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New Entropy Restrictions and the Quest for Better Specified Asset
Pricing Models

Abstract

This paper features entropy-based restrictions on SDFs, and its correlated multiplicative components, to
evaluate models under the setting that stochastic discount factors (SDFs) jointly price a vector of returns.
Specifically, our entropy bound on the square of the SDFs is intended to capture the time-variation in the
conditional volatility of the log SDF, as well as non-normalities. Each entropy bound can be inferred from
the mean and the variance-covariance matrix of a vector of asset returns. Extending extant treatments, we
develop entropy codependence measures, and our bounds generalize to multi-period SDFs. Our approach
offers ways to improve model performance.
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1. Introduction

The quest for well-performing stochastic discount factors (hereby SDFs) has dominated the agenda in

asset pricing. Despite substantial progress, identifying the desirable properties of the SDFs and the embed-

ded permanent and transitory components, in addition to their link to economic fundamentals, remains an

unresolved issue. The search is ongoing, as can be inferred from the treatments in Alvarez and Jermann

(2005), Hansen and Scheinkman (2009), Bakshi and Chabi-Yo (2012), Hansen (2012), Backus, Chernov,

and Zin (2014), and Christensen (2014).

Our approach lies within the tradition of examining the SDFs, together with their correlated permanent

and transitory components (e.g., Alvarez and Jermann (2005) and Hansen and Scheinkman (2009)), and we

propose new entropy restrictions to evaluate asset pricing models. In the vein of Hansen and Jagannathan

(1991) and Bakshi and Chabi-Yo (2012), among others, our entropy representations are cast in a framework

in which the SDF correctly prices finitely many asset returns (note that when an SDF correctly prices

a portfolio, it is not tantamount to correctly pricing each of the assets constituting the portfolio). More

specifically, our entropy bound representations rely on a framework that exploits the return properties of

the risk-free bond, the long-term discount bound, and a vector of risky assets.

We offer several theoretical results. First, we generalize and extend the Alvarez and Jermann (2005)

entropy bound on the permanent component of SDFs, as well as the Backus, Chernov, and Zin (2014)

entropy bound on the SDFs. The new entropy bounds are parameterized in terms of both a vector of

expected returns and a variance covariance matrix of returns, and they have no analytical analogs. Because

the new bounds incorporate information about the joint dynamics of multiple asset returns, the bounds are

quantitatively tighter. Such a feature allows for a better discrimination among asset pricing models.

Second, and equally pertinent from economic perspectives, we develop a new entropy measure based

on the square of the SDF, and the square of the permanent component of the SDF. We establish that such

performance measures are suitable for characterizing departures from lognormality and for capturing time-

variation in the conditional volatility of the log SDF. We further show that our bounds are distinct from

1



the bounds derived in Hansen and Jagannathan (1991) and Bakshi and Chabi-Yo (2012), who focus on the

variance of the SDFs and the variance of the permanent component of SDFs, respectively.

Third, motivated by Hansen (2012), we develop new entropy codependence measures between the

permanent and the transitory components of the SDF. Our characterizations highlight a feature essential to

all models; in particular, we show that a viable SDF should admit a positive codependence between the

permanent and transitory components of the SDF. We analytically show that the sign of codependence can

be inferred from Treasury bond data. Our codependence measures give insights into the properties of the

SDFs that cannot be obtained by applying the performance measures in Hansen and Jagannathan (1991),

Alvarez and Jermann (2005), Bakshi and Chabi-Yo (2012), and Backus, Chernov, and Zin (2014).

Fourth, we provide analytical expressions for entropy bounds in a multi-period investment setting. One

possible benefit of these bounds is that they offer flexibility in benchmarking the models to asset return

data measured over both short and long horizons.

Directly relevant to our characterizations are the following questions: Why should one care about the

entropy bound on the permanent component of the SDFs? If, as asserted in Alvarez and Jermann (2005,

Proposition 1) and Hansen and Scheinkman (2009, Proposition 7.2), the permanent component can be

uniquely identified from the multiplicative decomposition of the SDF, what do we additionally learn by

studying the restrictions that the permanent and transitory component impose on asset market data? First,

isolating the desirable properties of the permanent and the transitory components could move us closer to

a better understanding of viable SDFs. Second, entropy bounds on the permanent component of the SDFs

could help to “look under the hood of a model,” and uncover potential inconsistencies of a model with

short-run and long-run implications of SDFs (Hansen (2012, page 913)). Third, it is of interest to correctly

model the sign of the dependence between the permanent and the transitory components, which, we argue,

is necessary for capturing key aspects of asset markets.

We illustrate the usefulness of our bounds in the context of three (state-of-the-art) asset pricing models:

(i) difference habit, (ii) recursive utility with stochastic variance, and (iii) recursive utility with constant

jump intensity (as presented in Backus, Chernov, and Zin (2014)). We analytically solve the eigenfunction
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problem and derive the permanent and transitory components of the SDF of each model. Our framework

provides new perspectives on the performance of these models and their ability to fit asset market quantities.

When the bounds are constructed based on the premise that the SDF correctly prices the risk-free bond,

the long-term discount bond, and finitely many risky assets, our implementation reveals that each model

produces insufficient entropy to satisfy the lower bound on both the permanent component of the SDF and

the SDF itself. A block bootstrap-based procedure provides statistical support for our conclusions.

The entropy bound on the square of the SDF enables a crucial dimension of model assessment. Specif-

ically, the difference habit and the recursive utility with stochastic variance models are rejected. These

models can explain only about half of the lower bound estimated from returns data. However, the recur-

sive utility with constant jump intensity model generates entropy that is substantially higher than the lower

entropy bound implied from the data. In our search for a possible explanation, we find that this model’s

success can be traced to jump parameterizations of consumption growth that also produce unrealistic dis-

tributional higher-moments of the SDF.

We also show that the recursive utility with jump intensity model struggles to match properties of bond

returns, as gauged by its lack of consistency with the transitory component of the SDF. Moreover, each

model appears to be inconsistent with entropy-based measures of codependence between the permanent

and the transitory components of the SDF.

Our work belongs to a branch of asset pricing that explores the relevance of entropy bounds to distin-

guish among models. We show that our entropy measure on the square of the SDF is related to the expected

return of a security that pays the SDF (Theorem 1). We further derive bounds on entropy of the square of

the SDFs and the permanent component of the SDFs (Theorem 2), and we feature general entropy bounds

on the SDFs and the permanent component of the SDFs (Theorems 3 and 4).

Our bounds are aimed at complementing the approaches in Alvarez and Jermann (2005), Bakshi and

Chabi-Yo (2012), and Backus, Chernov, and Zin (2014). In the manner of Hansen and Jagannathan (1991,

1997), our formalizations strive to understand model attributes, but our thrust is on the SDFs in conjunction
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with their correlated permanent and transitory components. Moreover, our approach inherits the model-

free flavor of Hansen and Jagannathan (1991); we propose a codependence measure (Theorem 5), and we

develop a multi-period extension (Theorem 6). The entropy bounds are tractable, convey rich economic

interpretations, can encapsulate data considerations that transcend model calibrations, and our framework

can incorporate statistical concerns in model assessment.

2. Correlated multiplicative decomposition of SDFs and motivating entropy

Let mt,t+1 represent the stochastic discount factor between date t and t +1. Our objective is to propose

new entropy measures to evaluate asset pricing models when mt,t+1 is required to price many (distinct)

asset returns. Hansen and Jagannathan (1991, equation (3)) emphasize that omitting returns can weaken

the implications for mt,t+1.

2.1. Attributes of the multiplicative decomposition of SDFs

As a starting point, we employ a result in Alvarez and Jermann (2005, Proposition 1, page 1983) and

Hansen and Scheinkman (2009, page 200), who establish that mt,t+1 admits a multiplicative decomposition:

mt,t+1 = mP
t,t+1 mT

t,t+1 with E
[
mP

t,t+1
]
= 1 and mT

t,t+1 = (Rt,t+1,∞)
−1, (1)

where mP
t,t+1 (mT

t,t+1) is the permanent (transitory) component of mt,t+1, Rt,t+1,∞ is the gross return of an

infinite-maturity discount bond, and E[.] is the unconditional expectation.

Alvarez and Jermann (2005, Proposition 1) show that the mP
t,t+1 component of the SDF is unique when

mT
t,t+1 = (Rt,t+1,∞)

−1. It is the case of uniquely identified mP
t,t+1 that is of economic interest.

The components mP
t,t+1 and mT

t,t+1 can be correlated, and, if they exist, can be obtained by solving the

eigenfunction problem of Hansen and Scheinkman (2009, Corollary 6.1). In the context of parameterized

asset pricing models, both Hansen (2012) and Christensen (2014, Section 3) show that an appropriately
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solved eigenfunction problem will ensure a unique mP
t,t+1.

2.2. Motivating the entropy of m2
t,t+1 and (mP

t,t+1)
2 in asset pricing tests

To assess the merits of an asset pricing model, Alvarez and Jermann (2005, page 1985) propose using

the entropy of mP
t,t+1, defined below (the entropy L[mt,t+1] is similarly defined):

L[mP
t,t+1] = log(E[mP

t,t+1]) − E[log(mP
t,t+1)] = −E[log(mP

t,t+1)], (since E[mP
t,t+1] = 1) (2)

Alvarez and Jermann show that for some distributions, L[mP
t,t+1] completely characterizes the distribu-

tion of log(mP
t,t+1). For example, if mP

t,t+1 is lognormally distributed, we must have exp(E[log(mP
t,t+1)]+

1
2Var[log(mP

t,t+1)]) = 1. Hence, L[mP
t,t+1] = −E[log(mP

t,t+1)] =
1
2Var[log(mP

t,t+1)], and it is only the vari-

ance (or equivalently the mean in this setting) of log(mP
t,t+1) that matters for asset pricing. To generate

higher entropy, modeling approaches often incorporate non-normalities in mP
t,t+1 and mt,t+1, as noted also

in Backus, Chernov, and Zin (2014), which could also help to achieve consistency with asset market data.

2.2.1. New entropy measure and its economic interpretation

One aim of this paper is to motivate an alternative entropy-based measure, specifically L[(mP
t,t+1)

2] (or

L[m2
t,t+1]), as a metric for evaluating asset pricing models, in conjunction with L[mP

t,t+1]. In an analogy to

equation (2), we consider

L[m2
t,t+1] = log(E[m2

t,t+1])−E[log(m2
t,t+1)], and, (3)

L[(mP
t,t+1)

2] = log(E[(mP
t,t+1)

2])−E[log((mP
t,t+1)

2)]. (4)

Our measure L[m2
t,t+1] is related to Jensen’s gap, defined as, J{u} ≡ E[ f{u}]− f{E[u]} ≥ 0 applied to

the convex function f{u}=− log(u2). In contrast, the variance measure used in Hansen and Jagannathan

(1991) is related to Jensen’s gap applied to the convex function f{u}= u2.
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There is an important economic interpretation associated with L[m2
t,t+1]. In particular, L[m2

t,t+1] encodes

information about the expected return of a fundamental security, namely, the security that entitles the

investor a payoff of mt,t+1. The return of this security is rSDF
t,t+1 ≡

mt,t+1

Et [m2
t,t+1]

− 1. Any variable that comoves

with rSDF
t,t+1 is a potential factor (e.g., Merton (1973)). We now prove.

Theorem 1 The expected return on a security that pays the SDF is related to L[m2
t,t+1] as follows:

0 < E[log(R f
t )] − E[log(1+ rSDF

t,t+1)] ≤ L[m2
t,t+1], (5)

where R f
t is the gross return of the risk-free bond.

Proof: See Appendix A.

The square of the entropy of m2
t,t+1 is the maximum excess log return on a security that pays the SDF.

There is a counterpart interpretation for L[(mP
t,t+1)

2]. The security that pays mP
t,t+1/mT

t,t+1 has a time t price

of Et [(mP
t,t+1)

2], and return rPSDF
t,t+1 ≡ mP

t,t+1/mT
t,t+1

Et [(mP
t,t+1)

2]
−1. Then it can be shown that E[log(Rt,t+1,∞)]−E[log(1+

rPSDF
t,t+1 )]≤ L[(mP

t,t+1)
2].

2.2.2. Insights from example economies

While developing the implications of this new entropy measure, our analysis centers around two key

issues. First, what do we miss when the entropy measure L[mP
t,t+1] (or L[mt,t+1]) is employed to assess the

consistency of mP
t,t+1 (or mt,t+1) of an asset pricing model with observed asset prices? Second, what do we

gain when L[(mP
t,t+1)

2] (or L[m2
t,t+1]) is applied to asset pricing problems? Our framework is also pertinent

to understanding how one could use observed asset prices to learn about dependence in mP
t,t+n (or mt,t+n)

over any generic investment horizon n.

The next example first showcases an environment where L[(mP
t,t+1)

2] has no role beyond L[mP
t,t+1].

Steps leading to most of the results that follow are shown in Online Appendix I.

Example 1 Let the dynamics of the permanent and transitory components be given by (Alvarez and Jer-
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mann (2001, page 9); see also Campbell (1986, equation (3))):

log
(
mP

t,t+1
)
=−1

2
σ2

P + εP
t+1 and log

(
mT

t,t+1
)
= log(β)+α0 εT

t+1 +
∞

∑
i=1

(αi −αi−1)εT
t+1−i, (6)

where the two shocks are normally distributed and homoskedastic, i.e., εP
t+1 ∼ N (0,σ2

P) and εT
t+1 ∼

N (0,σ2
T ), with constant correlation. Then

L[(mP
t,t+1)

2] = 4L[mP
t,t+1] where L[mP

t,t+1] =
σ2

P

2
. (7)

Equation (7) shows that when the conditional volatility of log(mP
t,t+1) is time-invariant, the two entropy

measures L[mP
t,t+1] and L[(mP

t,t+1)
2] contain identical information, i.e., L[(mP

t,t+1)
2]−4L[mP

t,t+1] = 0. ♣

To address possible advantages of L[(mP
t,t+1)

2] over L[mP
t,t+1] from the vantage point of asset pricing,

we apply the definition of L[u] to random variables u2 and u, and arrive at the following result:

L[(mP
t,t+1)

2] − 4L
[
mP

t,t+1
]
= log(E

[
(mP

t,t+1)
2]) + E[log((mP

t,t+1)
2)]. (8)

Equation (8) indicates that the departure between L[(mP
t,t+1)

2] and 4L[mP
t,t+1] can be attributed to the time-

variation in the conditional volatility of log(mP
t,t+1). The following example puts this notion on a solid

footing.

Example 2 Suppose an eigenfunction problem yields log(mP
t,t+1)∼ N (µt ,σ2

t ). Then

L[(mP
t,t+1)

2] = log
(

E
[
eσ2

t

])
+ E[σ2

t ] and L[mP
t,t+1] =

1
2

E[σ2
t ]. (9)

Using the Taylor expansion of eσ2
t around σ2

t = E
[
σ2

t
]
, we observe that

L[(mP
t,t+1)

2] − 4L[mP
t,t+1] = log

(
1+

∞

∑
j=2

1
j!

E
[
(σ2

t −E[σ2
t ])

j]) . (10)

The information embedded in the distribution of σ2
t differentiates L[(mP

t,t+1)
2] from L[mP

t,t+1]. In general,
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L[mP
t,t+1] and L[(mP

t,t+1)
2] contain distinct information relevant to distinguishing asset pricing models. ♣

We further note that L[mP
t,t+1] and L[(mP

t,t+1)
2] do not coincide because L[mP

t,t+1] > 0; hence, L[mP
t,t+1]

and L[(mP
t,t+1)

2] reflect distinct entropies. More generally, L[(mP
t,t+1)

2] subsumes L[mP
t,t+1].

The entropy measure L[(mP
t,t+1)

2] offers flexibility in detecting non-normalities in log(mP
t,t+1). From a

Taylor expansion of exp
(

log((mP
t,t+1)

2)
)

around E[log(mP
t,t+1)], we note that equation (4) implies:

L[(mP
t,t+1)

2] = log

(
1+

∞

∑
j=1

2 j

j!
κ j

)
, where κ j ≡ E[(log(mP

t,t+1)−E[log(mP
t,t+1)])

j] (11)

is the jth central moment of log(mP
t,t+1). The normality of log(mP

t,t+1) imposes two restrictions: first, that

κ j = 0 for j ≥ 3, and, second, that L[mP
t,t+1] =−E[log(mP

t,t+1)] =
1
2Var[log(mP

t,t+1)]. Therefore, under the

normality of log(mP
t,t+1),

L[(mP
t,t+1)

2] = log
(
1 + 2Var

[
log
(
mP

t,t+1
)])

= log
(
1−4E

[
log
(
mP

t,t+1
)])

≈ 4L[mP
t,t+1]. (12)

Thus, L[(mP
t,t+1)

2] may be construed as capturing the departure of log(mP
t,t+1) from normality.

In a similar vein, L[m2
t,t+1] captures asymmetries in log(mt,t+1). We note that L[m2

t,t+1] = log(1 +

∞
∑
j=1

2 j

j! E(log(mt,t+1)−E[log(mt,t+1)])
j), and therefore L[m2

t,t+1] = 4L[mt,t+1] under the normality of log(mt,t+1).

In Colacito, Ghysels, and Meng (2013, equation (11)), the log(mt,t+1) is not normal and L[m2
t,t+1] ̸=

4L[mt,t+1], illustrating that L[m2
t,t+1] could be a suitable candidate for evaluating asset pricing models under

deviations from lognormality.

There is also an exact relation between L[mP
t,t+1], L[(mP

t,t+1)
2] and Var[mP

t,t+1], illustrating that asset

pricing models might satisfy restrictions on L[mP
t,t+1] and not on L[(mP

t,t+1)
2]. It may be verified that

L[(mP
t,t+1)

2] − 2L[mP
t,t+1] = log

(
1 + Var

[
mP

t,t+1
])

≈ Var
[
mP

t,t+1
]
. (13)

When mP
t,t+1 is the permanent component with the lowest variance, Var[mP

t,t+1] corresponds to the minimum

variance of mP
t,t+1 in Bakshi and Chabi-Yo (2012, equation (6)).
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The following example further synthesizes the various elements of our analysis.

Example 3 Suppose the SDF is governed by (Backus, Foresi, and Telmer (2001, equation (19))),

log(mt,t+1) = −δ − γzt − λz
1
2
t εt+1, zt+1 = (1−φ)θ + φzt + σz

1
2
t εt+1, εt+1 ∼ N (0,1), (14)

for a state variable zt . We solve the eigenfunction problem to derive (see the Online Appendix II):

mT
t,t+1 = exp(−δ+ξ(1−φ)θ+ξ(zt − zt+1)) , mP

t,t+1 = exp
(
(−ξ− γ+ξφ)zt +(ξσ−λ) z

1
2
t εt+1

)
, (15)

where ξ ≡
−(φ−1−λσ)−

√
(φ−1−λσ)2−2σ2( 1

2 λ2−γ)
σ2 and γ ≡ 1

2

(
1+λ2

)
. It can be further shown that

L[(mP
t,t+1)

2] − 2L[mP
t,t+1] = log

(
E
[
e(2(−ξ−γ+ξφ) + 2(ξσ−λ)2)zt

])
. (16)

The stochastic nature of zt can introduce a wedge between L[(mP
t,t+1)

2] and L[mP
t,t+1]. ♣

In summary, our analytical links highlight that if one is interested in using entropy to learn about prop-

erties of the SDFs, one may need to use L[(mP
t,t+1)

2] (L[m2
t,t+1]) in conjunction with L[mP

t,t+1] (L[mt,t+1]).

An essential distinguishing trait of the entropy measure L[(mP
t,t+1)

2] is its ability to more effectively cope

with the effect of time-varying volatility and distributional non-normalities in log(mP
t,t+1).

3. Entropy bounds when the SDF correctly prices finitely many returns

This section features four theoretical results when the SDF is required to correctly price finitely many

returns. First, we develop the bounds on L[m2
t,t+1] and L[(mP

t,t+1)
2]. Second, we present the bound on

L[mt,t+1] and then a bound on L[mP
t,t+1]. Next, we develop restrictions that are based on the entropy code-

pendence between mP
t,t+1 and mT

t,t+1. In so doing, we also illustrate the advantages of the bounds on

L[m2
t,t+1] and L[(mP

t,t+1)
2] in assessing asset pricing models versus the bounds on L[mt,t+1] and L[mP

t,t+1].

To proceed with the development of our entropy bounds, consider a set S of SDFs that correctly prices
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a finite number of returns:

S= {mt,t+1 > 0 : Et [mt,t+1] = qt , E [mt,t+1Rt,t+1,∞] = 1, and E [mt,t+1Rt,t+1] = 1} , (17)

where 1 is a vector column of ones. Moreover, Rt,t+1 is an N ×1 vector of gross returns that excludes the

risk-free bond and the infinite-maturity discount bond.

We further postulate that some SDFs that belong to the set S can be decomposed into permanent and

transitory components:

SP =
{

mt,t+1 ∈ S : mt,t+1 = mP
t,t+1 mT

t,t+1, and mT
t,t+1 = (Rt,t+1,∞)

−1} . (18)

Hence, this paper focuses on the class of SDFs that can be decomposed uniquely into a permanent and a

transitory component, that is, which admit mT
t,t+1 = (Rt,t+1,∞)

−1.

Equally important, equation (17) requires the SDF to correctly price each of the N +2 distinct assets.

Therefore, due to the pricing of additional risky assets, set S is considerably smaller than its counterparts

based on pricing three assets, for example, a risk-free bond, a long-term bond, and a generic portfolio of

risky assets, as in Alvarez and Jermann (2005). Overall, the formulations in equations (17)–(18) allow us to

develop entropy bounds that are based on the return properties of N+2 assets and, hence, offer considerable

generality and may be sharper. It is known from Hansen and Jagannathan (1991, page 230) that excluding

the full pricing information in the theoretical analysis can weaken the implications for mt,t+1.

We further note that Backus, Chernov, and Zin (2014, equation (2), page 56) consider a set of SDFs

that correctly prices a single asset return, or a single return based on a generic portfolio of assets, that

is, S∗ = {mt,t+1 > 0 : Et [mt,t+1] = qt , E[mt,t+1(∑I
i=1 ϖiRi

t,t+1)] = 1}, for some predetermined weight ϖi.

Clearly, the set S is considerably smaller than S∗ because S⊂S∗. In their implementation, Backus, Chernov,

and Zin (2014, Column 2 of Table I) present the mean excess log returns on equity portfolios, equity

options, currencies, and nominal bonds, which also coincide with a lower bound on L[mt,t+1] (i.e., the

right-hand side of expression for I(1) in Backus, Chernov, and Zin (2014, equation (5))).
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By considering a set of SDFs that simultaneously prices a number of risky assets, our approach aims to

extend Backus, Chernov, and Zin (2014) and deliver entropy bounds that exploit the information contained

in the vector of returns Rt,t+1, more specifically, the variance-covariance matrix and the vector of average

returns. The necessity of developing entropy bounds that rely on an SDF that correctly prices multiple

risky assets simultaneously has also been highlighted in Christensen (2014, footnote 10). In one extreme,

our implementation could accommodate entropy bounds that are based on the ability of SDFs to correctly

price all available individual assets in the economy (in the flavor of Ang, Liu, and Schwarz (2013)).

Guided by our discussions, we first derive the bounds on the entropies L[m2
t,t+1] and L[(mP

t,t+1)
2].

3.1. Characterizing the bounds on the entropies L[m2
t,t+1] and L[(mP

t,t+1)
2]

Theorem 2 The following bounds are germane to asset pricing models:

(a) The entropy of m2
t,t+1 satisfies:

L[m2
t,t+1] ≥ 2

(
E

[
log

(
(1−E [qt ]E [Rt,t+1])

′
Σ−1

1′Σ−1 (1−E [qt ]E [Rt,t+1])
Rt,t+1

)]
− log

(
(E[qt ])

−1
))

+

log
(

1+(1−E [qt ]E [Rt,t+1])
′
Σ−1 (1−E [qt ]E [Rt,t+1])/(E[qt ])

2
)
, (19)

where Σ is the variance-covariance matrix of Rt,t+1.

(b) The entropy of (mP
t,t+1)

2 satisfies

L[(mP
t,t+1)

2] ≥ 2

(
E

[
log

(
(1−E [qt ]E [Rt,t+1])

′
Σ−1

1′Σ−1 (1−E [qt ]E [Rt,t+1])
Rt,t+1

)]
− E [log(Rt,t+1,∞)]

)
+

log
(

1+(1−E [Rt,t+1/Rt,t+1,∞])
′
Σ−1

P (1−E [Rt,t+1/Rt,t+1,∞])
)
, (20)

where ΣP is the variance-covariance matrix of Rt,t+1/Rt,t+1,∞.

Proof: See Appendix B.

The entropy bounds stipulated in equations (19) and (20) summarize properties of the distribution of

11



mt,t+1 and mP
t,t+1 and, hence, contain information that could help to gauge asset pricing models. Moreover,

the lower bounds presented in the right-hand side of equations (19) and (20) in Theorem 2 are computable

from the time-series of asset returns and discount bonds. In addition, our bounds are model-free.

One may interpret the lower bound on L[m2
t,t+1] in equation (19) of Theorem 2 as having two econom-

ically meaningful components. The first term surrogates an excess rate of return, whereas the second term

is proportional to a Sharpe ratio-related component. Both equations (19) and (20) offer the result that the

entropies L[m2
t,t+1] and L[(mP

t,t+1)
2] are determined by the vector of mean returns and a quadratic form of

mean and variance of the vector of returns.

3.2. Bound on the entropy L[mt,t+1] and comparison with Backus, Chernov, and Zin (2014)

Theorem 3 The entropy of mt,t+1 satisfies:

L[mt,t+1] ≥ E

[
log

((
Σ−1 (1−E [qt ]E [Rt,t+1])

)′
Rt,t+1

1′Σ−1 (1−E [qt ]E [Rt,t+1])

)]
− log

(
(E [qt ])

−1
)
, (21)

where Σ is the variance-covariance matrix of Rt,t+1.

Proof: See Appendix C.

Importantly, our bound on L[mt,t+1] in equation (21) extends the Backus, Chernov, and Zin (2014,

equation (5)) bound when the SDF correctly prices many risky assets. To elaborate, consider augmenting

the stock market (or any benchmark portfolio) with a risky security, that is, Rt,t+1 ≡ [Rm
t,t+1,R

i
t,t+1]. It is

shown in the Online Appendix III that the entropy bound in equation (21) becomes

L[mt,t+1] ≥ E
[
log
(
Rm

t,t+1
)]

− log
(
(E [qt ])

−1
)

︸ ︷︷ ︸
BCZ entropy bound

+ E

[
log

(
1 + b0

(Ri
t,t+1 −Rm

t,t+1)

Rm
t,t+1

)]
︸ ︷︷ ︸

positive incremental contribution

. (22)

The constant b0 depends on the first and second moment of Rt,t+1 and is presented in equation (I8) of

Online Appendix III. Thus, increasing the dimensionality of Rt,t+1 beyond a single asset (or benchmark

12



portfolio) Rm
t,t+1 could be expected to lead to a more stringent lower bound on L[mt,t+1].

We are often asked to clarify the sense in which our bound extends the Backus, Chernov, and Zin (2014)

paper to multiple assets. While their equation (5) is derived for an arbitrary return that satisfies the Euler

equation, this return could be associated with any portfolio of traded assets. However, note that when the

Euler equation is satisfied for a portfolio, it does not imply that the SDF correctly prices each individual

return in the portfolio (granted that individual mispricings could cancel out). In contrast, when an SDF

correctly prices individual returns, the linearity of the pricing rule ensures correct pricing of a portfolio

(with non-random weights). It turns out that using the framework of equation (17) exerts a non-trivial

effect on the magnitude of the entropy bound, which could reveal novel insights into the properties of

mt,t+1. The lesson is that the set of SDFs under consideration bear considerably in evaluating asset pricing

models.

Completing our arguments, when there is a single risky asset, the gross return vector Rt,t+1 reduces to

a single return Rm
t,t+1. In this case, our lower bound on L[mt,t+1] depends only on excess log returns:

E[log
(
Rm

t,t+1
)
] − log(1/E [qt ]) versus E[log

(
Rm

t,t+1
)
] − E[log(R f

t )] (23)

in Backus, Chernov, and Zin (2014). Since R f
t = 1/qt , Jensen’s inequality implies E[log(qt)]≤ log(E [qt ]).

The general bound on L[mt,t+1] in equation (21) can be employed in conjunction with the bound on

L[m2
t,t+1] to evaluate whether SDF properties are consistent with observed asset prices.

3.3. Bound on the entropy L[mP
t,t+1] and comparison with Alvarez and Jermann (2005)

Theorem 4 The entropy of mP
t,t+1 satisfies:

L[mP
t,t+1] ≥ E

[
log

((
Σ−1 (1−E [qt ]E [Rt,t+1])

)′
Rt,t+1

1′Σ−1 (1−E [qt ]E [Rt,t+1])

)]
− E [log(Rt,t+1,∞)] . (24)

Proof: See Appendix D.
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When Rt,t+1 specializes to a single risky asset, our lower entropy bound on L[mP
t,t+1] in equation (24)

specializes to the one in Alvarez and Jermann (2005, equation (4)), that is, E[log(Rm
t,t+1)] − E[log(Rt,t+1,∞)].

We will show that our bound on L[mP
t,t+1] which relies on the return properties of risk-free bond, the long-

term discount bond, and N risky assets, is considerably more stringent.

We argue that the general bound on L[mP
t,t+1] in equation (24) can be employed in conjunction with the

bound on L[(mP
t,t+1)

2] in equation (20) to evaluate the consistency of mP
t,t+1 with observed asset prices.

3.4. Sharpness of our entropy bounds

Apart from theoretical arguments, how sharp are our generalized bounds compared to the single-asset

(or a benchmark portfolio) based bound on L[mt,t+1] in Backus, Chernov, and Zin (2014, Column 2 of

Table I) and the corresponding bound on L[mP
t,t+1] in Alvarez and Jermann (2005)?

To address this question, Table 1 reports our lower bounds on L[mt,t+1] and L[mP
t,t+1] and the associ-

ated bootstrap p-values. In doing so, we consider several N (the dimensionality of Rt,t+1) and draw two

conclusions from our computations in Table 1:

• First, our bounds on L[mt,t+1] and L[mP
t,t+1] are quantitatively sharper with N > 1, implying greater

hurdles on pricing models (e.g., compare bounds in Panel V versus those in Panels I through IV);

• Second, the bounds obtained with a portfolio are far less stringent than the corresponding bounds

that hinge on the SDFs correctly pricing each of the assets comprising the portfolio. This can be

seen by comparing the bound displayed in row (c) versus (i) and between row (d) versus (j).

Similar to Hansen and Jagannathan (1991) variance bound, we have derived entropy bounds that are related

to the entropy of an arbitrary portfolio of assets, which are all correctly priced by the SDF. We will show

that considering L[m2
t,t+1] and L[(mP

t,t+1)
2] can further help to discern across models.

14



3.5. Further clarifying discussions

Recognize that the lower bound on L[(mP
t,t+1)

2] in equation (20) is distinct from the lower bound on

Var[mP
t,t+1] in Bakshi and Chabi-Yo (2012, equation (6)). Analogously, the lower bound on Var[mt,t+1],

that is, the Hansen and Jagannathan (1991, equation (12)) bound, and our lower bound on L[(mt,t+1)
2] in

equation (19), constitute distinctly relevant metrics for evaluating asset pricing models. Moreover, Ghosh,

Julliard, and Taylor (2012, Section II.1) construct entropy bounds when the SDF can be factorized into

observable and model-specific unobservable components. Our entropy bounds on the SDF are distinct from

their bounds, allow correlated multiplicative components, and can be directly inferred from the returns data.

The analysis in Backus, Chernov, and Zin (2014, Section A.2) points to the distinct nature of the lower

bound on Var[mt,t+1] versus the lower bound on L[mt,t+1] (see also a discussion in Alvarez and Jermann

(2005, page 1985)). As noted in equation (13), the entropy of mP
t,t+1, the entropy of (mP

t,t+1)
2, and the

variance of mP
t,t+1 are related by the expression: exp(L[(mP

t,t+1)
2]− 2L[mP

t,t+1])− 1 = Var[mP
t,t+1]. Such a

relation implies that it may be possible for a model to satisfy the bound on Var[mP
t,t+1], but not the bound on

L[(mP
t,t+1)

2], and vice versa. Rearranging, appreciate that L[(mP
t,t+1)

2 = log[Var(mP
t,t+1)+1]+2L[mP

t,t+1]≥

log[Var(mP
t,t+1)+1]+2E[log((

Σ−1(1−E[qt ]E[Rt,t+1]))
′
Rt,t+1

1′Σ−1(1−E[qt ]E[Rt,t+1])
)]−2E [log(Rt,t+1,∞)].

Liu (2012, Proposition 1 and Collorary 1) derives an upper bound on E[mδ
t,t+1] when δ ∈ [0,1], and

a lower bound on E[mδ
t,t+1] when δ < 0, where δ is expressed in terms of the risk aversion parameter

γ ≡ 1
1−δ . Moreover, our results in Theorem 2 through Theorem 4 can be contrasted to the single-return-

based bound on the generalized entropy function in Liu (2012, equations (11) and (12)). In addition, our

entropy bound on L[m2
t,t+1] offers a distinction to the bounds considered in Snow (1991, equations (7) and

(12)). Specifically, our bounds are easier to implement and do not involve solving an optimization problem.

3.6. Restrictions on the transitory component of the SDFs

Our analysis can be adapted to develop restrictions on the entropy of (mT
t,t+1)

2 and mT
t,t+1. Intu-

itively, both L[mT
t,t+1] and L[(mT

t,t+1)
2] capture the departure of Rt,t+1,∞ from lognormality. Moreover, when
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there is no time-variation in the conditional variance of log(Rt,t+1,∞), we obtain equivalence of the type

L[(mT
t,t+1)

2] = 4L[mT
t,t+1]. Absent distributional assumptions, the general restrictions are

L[(mT
t,t+1)

2] = log(E
[
1/R2

t,t+1,∞
]
) + 2E[log(Rt,t+1,∞)] and (25)

L[mT
t,t+1] = log(E [1/Rt,t+1,∞]) + E[log(Rt,t+1,∞)]. (26)

Restrictions (25) and (26) inherit the model-free attribute of the entropy bounds on (mP
t,t+1)

2 and mP
t,t+1.

Given a proxy for Rt,t+1,∞, the quantities on the right-hand side of (25)–(26) are computable. These quan-

titative restrictions can be helpful in investigating whether a pricing model is aligned with the properties of

the transitory component of the SDFs, as reflected in the return time-series of long-term discount bonds.

3.7. Restrictions on entropy-based codependence, motivated by Hansen (2012)

Inspired by a treatment in Hansen (2012, Section 4.3), we develop two additional results in the context

of the permanent and transitory components of the SDF. First, we note that

L
[
mP

t,t+1mT
t,t+1

]
− L

[
mP

t,t+1
]
− L

[
mT

t,t+1
]︸ ︷︷ ︸

Intrinsic to an asset pricing model

= log(E [qt ]) − log(E [1/Rt,t+1,∞])︸ ︷︷ ︸
Can be recovered from bond data

, (27)

where recognizing that the left-hand side of equation (27) simplifies to log(E[mP
t,t+1mT

t,t+1])−log(E[mP
t,t+1])−

log(E[mT
t,t+1]) by virtue of the definition of entropy, while the right-hand side of equation (27) can be in-

ferred from bond data. Second, we develop an upper bound on the entropy-based codependence between

(mP
t,t+1)

2 and (mT
t,t+1)

2 and state it as a formal result.

Theorem 5 The following upper bound on the entropy-based codependence measure is true:

0 ≤ L[
(
mP

t,t+1
)2
(mT

t,t+1)
2]−L

[
(mP

t,t+1)
2]−L[(mT

t,t+1)
2] ≤ log

(
1+

y′ Σy
(E [qt ])

2

)
, (28)

where y ≡ Σ−1 (1−E [qt ]E [Rt,t+1]) and Σ is the variance-covariance matrix of Rt,t+1.
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Proof: See Appendix E.

The two codependence measures capture fundamentally different information embedded in an asset

pricing model. Specifically, the restriction in equation (27) traces codependence exclusively to bond

prices, while inequality in equation (28) of Theorem 5 traces codependence predominantly to the mean

and variance-covariance matrix of a generic set of risky asset returns.

4. Asset pricing models

Our goal is to learn about the properties of mP
t,t+1 and mT

t,t+1, and their consistency with the entropy

restrictions and entropy codependence measures. We focus on three asset pricing models: (i) difference

habit, (ii) recursive utility with stochastic variance, and (iii) recursive utility with constant jump intensity.

Our analysis can be expanded to consider other asset pricing models. We complement the analysis in

Backus, Chernov, and Zin (2014) by solving the eigenfunction problem and by studying the implications

of entropy codependence measures (for ease of exposition, we also closely follow their model notation).

4.1. Difference habit model

In the difference habit model (e.g., Campbell and Cochrane (1999)), the SDF is

mt,t+1 = βgρ−1
t+1 (st+1/st)

ρ−1 , (29)

where gt+1 is consumption growth, β is the time discount parameter, and 1−ρ is the coefficient of relative

risk aversion. Define st ≡ 1−exp(zt) and zt ≡ log(ht)− log(ct), where st is the surplus ratio corresponding

to zt , and the habit ht+1 is known at time t. The laws of motion for ht and gt are

log(ht+1) = log(h)+η [B] log(ct) and log(gt+1) = log(g)+ γ [B]υ
1
2 ωgt+1, (30)
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where B is the lag operator, such that B{st+1} = st , with backshift operators γ [B] =
∞
∑
j=0

γ jB j and η [B] =

∞
∑
j=0

η jB j. Moreover, υ denotes the constant variance of log(gt), and ωgt+1 is i.i.d. standard normal variable.

Loglinear approximation of log(st), in conjunction with the laws of motion in equation (30), leads to

the surplus ratio dynamics:

log(st+1)− log(st) =

(
s−1

s

)
(η [B]B−1) log(gt+1). (31)

Completing model description, we define the state variable xt = (γ [B]− γ0)υ 1
2 ωgt+1, which governs the

dynamics of the log consumption growth:

xt = γ1 υ
1
2 ωgt +φg xt−1 with φg =

γ2

γ1
. (32)

Solving the eigenfunction problem (as formalized in equations (H1) and (H2)) results in the following:

Proposition 1 For the SDF of the habit model specified in equation (29), the permanent component is:

mP
t,t+1 = exp(−D1 +D2 xt−1 +D3 xt +D4 xt+1) , (33)

where the dynamics of xt is displayed in equation (32) and the coefficients D1 through D4 are defined in

equations (J15) through (J18) of Online Appendix IV.

Proof: See the steps in Online Appendix IV.

We employ equation (33) of Proposition 1 to compute the left-hand side of the bound expressions (19)-

(20) of Theorem 2. Asset pricing models that accommodate habit have shown promise in matching salient

attributes of the asset market data, including the equity premium, procyclicality of stock prices, counter-

cyclicality of stock volatility, and return predictability at long-horizons (e.g., see, among others, Bekaert

and Engstrom (2012), Chapman (1998), Chan and Kogan (2002), and Santos and Veronesi (2010)).
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4.2. Recursive utility models

The two recursive utility models that we consider are adopted from Backus, Chernov, and Zin (2014):

Ut =
[
(1−β)cρ

t + β(µt [Ut+1])
ρ] 1

ρ , (34)

with certainty equivalent function µt [Ut+1] =
(
Et
[
Uα

t+1

]) 1
α . Moreover, ρ is the time preference parameter,

1/(ρ−1) is the intertemporal elasticity of substitution, and 1−α is the coefficient of relative risk aversion.

With backshift operators characterized by ν [B] =
∞
∑
j=0

ν jB j and ψ [B] =
∞
∑
j=0

ψ jB j, the state-variables in

this model obey the dynamics:

log(gt) = log(g)+ γ [B]υ1/2
t−1ωgt +ψ [B]zgt −ψ [1]hθ, ht = h+η [B]ωht , (35)

υt = υ + ν [B]ωυt , zgt | j ∼ N
(

jθ, jδ2) , P [ j] = exp(−ht−1)
(ht−1)

j

j!
, (36)

where ωgt , zgt , and ωht are standard normal random variables, independent of each other and across time.

The jump component zgt is a Poisson mixture of normals: conditional on the number of jumps j, zgt is

normal, with mean jθ and variance jδ2. The probability of j ≥ 0 jumps at date t is eht−1h j
t−1/ j!, and the

jump intensity, ht−1, is the mean of j.

A. Recursive utility model with stochastic variance. Set h = 0, η [B] = 0, ψ [B] = 0 in equations (35) and

(36). For tractability, we consider the evolution of the transformed variable:

xt = φg xt−1 + γ1 υ1/2
t−1 ωgt . (37)

Now we state the following proposition.

Proposition 2 For the SDF of the recursive utility model with stochastic variance, the permanent compo-
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nent is:

mP
t,t+1 = exp(H6 +(H2 − τ0)xt + (H3 + τ0)xt+1 +(H4 − τ1)υt +(H5 + τ1)υt+1) , (38)

where the coefficients H2 through H6, τ0, and τ1 are presented in Online Appendix V.

Proof: See the steps in Online Appendix V.

B. Recursive utility model with constant jump intensity: In equations (35) and (36), set ν [B] = 0. We obtain

the following result.

Proposition 3 For the SDF of the recursive utility model with constant jump intensity, the permanent

component is:

mP
t,t+1 = exp

(
G9 −G8 ht +(G5 + ς1)zgt+1 +(G6 + ς2γ1)υ

1
2 ωgt+1 +(G7 + ς0η0)ωht+1

)
, (39)

where the coefficients G5 through G9, ς0 through ς3, and η0 are presented in Online Appendix V.

Proof: See the steps in Online Appendix V.

Models that incorporate recursive preferences in conjunction with stochastic variance or jumps in

the consumption growth dynamics have proved successful in explaining asset pricing quantities. No-

table applications include, among others, Epstein and Zin (1991), Bansal and Yaron (2004), Campbell

and Vuolteenaho (2004), Hansen, Heaton, and Li (2008), Martin (2013), Wachter (2013), and Zhou and

Zhu (2009). Wachter (2013) emphasizes that her model can reconcile the size of the equity premium, the

behavior of equity volatility, and the return predictability of Treasury bonds, pointing to a possible link

between seemingly disparate phenomena from equity and bond markets.
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5. Analyzing asset pricing models

Our benchmark for assessing whether a model produces sufficient entropy are the bounds in Theorems 2

through 4, which are are based on the SDF correctly pricing each of the N +2 asset returns.

Moreover, we consider a block bootstrap procedure to judge whether a model statistically meets our

data-based lower entropy bounds. We then juxtapose our analysis with new entropy-based measures of

codependence, which are motivated by a discussion in Hansen (2012). Our contention is that performance

metrics based on (i) the bounds on the stochastic discount factors and their permanent and transitory com-

ponents, and (ii) the bound on entropy codependence could furnish new perspectives on how to specify

well-performing stochastic discount factors that admit a correlated multiplicative decomposition.

5.1. There is empirical rationale for considering the entropy of L[m2
t,t+1] and L[(mP

t,t+1)
2]

Pertinent to our empirical inquiry is first the question: How meaningful are our entropy bounds on

m2
t,t+1 and (mP

t,t+1)
2? To answer this question, we need to show that entropy L[m2

t,t+1] (or L[(mP
t,t+1)

2])

contains information beyond that which is contained in entropy L[mt,t+1] (or L[mP
t,t+1]).

Note that in a setting where mt,t+1 is lognormally distributed with no time-variation in the conditional

volatility of log(mt,t+1), one obtains the restriction: L[m2
t,t+1]− 4L[mt,t+1] = 0 (see also our motivating

Example 1 that correspondingly highlights L[(mP
t,t+1)

2]−4L[mP
t,t+1] = 0). One implication of this restriction

is that the lower bound on L[m2
t,t+1] is proportional to the lower bound on L[mt,t+1], which is amenable to

validation from the returns data.

Guided by this reasoning, we combine the right-hand sides of equation (19) and equation (21) (and

isomorphically equation (20) and equation (24) for mP
t,t+1) and consider the quantities:

Πm ≡
2(E[log(a′Rt+1)]− log

(
(E [qt ])

−1
)
)+ log(1+y′Σ−1y/(E [qt ])

2)

4(E[log(a′Rt+1)]− log((E [qt ])
−1))

−1 and (40)

ΠmP ≡ 2(E[log(a′Rt,t+1)]−E[log(Rt,t+1,∞)]) + log(1+y′P ΣP yP)

4(E[log(a′Rt,t+1)]−E[log(Rt,t+1,∞)])
− 1, (41)
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where, for brevity, we set a ≡ y
1′y , y ≡ Σ−1 (1−E [qt ]E [Rt,t+1]), and yP ≡ Σ−1

P (1−E [Rt,t+1/Rt,t+1,∞]). The

hypothesis Πm = 0 amounts to testing whether L[m2
t,t+1] and L[mt,t+1] impound the same information.

Table 2 provides a point estimate of Πm, and also ΠmP , for three sets of Rt,t+1, and a bootstrap p-value

that tests whether Πm = 0 versus Πm ̸= 0. Our empirical analysis elicits the observation that the hypothesis

of Πm = 0 is rejected, whereby the data-based lower bound on L[m2
t,t+1] can depart from its 4L[mt,t+1]

counterparts by as much as 56.17%. The reported p-values are based on a block bootstrap, with a block

size of 20, with 50,000 replications from the data. The hypothesis of ΠmP = 0 is also rejected.

Our evidence provides some rationale for considering L[m2
t,t+1] and L[(mP

t,t+1)
2] in assessing asset pric-

ing models.

5.2. Implementation and calculation of model-based entropies

How do the models under consideration fare when viewed from the perspective of our data-based

entropy bounds? Our implementation of the models with difference habit (hereby DH), recursive utility

with stochastic variance (hereby RU-SV), and recursive utility with constant jump intensity (hereby RU-

CJI) follows the calibration procedure in Backus, Chernov, and Zin (2014, respectively, Model (4) in

Table 2, Model (1) in Table 3, and Model (4) in Table 4). The corresponding model parameterizations are

displayed in our Table Appendix-I, which indicates that each model reasonably calibrates to consumption

growth data.

Aided by the analytical representations of mP
t,t+1 derived in our Propositions 1 through 3, we gener-

ate the paths for mP
t,t+1, along with those of mt,t+1, over 966 months corresponding to our returns data

over 1931:07 to 2011:12. The paths are based on the model parameters in Table Appendix-I and shocks

driving the fundamentals (e.g., ωυt and ωgt for the RU-SV). Then we obtain the sample averages of the

series {(mP
t,t+1)

2,mP
t,t+1,m

2
t,t+1,mt,t+1 : t = 1, . . .966}, and accordingly compute the entropies L[(mP

t,t+1)
2],

L[mP
t,t+1], L[m2

t,t+1], and L[mt,t+1].

Next, we draw 50,000 paths for the shocks driving a model and, hence, obtain 50,000 paths for mP
t,t+1
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and mt,t+1. Panels A and B of Table 3 report the entropies across the models, obtained by averaging the

entropies over the 50,000 replications. The p-values, shown in square brackets, represent the proportion of

replications for which the model-based entropy measure exceeds the corresponding lower bound obtained

from the returns data in 50,000 replications of a simulation over 966 months.

5.3. Model assessment based on the bound on L[mt,t+1] and L[mP
t,t+1]

The next question to ask is: how successful are the three models in generating L[mt,t+1] that is consistent

with the data? Panel A of Table 3 reveals an L[mt,t+1] of 0.0196, 0.0217, and 0.0190, respectively, for the

DH, RU-SV, and RU-CJI models. Based on our data-based performance measure, that is, the lower bound

on L[mt,t+1], displayed on the right-hand side of equation (21), computed based on SET B, all the models

are rejected at the 5% level (as seen by the bootstrap p-values).

This implication from our generalized bound, calculated using the return properties of the risk-free

bond, the long-term discount bond, the equity market, and the 25 portfolios sorted by size and momentum,

differ from a finding in Backus, Chernov, and Zin (2014). Specifically, the data-based lower bounds in

Backus, Chernov, and Zin (2014, Table 1) are generally of an order lower than the average conditional

entropy E[Lt [mt,t+1]] obtained from asset pricing models. In particular, all of the 11 E[Lt [mt,t+1]] in Backus,

Chernov, and Zin (2014, Tables II through IV) exceed the lower bound inferred from the data on the S&P

500 index.

How does one explain this discrepancy? We note that the magnitude of the lower bound on L[mt,t+1]

in the calculations of Backus, Chernov, and Zin (2014, Table 1, row S&P 500) is 0.0040, whereas it is

0.0367, based on our lower bound and SET B. It bears emphasizing that a single-asset based lower bound

on L[mt,t+1] may provide an insufficient hurdle in evaluating the merits of an asset pricing model. When

the entropy calculations exploit the information in the distribution of the return vector Rt,t+1, it imposes

stronger implications for mt,t+1.

We are now prompted to ask: Are the properties of mP
t,t+1 implicit in the models consistent with the
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entropy bound L[mP
t,t+1]? We find that the L[mP

t,t+1] produced by the DH, RU-SV, and RU-CJI models are

0.0203, 0.0237, and 0.0197, respectively, while the data-based lower bound on L[mP
t,t+1] is 0.0348 (see

Panel B of Table 3). The reported p-values indicate that all the three models are rejected at the 5% level;

namely, the models generate insufficient entropy L[mP
t,t+1]. In essence, the bounds on both L[mt,t+1] and

L[mP
t,t+1] agree in suggesting that the three models are misspecified.

5.4. Model assessment based on the bound on L[m2
t,t+1] and L[(mP

t,t+1)
2] yields additional insights

Elaborating further, we now argue that considering the entropy L[m2
t,t+1] (or L[(mP

t,t+1)
2]) in the model

assessment can provide an important contrast to our findings based on the entropy L[mt,t+1] (or L[mP
t,t+1]).

One prominent result is that the entropy L[(mP
t,t+1)

2] of the RU-CJI model is about 15-fold higher than

the other two models that do not incorporate the random jump feature in the dynamics of the consumption

growth. For example, the DH, RU-SV, and RU-CJI models generate L[(mP
t,t+1)

2] of 0.0811, 0.095, and

1.4858, respectively (see the entries in Panel B of Table 3).

We further note that since the lower bound restriction implied from asset prices is 0.1851, the DH and

RU-SV models are rejected at the 5% level. However, the RU-CJI model with constant jump intensity

cannot be rejected at the 5% level, which is a point of departure based on the entropy L[mP
t,t+1].

Accordingly, one key question emerges: Why does the RU-CJI fails to explain features of mP
t,t+1, as

reflected in asset prices when L[mP
t,t+1]-based performance measure is used, while the model is successful

in explaining features of mP
t,t+1, as reflected in asset prices when L[(mP

t,t+1)
2]-based performance measure

is used? To investigate a source of model outperformance, we note that the entropy measure L[(mP
t,t+1)

2]

is substantially more sensitive to tail asymmetries and tail size of the mP
t,t+1 distribution as opposed to the

entropy measure L[mP
t,t+1].

Taking such a trait of entropies into consideration, we report the moments of mt,t+1 and mP
t,t+1 for each

of the models in Panel C and Panel D of Table 3. The unexpected finding is that the RU-CJI model embeds

excessive levels of skewness and kurtosis of mP
t,t+1, while generating variance that is almost 90 times its DH
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and RU-SV model counterparts. Our contention is that the inordinate levels of the higher-order moments

of mP
t,t+1 (mt,t+1) give rise to the reported L[(mP

t,t+1)
2] (L[m2

t,t+1]) of 1.4858 (1.4331) for the RU-CJI model.

How should one interpret a model, such as the RU-CJI, that calibrates well to the first-moment, the

second-moment and the autocorrelation of consumption growth, but does not produce finite central mo-

ments for the distribution of both mP
t,t+1 and mt,t+1. This result arises because a convex transform of

a random variable, which is here poisson-distributed, increases the skewness to the right (see van Zwet

(1966, page 10, Theorem 2.2.1)). To see this analytically, we can invoke the density of the poisson ran-

dom variable to show that Et [(mt,t+1)
k] = Et

[
ek log(mt,t+1)

]
= Et

[
Et
[
ek log(mt,t+1)| j

]]
= eG[k]Et

[
eH[k] j

]
, for

some constants G[k] and H[k]. Note that eH[k] j is a convex transformation of the poisson variable J, and

for certain parameterizations, does not admit finite higher-moments of mt,t+1. The inordinate amounts of

skewness and kurtosis do not appear to be a reasonable depiction of valuation operators, which are likely

to be characterized by exponential, rather than power, tails.

How general are our conclusions with respect to the RU-CJI model? Specifically, are there model com-

binations that produce reasonable higher-order moments of mP
t,t+1, calibrate well to consumption growth

data, and yet deliver high entropies? To probe this issue, we vary the jump distribution parameters (θ, δ,

h) of the consumption growth dynamics (see equation (36)), and report the results in Table Appendix-II.

The takeaway message is that jump parameterizations (among the 27 parameter combinations) that yield

reasonable levels of skewness and kurtosis of mP
t,t+1 do not appear to produce enough entropies to satisfy

the lower bound on L[mP
t,t+1] and L[(mP

t,t+1)
2].

5.5. Models also fail to satisfy the data-based restrictions on L[(mT
t,t+1)

2]

Next we examine the entropy of (mT
t,t+1)

2 and mT
t,t+1, which enables us to further challenge models by

assessing their ability to fit certain aspects of the Treasury market data.

Two features of our findings are worth emphasizing in Table 4. First, all the models fail to produce a

transitory component of the SDFs that are consistent with return properties of the long-term discount bond.
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Second, the RU-CJI model is worse than the other two models when performance is assessed based on the

transitory component. Specifically, the jump parametrization of the consumption growth dynamics lead to

implausible entropies of the transitory component of the RU-CJI model.

In sum, our exercises suggest that asset pricing models need to do a better job of satisfying the entropy-

based performance measures of both the permanent and the transitory components of the SDFs. Thus,

by identifying the dimensions where pricing models may be lacking, our bounds could reveal a greater

appreciation of the desirable properties of mt,t+1.

5.6. Models fail to satisfy the data-based upper bound restrictions on codependence

How deft are the models in matching entropy-based codependence between mP
t,t+1 and mT

t,t+1? Table 5

shows that the DH, RU-SV, and RU-CJI models are not able to reproduce the magnitude and the sign of

the dependence measures obtained from asset prices.

Although the observed asset prices indicate a positive dependence between the permanent and transi-

tory components of the SDF, all three models suggest a negative codependence between mP
t,t+1 and mT

t,t+1.

Therefore, these models are not properly aligned with codependence imputed from asset market data.

Importantly, the entropy codependence measures could shed light onto the properties of the mt,t+1 that

one cannot get by applying the variance bounds in Hansen and Jagannathan (1991) or the entropy bounds

in Alvarez and Jermann (2005) and Backus, Chernov, and Zin (2014). The relevance of the entropy code-

pendence measure in model assessment provides an additional motivation for decomposing the stochastic

discount factors into permanent and transitory components.

5.7. Summary and empirical implications

In sum, for the set of parameter values in Table Appendix-I, the asset pricing models we investigate are

not able to generate entropies L[mt,t+1] and L[mP
t,t+1] that surpass the data-based lower bounds, and hence

unable to describe the features of the SDF, as reflected in the asset returns.
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While the RU-CJI model does meet the lower entropy bound L[m2
t,t+1], the model success is achieved

at the expense of implausible central moments of the mt,t+1 distribution. Each asset pricing model also

appears inconsistent with the data on long-term bond returns and with our entropy-based codependence

measures inferred from the returns data.

6. Generalizing the entropy bounds to alternative investment horizons

The objective is to generalize the highlighted set of entropy bounds to the case when returns are mea-

sured over more than a single-period. We are guided by Hansen (2012), who emphasizes the need to study

the behavior of long-term entropy of SDFs. This problem entails imposing additional restrictions on the

dynamic link between the permanent and transitory components over an n-period investment horizon.

Consider the n-period SDF, mt,t+n, defined as:

mt,t+n =
n

∏
j=1

mt+ j−1,t+ j, where mt+ j−1,t+ j is the SDF from t + j−1 to t + j. (42)

We postulate that the n-period SDF can be decomposed as

mt,t+n = mP
t,t+n mT

t,t+n, where mP
t,t+n =

n

∏
j=1

mP
t+ j−1,t+ j and mT

t,t+n =
n

∏
j=1

mT
t+ j−1,t+ j, (43)

with mT
t+ j−1,t+ j = 1/Rt+ j−1,t+ j,∞, E[mP

t+ j−1,t+ j] = 1, and Rt+ j−1,t+ j,∞ is the gross return from holding a

discount bond with infinite-maturity from time t + j−1 to t + j.

Now consider the sets that correctly price each of the N +2 assets over n-periods:

S(n) =
{

mt,t+n > 0 : Et [mt,t+n] = q(n)t , E [mt,t+nRt,t+n,∞] = 1, and E [mt,t+nRt,t+n] = 1
}

and (44)

S(n)P =
{

mt,t+n ∈ S(n): mt,t+n = mP
t,t+n mT

t,t+n, and mT
t,t+n = (Rt,t+n,∞)

−1
}
, (45)

where Rt,t+n is a vector column of risky asset returns and q(n)t is the price of an n-period discount bond.
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Each component of Rt,t+n is of the form Rt,t+n =
n
∏
j=1

Rt+ j−1,t+ j, where Rt+ j−1,t+ j is the return of the risky

asset from t + j−1 to t + j. Moreover, Rt,t+n,∞ =
n
∏
j=1

Rt+ j−1,t+ j,∞.

Let Σ(n) be the variance-covariance matrix of Rt,t+n and Σ(n)
P be the variance-covariance of Rt,t+n/Rt,t+n,∞.

Our main characterization is presented next.

Theorem 6 The following entropy bounds are applicable to n-period stochastic discount factors:

(a) The entropy of m2
t,t+n satisfies:

L[m2
t,t+n]≥ 2

E

log


(

1−E[q(n)t ]E [Rt,t+n]
)′ (

Σ(n)
)−1

1′
(
Σ(n)
)−1
(

1−E[q(n)t ]E [Rt,t+n]
)Rt,t+n


− log

(
(E[q(n)t ])−1

)
+ log

(
1+
(

1−E[q(n)t ]E [Rt,t+n]
)′ (

Σ(n)
)−1(

1−E[q(n)t ]E [Rt,t+n]
)(

E[q(n)t ]
)−2
)
. (46)

(b) The entropy of (mP
t,t+n)

2 satisfies

L[(mP
t,t+n)

2] ≥ 2

E

log


(

1−E[q(n)t ]E [Rt,t+n]
)′ (

Σ(n)
)−1

1′
(
Σ(n)
)−1
(

1−E[q(n)t ]E [Rt,t+n]
)Rt,t+n


− E [log(Rt,t+n,∞)]


+ log

(
1+(1−E [Rt,t+n/Rt,t+n,∞])

′
(

Σ(n)
P

)−1
(1−E [Rt,t+n/Rt,t+n,∞])

)
. (47)

(c) The entropy of mt,t+n satisfies:

L[mt,t+n]≥ E

log


((

Σ(n)
)−1
(

1−E
[
q(n)t

]
E [Rt,t+n]

))′

Rt,t+n

1′ (Σ(n)
)−1
(

1−E
[
q(n)t

]
E [Rt,t+n]

)

− log

((
E
[
q(n)t

])−1
)
. (48)

(d) The entropy of mP
t,t+n satisfies:

L[mP
t,t+n] ≥ E

log


((

Σ(n)
)−1
(

1−E
[
q(n)t

]
E [Rt,t+n]

))′

Rt,t+n

1′ (Σ(n)
)−1
(

1−E
[
q(n)t

]
E [Rt,t+n]

)

 − E [log(Rt,t+n,∞)] . (49)

Proof: See Appendix F.
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The entropy bounds derived in Theorem 6 reflect information about the dynamics of asset returns and

Treasury bond returns. Our entropy restrictions on mP
t,t+n and mt,t+n can be used to evaluate consistency of

asset pricing models with observed prices over any investment horizon.

Other forms of codependence could be clarified in a multi-period setting, whereby

L[mP
t,t+n mT

t,t+n]−L[mP
t,t+n]−L[mT

t,t+n] = log(E[q(n)t ])− log(E [1/Rt,t+n,∞]) . (50)

Elaborating further, the dependence between mt,t+k and mt+k,t+n can be expressed in terms of the Treasury

term structure quantities as:

L[mt,t+kmt+k,t+n]−L [mt,t+k]−L[mt+k,t+n] = log(E[q(n)t ])− log(E[q(k)t ])− log(E[q(n−k)
t+k ]). (51)

Overall, the restrictions over the n-periods could enrich our understanding of the codependence between

the permanent and the transitory components of the SDF and help to build models that are more adept at

mimicking asset pricing quantities over alternative investment horizons.

7. Conclusions

A central problem in finance is the specification of the stochastic discount factor. We study this problem

by providing new asset pricing restrictions that are based on the entropy of the square of the stochastic

discount factor. Our entropy measure is suitable for capturing the conditional volatility and non-normalities

in the log stochastic discount factor. The entropy restrictions we develop are based on the ability of the

stochastic discount factor to jointly price the risk-free bond, the long-term discount bond, and a set of risky

assets. We also present new entropy codependence measures to assess asset pricing models.

Our bounds framework hinges on understanding the permanent and transitory components of the

stochastic discount factors and are in the tradition of Alvarez and Jermann (2005), Hansen and Scheinkman

(2009), Bakshi and Chabi-Yo (2012), and Hansen (2012). Key to our analysis are the expressions for the
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permanent and the transitory components of the stochastic discount factor, which we obtain by solving the

eigenfunction problem. We ask whether the entropy of the permanent and the transitory components of the

stochastic discount factor from a model are sufficient to meet the corresponding lower bounds.

There are a number of implications of our entropy framework for asset pricing models. First, our eval-

uation reveals that the difference habit model, the recursive utility model with stochastic variance, and the

recursive utility model with constant jump intensity generally fail to satisfy the posited bounds on the per-

manent and the transitory components of the stochastic discount factors. Second, while the recursive utility

model with constant jump intensity meets the lower bound on the square of the permanent component, we

attribute the model success to unrealistic higher-order moments associated with the parametrization of the

stochastic discount factor. Finally, these models are incompatible with the entropy codependency restric-

tions inferred from the returns data.

We also extend our framework to bounds that are valid for stochastic discount factors over alternative

investment horizons. Borovicka, Hansen, Hendricks, and Scheinkman (2011) have advocated looking at

risk and valuation dynamics over different investment horizons.

With some modifications, our framework could be expanded to analyze other asset pricing models,

including generalized recursive smooth ambiguity utility (as in Ju and Miao (2012)) and generalized dis-

appointment aversion (as in Routledge and Zin (2010)). One could also refine our bounds framework to

incorporate conditioning information to further learn about the properties of the stochastic discount factors

and the dynamics of the permanent and transitory components.

The push to attain well-specified stochastic discount factors has applications that transcend stock, bond,

commodity, currency, and options valuation.
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Appendix A: Proof of Theorem 1

The security that pays the SDF is a hedging asset and will have a negative expected return. The gross return

1+ rSDF
t,t+1 =

mt,t+1

Et [m2
t,t+1]

satisfies the Euler equation with Et [mt,t+1(1+ rSDF
t,t+1)] = 1. Hence, taking logs of the

expression for 1+ rSDF
t,t+1, and adding and subtracting log(m2

t,t+1), we obtain:

log(1+ rSDF
t,t+1) = log(mt,t+1)− log(Et

[
m2

t,t+1
]
)+ log(m2

t,t+1)−2log(mt,t+1). (A1)

Taking expectations on both sides of equation (A1):

Et [log(1+ rSDF
t,t+1)]+Et [log(mt,t+1)] =

−Lt [m2
t,t+1]︷ ︸︸ ︷

Et [log(m2
t,t+1)]− log(Et [m2

t,t+1]) (A2)

It then follows that,

Lt [m2
t,t+1]+ log(Et [mt,t+1]) = −Et [log(1+ rSDF

t,t+1)]+ log(Et [mt,t+1])−Et [log(mt,t+1)]︸ ︷︷ ︸
Lt [mt,t+1]

(A3)

> −Et [log(1+ rSDF
t,t+1)]. (A4)

Rearranging, we can derive the expression

Lt [m2
t,t+1] > −Et [log(1+ rSDF

t,t+1)]− log(Et [mt,t+1]). (A5)

Since the gross return of the risk-free bond satisfies R f
t Et [mt,t+1] = 1, we obtain

log(R f
t )−Et [log(1+ rSDF

t,t+1)] < Lt [m2
t,t+1]. (A6)

Taking unconditional expectations on both sides of equation (A6):

E[log(R f
t )]−E[log(1+ rSDF

t,t+1)] < E[Lt [m2
t,t+1]]. (A7)
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Now invoke the following relation:

E[Lt [m2
t,t+1]] ≤ L[m2

t,t+1] since L[m2
t,t+1] = E[Lt [m2

t,t+1]] + L[Et [m2
t,t+1]]. (A8)

Therefore, E[log(R f
t )]−E[log(1+ rSDF

t,t+1)] ≤ L[m2
t,t+1]. Our measure is tied to the maximum expected log

return on a security that pays the SDF and we derive a lower bound on L[m2
t,t+1].

Completing the picture, observe that Et [m2
t,t+1]> (Et [mt,t+1])

2 (because Var(mt,t+1)> 0). Hence,

Et [1+ rSDF
t,t+1] =

Et [mt,t+1]

Et [m2
t,t+1]

<
Et [mt,t+1]

(Et [mt,t+1])
2 =

1
Et [mt,t+1]

. (A9)

This implies

log
(
Et
[
1+ rSDF

t,t+1
])

<

log(R f
t )︷ ︸︸ ︷

log
(

1
Et [mt,t+1]

)
. (A10)

By an application of Jensen’s inequality:

Et [log(1+ rSDF
t,t+1)]< log

(
Et
[
1+ rSDF

t,t+1
])

< log(R f
t ). (A11)

It then follows that

log(R f
t )−Et [log(1+ rSDF

t,t+1)]> 0. Therefore, E[log(R f
t )]−E[log(1+ rSDF

t,t+1)]> 0. (A12)

This is what we intended to show.

Appendix B: Proof of Theorem 2

We adopt the following notation to streamline equation presentation and the steps of the proof:

y ≡ Σ−1 (1−E [qt ]E [Rt,t+1]) , yP ≡ Σ−1
P (1−E [Rt,t+1/Rt,t+1,∞]) , and a ≡ y

1′y
, (B1)
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where Σ is the variance-covariance matrix of Rt,t+1, and ΣP is the variance-covariance matrix of Rt,t+1/Rt,t+1,∞.

We assume that a′Rt,t+1 is strictly positive. Further define,

erR ≡ E
[
log
(

a
′
Rt,t+1

)]
− log

(
(E[qt ])

−1
)
, (B2)

er∞ ≡ E [log(Rt,t+1,∞)] − log
(
(E[qt ])

−1
)
. (B3)

Proof of the entropy bound on m2
t,t+1 in equation (19). By the definition of entropy: L[m2] = log(E[m2])−

E[log(m2)]. Then

L
[
m2

t,t+1
]

= log
(
E
[
m2

t,t+1
])

−2log(E [qt ])+2L [mt,t+1] ,

= log

1+
E
[
m2

t,t+1

]
− (E [qt ])

2

(E [qt ])
2

+2L [mt,t+1] ,

= log

(
1+

Var [mt,t+1]

(E [qt ])
2

)
+2L [mt,t+1] ,

≥ log

(
1+

Var [mt,t+1]

(E [qt ])
2

)
+2erR (since L [mt,t+1]≥ erR; see (C4)). (B4)

Because E [mt,t+1Rt,t+1] = 1 and setting qt = E [mt,t+1], it follows that

E [mt,t+1 (Rt,t+1 −E (Rt,t+1))] = (1−E [qt ]E [Rt,t+1]) . (B5)

Multiplying equation (B5) by (1−(E [qt ])E [Rt,t+1])
′
Σ−1 yields

(1−(E [qt ])E [Rt,t+1])
′
Σ−1 (1−E [qt ]E [Rt,t+1])=E

[
mt,t+1 (1−(E [qt ])E [Rt,t+1])

′
Σ−1 (Rt,t+1 −E [Rt,t+1])

]
.

(B6)
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Applying the Cauchy Schwartz inequality to the right-hand side of equation (B6), it can be shown that

Var [mt,t+1] ≥ (1−(E [qt ])E [Rt,t+1])
′
Σ−1 (1−(E [qt ])E [Rt,t+1]) ,

≥ (1−(E [qt ])E [Rt,t+1])
′
Σ−1ΣΣ−1 (1−(E [qt ])E [Rt,t+1]) ,

≥ y′ Σy. (B7)

Combining the expressions in equations (B4) and (B7), we obtain the bound on L[m2
t,t+1] in equation (19)

of Theorem 2.

Proof of the entropy bound on (mP
t,t+1)

2 in equation (20) of Theorem 2. We write

L[(mP
t,t+1)

2] = log(E[(mP
t,t+1)

2])−E[log((mP
t,t+1)

2)],

= log(E[(mP
t,t+1)

2])−2E[log(mP
t,t+1)],

= log(E[(mP
t,t+1)

2])+2L
[
mP

t,t+1
]
,

= log
(
1+Var

[
mP

t,t+1
])

+2L[mP
t,t+1]. (B8)

We show in equation (D4) that L[mP
t,t+1] ≥ erR − er∞ (the complete expressions for erR and er∞ are in

equations (B2) and (B3), respectively). Therefore, we deduce that

L[
(
mP

t,t+1
)2
] ≥ log

(
1+Var

[
mP

t,t+1
])

+ 2 (erR − er∞) . (B9)

Since E [mt,t+1Rt,t+1] = E
[
mP

t,t+1
Rt,t+1

Rt,t+1,∞

]
= 1, we then obtain:

E
[

mP
t,t+1

(
Rt,t+1

Rt,t+1,∞
−E

[
Rt,t+1

Rt,t+1,∞

])]
= 1−E

[
Rt,t+1

Rt,t+1,∞

]
. (B10)

Multiplying each side of equation (B10) by
(

1−E
[

Rt,t+1
Rt,t+1∞

])′

Σ−1
P , we get

(
1−E

[
Rt,t+1

Rt,t+1∞

])′

Σ−1
P

(
1−E

[
Rt,t+1

Rt,t+1,∞

])
= E

[
mP

t,t+1

(
1−E

[
Rt,t+1

Rt,t+1∞

])′

Σ−1
P

(
Rt,t+1

Rt,t+1,∞
−E

[
Rt,t+1

Rt,t+1,∞

])]
.

(B11)
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Applying the Cauchy Schwartz inequality to the right-hand side of equation (B11), we note that

Var
[
mP

t,t+1
]

≥
(

1−E
[

Rt,t+1

Rt,t+1∞

])′

Σ−1
P

(
1−E

[
Rt,t+1

Rt,t+1∞

])
,

≥
(

1−E
[

Rt,t+1

Rt,t+1∞

])′ (
Σ−1

P

)′ ΣPΣ−1
P

(
1−E

(
Rt,t+1

Rt,t+1∞

))
,

≥ y′P ΣP yP. (where noting yP ≡ Σ−1
P (1−E [Rt,t+1/Rt,t+1,∞])). (B12)

Inserting the bound derived in equation (B12) into equation (B9) leads to the bound in equation (20) of

Theorem 2.

Appendix C: Proof of Theorem 3

Generalizing the Backus, Chernov, and Zin (2014) entropy bound on mt,t+1 to many risky assets.

Recognizing from equation (B1) that a ≡ y
1′y ,

E
[
log
(

mt,t+1a
′
Rt,t+1

)]
≤ log

(
E
[
mt,t+1a

′
Rt,t+1

])
, (C1)

≤ log
(

a
′
E [mt,t+1Rt,t+1]

)
,

≤ log
(

a
′
1
)
= log(1) ,

≤ 0.

From equation (C1) and noting that log(mt,t+1a′Rt,t+1) = log(mt,t+1)+ log(a′Rt,t+1), we deduce that

E
[
log
(

a
′
Rt,t+1

)]
≤−E [log(mt,t+1)] . (C2)

Adding log(E [mt,t+1]) to both sides of equation (C2) yields

log(E [mt,t+1])+E[log(a
′
Rt,t+1)] ≤ log(E[mt,t+1])−E [log(mt,t+1)] = L [mt,t+1] . (C3)
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Since qt = Et [mt,t+1], equation (C3) simplifies to

L [mt,t+1]≥ E[log(a
′
Rt,t+1)] − log(1/E [qt ]) . (C4)

Our equation (C4) generalizes Backus, Chernov, and Zin (2014) when the bounds incorporate more than

a single risky asset, specifically the set of assets outlined in equation (17). This was the final step in the

proof of Theorem 3.

Appendix D: Proof of Theorem 4

Generalizing the Alvarez and Jermann (2005) entropy bound on mP
t,t+1 to many risky assets. Consider

an SDF mP
t,t+1 ∈ SP. We note that

E
[
log
(

mt,t+1a
′
Rt,t+1

)]
= E

[
log

(
mP

t,t+1
a′Rt,t+1

Rt,t+1,∞

)]
. (D1)

Invoking Jensen’s inequality, we have

E

[
log

(
mP

t,t+1
a′Rt,t+1

Rt,t+1,∞

)]
= E

[
log
(

mt,t+1a
′
Rt,t+1

)]
, (D2)

≤ log
(

a
′
E [mt,t+1Rt,t+1]

)
,

≤ log
(

a
′
1
)
,

≤ 0.

From equation (D2), we deduce

E

[
log

(
a′Rt,t+1

Rt,t+1,∞

)]
≤−E[log

(
mP

t,t+1
)
] = L[mP

t,t+1]. (D3)
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Hence,

L
[
mP

t,t+1
]

≥ E[log(a
′
Rt,t+1)] − E[log(Rt,t+1,∞)],

≥ E[log(a
′
Rt,t+1)]− log(1/E [qt ]) − (E[log(Rt,t+1,∞)]− log(1/E [qt ])) . (D4)

This bound generalizes Alvarez and Jermann (2005) to N +2 assets.

Appendix E: Proof of Theorem 5 on codependence

To streamline expressions, we write our measure of codependence as:

Db ≡ L[(mP
t,t+1)

2(mT
t,t+1)

2] − L[(mP
t,t+1)

2] − L[(mT
t,t+1)

2], (E1)

= log(E[(mP
t,t+1)

2(mT
t,t+1)

2])− log(E[(mP
t,t+1)

2])− log(E[(mT
t,t+1)

2]). (E2)

From the expression in equation (E1),

log(E[(mP
t,t+1)

2])+ log(E[(mT
t,t+1)

2]) = log(E[(mP
t,t+1)

2(mT
t,t+1)

2]) − Db. (E3)

From the Cauchy Schwartz inequality, we have

(
E
[
mP

t,t+1mT
t,t+1

])2 ≤ E[(mP
t,t+1)

2]E[(mT
t,t+1)

2]. (E4)

Taking the log of the expression in equation (E1) gives

log(
(
E[mP

t,t+1mT
t,t+1]

)2
)≤ log(E[

(
mP

t,t+1
)2
])+ log(E[

(
mT

t,t+1
)2
]). (E5)

Replacing equation (E3) in the expression (E5) yields

log((E[qt ])
2)≤ log(E[

(
mP

t,t+1
)2
(mT

t,t+1)
2]) − Db, (since qt = Et

[
mP

t,t+1mT
t,t+1

]
) (E6)
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and

Db + log((E [qt ])
2) ≤ log

(
E[(mP

t,t+1)
2 (mT

t,t+1
)2
]
)
. (E7)

Since Var[mt,t+1] = E[m2
t,t+1]− (E[mt,t+1])

2 = E[(mP
t,t+1)

2(mT
t,t+1)

2]− (E [qt ])
2, one could write equation

(E7) as:

Db + log((E [qt ])
2)≤ log(Var [mt,t+1]+ (E [qt ])

2). (E8)

From the proof of Theorem 2, we have shown that y′ Σy ≤ Var [mt,t+1]. Therefore,

log
(

y
′
Σy + (E [qt ])

2
)

≤ log
(

Var [mt,t+1]+ (E [qt ])
2
)
. (E9)

Because y′Σy is the highest lower bound on Var [mt,t+1], it follows that log(y′Σy+(E [qt ])
2) is the highest

of the lower bounds on log(Var [mt,t+1] + (E [qt ])
2). Therefore, any other lower bound on the quantity

log(Var [mt,t+1]+ (E [qt ])
2) must be lower than log(y′Σy+(E [qt ])

2). As a result,

Db + log
((

E
[
q1

t
])2
)

≤ log
(

y
′
Σy+(E [qt ])

2
)
, (E10)

which implies

Db ≤ log

(
1+

y′ Σy
(E [qt ])

2

)
. (E11)

To establish the positivity of the codependence measure Db, we note that

Db = log

 E
[(

mP
t,t+1

)2(
mT

t,t+1

)2
]

E
[(

mP
t,t+1

)2
]

E
[(

mT
t,t+1

)2
]
 , (E12)

= log

 Cov
[(

mP
t,t+1

)2
,
(

mT
t,t+1

)2
]

E
[(

mP
t,t+1

)2
]

E
[(

mT
t,t+1

)2
] +1

 . (E13)

Since Cov[mP
t,t+1,m

T
t,t+1] = E [qt ]−E [1/Rt,t+1,∞] > 0, we have Cov[(mP

t,t+1)
2,(mT

t,t+1)
2] > 0. Therefore,

Db > log(1) = 0. The proof of Theorem 5 is complete.
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Appendix F: Proof of Theorem 6

Proof of the n-period bounds for the SDF: We have L [mt,t+n] = log(E [mt,t+n])−E [log(mt,t+n)] and

q(n)t = Et [mt,t+n]. Before proceeding, we define

y(n) =
(

Σ(n)
)−1(

1−E[q(n)t ]E [Rt,t+n]
)

and a(n) ≡ y(n)/
(

1′y(n)
)
, (F1)

where Σ(n) is the variance-covariance matrix of Rt,t+n. Assume (a(n))′Rt,t+n > 0. Using Jensen’s inequality,

we have

E
[
log
(

mt,t+na(n)
′
Rt,t+n

)]
≤ log

(
E
[
mt,t+na(n)

′
Rt,t+n

])
,

≤ log
(

a(n)
′
E [mt,t+nRt,t+n]

)
,

≤ log
(

a(n)
′
1
)
,

≤ 0, (F2)

and

E
[
log
(

a(n)
′
Rt,t+n

)]
≤−E [log(mt,t+n)] . (F3)

Adding log(E [mt,t+n]) to both sides of equation (F3) yields

log(E [mt,t+n])+E
[
log
(

a(n)
′
Rt,t+n

)]
≤ log(E [mt,t+n])−E [log(mt,t+n)] = L [mt,t+n] , (F4)

and

L [mt,t+n] ≥ E
[
log
(

a(n)
′
Rt,t+n

)]
+ log

(
E
[
q(n)t

])
,

≥ E
[
log
(

a(n)
′
Rt,t+n

)]
− log

(
E
[
q(1)t

])
+ log

(
E
[
q(1)t

])
+ log

(
E
[
q(n)t

])
, (F5)

≥ E
[
log
(

a(n)
′
Rt,t+n

)]
+ log

(
E
[
q(1)t

])
− log

(
E
[
q(1)t

])
+ log

(
E
[
q(n)t

])
,

≥ E
[
log
(

a(n)
′
Rt,t+n

)]
−n log

(
1/E

[
q(1)t

])
−
(

n log
(

E
[
q(1)t

])
− log

(
E
[
q(n)t

]))
.
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Upon simplification, we get the bound in equation (46). Now note the relation, L
[
m2

t,t+n
]
= log

(
E
[
m2

t,t+n
])
−

E
[
log
(
m2

t,t+n
)]

. We expand L
[
m2

t,t+n
]

to

L
[
m2

t,t+n
]

= log
(
E
[
m2

t,t+n
])

−2E [log(mt,t+n)] ,

= log
(
E
[
m2

t,t+n
])

−2 log(E [mt,t+n])+2(log(E [mt,t+n])−E [log(mt,t+n)]) ,

= log
(
E
[
m2

t,t+n
])

−2 log
(

E
[
q(n)t

])
+2L [mt,t+1] . (F6)

Recall that

L[m2
t,t+n] = log

(
E
[
m2

t,t+n
])

−2E [log(mt,t+n)] ,

= log
(
E
[
m2

t,t+n
])

−2log
(

E
[
q(n)t

])
+2L [mt,t+n] ,

= log

 E
[
m2

t,t+n
](

E
[
q(n)t

])2

+2L [mt,t+n] . (F7)

Using an application of the Cauchy Schwartz inequality, the result in equation (47) follows. The corre-

sponding bounds on L[mP
t,t+n] and L[(mP

t,t+n)
2] obey a similar construction, and the details are available

from the authors.
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Online Appendix I: Proofs of the results in Section 2.2

Proof of equation (7) in Example 1. We apply the definition of entropy to (mP
t,t+1)

2, i.e., L[(mP
t,t+1)

2] =

log(E[(mP
t,t+1)

2])−E[log((mP
t,t+1)

2)]. Under our assumption, log(mP
t,t+1) is normally distributed with mean

−1
2 σ2

P and variance σ2
P. Therefore,

L[mP
t,t+1] =−E

[
log
(
mP

t,t+1
)]

=
1
2

σ2
P, (G1)

and,

L[(mP
t,t+1)

2] = log
(

exp
(
−2

2
σ2

P +
4
2

σ2
P

))
− 2

(
−1

2
σ2

P

)
= 2σ2

P. (G2)

Using equations (G1) and (G2), we see that L[(mP
t,t+1)

2] = 4L[mP
t,t+1].

Proof of equation (8). Using the definition of entropy,

L[(mP
t,t+1)

2]−4L[mP
t,t+1] = log(E[

(
mP

t,t+1
)2
])−2E[log

(
mP

t,t+1
)
]+4E[log(mP

t,t+1)], (G3)

= log(E[
(
mP

t,t+1
)2
])+E[log

(
((mP

t,t+1)
2)]. (G4)

Thus, we have the desired expression.

Proof of equation (9) in Example 2. Combining our assumption that log(mP
t,t+1) follows N

(
µt ,σ2

t
)

with

the fact that Et [mP
t,t+1] = 1, we note

eµt+
1
2 σ2

t = 1, which implies µt =−1
2

σ2
t . Hence, L[mP

t,t+1] =
1
2

E[σ2
t ]. (G5)

Next, we evaluate L[(mP
t,t+1)

2] = log(E[(mP
t,t+1)

2])−E[log((mP
t,t+1)

2)] in two steps. Since log(mP
t,t+1) fol-

lows N
(
µt ,σ2

t
)
, we obtain

E[(mP
t,t+1)

2] = E[Et [
(
mP

t,t+1
)2
]] = E[e2µt+2σ2

t ] = E[eσ2
t ] (since µt =−1

2
σ2

t ). (G6)

With the above results, we note that L[(mP
t,t+1)

2] = log(E[(mP
t,t+1)

2])−E[log((mP
t,t+1)

2)] = log(E[eσ2
t ])−
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2µt = log(E[eσ2
t ])+E[σ2

t ].

Proof of equation (10) in Example 2. Observe that

L[(mP
t,t+1)

2]−4L[mP
t,t+1] = log(E[eσ2

t ])+E[σ2
t ]−4

(
1
2

E
[
σ2

t
])

= log

 E
[
eσ2

t

]
exp
(
E
[
σ2

t
])
 . (G7)

The Taylor expansion of eσ2
t around σ2

t = E
[
σ2

t
]

yields

eσ2
t = e(E[σ2

t ]) +
∞

∑
j=1

1
j!
(
σ2

t −E
[
σ2

t
]) j

e(E[σ2
t ]), (G8)

which implies

E
[
eσ2

t

]
e(E[σ2

t ])
= 1+

∞

∑
j=1

1
j!

E
[(

σ2
t −E

[
σ2

t
]) j
]
= 1+

∞

∑
j=2

1
j!

E
[(

σ2
t −E

[
σ2

t
]) j
]
. (G9)

Therefore,

L[(mP
t,t+1)

2]−4L[mP
t,t+1] = log

E
[
eσ2

t

]
e(E[σ2

t ])

= log

(
1+

∞

∑
j=2

1
j!

E
[(

σ2
t −E

[
σ2

t
]) j
])

. (G10)

This ends the proof of equation (10).

Proof of equation (11). We observe that

exp
(
log((mP

t,t+1)
2)
)
= exp

(
2log

(
mP

t,t+1
))

. (G11)

The Taylor expansion series of exp
(

log((mP
t,t+1)

2)
)

around E[log(mP
t,t+1)] produces

exp
(
2log

(
mP

t,t+1
))

= exp
(
2E
[
log
(
mP

t,t+1
)])

+
∞

∑
j=1

2 j

j!
(
log
(
mP

t,t+1
)
−E

[
log
(
mP

t,t+1
)]) j

. (G12)
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We apply the expectation operator to (G12) and get

E
[
exp
(
2log

(
mP

t,t+1
))]

= exp
(
2E
[
log
(
mP

t,t+1
)])

+
∞

∑
j=1

2 j

j!
κ j exp

(
2E
[
log
(
mP

t,t+1
)])

, (G13)

with κ j = E
[(

log
(

mP
t,t+1

)
−E

[
log
(

mP
t,t+1

)]) j
]

. Next, we apply the log function to (G13) and get

log
(
E
[
exp
(
2log

(
mP

t,t+1
))])

= log
(
exp
(
2E
[
log
(
mP

t,t+1
)]))

+ log

(
1+

∞

∑
j=1

2 j

j!
κ j

)
, (G14)

and

log
(
E
[
exp
(
2log

(
mP

t,t+1
))])

−2E
[
log
(
mP

t,t+1
)]

= log

(
1+

∞

∑
j=1

2 j

j!
κ j

)
. (G15)

Expression (G15) is equivalent to

L[
(
mP

t,t+1
)2
] = log(E[(mP

t,t+1)
2])−E[log((mP

t,t+1)
2)] = log

(
1+

∞

∑
j=1

2 j

j!
κ j

)
. (G16)

This completes our description of the steps.

Proof of equation (12). Under the normality of log(mP
t,t+1), we get

L[(mP
t,t+1)

2] = log
(
1+2Var

[
log
(
mP

t,t+1
)])

= log
(
1−4E

[
log
(
mP

t,t+1
)])

(since E
[
log
(
mP

t,t+1
)]

=−1
2

Var
[
log
(
mP

t,t+1
)]

)

= −4E
[
log
(
mP

t,t+1
)]

= 4L[mP
t,t+1], (G17)

as desired.
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Proof of equation (13). Observe that

L[(mP
t,t+1)

2]−2L[mP
t,t+1] = log(E[(mP

t,t+1)
2])−2E[log(mP

t,t+1)]−2log(E[mP
t,t+1])+2E

[
log
(
mP

t,t+1
)]

= log
(

E
[(

mP
t,t+1

)2
])

= log
(
E[(mP

t,t+1)
2]− (E[mP

t,t+1])
2 +1

)
= log

(
1+Var

[
mP

t,t+1
])

≈ Var
[
mP

t,t+1
]
, (G18)

which is what we present in the main body of the paper.

Online Appendix II: Analytical solution for the eigenfunction problem in Example 3

Consider the eigenfunction problem for the dynamics of the SDF in equation (14):

Et [mt,t+1 et+1] = ζet , where ζ is the eigenvalue and et+1 is the eigenfunction. (H1)

Accordingly, the permanent and transitory components of the SDF are

mP
t,t+1 = mt,t+1

(
et+1

ζet

)
and mT

t,t+1 =
ζet

et+1
. (H2)

We conjecture that the eigenfunction et+1 takes the form et+1 = exp(ξzt+1). Consider the expression

log(mt,t+1)+ log(et+1)− log(et) = −δ− γzt −λz
1
2
t εt+1 +ξzt+1 −ξzt ,

= −δ+ξ(1−φ)θ+(−γ+ξφ−ξ)zt +(−λ+ξσ)z
1
2
t εt+1, (H3)

and, thus,

Et

[
mt,t+1

et+1

et

]
= exp

(
−δ+ξ(1−φ)θ+

(
−γ+ξφ−ξ+

1
2
(−λ+ξσ)2

)
zt

)
. (H4)
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Therefore,

log(ζ) =−δ+ξ(1−φ)θ and − γ+ξφ−ξ+
1
2
(−λ+ξσ)2 = 0. (H5)

It may be seen that the second expression in equation (H5) is amenable to the simplification:

1
2

λ2 − γ+ξ(φ−1−λσ)+
1
2

ξ2σ2 = 0. (H6)

To be consistent with Backus, Foresi, and Telmer (2001, Section II.B), we must have γ = 1
2

(
1+λ2

)
. Let

∆ = (φ−1−λσ)2 −2σ2
(1

2 λ2 − γ
)
> 0. Following Hansen and Scheinkman (2009), we select the solution

associated with the negative root. Consequently, we choose

ξ =
−ξ(φ−1−λσ)−

√
∆

σ2 . (H7)

The transitory component of the SDF is mT
t,t+1 = exp(−δ+ξ(1−φ)θ+ξ(zt − zt+1)). Hence, the log

permanent component of the SDF is log(mP
t,t+1) = log(mt,t+1)− log(mT

t,t+1), which delivers equation (15).

The entropies in (14) follow by exploiting the conditional expectation.

Online Appendix III: Expression for our bound in our Theorem 3 when N=2

Consider the two-asset specialization with market portfolio and another asset with gross return Ri
t,t+1:

Rt,t+1 = [Rm
t,t+1,R

i
t,t+1]. Therefore,

Σ =

 Var[Rm
t,t+1] Cov(Rm

t,t+1,R
i
t,t+1)

Cov(Rm
t,t+1,R

i
t,t+1) Var[Ri

t,t+1]

≡

 σ2
M βiσ2

M

βiσ2
M σ2

i

 , (I1)

and

Σ−1 =
1(

σ2
Mσ2

i −β2
i σ4

M

)
 σ2

i −βiσ2
M

−βiσ2
M σ2

M.

 . (I2)
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Then y = Σ−1 (1−E [qt ]E [Rt,t+1]) is

y =
1(

σ2
Mσ2

i −β2
i σ4

M

)
 σ2

i −βiσ2
M

−βiσ2
M σ2

M



 1−E [qt ]E

[
Rm

t,t+1

]
1−E [qt ]E

[
Ri

t,t+1

]

 , (I3)

=
1(

σ2
Mσ2

i −β2
i σ4

M

)
 σ2

i

(
1−E [qt ]E

[
Rm

t,t+1

])
−βiσ2

M

(
1−E [qt ]E

[
Ri

t,t+1

])
−βiσ2

M

(
1−E [qt ]E

[
Rm

t,t+1

])
+σ2

M

(
1−E [qt ]E

[
Ri

t,t+1

])
 . (I4)

Further manipulation yields

1
′
y =

(
σ2

i −βiσ2
M
)(

1−E [qt ]E
[
Rm

t,t+1

])
+σ2

M (1−βi)
(

1−E [qt ]E
[
Ri

t,t+1

])
(
σ2

i −β2
i σ2

M

)
σ2

M
. (I5)

Therefore,

1
1′y

(
y
′
Rt+1

)

=
1

1′y
1(

σ2
Mσ2

i −β2
i σ4

M

)


σ2
i

(
1−E [qt ]E

[
Rm

t,t+1

])
Rm

t,t+1 −βiσ2
M

(
1−E [qt ]E

[
Ri

t,t+1

])
Rm

t,t+1

−βiσ2
M

(
1−E [qt ]E

[
Ri

t,t+1

])
Ri

t,t+1 +σ2
M

(
1−E [qt ]E

[
Ri

t,t+1

])
Ri

t,t+1


= a0 Rm

t,t+1 + b0 Ri
t,t+1, (I6)

where a0 +b0 = 1 and setting

a0 ≡
σ2

i

(
1−E [qt ]E

[
Rm

t,t+1

])
−βiσ2

M

(
1−E [qt ]E

[
Ri

t,t+1

])
(
σ2

i −βiσ2
M

)(
1−E [qt ]E

[
Rm

t,t+1

])
+σ2

M (1−βi)
(

1−E [qt ]E
[
Ri

t,t+1

]) , (I7)

b0 ≡
σ2

M

(
1−E [qt ]E

[
Ri

t,t+1

])
−βiσ2

M

(
1−E [qt ]E

[
Rm

t,t+1

])
(
σ2

i −βiσ2
M

)(
1−E [qt ]E

[
Rm

t,t+1

])
+σ2

M (1−βi)
(

1−E [qt ]E
[
Ri

t,t+1

]) . (I8)

The final expression for the entropy bound L[mt,t+1] can therefore be written as:

L[mt,t+1] ≥ E
[

log
(

1
1′y

(
y
′
Rt+1

))]
− log

(
(E [qt ])

−1
)
,

= E
[
log
(
a0 Rm

t,t+1 + b0 Ri
t,t+1

)]
− log

(
(E [qt ])

−1
)
. (I9)
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Upon rearranging equation (I9), we obtain the expression in equation (22).

Online Appendix IV: Details of the difference habit model in Proposition 1

For the law of motions of the habit and consumption growth in equation (30), we define the backshift

operators η [B] and γ [B]:

η [B] =
∞

∑
j=0

η jB j and γ [B] =
∞

∑
j=0

γ j B j, (J1)

with η0 = 1−φh and η j+1 = φhη j, j ≥ 0, and γ0 = 1. Invoking a log linear approximation of log(st),

log(mt,t+1) = D0 +(ρ−1)
1
s
(1− (1− s)η [B]B) γ [B]υ

1
2 ωgt+1, (J2)

where D0 = log(β)+(ρ−1) log(g)+(ρ−1)
(s−1)

s

(
η0

1−φh
−1
)

log(g).

Using a log linear approximation log(st)≈ 1+ (s−1)
s zt , the dynamics of the surplus consumption ratio is

log(st+1)− log(st) =
(s−1)

s
(η [B]B−1) log(gt+1). (J3)

Therefore, we may write the log SDF as

log(mt,t+1) = log(β)+(ρ−1) log(g)+(ρ−1)
(s−1)

s
(η [B]B−1) log(g)

+(ρ−1)
1
s
(1− (1− s)η [B]B)γ [B]υ

1
2 ωgt+1. (J4)

To solve for the permanent and transitory components of the SDF, we write the log SDF as

log(mt,t+1) = log(β)+(ρ−1) log(g)+(ρ−1)
(s−1)

s
(η [B]B−1) log(g)+(ρ−1)

1
s

xt

−(ρ−1)
1
s
(1− s)η [B]Bxt − (ρ−1)

1
s
(1− s)η [B]Bυ

1
2 ωgt+1

+(ρ−1)
1
s

υ
1
2 ωgt+1, (J5)
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where

xt = (γ [B]− γ0)υ
1
2 ωgt+1, implying xt+1 −φg xt = γ1υ1/2 ωgt+1. (J6)

We simplify the log SDF as

log(mt,t+1) = D0 +(ρ−1)
1
s

(
1− 1

γ1
φg

)
xt +(ρ−1)

1
sγ1

xt+1

+(ρ−1)
1
s
(1− s)

(
1
γ1

φg −1
)

η [B]xt−1 − (ρ−1)
1
s
(1− s)

1
γ1

η [B]xt . (J7)

We conjecture that the eigenfunction et+1 corresponding to the general problem in equations (H1) and (H2)

is of the form:

log(et+1) = δ [B]xt+1, where δ [B] =
∞

∑
j=0

δ jB j with δ0 = 1. (J8)

To verify the solution, we expand to the following:

log(mt,t+1)+ log
(

et+1

et

)
= D0 +(ρ−1)

1
s

(
1− 1

γ1
φg

)
xt +(ρ−1)

1
s
(1− s)

(
1
γ1

φg −1
)

η [B]xt−1

−
(
(ρ−1)

1
s
(1− s)

1
γ1

η [B]+δ [B]
)

xt +(δ [B]−δ0)xt+1

+

(
(ρ−1)

1
s

1
γ1

+δ0

)
xt+1. (J9)

Upon simplifying the expectation involving the eigenfunction problem, we derive ζ as

log(ζ) = log(β)+(ρ−1) log(g)+(ρ−1)
(s−1)

s
(η [B]B−1) log(g)+

1
2

(
(ρ−1)

1
s

1
γ1

+δ0

)2

γ2
1υ

+

(
(ρ−1)

1
s

(
1− 1

γ1
φg

)
+

(
(ρ−1)

1
s

1
γ1

+δ0

)
φg

)
xt +(ρ−1)

1
s
(1− s)

(
1
γ1

φg −1
)

η [B]xt−1

+

(
−(ρ−1)

1
s
(1− s)

1
γ1

η [B]−δ [B]
)

xt +(δ [B]−δ0)xt+1. (J10)
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Using the identification approach, we deduce

log(ζ) = D0 +
1
2
(
(ρ−1)(sγ1)

−1 +δ0
)2 γ2

1υ (J11)

and

δ1 = −
(
(ρ−1)

1
s
+δ0φg

)
−
(
−(ρ−1)

1
s
(1− s)

1
γ1

η0 −δ0

)
,

δ j+1 = −(ρ−1)
1
s
(1− s)

(
1
γ1

φg −1
)

η j−1 −
(
−(ρ−1)

1
s
(1− s)

1
γ1

η j −δ j

)
for j ≥ 1. (J12)

Exploiting the solution to the eigenfunction function, we derive the transitory component of the SDF as

mT
t,t+1 = exp(D0 +D1 +D5 (xt − xt+1)) . (J13)

Equation (J13) implies the permanent component in equation (33) of Proposition 1, where

D0 = log(β)+(ρ−1) log(g)+(ρ−1)
(s−1)

s

(
η0

1−φh
−1
)

log(g), (J14)

D1 =
1
2
(
(ρ−1)(sγ1)

−1 +δ0
)2 γ2

1υ, (J15)

D2 = (ρ−1)
1
s
(1− s)

(
1
γ1

φg −1
)

η [B] , (J16)

D3 = −δ [B]− (ρ−1)
1
s
(1− s)

1
γ1

η [B]+ (ρ−1)
1
s

(
1− 1

γ1
φg

)
, (J17)

D4 = (ρ−1)(sγ1)
−1 +δ [B] , and (J18)

D5 = δ [B] . (J19)

This ends the proof.

Online Appendix V: Details of the recursive utility models in Propositions 2 and 3

Based on equations (34) and (36), we note that ωgt , zgt , and ωht are standard normal random variables,

independent of each other and across time. The jump component zgt is a poisson mixture of normals:
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conditional on the number of jumps j, zgt is normal with mean jθ and variance jδ2. The probability of

j ≥ 0 jumps at date t +1 is eht h j
t / j! expands to

mt,t+1 = exp
(

χ0 +ag [B]υ
1
2
t ωgt+1 +az [B]zgt+1 +aυ [B]ωυt+1 +ah [B]ωht+1

)
, (K1)

χ0 = log(β)+(ρ−1) log(g)

−(α−ρ)(Dυ− Jh)− (α−ρ)(α/2)
(
(Db1ν [b1])

2 +(Jb1η [b1])
2
)
, (K2)

where ag [B], az [B], aυ [B], and ah [B] are backshift operators defined as follows:

ag [B] = (ρ−1)γ [B]+ (α−ρ)γ [b1] , az [B] = (ρ−1)ψ [B]+ (α−ρ)ψ [b1] , (K3)

aυ [B] = (α−ρ) D (b1ν [b1]−ν [B]B) , ah [B] = (α−ρ)J (b1η [b1]−η [B]B) , (K4)

D = (α/2)(γ [b1])
2 , and J =

(
eαψ[b1]θ+(αψ[b1]δ)2

−1
α

)
. (K5)

The functions η [b1], ν [b1], and γ [b1] are polynomial functions of b1:

η [b1] =
∞
∑
j=0

b j
1η j, γ [b1] =

∞
∑
j=0

b j
1γ j, ν [b1] =

∞
∑
j=0

b j
1ν j, ψ [b1] =

∞
∑
j=0

b j
1ψ j, (K6)

with γ0 = 1, where

∞
∑
j=1

γ j < ∞,
∞
∑
j=1

η j < ∞,
∞
∑
j=1

ν j < ∞,
∞
∑
j=1

ψ j < ∞, (K7)

and

ν [B] =
∞

∑
j=0

ν jB j and ψ [B] =
∞

∑
j=0

ψ jB j. (K8)

A. Recursive utility with stochastic variance: The SDF is a special case of (K1) with h = 0, η [B] = 0,
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J = 0. The SDF takes the following form:

mt,t+1 = exp

 H0 +(ρ−1)γ [B]υ
1
2
t ωgt+1 +(α−ρ)γ [b1]υ

1
2
t ωgt+1

+(α−ρ)Db1ν [b1]ωυt+1 − (α−ρ)Dν [B]Bωυt+1

 ,

with

H0 = log(β)+(ρ−1) logg− (α−ρ)(Dυ)− (α−ρ)(α/2)
(
(Db1ν [b1])

2
)
. (K9)

Now, define

xt = (γ [B]− γ0)υ
1
2
t ωgt+1. (K10)

The state variable xt dynamics is:

xt = φgxt−1 + γ1υ
1
2
t−1ωgt , with γ j = φgγ j−1 for j ≥ 2 and φg =

γ2

γ1
. (K11)

It can also be shown that the dynamics of the state variable υt is

υt −υ = φυ (υt−1 −υ)+ν0ωυt , for j ≥ 2 and φυ =
ν1

ν0
. (K12)

The SDF can be expanded to

mt,t+1 = exp(H1 +H2xt +H3xt+1 +H4υt +H5υt+1) , (K13)
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where

H1 = H0 +(α−ρ)Dυ+(α−ρ)Db1ν [b1]
(φυ −1)

ν0
υ, (K14)

H2 = (ρ−1)− ((α−ρ)γ [b1]+ (ρ−1))
φg

γ1
, (K15)

H3 =
(ρ−1)

γ1
+

(α−ρ)γ [b1]

γ1
, (K16)

H4 = (α−ρ)D
(
−b1ν [b1]

φυ

ν0
−1
)
, and (K17)

H5 = (α−ρ)Db1
ν [b1]

ν0
. (K18)

Proceeding, we now solve the eigenfunction problem specified in equations (H1) and (H2). We conjecture

that log(et+1) = τ0xt+1 + τ1υt+1. Hence,

log(mt,t+1et+1/et) = H1 +(H2 − τ0)xt +(H3 + τ0)xt+1 +(H4 − τ1)υt +(H5 + τ1)υt+1 (K19)

and

log(ζ) = H1 +(H5 + τ1)υ(1−φυ)+
1
2
(H5 + τ1)

2 ν2
0 +(H2 − τ0 +(H3 + τ0)φg)xt

+

(
(H4 − τ1)+

1
2
(H3 + τ0)

2 γ2
1 +(H5 + τ1)φυ

)
υt . (K20)

Using the identification approach, we arrive at the expressions:

log(ζ) = H1 +(H5 + τ1)υ(1−φυ)+
1
2
(H5 + τ1)

2 ν2
0 (K21)

and

τ0 =
H2 +H3φg

1−φg
and τ1 =

H4 +
1
2 (H3 + τ0)

2 γ2
1 +H5φυ

1−φυ
. (K22)
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With these results, we are in a position to state the transitory and permanent components as:

mT
t,t+1 = exp

(
H1 +(H5 + τ1)υ(1−φυ)+

1
2 (H5 + τ1)

2 ν2
0 + τ0 (xt − xt+1)+ τ1 (υt −υt+1)

)
,

mP
t,t+1 = exp

 −(H5 + τ1)υ(1−φυ)− 1
2 (H5 + τ1)

2 ν2
0

(H2 − τ0)xt +(H3 + τ0)xt+1 +(H4 − τ1)υt +(H5 + τ1)υt+1

 .

(K23)

Setting H6 ≡−(H5 + τ1)υ(1−φυ)− (H5 + τ1)
2ν2

0/2, we obtain equation (38) of Proposition 2.

B. Recursive utility model with constant jump intensity: Consider the consumption growth dynamics

with ν [B] = 0 (in this case υt = υ). It can be shown that the SDF reduces to

mt,t+1 = exp



χ0

+(ρ−1)xt +((ρ−1)γ0 +(α−ρ)γ [b1])υ 1
2 ωgt+1

+(ρ−1)(ψ [B]−ψ0)zgt+1 +((ρ−1)ψ0 +(α−ρ)ψ [b1])zgt+1

+(α−ρ)Jb1η [b1]ωht+1 − (α−ρ)(ht −h) J


. (K24)

Now denote

x̃t = (ψ [B]−ψ0)zgt+1. (K25)

The law of motion of x̃t becomes

x̃t = φzx̃t−1 +ψ1zgt with φz =
ψ2

ψ1
and ψ j+2 = φzψ j+1 for j ≥ 1. (K26)

The SDF in equation (K24) reduces to

mt,t+1 = exp
(

G0 +G1xt +G2x̃t−1 +G3zgt +G4ht +G5zgt+1 +G6υ
1
2 ωgt+1 +G7ωht+1

)
, (K27)
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with

G0 = χ0 +(α−ρ)hJ, G1 = (ρ−1) ,

G2 = (ρ−1)φz, G3 = (ρ−1)ψ1,

G4 = −(α−ρ) J, G5 = (ρ−1)ψ0 +(α−ρ)ψ [b1] ,

G6 = (ρ−1)γ0 +(α−ρ)γ [b1] , G7 = (α−ρ)Jb1η [b1] .

For the eigenfunction problem in equations (H1)-(H2), i.e., Et [mt,t+1et+1] = ζet , we conjecture that the

eigenfunction is of the form:

et+1 = exp(ς0ht+1 + ς1zgt+1 + ς2xt+1 + ς3x̃t) . (K28)

Algebraic manipulation yields the expression:

mt,t+1
et+1

et
= exp

 G0 + ς0h− ς0φhh+(G1 − ς2 + ς2φg)xt +G2x̃t−1 +(G3 − ς1 + ς3ψ1)zgt

+(G4 − ς0 + ς0φh)ht +(ς3φz − ς3) x̃t−1


×exp

(
(G5 + ς1)zgt+1 +(G6 + ς2γ1)υ

1
2 ωgt+1 +(G7 + ς0η0)ωht+1

)
. (K29)

Upon further manipulation of equation (K29), we get

ζ = ξ× exp

 G0 + ς0h− ς0φhh+(G1 − ς2 + ς2φg)xt +G2x̃t−1 +(G3 − ς1 + ς3ψ1)zgt

+(G4 − ς0 + ς0φh)ht +(ς3φz − ς3) x̃t−1

 ,(K30)

with

ξ = Et

(
exp
(
(G5 + ς1)zgt+1 +(G6 + ς2γ1)υ

1
2 ωgt+1 +(G7 + ς0η0)ωht+1

))
. (K31)

One may observe that

ξ = (Et exp((G5 + ς1)zgt+1))
(

Et exp
(
(G6 + ς2γ1)υ

1
2 ωgt+1

))
(Et ((G7 + ς0η0)ωht+1)) (K32)

= Et

(
exp
((

(G5 + ς1)θ+
1
2
(G5 + ς1)

2 δ2
)

j
))

exp
(

1
2
(G6 + ς2γ1)

2 υ+
1
2
(G7 + ς0η0)

2
)
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and

Et

(
exp
((

(G5 + ς1)θ+
1
2
(G5 + ς1)

2 δ2
)

j
))

= exp(G8ht) , (K33)

with

G8 = e((G5+ς1)θ+ 1
2 (G5+ς1)

2δ2)−1. (K34)

As a consequence, equation (K32) simplifies to

ξ = exp
(

G8ht +
1
2
(G6 + ς2γ1)

2 υ+
1
2
(G7 + ς0η0)

2
)
. (K35)

We substitute equation (K35) in equation (K30) and rearrange to obtain:

log(ς) = G0 + ς0h− ς0φhh+(G1 − ς2 + ς2φg)xt

+(G3 − ς1 + ς3ψ1)zgt +(G4 − ς0 + ς0φh +G8)ht

+(ς3φz − ς3 +G2) x̃t−1 +
1
2
(G6 + ς2γ1)

2 υ+
1
2
(G7 + ς0η0)

2 . (K36)

Using the identification approach, we then have

log(ς) = G0 + ς0h(1−φh)+
1
2
(G6 + ς2γ1)

2 υ+
1
2
(G7 + ς0η0)

2 (K37)

and

G1 − ς2 + ς2φg = 0, G4 − ς0 + ς0φh +G8 = 0,

G3 − ς1 + ς3ψ1 = 0, ς3φz − ς3 +G2 = 0.
(K38)

Finally, we get

ς0 = G8+G4
1−φh

, ς1 = G3 + ς3ψ1, ς2 = G1
1−φg

, ς3 = G2
1−φz

. (K39)
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The transitory component is, therefore, mT
t,t+1 = ζexp(et − et+1), and we obtain:

mT
t,t+1 = ζexp(ς0 (ht −ht+1)+ ς1 (zgt − zgt+1)+ ς2 (xt − xt+1)+ ς3 (x̃t−1 − x̃t)) . (K40)

We can establish the relation in equation (39) of Proposition 3 by setting G9 ≡ −1
2 (G6 + ς2γ1)

2 υ −

1
2 (G7 + ς0η0)

2.
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Table 1
Sharpness of our entropy bounds on mt,t+1 and mP

t,t+1 when SDFs correctly price each of the N + 2
assets
Reported are the lower entropy bounds with the one-sided p-values in ⟨.⟩. Our lower entropy bounds on
mt,t+1 and mP

t,t+1 are based on equations (21) of Theorem 3 and (24) of Theorem 4, respectively, and rely on
the ability of the SDF to correctly price each of the N+2 assets (the risk-free bond, the long-term discount
bond, and N risky assets). The Backus, Chernov, and Zin (2014, equation (5)) lower bound on the entropy
of mt,t+1 (denoted by BCZ) is based on the expression: E[log(Rm

t,t+1)], while the Alvarez and Jermann
(2005, equation (4)) lower bound on the entropy of mP

t,t+1 (denoted by AJ) is based on the expression:
E[log(Rm

t,t+1)] − E [log(Rt,t+1,∞)], where Rm
t,t+1 is the return on a single risky asset or a benchmark port-

folio (i.e., which we proxy, for instance, by the value-weighted equity market return or equally weighted
portfolio of 25 Fama-French size and book-to-market portfolios). Moreover, Rt,t+1,∞ is the return on an
infinite-maturity bond, which we proxy by the return of a 30-year Treasury bond. R f

t is the gross return
of the three-month Treasury bond. We employ different assets and N in the construction of the bounds.
For example, in Panel I, the N risky assets are based on two data sets: SET A contains the value-weighted
market returns, together with the 25 Fama-French size and book-to-market portfolios, while SET B con-
tains the value-weighted market returns together with the 25 Fama-French size and momentum portfolios.
The sample period is from July 1931 to December 2011 (966 observations). To compute these p-values,
we first use the block bootstrap with a block size of 20 to generate 50,000 samples from the original data.
Then we compute the lower bounds in each sample and tabulate the proportion of bootstrap samples for
which the lower bound is less than zero.

Lower bound on mt,t+1 Lower bound on mP
t,t+1

Bound p-value Bound p-value

Panel I. SDF correctly prices each of the N +2 assets, and we set N = 26
(a) Market, 25 size & B/M 0.023 ⟨0.000⟩ 0.021 ⟨0.000⟩
(b) Market, 25 size & momentum 0.037 ⟨0.003⟩ 0.035 ⟨0.003⟩

Panel II. SDF correctly prices each of the N +2 assets, and we set N = 25
(c) 25 size & B/M 0.022 ⟨0.000⟩ 0.020 ⟨0.000⟩
(d) 25 size & momentum 0.029 ⟨0.000⟩ 0.027 ⟨0.000⟩

Panel III. SDF correctly prices each of the N +2 assets, and we set N = 11
(e) Market, 10 momentum 0.020 ⟨0.000⟩ 0.018 ⟨0.001⟩

Panel IV. SDF correctly prices each of the N +2 assets, and we set N = 2
(f) Market, Low Momentum 0.010 ⟨0.000⟩ 0.008 ⟨0.000⟩
(g) Market, high Momentum 0.014 ⟨0.010⟩ 0.012 0.011

Panel V. SDF correctly prices each of the N +2 assets, and we set N = 1
(BCZ, Eq. 5) (AJ, Eq. 4)

(h) Market portfolio only 0.005 ⟨0.005⟩ 0.003 ⟨0.066⟩
(i) EWI portfolio of 25 size & B/M 0.007 ⟨0.001⟩ 0.005 ⟨0.018⟩
(j) EWI portfolio of 25 size & momentum 0.007 ⟨0.001⟩ 0.005 ⟨0.021⟩
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Table 2
Relevance of our entropy bounds on m2

t,t+1 and (mP
t,t+1)

2

The logic of this test is that when the SDF (its permanent component) is lognormally distributed with no
time-variation in the conditional volatility of the SDF (its log permanent component), then L[m2

t,t+1] =

4L[mt,t+1] (or L[(mP
t,t+1)

2] = 4L[mP
t,t+1]). Guided by Theorem 2, the ratio of the lower bound on L[(m2

t,t+1]
to four times the lower bound on L[mt,t+1] is equal to 1 (similarly for the permanent component of the
SDFs). Accordingly, we define

Πm ≡
2(E[log(a′Rt+1)]− log

(
(E [qt ])

−1
)
)+ log(1+y′Σ−1y/(E [qt ])

2)

4(E[log(a′Rt+1)]− log((E [qt ])
−1))

−1 and

ΠmP ≡ 2(E[log(a′Rt,t+1)]−E[log(Rt,t+1,∞)]) + log(1+y′P ΣP yP)

4(E[log(a′Rt,t+1)]−E[log(Rt,t+1,∞)])
− 1,

where Rt,t+1 is a vector of risky asset returns, Rt,t+1,∞ is the return on an infinite-maturity discount bond,
a ≡ y

1′y , y ≡ Σ−1 (1−E [qt ]E [Rt,t+1]), and yP ≡ Σ−1
P (1−E [Rt,t+1/Rt,t+1,∞]). In our implementation, we

proxy Rt,t+1,∞ by the monthly return of a 30-year Treasury bond. ΣP is the variance co-variance matrix of
Rt,t+1/Rt,t+1,∞, whereas Σ is the variance-covariance matrix of Rt,t+1.

The entropy calculations are based on the SDF correctly pricing each of the N + 2 assets, and our
computation of Πm and ΠmP relies on three data sets for Rt,t+1: SET A contains the value-weighted market
returns together with the 25 Fama-French size and book-to-market portfolios (i.e, N = 26), SET B contains
the value-weighted market returns together with the 25 Fama-French size and momentum portfolios (i.e,
N = 26), while SET C contains only the value-weighted equity market returns (i.e, N = 1). The sample
period is from July 1931 to December 2011 (966 observations). To compute the p-values reported in
parentheses, we employ a block bootstrap with a block size of 20 to generate b̂=50,000 samples from the
original data. We then compute Πb = Π for b = 1, . . . , b̂, the cross-sectional average Π, and the standard
error se(Π) =std(Π)/

√
b̂ of Π. Accordingly, we compute the t statistic as

(
Π−0

)
/se(Π). The absolute

value of the t-statistic is then used to compute the two-sided p-value.

Testing H0: Πm = 0 versus Ha: Πm ̸= 0

Market, 25 size Market, 25 size Market
& B/M & momentum only

(SET A, N = 26) (SET B, N = 26) (SET C, N = 1)

Πm 56.17% 33.26% 21.89%
(0.000) (0.000) (0.000)

ΠmP 51.85% 33.05% 13.79%
(0.000) (0.000) (0.021)
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Table 3
Model comparisons based on the lower entropy bounds
Reported are the entropies of (mP

t,t+1)
2 and mP

t,t+1 for the difference habit (denoted by DH), the recursive utility with
stochastic variance (denoted by RU-SV), and the recursive utility with constant jump intensity (denoted by RU-CJI).
The one-sided p-values shown in square brackets represent the proportion of replications for which the model-based
entropy exceeds, in 50,000 replications, the lower bound on the entropy computed from observed asset prices. Our
lower entropy bounds on mP

t,t+1 and mt,t+1 are based on equations (20) and (19) of Theorem 2 and rely on the ability
of the SDF to correctly price N+2 assets (the risk-free bond, the long-term discount bond, and N risky assets). The N
risky assets are based on SET B, which contains the value-weighted market returns together with the 25 Fama-French
size and momentum portfolios. The sample period is from July 1931 to December 2011. The lower entropy bounds
on (mt,t+1)

2 and mt,t+1 are analogously obtained based on Theorem 2. We focus on SET B, as it corresponds to the
maximum lower bound on entropy measures (as in our Table 1). Panels C and D present the variance, skewness, and
kurtosis of mP

t,t+1 and mt,t+1 that are consistent with model parameterizations in Table Appendix-I. The one-sided
p-values ⟨.⟩ reported below the lower entropy bounds, represent the proportion of bootstrap samples for which the
lower bound is less than zero.

Habit model Recursive utility models
DH RU-SV RU-CJI Lower entropy

bound
(Set B)

Panel A: Entropies of m2
t,t+1 and mt,t+1

L[m2
t,t+1] 0.0785 0.0869 1.4331 0.1956

[0.000] [0.000] [1.000] ⟨0.003⟩

L[mt,t+1] 0.0196 0.0217 0.0190 0.0367
[0.000] [0.000] [0.000] ⟨0.003⟩

Panel B: Entropies of (mP
t,t+1)

2 and mP
t,t+1

L[(mP
t,t+1)

2] 0.0811 0.095 1.4858 0.1851
[0.000] [0.000] [1.000] ⟨0.003⟩

L[mP
t,t+1] 0.0203 0.0237 0.0197 0.0348

[0.000] [0.000] [0.000] ⟨0.003⟩

Panel C: Moments of the mt,t+1 distribution

Variance 0.0403 0.0444 3.3438
Skewness 0.6041 0.6476 +∞
Kurtosis 3.6447 3.8061 +∞

Panel D: Moments of the mP
t,t+1 distribution

Variance 0.0415 0.0487 3.2480
Skewness 0.6142 0.6778 +∞
Kurtosis 3.6654 3.8786 +∞
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Table 4
Entropy-based measures of the transitory component of the SDF
Reported are the entropies of (mT

t,t+1)
2 and mP

t,t+1 for three asset pricing models: the difference habit
(denoted by DH), the recursive utility with stochastic variance (denoted by RU-SV), and the recursive
utility with constant jump intensity (denoted by RU-CJI). The data-based L[(mT

t,t+1)
2] and L[mT

t,t+1] rely on
the expressions in equations (25) and (26), whereby we proxy Rt,t+1,∞ by the return of a 30-year Treasury
bond. The two-sided bootstrap p-values, shown in curly brackets, allow to test whether the average value of
the model-implied entropy across the 50,000 replications is equal to the entropy-based measures computed
from bond returns. Panel B presents the mean and standard deviation of the returns of the risk-free bond
and the long-term implied by each model. Our replications are consistent with model parameterizations in
Table Appendix-I.

Model-implied entropies
DH RU-SV RU-CJI Data

implied

Panel A: Transitory component of the SDF

L[(mT
t,t+1)

2] 2.8×10−3 0.2×10−3 0.046×10−3 4.8×10−3

{0.000} {0.000} {0.000} ⟨0.000⟩

L[mT
t,t+1] 0.7×10−3 0.1×10−3 0.012×10−3 0.4×10−3

{0.000} {0.000} {0.000} ⟨0.000⟩

Panel B: Returns of the risk-free and the long-term discount bonds

Mean of risk-free return -0.0304 0.0112 -0.0160 0.0355
Std. Dev. of risk-free return 0.0342 0.0030 0.0006 0.0311

Mean of long-term bond return -0.0225 -0.0124 -0.0153 0.0584
Std. Dev. of long-term bond return 0.4446 0.1323 0.0006 0.0355
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Table 5
Entropy-based measures of codependence
Reported are the entropy-based codependence measures for three asset pricing models: the difference habit (denoted
by DH), the recursive utility with stochastic variance (denoted by RU-SV), and the recursive utility with constant
jump intensity (denoted by RU-CJI). The data-based L[mP

t,t+1mT
t,t+1]−L[mP

t,t+1]−L[mT
t,t+1] is inferred from the Trea-

sury yield curve, as described in equation (27). The p-values shown in curly brackets allow to test whether the
average entropy-based codependence across the 50,000 values is equal to its data counterparts. The data-based
L[(mP

t,t+1mT
t,t+1)

2]− L[(mP
t,t+1)

2]− L[(mT
t,t+1)

2] employs the expression on the right-hand side of equation (28) of
Theorem 5. The construction of the upper bound relies on the risk-free bond, the long-term discount bond, and Set
A. Specifically, Set A contains the value-weighted market returns together with the 25 Fama-French size and book-to-
market portfolios. The reported one-sided p-values, shown as ⌊.⌋, represent the proportion of replications for which
the model entropy-based codependence do not exceed, in 50,000 replications, the upper bound on the codependence
computed from asset returns. Our replications are consistent with model parameterizations in Table Appendix-I.

Model-implied entropy codependence
DH RU-SV RU-CJI Data Upper

implied bound
(Set A)

L[mP
t,t+1mT

t,t+1]−L[mP
t,t+1]−L[mT

t,t+1] -0.0014 -0.0021 -0.0007 0.0015
{0.000} {0.000} {0.000} ⟨0.031⟩

L[(mP
t,t+1mT

t,t+1)
2]−L[(mP

t,t+1)
2]−L[(mT

t,t+1)
2] -0.0054 -0.0083 -0.0028 0.1222

⌊0.002⌋ ⌊0.000⌋ ⌊0.000⌋ ⟨0.000⟩

64



Table Appendix-I
Parameters employed in model implementation
Displayed in this table are the parameters that govern preferences and the dynamics of consumption growth.
These parameters are adopted from Tables 2, 3, and 4 of Backus, Chernov, and Zin (2014), and likewise
log(g) and η0 are taken from their page 16. Our implementation of the models with difference habit
(hereby DH), recursive utility with stochastic variance (hereby RU-SV), and recursive utility with constant
jump intensity (hereby RU-CJI) follows Backus, Chernov, and Zin (2014, respectively, Model (4) in Ta-
ble 2, Model (1) in Table 3, and Model (4) in Table 4). We use US annual real personal consumption
expenditures as a proxy for aggregate consumption over the sample period of 1931:07 to 2011:12 (966
observations). To compare model implications with the data, we simulate a finite sample of consumption
growth, ct+1/ct , over 966 months. Following convention, we then compute the annualized consumption
growth as exp(∑12

j=1 log(ct+ j/ct+ j−1)). The reported model mean, standard deviation, and autocorrelation
are based on the annualized consumption growth.

Parameter DH RU-SV RU-CJI Data implied
1931:07 to

2011:12

Panel A: Preferences
ρ -9.0000 0.3333 0.3333
α -9.0000 -9.0000
β 0.9980 0.9980 0.9980
φh 0.9000
s 0.5000
Panel B: Consumption growth dynamics
γ0 1.0000 1.0000 1.0000
log(g) 0.0015 0.0015 0.0015
η0 0.1000
γ1 0.0271 0.0271 0.0281
φg 0.9790 0.9790 0.9690
υ1/2 0.0099 0.0099 0.0079
ν0 0.23×10−5

φυ 0.9870
h 0.0008
θ -0.1500
δ 0.1500
ψ0 1.0000
b1 0.9977 0.9979
Panel C: Consumption growth
Mean (annualized) 1.0192 1.0190 1.0189 1.0339
Std. Dev. (annualized) 0.0416 0.0415 0.0369 0.0287
Autocorrelation 0.2424 0.2433 0.1771 0.2386
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Table Appendix-II
Impact of alternative jump parameterizations in the RU-CJI model
Here we vary θ, δ, and h that govern the distribution of jumps (see equation (36)) in the consumption growth
dynamics for the RU-CJI model. We keep other parameters of the RU-CJI model to those specified in Ta-
ble Appendix-I. For each set of parameters, the reported values are averages across 50,000 replications. For
each replication, we simulate the path of consumption growth ct+1/ct over 966 months. Following con-

vention, we then compute the annualized consumption growth as exp(
12
∑
j=1

log(ct+ j/ct+ j−1)). The reported

model mean and standard deviation are based on the annualized consumption growth. For each parameter
set, we also report the average values of entropy L[mP

t,t+1] and L[(mP
t,t+1)

2], as well as the central moments
of the permanent component of the SDF. The bolded parameter set corresponds to Backus, Chernov, and
Zin (2014, Model (4), Table 4).

θ δ h Entropies Moments of mP
t,t+1

ct+1
ct

L[mP] L[(mP)2] Variance Skewness Kurtosis Mean Std. Dev.
-0.15 0.02 0.0002 0.011 0.046 0.024 3.62E+00 1.10E+02 1.0190 0.033
-0.15 0.02 0.0004 0.011 0.050 0.027 5.92E+00 1.93E+02 1.0187 0.034
-0.15 0.02 0.0008 0.012 0.057 0.033 8.95E+00 3.20E+02 1.0188 0.035

-0.15 0.07 0.0002 0.011 0.053 0.030 3.03E+01 6.96E+04 1.0187 0.033
-0.15 0.07 0.0004 0.012 0.062 0.039 4.51E+01 2.49E+06 1.0187 0.034
-0.15 0.07 0.0008 0.013 0.082 0.057 6.20E+01 3.95E+09 1.0188 0.036

-0.15 0.15 0.0002 0.013 0.403 0.459 4.82E+195 +∞ 1.0187 0.034
-0.15 0.15 0.0004 0.015 0.764 1.083 +∞ +∞ 1.0187 0.035
-0.15 0.15 0.0008 0.020 1.486 3.248 +∞ +∞ 1.0189 0.037
-0.07 0.02 0.0002 0.011 0.043 0.022 5.63E-01 4.86E+00 1.0187 0.033
-0.07 0.02 0.0004 0.011 0.043 0.022 6.78E-01 6.30E+00 1.0187 0.033
-0.07 0.02 0.0008 0.011 0.044 0.023 8.98E-01 9.05E+00 1.0187 0.033

-0.07 0.07 0.0002 0.011 0.044 0.023 3.46E+00 2.94E+02 1.0186 0.033
-0.07 0.07 0.0004 0.011 0.046 0.024 6.03E+00 5.81E+02 1.0187 0.033
-0.07 0.07 0.0008 0.011 0.049 0.027 1.01E+01 1.17E+03 1.0187 0.034

-0.07 0.15 0.0002 0.012 0.115 0.096 1.79E+19 +∞ 1.0187 0.033
-0.07 0.15 0.0004 0.012 0.188 0.177 3.64E+36 +∞ 1.0187 0.034
-0.07 0.15 0.0008 0.014 0.333 0.356 3.24E+71 +∞ 1.0188 0.036
-0.02 0.02 0.0002 0.011 0.043 0.022 4.48E-01 3.39E+00 1.0187 0.033
-0.02 0.02 0.0004 0.011 0.043 0.022 4.54E-01 3.42E+00 1.0187 0.033
-0.02 0.02 0.0008 0.011 0.043 0.022 4.64E-01 3.49E+00 1.0187 0.033

-0.02 0.07 0.0002 0.011 0.043 0.022 9.93E-01 3.55E+01 1.0187 0.033
-0.02 0.07 0.0004 0.011 0.044 0.022 1.52E+00 6.65E+01 1.0187 0.033
-0.02 0.07 0.0008 0.011 0.045 0.023 2.49E+00 1.25E+02 1.0187 0.033

-0.02 0.15 0.0002 0.011 0.069 0.048 9.03E+05 +∞ 1.0187 0.033
-0.02 0.15 0.0004 0.012 0.096 0.075 4.10E+09 +∞ 1.0187 0.034
-0.02 0.15 0.0008 0.013 0.149 0.131 1.40E+17 +∞ 1.0188 0.036
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