [-1.35] 12.10 13.30 0.91 -1.21 [-1.03] -0.69 [-1.67] 16
Switzerland 10.07 10.29 0.98 -0.22 [-0.36] 8.99 8.86 1.01 0.13 [0.21] -0.35 [-1.74] 16
Taiwan 10.41 10.86 0.96 -0.45 [-0.24] 8.35 8.40 0.99 -0.06 [-0.03] -0.39 [-1.14] 12
United Kingdom 6.79 7.92 0.86 -1.13 [-1.01] 6.18 6.96 0.89 -0.78 [-0.77] -0.35 [-1.77] 16

Notes: This table reports horizon effects in returns (percent annual) of MSCI country indices and the corresponding exchange-
traded funds (ETFs), as well as the difference in effects between indices and ETFs. Geometrically rescaled returns (RS) are average
monthly returns compounded to annual frequency. Buy-and-hold returns (BH) are average annual returns. t-statistics for the
difference between RS and BH returns are shown in square brackets and are calculated using the Delta method described in the
Appendix. The length of the sample periods is shown in the last column, and all sample periods end in 2012.



Table 7. Horizon Effects and Reaction to Lagged Market Information

Short Long
Reg Portfolio Horizon Horizon L DELAY R2 Obs

(1) U.S. style day quarter 63 -0.470 [-2.75] 0.305 16
(2) U.S. style month quarter 3 -0.335 [-2.65] 0.286 16
(3) MSCI country month year 12 -0.104 [-1.87] 0.044 56
(4) Country ETFs month year 12 -0.134 [-1.62] 0.064 17

Notes: This table reports coefficients, corresponding t-statistics in square brackets, and adjusted R2 values
from the following cross-sectional regressions:

(RS/BH)i = c0 + c1DELAYi + ηi.

RS/BHi is the ratio of the geometrically rescaled short-horizon average return on portfolio i and the long-

horizon buy-and-hold counterpart. The proxy for information delay, DELAYi ≡
∑L
τ=1 β̂iτ/

∑L
τ=0 β̂iτ , is the

ratio of the sum of coefficients on the lagged market return to the sum of all market coefficients from regressions
of portfolio i logarithmic excess returns on market logarithmic excess returns and its L lags. Regressions (1)
and (2) analyze the U.S. style portfolios from Table 2, specification (3) studies MSCI country indices from
Table 4, and regression (4) conducts the analysis on the exchange-traded funds (ETFs) from Table 6.



Table 8. Structural Estimation, Small and Large Stock Portfolios

Step One Step Two
parameters parameters RS −BH

Θ β h11 p0 ω1 σ2 h21 ω2 ω exact approx

A. Small Stocks -5.58 -4.91
Simulated Market Returns
1 1.45 0.96 - 11.24 18.7 0.02 2.67 13.90 -2.27 -2.27
2 1.64 6.73 0.36 5.72 21.1 0.34 0.62 6.34 -3.51 -3.51
3 1.64 4.60 0.35 5.37 21.1 0.22 0.67 6.04 -3.48 -3.48
4 1.65 3.07 0.33 4.88 20.9 0.13 0.72 5.60 -3.42 -3.42
6 1.66 1.17 0.27 3.66 20.2 0.03 0.84 4.50 -3.21 -3.21
8 1.71 0.46 0.16 2.57 19.8 0.01 0.83 3.40 -3.15 -3.15

Actual Market Returns
1 1.45 0.96 - 11.24 18.6 0.01 2.49 13.72 -3.25 -3.31
2 1.64 6.74 0.36 5.69 20.4 0.27 0.38 6.07 -4.58 -4.66
3 1.65 4.61 0.36 5.35 19.9 0.15 0.40 5.75 -4.48 -4.55
4 1.65 3.06 0.34 4.87 20.1 0.09 0.42 5.29 -4.47 -4.54
6 1.66 1.16 0.28 3.67 19.6 0.02 0.48 4.14 -4.29 -4.36
8 1.71 0.45 0.17 2.60 19.3 0.00 0.45 3.05 -4.25 -4.33

B. Large Stocks -0.48 -0.49
Simulated Market Returns
1 1.01 0.01 - 0.03 8.8 0.82 0.84 0.88 -0.24 -0.24
2 1.01 0.04 0.58 0.03 7.0 1.22 1.04 1.07 -0.10 -0.10
3 1.01 0.01 0.49 0.03 7.8 0.98 1.00 1.03 -0.15 -0.15
4 1.01 0.01 0.46 0.03 8.3 0.86 1.00 1.03 -0.19 -0.19
6 1.01 0.00 0.39 0.03 9.6 0.71 0.98 1.01 -0.28 -0.28
8 1.01 0.00 0.39 0.03 10.1 0.58 0.99 1.03 -0.28 -0.28

Actual Market Returns
1 1.01 0.01 - 0.03 3.6 0.36 0.01 0.05 -0.49 -0.51
2 1.01 0.04 0.58 0.03 4.0 1.26 0.01 0.04 -0.51 -0.53
3 1.01 0.01 0.49 0.03 4.0 0.65 0.01 0.04 -0.51 -0.52
4 1.01 0.01 0.46 0.03 3.9 0.40 0.01 0.04 -0.50 -0.52
6 1.01 0.00 0.39 0.03 4.0 0.16 0.01 0.04 -0.50 -0.52
8 1.01 0.00 0.44 0.03 4.0 0.08 0.01 0.04 -0.50 -0.52

Notes: This table reports parameters for structural models with Θ ∈ {1, 2, 3, 4, 6, 8} estimated using moments
produced by small stocks (Panel A) and large stocks (Panel B). Step One moment conditions are the individual
slope coefficients, βi0, · · · , βi5, from regression (19) with L = 63 lags and “sum” betas

∑J
τ=0 βiτ for J =

10, 21, 63. Step Two moment conditions are the one-day return variance, the first ten individual portfolio
autocorrelations, and sums of autocorrelations for lags 11 − 20, ..., 41 − 50, 51 − 63. The minimized SMM
objective function values for each stage, ω1 and ω2, along with the overall objective function value ω are
reported to provide an indication of the goodness of fit across models. The difference between the rescaled
and buy-and-hold returns at a horizon of 252 days, RS − BH, summarizes the horizon effects produced by
the best fitting parameterizations. “Simulated Market Returns” draws factor realizations f1t according to the
iid data generating process of the model. We set the mean and standard deviation, µ1 and σ1, to the sample
moments of daily logarithmic CRSP Index returns during 1927 - 2009. “Actual Market Returns” sets f1t to
the historical realized daily logarithmic CRSP index returns, while continuing to simulate the returns of f2t.



Table 9. Structural Estimation, Additional Portfolios

Step One Step Two
parameters parameters RS-BH

Θ β h11 p0 ω1 σ2 h21 ω2 ω exact approx

Momentum, Low -6.62 -5.90
1 1.65 0.75 - 4.92 16.4 9.86 9.25 14.18 -4.67 -4.73
8 1.74 0.13 0.03 1.06 21.4 0.05 0.78 1.84 -5.43 -5.50
High -2.29 -2.26
1 1.28 0.36 - 1.64 19.2 100.00 1.76 3.41 -1.99 -2.03
8 1.37 0.47 0.67 0.82 12.3 0.02 0.52 1.34 -2.10 -2.15

Volatility, Low -0.58 -0.60
1 0.68 0.37 - 0.11 6.0 14.47 0.47 0.58 -0.53 -0.54
8 0.68 0.02 0.00 0.04 1.1 0.80 0.20 0.24 -0.45 -0.45
High -7.52 -6.83
1 1.79 0.63 - 6.70 16.6 0.03 1.64 8.34 -4.09 -4.17
8 1.93 0.20 0.26 1.70 22.4 0.03 0.44 2.15 -5.98 -6.08

B/M, Low -2.26 -2.33
1 1.44 0.46 - 4.31 18.1 18.78 1.49 5.80 -2.30 -2.40
8 1.60 0.49 0.55 0.31 13.3 0.39 0.50 0.81 -2.16 -2.28
High -3.08 -3.15
1 1.31 1.05 - 11.20 10.4 0.03 6.01 17.20 -1.91 -2.00
8 1.63 0.79 0.25 0.09 14.2 0.13 0.91 1.00 -3.13 -3.24

Illiquidity, Low -1.67 -1.62
1 1.33 0.19 - 0.33 11.1 5.64 0.55 0.88 -1.57 -1.61
8 1.37 0.80 0.91 0.06 10.2 0.80 0.07 0.13 -1.26 -1.30
High -1.57 -1.59
1 1.03 0.55 - 0.92 10.3 78.59 3.00 3.92 -1.39 -1.41
8 1.05 0.06 0.00 0.42 8.1 0.00 0.42 0.84 -1.45 -1.47

Z-score, Low -4.53 -4.38
1 1.55 0.86 - 11.95 11.5 0.01 5.41 17.35 -2.22 -2.34
8 1.83 0.53 0.27 0.32 21.2 0.23 1.39 1.71 -4.30 -4.45
High -1.26 -1.30
1 1.09 0.49 - 1.76 7.4 0.00 2.05 3.81 -0.83 -0.88
8 1.13 0.13 0.33 0.07 7.9 0.08 0.30 0.38 -1.22 -1.27

Inverse Price, Low -0.71 -0.75
1 0.95 0.29 - 0.15 4.2 15.79 0.24 0.40 -0.74 -0.75
8 0.96 0.02 0.31 0.09 4.5 0.00 0.12 0.20 -0.74 -0.76
High -10.08 -8.46
1 1.59 1.03 - 9.93 21.8 100.00 23.82 33.75 -4.77 -4.84
8 1.81 0.30 0.08 1.81 24.5 0.04 0.96 2.77 -6.89 -6.98

Short-term Reversal, Low -5.26 -4.78
1 1.55 0.66 - 3.60 17.4 24.74 7.37 10.96 -3.93 -4.00
8 1.63 0.12 0.11 0.99 16.6 0.02 0.43 1.42 -4.07 -4.14
High -3.54 -3.32
1 1.38 0.50 - 4.01 17.5 25.38 3.42 7.44 -2.97 -3.03
8 1.52 0.35 0.47 0.72 12.7 0.02 0.38 1.11 -2.89 -2.94

Notes: This table reports parameters for structural models with Θ ∈ {1, 8} estimated using moments
produced by US style portfolios. Step One moment conditions are the individual slope coefficients,
βi0, · · · , βi5, from regression (19) with L = 63 lags and “sum” betas

∑J
τ=0 βiτ for J = 10, 21, 63.

Step Two moment conditions are the one-day return variance, the first ten individual portfolio
autocorrelations, and sums of autocorrelations for lags 11− 20, ..., 41− 50, 51− 63. The minimized
SMM objective function values for each stage, ω1 and ω2, along with the overall objective function
value ω are reported to provide an indication of the goodness of fit across models. The difference
between the rescaled and buy-and-hold returns at a horizon of 252 days, RS−BH, summarizes the
horizon effects produced by the best fitting parameterizations. The factor realizations f1t are the
historical realized daily logarithmic CRSP index returns, and f2t is simulated.
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Figure 1. This figure continues on the following page.
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Figure 1. This figure plots for different style portfolios average rolling n-day buy-and-hold returns scaled
to an annual equivalent, R̄in,252 − 1 = [E (Rt · · ·Rt+n−1)]252/n − 1 against the buy-and-hold horizon n. A
complete description of the test portfolios is provided in the appendix. Computational details are available in
the Internet Appendix.
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Figure 2. This figure plots for three MSCI regional portfolios average rolling n-month buy-and-hold returns
scaled to an annual equivalent, R̄in,12 − 1 = [E (Rt · · ·Rt+n−1)]12/n − 1 against the buy-and-hold horizon n.
Computational details are available in the Internet Appendix.
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Figure 3. This figure plots histograms of the ratios of average monthly returns compounded 12 months (RS)
to average annual buy-and-hold (BH) returns for three sets of portfolios: MSCI country index portfolios (Panel
A), MSCI regional index portfolios (Panel B), and developed market style portfolios (Panel C).
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Figure 4. This figure plots for the small-stock portfolio average rolling n-day buy-and-hold returns scaled to
an annual equivalent, R̄in,252 − 1 = [E (Rt · · ·Rt+n−1)]252/n − 1 against the buy-and-hold horizon n in four
subperiods. Computational details are available in the Internet Appendix.
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Figure 5. This figure plots cumulative “sum” betas and lagged betas from regression (19), estimated in actual
data (red line) and in data simulated from the model with Θ = 1 (dotted line) and Θ = 8 (blue line) delay
states. The regressions utilize contemporaneous daily log returns and L = 63 lagged daily returns. The top
panels report results for small stocks and the bottom panels reports results for large stocks.
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Figure 6. This figure plots return autocorrelations (left panels) and variance ratios (right panels), estimated
in actual data (red line) and in data simulated from the model with Θ = 1 (dotted line) and Θ = 8 (blue line)
delay states. The top panels are produced using the model estimated with simulated market returns and the
bottom panels are produced using the model estimated with actual market returns.
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Figure 7. This figure plots average rolling n-day buy-and-hold returns scaled to an annual equivalent, R̄in,252−
1 = [E (Rt · · ·Rt+n−1)]252/n − 1 against the buy-and-hold horizon n for the small-stock portfolio (red line)
as well as for data simulated from the model with Θ = 1 (dotted line) and Θ = 8 (blue solid line) delay
states. The parameter estimates are reported in Table 8. The normal approximations are produced using the
approximating relationship for horizon effects in Proposition 4 for the data (red dashed line) and the model
simulated data with Θ = 8 (blue dashed line).


