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Abstract

We propose a new model of exchange rates, based on the hypothesis that the possibility

of rare but extreme disasters is an important determinant of risk premia in asset markets.

The probability of world disasters as well as each country’s exposure to these events is

time-varying. This creates joint fluctuations in exchange rates, interest rates, options,

and stock markets. The model accounts for a series of major puzzles in exchange rates:

excess volatility and exchange rate disconnect, forward premium puzzle and large excess

returns of the carry trade, and comovements between stocks and exchange rates. It also

makes empirically successful signature predictions regarding the link between exchange

rates and telltale signs of disaster risk in currency options.
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1 Introduction

We propose a new model of exchange rates, based on the hypothesis of Rietz (1988) and Barro

(2006) that the possibility of rare but extreme disasters is an important determinant of risk

premia in asset markets. The model accounts for a series of major puzzles in exchange rates. It

also makes signature predictions about the link between exchange rates and currency options,

which are broadly supported empirically. Overall, the model explains classic exchange rate

puzzles and more novel links between options, exchange rates and stock market movements.

In the model, at any point in time, a world disaster might occur. Disasters correspond

to bad times – they therefore matter disproportionately for asset prices despite the fact that

they occur with a low probability. Countries differ by their riskiness, that is by how much their

exchange rate would depreciate if a world disaster were to occur (something that we endogenize

in the paper). Because the exchange rate is an asset price whose risk affects its value, relatively

riskier countries have more depreciated exchange rates.

The probability of world disaster as well as each country’s exposure to these events is time-

varying. This creates large fluctuations in exchange rates, which rationalize their apparent

“excess volatility”. To the extent that perceptions of disaster risk are not perfectly correlated

with conventional macroeconomic fundamentals, our disaster economy exhibits an “exchange

rate disconnect” (Meese and Rogoff 1983).

Relatively risky countries also feature high interest rates, because investors need to be

compensated for the risk of exchange rate depreciation in a potential world disaster. This

allows the model to account for the forward premium puzzle.1 Indeed, suppose that a country

is temporarily risky: it has high interest rates, and its exchange rate is depreciated. As its

riskiness reverts to the mean, its exchange rate appreciates. Therefore, the currencies of high

interest rate countries appreciate on average.

The disaster hypothesis also makes specific predictions about option prices. This paper

1According to the uncovered interest rate parity (UIP) equation, the expected depreciation of a currency

should be equal to the interest rate differential between that country and the reference region. A regression of

exchange rate changes on interest rate differentials should yield a coefficient of 1. However, empirical studies

starting with Tryon (1979), Hansen and Hodrick (1980), Fama (1984), and those surveyed by Lewis (2011)

consistently produce a regression coefficient that is less than 1, and often negative. This invalidation of UIP

has been termed the forward premium puzzle: currencies with high interest rates tend to appreciate. In other

words, currencies with high interest rates feature positive predictable excess returns.
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works them out, and finds that those signature predictions are reasonably well borne out in the

data. We view this as encouraging support for the disaster view.

The starting point is that, in our theory, the exchange rate of a risky country commands high

put premia in option markets — as measured by high “risk reversals” (which are the difference

in implied volatility between an out-of-the-money put and a symmetric out-of-the-money call).

Indeed, investors are willing to pay a high premium to insure themselves against the risk that

this exchange rate depreciates in the event of a world disaster. A country’s risk reversal is

therefore a reflection of its riskiness.

Accordingly, the model makes four predictions regarding these put premia (“risk reversals”).

First, investing in countries with high risk reversals should have high returns on average. Second,

countries with high risk reversals should have high interest rates. Third, when the risk reversal

of a country goes up, its currency contemporaneously depreciates. These predictions, and a

fourth one detailed below, are broadly consistent with the data.2

The model is very tractable, and we obtain simple and intuitive closed form expressions for

the major objects of interest, such as exchange rates, interest rates, carry trade returns, yield

curves, forward premium puzzle coefficients, option prices, and stocks.3 To achieve this, we build

on the closed-economy model with stochastic intensity of disasters proposed in Gabaix (2012)

(Rietz 1988 and Barro 2006 assume a constant intensity of disasters), and use the “linearity-

generating” processes developed in Gabaix (2009). Our framework is also very flexible. We

show that it is easy to extend the basic model to incorporate several factors and inflation.

We calibrate a version of the model and obtain quantitatively realistic values for the quanti-

ties of interest, such as the volatility of the exchange rate, the interest rate, the forward premium

puzzle, the return of the carry trade, as well as the size and volatility of risk reversals and their

link with exchange rate movements and interest rates. The underlying disaster numbers largely

rely on Barro and Ursua (2008)’s empirical numbers which imply that rare disasters matter five

times as much as they would if agents were risk neutral. As a result, changes in beliefs about

disasters translate into meaningful volatility. This is why the model yields a sizable volatility

2See p. 19.
3Pavlova and Rigobon (2007, 2008) also provide an elegant and tractable framework for analyzing the joint

behavior of bonds, stocks, and exchange rates which succeeds in accounting for comovements among international

assets. However, their model is based on a traditional consumption CAPM, and therefore generates low risk

premia and small departures from UIP.
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which is difficult to obtain with more traditional models (e.g. Obstfeld and Rogoff 1995).

In addition, our calibration matches the somewhat puzzling link between stock returns

and exchange rate returns. Empirically, there is no correlation between movements in the

stock market and the currency of a country. However, the most risky currencies have a positive

correlation with world stock returns, while the least risky currencies have a negative correlation.

Our calibration replicates these facts. The economics is as follows: when world resilience

improves, stock markets have positive returns, and the most risky currencies appreciate vis-a-

vis the least risky currencies.

Finally, recent research (Lustig, Roussanov and Verdelhan (2011)) has documented a one-

factor structure of currency returns (they call this new factor ). Our proposed calibra-

tion matches this pattern. In addition, our model delivers the new prediction that risk reversals

of the most risky countries (respectively least risky) should covary negatively (respectively pos-

itively) with this common factor. This prediction holds empirically.

To sum up, our model delivers the following patterns.

Classic puzzles

1. Excess volatility of exchange rates.

2. Failure of uncovered interest rate parity. The coefficient in the Fama regression is less

than 1, and sometimes negative.

Link between options and exchange rates

3. High interest countries have high put premia (as measured by “risk reversals”).

4. Investing in countries with high (respectively low) risk reversals delivers high (respectively

low) returns.

5. When the risk reversal of a country’s exchange rate increases (which indicates that the

currency becomes riskier), the exchange rate contemporaneously depreciates.

Link between stock markets and exchange rates

6. On average, the correlation between a country’s exchange rate returns and stock market

returns is zero.
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7. However, high (respectively low) interest rate countries have a positive (respectively neg-

ative) correlation of their currency with world stock market: their currency appreciates

(respectively depreciates) when world stock markets have high returns.

Comovement structure in exchange rates

8. There is a broad 1-factor structure in the excess currency returns (the  factor

of Lustig, Roussanov and Verdelhan 2011): high interest rate currencies tend to comove,

and comove negatively with low interest rate currencies.

9. There is a broad 1-factor structure of stock market returns: stock market returns tend to

be positively correlated across countries.

10. There is a positive covariance between the above two factors.

At the same time, we match potentially challenging domestic moments, e.g.

11. High equity premium.

12. Excess volatility of stocks.

Hence, we obtain a parsimonious model of exchange rates, interest rates, options and stocks

that matches the main features of the data. It delivers novel predictions borne out in the data,

notably the link between movements in option prices (“risk reversals”), currency returns and

stock returns.

Relation to the literature

Our paper is part of a broader research movement using modern asset pricing models to

understand exchange rates, especially the aforementioned puzzles.

In the closed economy literature, there are three main paradigms for representative agent

rational expectation models to explain both the level and the volatility of risk premia (something

that the plain consumption CAPM with low risk aversion fails to generate): habits (Abel 1990,

Campbell and Cochrane 1999), long run risks (Epstein and Zin 1989, Bansal and Yaron 2004)

and rare disasters (Rietz 1988, Barro 2006).4

Economists have extended these closed-economy paradigms to open-economy setups to

understand exchange rates. Habit models were used by Verdelhan (2010), Heyerdahl-Larsen

4For the time-varying disasters, see Gabaix (2012), Gourio (2012) and Wachter (2013).
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(forth.), and Stathopoulos (2012) to generate risk premia in currency markets. Long run risks

models were applied by Colacito and Croce (2011) and Bansal and Shaliastovich (2013), using

a two-country setting.

To the best of our knowledge, we are the first to adapt the disaster paradigm to exchange

rates. After the present paper was circulated, Gourio, Siemer, and Verdelhan (2013) and Guo

(2010) studied related and complementary models numerically in an RBC and a monetary

context, respectively. Du (2013) explores quantitatively a related model, with a different focus:

his results are mostly numerical, and do not touch on Lustig, Roussanov and Verdelhan (2011)’s

 and the cross-moments between stocks and currencies. Martin (2013) presents a two-

country model with i.i.d. shocks and characterizes the impact of deviations from lognormality

using cumulants.5

On the empirical front, several recent papers investigate the hypothesis that disaster risk

accounts for the forward premium puzzle: among these are Burnside, Eichenbaum, Kleshchelski,

and Rebelo (2011), Farhi et al. (2014), and Jurek (2014). Using currency options, they find

some support for the disaster hypothesis for exchange rates (possibly leaving room for other

determinants of the exchange rate).6 Likewise, Brunnermeier, Nagel and Pedersen (2009) and

Lustig and Verdelhan (2009) discuss evidence for crash risk in currency markets. Our paper

provides a theoretical framework to understand these empirical results.

Outline. The rest of the paper is organized as follows. In Section 2, we set up the basic

model and in section 3 derive its implications for the major puzzles. Section 4 shows the

calibration of the model. Section 5 concludes. Most proofs are in the Appendix.

5Another strand of the literature departs from the assumption of frictionless markets. Alvarez, Atkeson,

and Kehoe (2002) rely on a model with endogenously segmented markets to qualitatively generate the forward

premium anomaly. Pavlova and Rigobon (2012) study the importance of incomplete markets for external

adjustment. Gabaix and Maggiori (2014) present a model of exchange rate determination and carry trade based

on limited risk bearing capacity of the financial sector.
6These and our papers are also related to an older literature on so-called peso problems (Lewis 2011). Under

the “pure peso” view, there are no risk premia and the forward premium puzzle is simply due to a small sample

bias. By contrast, under the “rare disasters”view, there are risk premia.
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2 Model Setup

2.1 Macroeconomic Environment

We consider a stochastic infinite horizon open economy model. There are  countries indexed

by  = 1 2   . Each country  is endowed with two goods: a traded good, called  , and

a non-traded good, called . The traded good is common to all countries, the non-traded

good is country-specific.

Preferences. In country , agents value consumption streams
¡

  




¢
≥0 according to

E0

" ∞X
=0

exp(−)
¡



¢1−
+
¡



¢1−


1− 

#
 (1)

where  is the coefficient of relative risk aversion and 1

parametrizes the expenditure share of

non-traded goods.

The two goods enter the utility function separably. Together with the assumption of com-

plete markets, this will allow us to derive a simple expression for the pricing kernel.7

Exchange rate. We choose the traded good as the world numéraire. We define the “ab-

solute” exchange rate  to be the price of the non-traded good in country  in terms of the

world numéraire. Hence, when  goes up, the exchange rate appreciates: one unit of the non-

traded good of country  can buy more units of the world numéraire. The bilateral exchange

rate between country  and country  is 

: an exchange rate appreciation of  with respect to

7Utility function (1) could be changed to:

E0

" ∞X
=0

exp (−)
¡



¢1−
1− 

#
+  ({

 }≥0) (2)

where  is any utility function over non-traded goods consumption processes {
 }≥0. For instance, 

could incorporate habit formation or adjustment costs. With this formulation, our formulas for the exchange

rate would still hold, as the only thing that matters here is the marginal utility from one unit of tradable

consumption. Though formulation (1) is, strictly speaking, subject to the Backus-Smith (1993) critique, its

variant (2) can easily be made immune to it, and generate an imperfect correlation between total consumption

and real exchange rates.
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 corresponds to an increase of 

.8 9

Markets. Markets are complete: there is perfect risk sharing across countries in the con-

sumption of the traded good.10 Let ∗
 be the world consumption of the traded good. The

pricing kernel can therefore be expressed as

∗
 = exp(−)

¡
∗


¢−


The price at time  of an asset with a stochastic stream of cash flows {+}≥0 is given by
E
£P∞

=0
∗
++

¤
∗

 .

Technology. There is a linear technology to convert the non-traded good of country  into

the traded good. Investing one unit of the non-traded good at time  yields exp(−)+

units of the traded good in all future periods  +  ≥ . The interpretation is that  is the

productivity of the export technology, and the initial investment depreciates at a rate .

Proposition 1 (Value of the exchange rate). The bilateral exchange rate between country 

and country  is 

, where the absolute exchange rate  of country  is the present value of its

future export productivity:

 = E

" ∞X
=0

∗
+ exp(−)+

#
∗

  (3)

with the convention that an increase in  means an appreciation of country ’s currency.

Equation (3) expresses the exchange rate directly as the net present value of future funda-

mentals. The non-traded good is an asset that produces dividends + = exp(−)+,

8This notion of the bilateral exchange rate differs slightly from the usual notion based on the relative price

of consumption baskets across countries. However, the two notions are close for economies in which the share

of non-traded goods is preponderant. In addition, there is a one-for-one correspondence between those two

notions, detailed in Appendix B.
9Our model abstracts from interesting real-world frictions such as nominal rigidities and incomplete pass-

through, which most researchers attribute to imperfect competition with non-constant demand elasticities, sticky

prices, and menu costs with issues of currency denomination. Given our focus on the aggregate riskiness of the

country, we believe that adding those frictions would not change the essence of the economics analyzed by the

model — the impact of aggregate disaster risk on the exchange rate, option premia, and the real interest rate.
10Despite the completeness of markets, the consumption risk of non-traded good of country  must be borne

by that country, because non-traded goods cannot be exchanged across borders.
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and is priced accordingly. This is a version of the “asset view” of the exchange rate.11 12

A simple example. To make the model more concrete, consider the following simple

example. The country produces two goods: a basket of non-traded goods and a traded good

(oil). In every period , oil can be exchanged for a basket of non-traded goods with a relative

price of . There is an inelastic supply of domestic labor. A worker can be employed in

one of two activities: the worker can work in the domestic sector to produce a basket of non-

traded goods, or the worker can work to expand the oil production capacity of the country

(e.g., by detecting the location of an oil field and setting up the well to extract the oil in the

future). These two technologies are linear. Once the oil production facility is established, the

marginal cost of production is zero up to the capacity constraint. High future expected oil prices

increase the profitability of expanding the oil production capacity. As a result, the domestic

sector shrinks as workers move out of this sector to establish new oil production facilities.

Consequently, the relative price of the basket of domestic goods in terms of the traded good

(i.e., oil) increases, and the exchange rate  appreciates. A strong exchange rate therefore

predicts high future commodity prices. This example is consistent with Chen, Rogoff, and

Rossi (2010) who find that for commodity producing countries, high exchange rates predict

high future prices of the corresponding commodities.

2.2 Disaster Risk

World consumption of the traded good. We study equilibria where the world consumption

of the traded good ∗ follows the following stochastic process. In line with Rietz (1988) and

Barro (2006), we assume that in each period  + 1 a disaster may happen with probability

11We have made the strong assumption that there is a technology to transform non-traded goods into a flow

of traded goods. We could have introduced many additional technologies without affecting our results. In

particular, we could have introduced an additional reverse technology allowing to convert traded goods into a

flow of non-traded goods.
12We could also have assumed that investment goods are a composite of traded and non-traded goods.

Denote by () the price of investment goods — corresponding to the technology for producing in-

vestment goods from traded goods and non-traded goods. Equation (3) would then become () =

E
£P∞

=0
∗
+ exp(−)+

¤
∗  Similarly, we could let the output of the investment technology be a

basket of traded and non-traded goods. The stochastic process for the exchange rate would have to be solved

as the fixed point of a functional equation. The economics of the model would not be altered, but the analysis

would become much more complex and closed-form solutions would be lost.
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. If no disaster happens, 
∗
+1

∗
 = exp() where  is the normal-times growth rate of the

economy. If a disaster happens, then ∗
+1

∗
 = exp()+1, with +1  0.13 For instance,

if +1 = 07, consumption falls by 30%. To sum up:

∗
+1

∗


= exp()×
⎧⎨⎩ 1 if there is no disaster at + 1,

+1 if there is a disaster at + 1.
(4)

Hence, the pricing kernel ∗
 = exp(−)

¡
∗


¢−
evolves as:

∗
+1

∗


= exp(−)×
⎧⎨⎩ 1 if there is no disaster at + 1,


−
+1 if there is a disaster at + 1,

(5)

where

 =  + 

is the risk-free rate in an economy that has a zero probability of disasters.14

Productivity. We assume that productivity of country  follows:

+1



= exp()×
⎧⎨⎩ 1 if there is no disaster at + 1,

+1 if there is a disaster at + 1,
(6)

i.e., during a disaster, the relative productivity of the nontraded good is multiplied by +1.

For instance, if productivity falls by 20%, then +1 = 08.

In the model, a sufficient statistic for many quantities of interest is the “resilience” of a

country , defined as:

 = E
£

−
+1+1 − 1

¤
 (7)

where E (resp. E

 ) is the expected value conditional on a d isaster happening at +1 (resp.

conditional on no d isaster happening). A relatively safe country has a high resilience , as

it has a high recovery rate +1. Conversely, a relatively risky country has low resilience. In

equation (7), the probability  and the world intensity of disasters +1 are common to all

13Typically, extra i.i.d. noise is added, but given that it never materially affects the asset prices, it is omitted

here.
14In a more complex variant, disasters could be followed by partial recoveries (e.g. Gourio 2008, Nakamura

et al. 2013). For a given , that lowers the risk premia coming from disaster risk. However, a slight increase in

 could counteract that effect. All in all, we find it simpler and more transparent to keep the simplest disaster

formulation, at fairly little cost to the economics.
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countries, but the recovery rate +1 is country-specific. The changes in prospective recovery

rates could be correlated across countries.

Rather than separately specifying laws of motion for its components (, +1, and +1),

we gain parsimony by directly modeling a law of motion for . We decompose

 = ∗ + b (8)

where∗ and b are the constant and variable parts of resilience, respectively. For tractability,

we posit that the law of motion for b follows a linearity-generating process:
15

b+1 =
1 +∗
1 +

exp(−
) b + +1 (9)

where 
denotes the speed of mean reversion of resilience and the innovations +1 have

mean zero, both unconditionally and conditional on a disaster (E
£
+1

¤
= E

£
+1

¤
= 0).

The economic meaning of equation (9) is that b mean-reverts towards zero, but is subject

to shocks. Because  hovers around ∗,
1+∗
1+

is close to one and the process behaves like

a regular AR(1) up to second-order terms in b: b+1 ' exp(−
) b + +1. The “twist”

term 1+∗
1+

is innocuous from an economic perspective but provides analytical tractability (see

the technical appendix in Gabaix 2009 for a discussion). Linearity-generating processes allow

the derivation of the equilibrium exchange rate in closed form.

3 Exchange Rates, Interest Rates, Options, and Stocks

3.1 Exchange Rates and Interest Rates

Exchange rate. We start by deriving the value of the exchange rate. We define ∗ =

ln (1 +∗) and

 ≡ + −  − ∗ (10)

As we shall see below, − is the interest rate when the temporary component of resilience,b, is zero.

15Linearity-generating (LG) processes (Gabaix 2009 and Appendix A) give rise to compact closed forms for

stock and bond prices. More conventional affine processes (for instance, an AR(1) in the interest rate or the

growth rate of the dividend) yield a simple closed form only for zero-coupon bonds, but yield more cumbersome

infinite sums for stocks. In the present paper, the exchange rate is a stock-like asset. Hence, LG processes yield

closed forms for exchange rates.
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Proposition 2 (Level of the exchange rate). The bilateral exchange rate between country 

and country  is 

, where  is the exchange rate of country  in terms of the world numéraire

and is equal to

 =




Ã
1 +

b

 + 

!
(11)

in the limit of small time intervals.16

Equation (11) implies that the exchange rate  increases (appreciates) with ∗ and b:

risky (i.e., low resilience) countries have a low (depreciated) exchange rate. Safer (i.e., high

resilience) currencies have a high (appreciated) exchange rate. Risky countries are those whose

currency value (and more primitively, whose relative price of non-tradables) is expected to drop

during disasters.17

The exchange rate fluctuates with the resilience b. As we shall see in the calibration, these

fluctuations are plausibly large, and can therefore generate “excess volatility” of the exchange

rate.18

To the extent that fluctuations in resilience are imperfectly correlated with traditional

macroeconomic fundamentals, these fluctuations in resilience can also generate an “exchange

rate disconnect”.

Interest rate Consider a one-period domestic bond in country  that yields one in the

numéraire of country  at time  + 1. It will be worth +1 in the international numéraire.

Hence, the domestic price of that bond is given by:19

1

1 + 
= E

∙
∗

+1+1

∗
 

¸
 (12)

where  is the domestic interest rate. Recall that  ≡ + −  − ∗.

16See equation (42) in Appendix B for an exact expression away from the limit of small time intervals.
17Formula (11) implicitly exhibits a Balassa-Samuelson effect: more productive countries — countries with a

higher  — have appreciated exchange rates. Countries with high expected productivity growth also have high

exchange rates. Equation (11) also implies that the exchange rate  increases (appreciates) with the growth

of productivity  and decreases (depreciates) with the Ramsey interest rate .
18At this stage, the volatility of the exchange rate comes from the volatility of its resilience b. In the online

appendix, we generalize the setup and introduce other factors.
19The derivation is standard. In the international currency, the payoff of the bond is +1, so its price is

E
h
∗+1+1

∗

i
and its domestic price is (12).
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Proposition 3 (Interest rate). The value of the interest rate in country  is

 =  − −  b

 + 
+ b

(13)

in the limit of small time intervals.20

When a country is “risky” (low ∗ or b), its interest rate is high according to (13) because

its currency has a high risk of depreciating in bad states of the world. Note that this risk is a

real risk of depreciation, not a default risk.21

Safe haven countries can borrow at low interest rates and have an appreciated

currency. Consider two countries, one (“Switzerland”, the safe haven) with low risk / high

average resilience ∗, and one (“Brazil”) with high risk / lower average resilience ∗.22 Equa-

tions (10)-(13) imply that, on average (i.e., when b = 0), Switzerland has low interest rates

(equal to −), while Brazil has high interest rates. This is a compensation for disaster risk,

not default: investors are willing to lend to Switzerland at low interest rates, because the Swiss

exchange rate will appreciate relative to Brazil’s in a disaster.

At the same time, the exchange rates are  =


when resiliences are at their central

value (equation 11 with b = 0). Hence, the Swiss exchange rate is on average appreciated

(“strong”) compared to the Brazilian exchange rate.

Switzerland (the safe haven) therefore benefits from the “exorbitant privilege” of borrow-

ing at low interest rates. This underlying mechanism is different from those of Gourinchas,

Govillot and Rey (2010), who emphasize differences in risk aversion, and Maggiori (2013), who

emphasizes differences in financial development. A distinctive feature of our model is that the

exchange rate of safe haven countries appreciates in times of crises.

Existence of equilibrium. We end this section by showing sufficient conditions for the

existence of an equilibrium. We choose to start with the consumption process for traded goods

in equation (4), the productivity process in each country given by equation (6), and the process

for the resilience in each country given by equation (9). This is enough to determine the

exchange rate in each country as in equation (11) and, more generally, all the asset prices that

we are interested in. Lemma 1 shows that there are endowment processes for the traded and

20See equation (43) in Appendix B for an exact expression away from the limit of small time intervals.
21Safe countries can borrow at a lower interest rate, which may explain why historically the dollar or Swiss

Franc interest rates were low (Gourinchas and Rey 2007).
22Hassan and Mano (2014) show that these persistent differences in riskiness are large.
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non-traded goods that can rationalize these choices as a general equilibrium outcome. This

is a way of maintaining the tractability of an endowment economy in a model that features

production.

Lemma 1 (Existence of equilibrium). There exist endowment processes
©
 




ª
≥0=1

for traded and non-traded goods such that in the equilibrium of the model (4), (6), and (9) hold.

3.2 Forward Premium Puzzle and Carry Trade

We analyze the predictions of our model for Fama (1984) regressions in two different types of

samples: with and without disasters. We consider countries with identical constant parameters

but potentially different b, , and .

Consider the Fama regression of the changes in the exchange rate between countries  and

 regressed on the difference in interest rates, in a sample with no disasters:

Fama regression:
+1 − 


− +1 − 


= − ( − ) + +1 (14)

where +1 is a random variable with mean zero. We will consider two possible kinds of samples

for this regression: a large sample with no disasters and a full sample with a representative

frequency of disasters. We denote the respective coefficients by  and . As in other

models with disasters, this allows us to make predictions about samples that happen not to

contain disasters.

The UIP condition implies  = 1. In contrast, in our model  and  can be negative.

For simplicity, we consider the case where the two countries  and  have the same ,  .
23

Proposition 4 (Fama coefficients). Consider two countries  and  with the same  = 

and 
= 

, and consider the limit of small time intervals as well as small b and b. In

the Fama regression (14), in a sample with no disasters the coefficient  is:

 = −


 (15)

If in addition  is constant with value , then in a full sample the coefficient 
 is:

 = −


+

µ
1 +





¶
 (16)

23In Proposition 4, as in the later Proposition 9, the expressions hold up to second-order terms in b, b.
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The intuition for the negative sign on  is as follows. Because b is mean-reverting, risky

countries are expected to be less risky in the future. As a result, the exchange rate of high

interest rate countries is expected to appreciate — consistent with the “forward premium puzzle”.

In this simplest model with one factor (resilience),  is always negative; in richer models with

more factors (resilience and inflation, see below),  can have both signs depending on the

relative importance of the different factors.

To understand this proposition, it is useful to derive an expression for the appreciation of an

exchange rate. For simplicity, we focus on the Fama regression in a sample without disasters.

In Appendix B, we show that, in the limit of small time intervals and for small b,

E


∙
+1−



¸
= − 

 + 

b + and  = − 

 + 

b + 0
 (17)

where 
0
 (and soon  00

 ) are country-specific constants. A currency with low resilience
b

tends to appreciate and have a high interest rate. Eliminating the resilience term, we obtain a

link between expected currency appreciation and the interest rate:

E


∙
+1−



¸
= −

( − )


+ 00

 

which gives the Fama coefficient on the interest rate,  = −

.

Here, the Fama coefficient in a sample without disasters does not depend on  (this will

change when we add other factors, see Proposition 9). Even when disasters are not associated

with risk premia (in other words, when  = 1), the Fama regression in a small sample with

no disasters would indicate a violation of UIP. Time-varying risk premia are crucial to explain

the forward premium puzzle in a sample with disasters: with  = 1, there is no disaster risk

(consumption does not fall during disasters), so that  = 1; the Fama coefficient is negative

only if disaster risk is high enough. The possibility of a negative Fama coefficient  in a full

sample does not come from a peso problem.

The Carry Trade Given two currencies, the carry trade consists of borrowing one unit

of the numéraire in currency  at interest rate  and investing it in currency  at interest rate

.
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Proposition 5 (Carry trade return). The expected return of the carry trade between two coun-

tries is equal to  −, the difference in their resilience:

E


∙
+1 − 


− +1 − 



¸
+  −  =  − (18)

Consider the particular case of two countries with identical constant parameters, but poten-

tially different b and . The idea is for an investor to borrow one unit of the world numéraire

in a safe country  — the funding country — with high resilience  and a low interest rate ,

and to invest in a risky country  with low resilience    and a high interest rate   

— the investment country. If no disaster occurs, the investor pockets the interest differential.

Moreover, on average, the exchange rate of country  appreciates against that of country .

However, if a disaster occurs, the exchange rate of country  depreciates against that of country

 and the investor incurs a loss. Disasters correspond to bad states of the world when mar-

ginal utility (of the numéraire, i.e., the world traded good) is high. Investors are appropriately

compensated for bearing this risk.

In a full sample with a representative frequency of disasters, the expected return of the

carry trade is the one in (18) minus the expected loss in disasters E [ − ]:

E

∙
+1 − 


− +1 − 



¸
+  −  =  − − E [ − ] . (19)

3.3 Options and Risk Reversals

Disaster risk is inherently hard to measure, but options offer a powerful way to assess its

importance. Here, we characterize the way disasters are incorporated into option prices. We

discuss the empirical validity of the model’s predictions. Consider two countries  and  The

currency  price at date 0 of a call that gives the option to buy at date 1 one unit of currency

 for 
0
0
units of currency  is 1

0
E0

∙
∗
1

∗
0

³
1 −

0
0
1

´+¸
, i.e.,

  () = E0

"
∗
1

∗
0

µ
1

0
−

1

0

¶+#
 (20)

Likewise, the currency  price at date 0 of a put that gives the option to sell at date 1 one

unit of currency  for 
0
0
units of currency  is   () = E0

∙
∗
1

∗
0

³
 1

0
− 1

0

´+¸
.
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Option prices without disasters. The Black-Scholes formula for equity options was

adapted by Garman-Kohlhagen (1983) to currency options. We call  
(    

  ) and

 
(    

  ) the Black-Scholes prices for a put and a call, respectively, when the ex-

change rate is  the strike is , the exchange rate volatility is , the home interest rate is ,

the foreign interest rate is , and the time to maturity is  . The pricing formulas in that case

are well-known.24

Option prices in the model. For tractability, we make two simplifying assumptions as

in Gabaix (2012). First, we assume that if a disaster occurs in period  + 1, +1 is equal to

zero. Second, we assume that the distribution of +1 conditional on date  information and no

disaster occurring in period + 1 is lognormal with drift  and volatility , where  indexes

countries: 1
0
= exp ( +  − 2 2), where  ∼ (0 2 ), and  := − ln ((1 + ) (1 +))

is the expected exchange rate appreciation conditional on no disasters.25 This enables us to

derive option prices in closed form.26 The standard deviation of the bilateral log exchange

rate (conditional on no disaster) is | ≡
¡
2 + 2 − 2

¢12
, where  is the correlation

between  and .

Proposition 6 (Option prices). The price of a call with strike  and maturity 1 is:

  () =   () +   ()  (21)

where   () and   () are the part of the price corresponding respectively to the no-

24Calling Φ the Gaussian cumulative distribution function, we have:

 
(    

  ) = −
Φ(1)− −Φ(2)

 
(    

  ) = −Φ(−2)− −
Φ(−1)

1 =
£
ln() + ( −  + 22)

¤

√
  2 = 1 − 

√
 

25This can be ensured as in Gabaix (2012). We assume that if there is no disaster, then +1 =


¡
1 + +1

¢
, with E

£
+1

¤
= E

£
+1


+1

¤
= 0. This does not change any of the formulas for the exchange

rate and the interest rate. The disturbance term +1 can be designed to ensure that 

1 0 has the lognormal

noise described above.
26This exact expression for  comes from the Euler equation 1 = E

£
(1 + ) 

−+ (1 +)
¤

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disaster and disaster states:

  () = exp
¡−+ 

¢
(1− 0)




¡
 exp

¡
 − 

¢
 |

¢
 (22)

  () = exp
¡−+ 

¢
0E0

h

−
1

¡
1 − exp

¡
 − 

¢
1

¢+i
 (23)

where  
 () :=  

(1  0 0 1) is the Black-Scholes call value when the strike is ,

the volatility , the interest rates 0, the maturity 1, the spot price 1.

The price of a put is given by the put-call parity equation:

  () =   () +


1 + 
− 1

1 + 
 (24)

The option price (21) is the sum of two terms. The first one is a familiar Black-Scholes

term. The second is a pure disaster term.

If the foreign currency is riskier than the home currency, then out-of-the-money put prices

on the currency pair (home, foreign) should be higher than out-of-the-money call prices as

the price of protection against a devaluation of the foreign currency should be high. We next

present a simple metric — risk reversals — to measure the gap between out-of-the-money puts

and out-of-the-money calls.

Implied volatility smile and risk reversals. Here we survey well-known notions in

option theory. Given a call option with strike  and price , the implied volatility of the

option is the volatility b () that needs to be assumed in the Black-Scholes formula to match
the price:  

 ( b ()) = . Implied volatilities on puts are defined similarly. For instance,

if a currency has a lot of disaster risk, its put price will be high (Proposition 6) and its implied

volatility will be high.

In particular, consider the implied volatility curve (i.e., the graph of the implied volatilityb () as a function of the strike ) of a pair of currencies: a risky currency and a safe currency.
Out-of-the-money puts protect against the crash of the exchange rate of  versus  and out-

of-the-money calls protect against the crash of the exchange rate of  versus  Imagine that 

is riskier than . Then the implied volatility of deep out-of-the-money puts is higher than the

implied volatility of out-of-the-money calls– a pattern referred to as a “smirk”.

A popular way to quantify the smile is the “risk reversal” (RR). Intuitively, it is the difference

in implied volatility of an out-of-the-money put and a symmetrically out-of-the-money call.

Hence, a very risky currency will have a high RR.
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To formulate a more precise definition of RR, we need to define the delta of an option. It is

the derivative with respect to the time-0 currency price, in the Black-Scholes formula. Formally,

if the call price (in the Black-Scholes / Garman-Kohlhagen model) is  
 (   

∗   ), the

delta is ∆ :=
 




). The delta of a call option decreases monotonically from 1 to 0 as 

increases. Symmetrically, the delta of a put option decreases monotonically from 0 to−1 as 
increases. Given a value ∆ ∈ (0 1), we define the ∆ risk reversal to be the difference in implied

volatilities between an out-of-the-money put and an out-of-the-money call with the following

properties. The strike of the put is chosen such that the Black-Scholes / Garman-Kohlhagen

delta is −∆. Symmetrically, the strike of the call is chosen such that the Black-Scholes /
Garman-Kohlhagen delta is ∆. In practice we will work with ∆ = 025, corresponding to a “25

delta” risk reversal.

We state a Lemma to better understand the risk reversal. It is drawn from Farhi et al.

(2014, Proposition 5).27

Lemma 2 In the limit of small time intervals, the risk reversal can be expressed as:

 = ∆ ( −)  (25)

where ∆ :=
1−2∆

(Φ−1(∆)) is a numerical constant.

Hence, if country  has more disaster risk than country  ( −   0), then the risk

reversal is positive: put prices on currency  are very expensive and have a high implied volatility

(compared to symmetric call prices).

Four signature predictions of disasters The model makes four broad predictions re-

garding option prices. The first three were seen above, and the fourth one will be detailed in

section 4.4.

1. Countries with high risk reversals have high interest rates.

27Formula (25) holds for a “one-period” option, and  is expressed per period. Suppose that “one period”

is  years (e.g.  = 1
12
if a period is one month), and implied volatilities are expressed in annual units, and

the maturity of the option is  years. Then, formula (25) becomes  =
1−2∆

(Φ−1(∆))

¡
 −

¢√
 , where

 = 
√
 and  =  are the RR and the resilience expressed in annual units. In addition, for

25 delta options (∆ = 025), 1−2∆
(Φ−1(∆)) ' 157.
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2. Investing in countries with high risk reversals generates high expected returns.

3. When risk reversals go up, the exchange rate contemporaneously depreciates.

4. The risk reversal of risky (i.e., high risk reversal, high interest rate) countries should

covary negatively with  , while the risk reversal of less risky countries should

covary positively with it.28

Empirical support for these predictions can be found in various papers: Carr and Wu (2007,

prediction 3), Brunnermeier, Nagel, and Perdersen (2009, predictions 1-3), Du (2013, prediction

1), Farhi et al. (2014, predictions 1-2).29 Section section 4.4 finds support for prediction 4.

Those four signature predictions of the disaster hypothesis are therefore qualitatively borne

out in the data. The calibration will show that the correspondence between empirics and theory

can be made quantitative as well.

Illustration: impact of a change in the world disaster probability An important

object is the probability of world disaster, . Its movements have a number of signature effects

that we now study. Consider two countries, again one safe (high ), “Switzerland”, and one

risky (low   ), “Brazil”. The difference in their resiliences is

 − = E
£

−
+1 (+1 − +1)

¤


Suppose that  increases, while E
£

−
+1 (+1 − +1)

¤
remains the same. Then,  −

 increases: Switzerland becomes relatively more resilient than Brazil. As a result, Switzer-

land’s exchange rate appreciates relative to Brazil’s.30

Figure 1 illustrates this prediction of the model. We take the view that Fall 2008 was

associated with an increase in the probability  of a disaster, rather than with the realization

of a disaster. The horizontal axis is an estimate of  − during the height of the crisis

(September 2008 to January 2009). The vertical axis shows the change in the exchange rate of

28Recall that  is the payoff of a portfolio going long high interest rate currencies and short low

interest rate currencies.
29For their empirical goal, Farhi et al. (2014) use a reduced-form version of the present model. As a result,

their simple framework cannot generate some key predictions, e.g. Prediction 3.
30Plain CARA preferences are enough to discuss the impact of . The economics would be similar with

Epstein-Zin (1989) preferences.
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Figure 1: This Figure reports the average estimated compensation for disaster risk exposure

and the cumulative percentage change in exchange rate for each country from September 2008

to January 2009. Source: Farhi et al. (2014).
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Figure 2: This Figure reports the average compensation for disaster risk exposure and the

average interest rate differential (vis- a-vis the U.S.) for each country. Interest rates and risk

exposures are reported in percentage points per annum. The sample period is January 1996 to

May 2013. Source: Farhi et al. (2014).
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various developed countries against the US dollar. According to the theory, since  increased

during the crisis, risky countries should depreciate during the crisis. This is what Figure 1

verifies: countries with high crash risk (low resilience) depreciated a lot during the crisis.31

The same theory predicts that, on average, risky countries should have high interest rates

(Proposition 3). This is verified in Figure 2, which shows riskiness (as measured by −)

vs the currency interest rate.

3.4 Stocks

Our model allows us to think in a tractable way about the joint determination of exchange

rate and equity values. We consider the case of a stock of a generic firm in country , that

produces the traded good.32 33. Its dividend is  in units of the traded good, and  =




when expressed in the domestic currency. It follows the following process

+1



= exp () (1 + +1)×
⎧⎨⎩ 1 if there is no disaster,

+1 if there is a disaster,

where +1 is an idiosyncratic shock uncorrelated with the stochastic discount factors.

We define the resilience  of the dividend  of stock  as

 = 
¡
E
£

−
+1+1

¤− 1¢ = ∗ +
b

As before, we posit that the law of motion for b is a LG-twisted process:

b+1 =
1 +∗
1 +

exp
¡−

¢ b + 

+1

where 
is the speed of mean reversion of the resilience of the stock.34 We also define

∗ = ln (1 +∗),

31The loading on disaster risk is thus revealed during sharp increases in : this might be one explanation for

the findings of Lettau, Maggiori and Weber (2014) that downside-market risk statistically explains risk premia.
32The NBER working paper version of this paper also develops the case of a firm producing the nontraded

good.
33The dividend of this firm may not be equal to total exports, as only a segment of firms are listed in the

stock market.
34Away from the continuous time limit, the price of the stock is:

 = 

1 +
exp(−−∗)

1−exp(−−)
b

1− exp (−)

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Proposition 7 (Price of stocks). The domestic price of the stock  is, in the continuous

time limit

 = 

1 +


+



 (26)

where  is the dividend expressed in the domestic currency and  ≡ −  − ∗.

A more resilient stock (high b) has a higher price-dividend and lower future returns.

The next Lemma states the equity premium.35

Lemma 3 (Equity premium) The expected excess return of stocks (in the domestic currency,

over the domestic risk-free rate) is, in the limit of small time intervals: E
£

−
+1 (+1 − +1)

¤
.

3.5 Yield Curve, Forward Rates, and Nominal Exchange Rates

Until recently, forward real interest rates were not available. Only their nominal counterparts

were actively traded. Even today, most bonds are nominal bonds. To model nominal bonds, we

build on the real two-factor model developed above. Let  = 0

−1Y
=0

(1− ) be the price level,

where  is inflation at time  (this formulation will prove tractable). The nominal exchange

rate is: e =  (27)

where we denote nominal variables with a tilde. The nominal interest rate e satisfies 1 =
E
h
∗
+1+1
∗
  (1 + e)i, so that in the continuous-time limit

e =  +  (28)

i.e., the nominal interest rate is the real interest rate plus inflation. Fisher neutrality applies:

there is no burst of inflation during disasters. With a burst of inflation, even short-term bonds

would command a risk premium.

We posit that inflation hovers around ∗, roughly according to an AR(1) process. More

specifically, to ensure tractability of the model, we posit the linearity-generating process:

+1 = ∗ +
1− ∗
1− 

exp (−) ( − ∗) + +1 (29)

35This lemma neglects second-order Ito terms.
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where +1 has mean zero and is uncorrelated with innovations in +1, in particular with

disasters. This means, to the leading order, that +1 − ∗ ' exp (−) ( − ∗) + +1, i.e. the

process is a (twisted) AR (1). One could allow for non-zero correlation, but the analysis would

become a bit more complicated.

Proposition 8 (Forward rates). In the continuous-time limit, the domestic nominal forward

rate is, up to second-order terms in b, and  − ∗:

 ( ) =  − − 

 + 

exp
¡−


¢ b + ∗ + exp (− ) ( − ∗)  (30)

The nominal forward rate in (30) depends on real and nominal factors. The real factor is

the resilience of the economy b. The nominal factor is inflation .

Each term is multiplied by a term of the type exp
¡−


¢
. For small speeds of mean

reversion , the forward curve is fairly flat.

We can derive the implications of our model for a Fama regression in nominal terms:

̃+1 − ̃

̃
− ̃+1 − ̃

̃
= ̃− ̃(̃ − ̃) + +1 (31)

where ̃ and ̃ are now, with some slight abuse of notation, the nominal interest rates in

countries  and  Our model’s prediction is in the next proposition.

Proposition 9 (Value of the coefficient in the Fama regression in nominal terms). In the

nominal Fama regression (31) with forward rates, the coefficients are:

̃


= e + 1− e, ̃


= e + 1− e (32)

where  and  are the coefficients in the Fama regression defined in Proposition 4 and

e = 1

1 +
Var(−)


+

2
Var( − )

(33)

is the share of variance in the forward rate due to b.

In this simple model, the higher the variance of inflation, the closer ̃


is to 1. Hence,

countries with very variable inflation (typically countries with high average inflation) approxi-

mately satisfy the uncovered interest rate parity condition. Bansal and Dahlquist (2000) provide

empirical support for this phenomenon. When disaster risks are very variable — and the real

exchange rate is very variable — then ̃


is more negative.
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3.6 Summing up

We gather here the key expressions we obtained. Recall  = +−−∗  = −−∗

Exchange rate:  =




Ã
1 +

b

 + 

!

Interest rate:  =  − −  b

 + 
+ b

Option’s risk reversal:  = ∆

³
∗ − ∗ + b − b

´
Stock:




=
1 +



+



They express that asset prices are, in essence, driven by exchange rate resilience b and

stock resilience b. When investors are more optimistic about country , resilience b is

high, its exchange rate is appreciated, interest rates are low, and put premia are low. Similarly,

the stock market of country  is driven by stock market resilience, b. One advantage of the

framework is its ability to express these intuitive dynamics in a tractable way, and to make

new predictions, such as the negative correlation between exchange rates and risk-reversals. We

note that other factors could be added, something we discuss in the online appendix. The next

section offers a calibration of the model.

4 Calibration

4.1 Data

We use monthly data from JP Morgan presented in Farhi et al. (2014). Exchange rates are

in US dollar per foreign currency. As a result, an increase in the exchange rate corresponds to

an appreciation of the foreign currency and a decline of the US dollar. For each currency, our

sample presents spot and forward exchange rates at the end of the month and implied volatilities

from currency options for the same dates. We consider one-month forward rates and options

with one-month maturity. Longer-term contracts are available but are much less traded. We

construct foreign interest rates using forward currency rates and the US LIBOR. Options are

quoted using their Black-Scholes implied volatilities for three different deltas: out-of-the-money
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Figure 3: Australian dollar vs. US dollar exchange rate and risk reversal at 25 delta.

puts (denoted 25-delta puts), at-the-money puts and calls (50-delta), and out-of-the-money

calls (denoted 25-delta calls) for the 2005-2013 period.

As will become apparent, it is easy to calibrate realistic values for the exchange rate volatil-

ity and for the interest rate level and volatility. The potential difficulty lies in calibrating

option values at the same time. Using currency options, recent papers (Burnside, Eichenbaum,

Kleshchelski, and Rebelo 2011, Farhi et al. 2014) have concluded that disaster risk plays an

important role in currency markets. Still, to some extent, out-of-the-money put premia for

risky currencies seemed somewhat low compared to those implied by a disaster model. The

authors speculated that illiquidity or counterparty risk may play a role.36

Since the early versions of those papers, the global financial crisis happened. It turns

out that it led to a large and durable increase in option prices, even after its peak — see the

documentation in Farhi et al. (2014). As an illustration, Figure 3 plots the “risk reversal”

of the Australian dollar, which is a major carry trade currency, since 2005. Before 2008, the

risk reversals were on average 0.6%. The apex of the crisis was in the fall of 2008. But even

36In the illiquidity view, deep out-of-the-money puts might be illiquid, and an agent who would like to buy

them would move prices against him. In the counterparty view, insurance prices are low because in disasters the

insurer (the seller of the put) will default: hence, the puts in the market are not default-free in the important

(disaster) states of the world.
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after spring 2009, the risk reversals were very high: they were more than three times as large

as before the crisis.

This phenomenon is reminiscent of what happened with stock options before and after the

1987 crash (Jackwerth and Rubinstein 1996). Before the 1987 crash, there was no significant

put premium (i.e., no skew). After the 1987 crash, a skew appeared and remained ever since.

One interpretation is that options market participants became more keenly aware of crash

risk: buyers of options traded them more, and option pricers incorporated crash risk into their

models. Under that interpretation, options markets have become more efficient after the 1987

crash. It is conceivable that a similar phenomenon happened after the fall 2008 crisis.37

We show that our model can be successfully calibrated to post-crisis data, where risk re-

versals are higher than pre crisis, which we take to be an indication that disaster risk plays a

more important role in currency markets.38 Accordingly, for the calibration, we use data from

January 2009 to May 2013.

4.2 Parameter Values

We present a calibration of the model. Our data is nominal; we therefore use the extension to a

nominal setup. Up to second order terms, the differences in resiliences − are a sufficient

statistic for the quantities of interest (which are bilateral, e.g. ln
³



´
,  − , etc.). Hence

we specify parameters for those differences in resilience — rather than the absolute resilience

 and  and their correlation. These differences in resiliences could come from various

combinations of shocks to the world disaster probability , severity +1 and country-specific

factors +1. We discuss them later.

Table 1 summarizes the main inputs of the calibration. The justification is as follows.

Exchange rate and interest rate. We call ∆ the time-difference operator, ∆ =  − −1,

and  =  (∆) the volatility of a variable . For two countries, define the volatility

of the bilateral exchange rate as  = 
³
∆ ln 



´
and the volatility of the difference in

37Another possibility is that disaster-related risk simply became larger not just during the crisis but also

in its aftermath. Indeed, the possibility of a second Great Depression was routinely entertained by market

participants and commentators during and after the financial crisis.
38That same calibration would indicate that pre-crisis out-of-the-money put premia for risky currencies were

somewhat low before the crisis.
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interest rates  =  (∆ ( − )). Equations (11) and (13) give 

 = 


 .

39 The above

equation constrains our calibration. We will match  ' 11%. In the sample, the volatility of
the nominal interest rate is  ' 07%. We therefore set  = 6%.40

The standard deviation the innovations to relative resilience − are chosen to roughly

match the level and volatility of the risk reversals, as well as the volatility of the exchange

rate. For the speed of mean-reversion of resilience, we take  = 18%, which gives a half-life

of ln 2 = 38 years, in line with estimates from the exchange rate predictability literature

(Rogoff 1996). We choose the volatilities of resilience to target the volatilities of RR and the

exchange rate reported in Table 2.

Table 1: Key Parameter Inputs.

Exchange rate discount rate  = 6%

Resilience: volatility and speed of mean-reversion −
= 28%  = 18%

Inflation: volatility and speed of mean-reversion  = 05%  = 30%

Stocks: volatility of dividends  = 84%

Stocks resilience: volatility and speed of mean-reversion 
= 39% 

= 18%

Notes: This table reports the coefficients used in the model.  is the average volatility, and

 is the speed of mean-reversion. The time unit is the year (the model is simulated at the

monthly frequency, but for readability the numbers reported above are all annualized)

39To keep the model parsimonious, we assume no default risk on debt. This is the cleanest assumption for

developed countries. Of course, in many cases (e.g., when pricing sovereign debt), default risk can be added

without changing anything about the exchange rate.
40The growth rate of productivity  is irrelevant in practice, but for completeness we propose a specific

value. We choose the growth rates so that in normal times consumption of non-tradables grows at a rate

 = 2%. We set  = , but results are not sensitive to the choice of this parameter. We make sure that the

riskless domestic short-term rate is on average around 2%, which pins down the rate of time preference . This

parameter  = +−  − ∗ is driven in the model by deeper combinations of underlying factors  
−
+1,

and  but mainly three parameters govern the key statics that we explore in Table 2. We take  = 4% which

generates a real interest rate of  −  = 2%. The underlying rate of time preference  is calibrated to match

the value of . For simplicity, we take the recovery rate of productivity to be the average recovery rate of

consumption, ∗ = E [− ]
1
. Hence we find a rate of time preference  = 49%.
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Inflation. Data (e.g., on currency options) are nominal, and the essence of our model is real.

We pick inflation parameters that are broadly in line with averages in our sample.

Carry trade returns. We proceed as is usual in the carry trade literature, see e.g. Farhi et al.

(2014). However, to better capture disaster risk, we sort on risk reversals rather than interest

rates. We divide countries into two equal-sized bins of resilience; the risky countries are those

in the bottom half of resilience, the less risky countries those in the top half. We define the

carry trade as going long $1 in the equal-weighted portfolio of risky countries and going short

$1 in the equal-weighted portfolio of safer countries (high b).

Stocks. Empirically, domestic stock returns and the exchange rate are uncorrelated on

average (see Table 3). We specify the correlation between innovations to  and  to match

this (the procedure is detailed in the online appendix). We match a volatility of dividends

of 11%, as in Campbell and Cochrane (1999); this leads to  = 84%. For parsimony, we

take the speed of mean-reversion of dividend resilience to be that of exchange rate resilience,


=  = 18%. This is in line with the range of estimates of the speed of mean reversion of

the price/dividend ratio surveyed in Gabaix (2012). We choose 
to match the volatility of

stock returns.

Interpreting resilience processes in terms of deeper disaster parameters

Resilience differentials are sufficient statistics for the calibration. We now discuss how their

variations are related to deeper disaster parameters.

We take numbers from Barro and Ursua (2008).41 The average probability of disasters

is E [] = 36%. An important parameter in the calibration is the risk-adjusted probability

of disasters E [−]. Disasters are overweighted compared to their physical probability by a

factor E [−]. This factor is very sensitive to the severity of disasters and to the coefficient

of relative risk aversion. We take  = 4, which yields E [−]1 = 066. Hence, the “risk

neutral” (i.e., risk-adjusted) probability of disasters equals E [−] = 192%. Note that though

E [−]1 = 066, which corresponds to a risk-adjusted average size of disaster of 34%, the

median disaster in Barro and Ursua (2008) is much smaller: because of risk aversion, the small

possibility of a large disaster matters a lot.

This calibration, strictly speaking, relies on a stark idealization in which consumption is

41See also Gabaix (2012), Gourio (2012) and Wachter (2013) for related calibrations of disaster models in

closed economies.
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permanently affected after disasters. In practice, there is a partial recovery from disasters

(Barro and Ursua 2008). For a given , that lowers the disaster risk premium (Gourio 2008).

However, this can be remedied by increasing  slightly. Indeed, Barro and Jin (2011) find an

empirical power-law distribution of disaster sizes, so that a moderate  can generate a very

large (indeed infinite for a large enough ) risk premium. In addition, for our purposes, the

idealization of a permanent disaster seems like a good compromise between parsimony and

realism.

Our calibration only requires the law of motion of the differential resilience,  −  =

E
£

−
+1 (+1 − +1)

¤
. The results of the calibration do not depend on whether the shocks

come from movements in , 
−
+1 or +1 − +1.

4243

To interpret the volatility of− = E
£

−
+1 (+1 − +1)

¤
, we present the standard

deviation of changes in  − over a horizon of one year. Generally, call this object 
for

the standard deviation of a variable  at a one-year horizon: 
=  (+1year −). We

take some polar cases. If the innovations come entirely from idiosyncratic movements of 

(keeping  and 
−
+1 constant at E [] and E [

−]), then  = 105%. This is broadly in line

with Gabaix (2012), who argues that a one-year horizon volatility  ' 10% for the resilience
of the aggregate stock market is plausible and does not violate variance bounds from historical

data: hence, that calibration seems acceptable too. Conversely, suppose that innovations in

differential resilience come entirely from movements in  (keeping E
£

−
+1 (+1 − +1)

¤
constant). With fixed values of , e.g. |+1 − +1| = 04 (similar to the numbers above),
then we write  = 13%. This is of the same order of magnitude as the calibration in Wachter

(2013), which uses  ' 11%.

4.3 Implications

Tables 2 and 3 present results from the calibration.

As Table 2 shows, the model hits the volatility of the bilateral exchange rate, i.e. generates

the right amount of “excess volatility” in exchange rates. The model also roughly matches

(and slightly undershoots) the size of disaster risk as measured by the average size of risk

42For instance, movements in  generate a positive covariance between the innovations of  and , while

idiosyncratic movements of +1 and +1 generate a 0 covariance. For the calibration, the covariance between

the innovations of  and  does not matter per se — only the variance of the innovations of ( −).
43This is true up to second order terms. We verify numerically that this is a good approximation.
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Table 2: Moments: Empirical and in the Model

Moments Data Calibration

Std Dev(∆ ln ̃) 1235% 1100%

Carry Trade Return 344% 274%

Mean(||) 131% 097%

Std Dev() 124% 107%

Std Dev(∆) 260% 080%

Std Dev(̃) 138% 094%

Std Dev(∆(̃ − ̃)) 071% 106%

Corr(∆ ln ̃∆) −057 −067
Corr(ln ̃+1 ln ̃) 088 097

Corr(∆ ln ̃+1∆ ln ̃) −013 −0011
Corr(̃ − ̃ ) 055 069

Notes: The table reports the moments generated by the model, using the inputs

from Table 1. The risk reversal  is defined as the implied volatility of an

out-of-the-money put minus the implied volatility of an out-of-the-money call, all

at 25-delta. A high  means that the price of protection from depreciation of

currency  (against country ) is high. ̃ is the nominal interest rate. We definee =  , the nominal bilateral exchange rate between countries  and : a high

e means that currency  appreciates. Carry trade returns are the returns from a

long-short portfolio going $1 long (resp. short) an equal-size portfolio of high (resp.

low) RR countries. The time unit is the year (the model is estimated and simulated

at the monthly frequency, but for readability the numbers reported above are all

annualized).
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reversals.44 45 At the same time, the model generates a moderate volatility of the interest rate,

as in the data.

We showed earlier that in the model countries with high risk reversals have high interest rates

and that increases in risk reversals are associated with depreciations of the exchange rate. The

calibration shows that these predictions hold not just qualitatively, but also quantitatively:

Table 2 reports the calibrated values of Cov (e − e ) and Corr(∆ ln ̃∆) and

shows that they broadly match up with their empirical counterparts.

The carry trade generated by the model gives average returns in line with the empirical

evidence (see Farhi et al. 2014 for more variants of the carry trade). Investing in countries

with high risk reversals generates high expected returns. Indeed, the expected return of the

carry trade (given positive ) is about 3% per annum. Finally, the model generates Fama

coefficients  = −066 in line with estimates of the literature cited above.

Stocks Table 3 shows the moments related to stocks. We call stock the return of the stock

in country , in the domestic currency. We also call 
stock,$
 the return in a foreign currency, which

we will take to be the dollar, and call e =  the bilateral exchange rate between countries
 and .46 The equity premium is about 6%, in line with the usual empirical estimates. We

report the correlations between changes in the exchange rate of two countries, and changes in

the relative stock returns: 
¡
∆ ln e stock − stock

¢
. Empirically, this correlation is close to

0: movements in the stock market and the exchange rate are uncorrelated on average. The

model reproduces that fact. Likewise, changes in risk reversals and relative stock returns are

essentially uncorrelated in the data and in the model (
¡
∆ 

stock
 − stock

¢
is close to

0).

We also study the correlation between stock returns in a common currency and the change in

the exchange rate: 
³
∆ lne stock,$ − 

stock,$


´
. Empirically, this correlation is high, about

0.67. The model is roughly in line with this. Likewise, there is a negative correlation between

44We take the mean of the absolute values of risk reversals because, by symmetry, the mean of risk reversals

is 0.
45If we increased the value of E [− ], for example by slightly increasing , we could match better the average

value of the RR and other moments, without requiring a larger volatility of the relative prospective recovery

rate − or of the probability of disaster . We thought it was more parsimonious to stick to the numbers

from the previous literature for E [− ], e.g. Gabaix (2012).
46The returns are: stock = +

−1
− 1 and 

stock,$
 =


−1−1

+

−1
− 1 ' stock +∆ ln 


.
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Table 3: Moments related to Stocks: Empirical and in the Model

Moments Data Calibration

Equity premium: Mean(stock − ) 6% 59%

Volatility of stock returns: Std Dev(stock ) 17% 17%

Volatility of stock returns in foreign currency: Std Dev(
stock$
 ) 20% 20%

Corr(∆ ln ̃ 
stock
 − stock ) −005 004

Corr(∆ ln ̃ 
stock$
 − 

stock$
 ) 067 043

Corr(∆ 
stock
 − stock ) −009 −004

Corr(∆ 
stock$
 − 

stock$
 ) −039 −041

Notes. The table reports the moments generated by the model, using the inputs from

Table 1.  (resp. 
$
 ) is the stock return of country  expressed in country ’s

domestic currency (resp. in US dollars). The risk reversal  is defined as the implied

volatility of an out-of-the-money put minus the implied volatility of an out-of-the-money

call, all at 25-delta. A high  means that the price of protection from depreciation of

currency  (against country ) is high. We define e =  , the nominal bilateral exchange
rate between countries  and : a high e means that currency  appreciates. Here we take
country  to be the US. The time unit is the year (the model is estimated and simulated at

the monthly frequency, but for readability the numbers reported above are all annualized).

changes in risk reversals and relative stock returns: 
³
∆ 

stock,$
 − 

stock,$


´
 0 in

the data and the model. Economically, when country  becomes less risky, the risk-reversal

 goes down, the exchange rate e appreciates, and its realized stock return differential

stock,$
 − 

stock,$
 is higher.

We conclude that the disaster model can be made quantitatively broadly congruent with

the salient empirical facts.

4.4 Covariance structure in currencies and 

In influential work, Lustig, Roussanov and Verdelhan (2011) find that a one-factor structure

in currency returns. Namely, they form a portfolio,  , going long high interest rate

currencies and short low interest rate currencies. They also find that currency excess returns

are accounted for by the  factor. They find, in essence, that regressing currency return

33





 =  + 

+  yields  = 0. Here 

 is the currency return (capital

gains plus interest rate) when going long a basket  (e.g., high interest rate currencies), and

short a diversified basket of currencies.

In this subsection, we keep the previous calibration, but give it the additional structure

of a one-factor model in currencies and stocks, respectively. We will find that we can match

the salient facts related to  , and make a new, successful prediction linking it to risk

reversals.

Factor structure We define the normalized resiliences of stocks and exchange rates as:

 :=
1 +



+

1 +


+

− 1  :=
b

 + 

Using this notation, we can re-express equations 11 and 26 as follows:

 =



(1 + )   =









(1 + ) 

The innovation to the exchange rate and the stock price (and return) are captured by  and

, respectively. We call 
the innovation to a random variable  (

=  − E−1 []).

We posit that the innovation to normalized resilience follows a one-factor structure:  =

−1+  where   are mean-0 innovations. We also specify  =  ( −) with

  0, and  is the average of  over all other countries. This means that when  is

positive, the spread in the resilience between risky and less risky countries shrinks, i.e. risky

currencies appreciate over least risky currencies. Hence,  is proportional to . So,

when  is positive,  is positive, and the risk reversal of risky countries goes down

while their exchange rate appreciates. The key free parameter is , which we set to 0114.

Empirically, international stocks markets tend to covary. This naturally suggest a one-factor

structure of stock resilience:  = −1+. We set  = 1, and  ( ) = 04,

which allows to match the empirical correlation between the  factor and average of

international stock market returns.47 The factors  and  are uncorrelated with other

variables.

47The online appendix details the process, including linearity-generating terms.
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Table 4: Moments related to  : Empirical and in the Model

Moments Data Calibration

Corr( 
Stock
 ) 039 028

Test of the one factor-structure:  0(∗) 0(∗)

in 

 =  + 

+ 

(for H,M,L portfolio) (for H,M,L portfolio)

Corr(∆ ln
 ) (057 001−052) (039 002−042)

Corr(∆) (−044−009 037) (−038−003 040)
Notes. Here  is the return of a portfolio going long high interest rate currencies and

short low interest rate currencies. Stock is the average of stock market returns across countries.



 is the currency return (capital gains plus interest rate) when going long a basket  (high

/ medium / low interest rate currencies), and short an equal-weight basket of all currencies. 0(∗)

means that the value is not statistically different from 0.  is the nominal exchange rate of
country  vis-a-vis an equal-weighted basket of all currencies (e is the average exchange rate
across countries, ln e = 1



P
=1 ln e). Countries are sorted by interest rates, and are divided

into three groups of High, Medium and Low interest rates (H,M,L).

Results Table 4 shows the results.48 As expected, if we sort countries by interest rates

(High, Medium and Low interest rates: H,M,L) (recall that in our model, risky countries

have high real interest rates), we observe that risky countries have a positive correlation

with  , and the least risky countries have a negative correlation with it (see the row

Corr(∆ ln
 )). The model produces a good quantitative fit of this fact.

We also verify that the one-factor structure shown in Lustig, Roussanov and Verdelhan

(2011) is replicated in our model (see the row on 

 =  + 

+ ).
49 In

addition, the model replicates the positive correlation between  returns and average

stock market returns.

The new prediction of the model is that risk reversals should covary with  : the risk

48This Table is computed over the whole sample, to maximize representativeness. The numbers are broadly

the same when restricting to the post-2009 sample, except Corr( 
Stock
 ), which is smaller in that

sample. We suspect that this number is not representative of typical samples.
49If we computed the returns of portfolios short a given currency (say the dollar), then we would need to add

a second factor, namely the return of that currency.
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reversal of risky countries should covary negatively with  , while the risk reversal of

the less risky countries should covary positively with it. This is indeed the case in the data,

as indicated in Table 4. We view this as an additional comforting, previously undocumented,

disaster-like feature of the data.

In conclusion, a parsimonious calibration of the model can replicate the major moments of

the link between currencies, interest rates, stocks and options, including the factor structure

documented in stocks and currencies.

5 Conclusion

We have proposed a disaster-based tractable framework for exchange rates. Our framework

accounts qualitatively and quantitatively for both classic exchange rate puzzles (e.g. excess

volatility of exchange rates, forward premium puzzle, excess return of the carry trade) and

links between currency options, exchanges rates and interest rates — signature predictions of

the disaster hypothesis.

The model is fully solved in closed form. It can readily be extended in several ways. The

online appendix of this paper works out various extensions, including a detailed model of the

term structure and the incorporation of business cycle movement.50

The model offers a unified, tractable and calibrated treatment of the major assets and

their links: exchange rates, bonds, stocks and options. Hence, we hope it may be a useful

point of departure to think about issues in international macro-finance. In particular, given

that the model calibrates correctly, studying business cycles and production in this disaster

50These extensions rationalize additional empirical facts uncovered by Boudoukh, Richardson and Whitelaw

(2012) on forward rates and deviations from UIP, and Lustig, Stathopoulos and Verdelhan (2014) on the term

premium in the bonds and currency riskiness. Boudoukh, Richardson and Whitelaw (2012) find that the carry

trades based on long-dated forward rates exhibit small deviations from UIP: in our model, this is because at

long horizon, other factors (e.g. business cycle or inflation) are more important, and they tend to generate

no deviation from UIP. Lustig, Stathopoulos and Verdelhan (2014) find that “risky” currencies have a lower

term premium. In our model, this holds even if all countries have the same inflation dynamics, where inflation

goes up in disasters (as in the historical experience on average), which creates a term premium. Because risky

currencies will depreciate in a disaster, a portfolio long their short-term bond and short their long-term bond

will have little value in a disaster, whereas the equivalent portfolio for safe countries will have a positive value:

hence, the term premium is high in safe countries and small or zero in risky countries.
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environment seems like a fruitful direction for research. Pursuing this direction could lead to a

unified international macro model to think jointly about prices and quantities.
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Appendix A: Results for Linearity-Generating Processes

The paper uses the linearity-generating (LG) processes defined and analyzed in Gabaix (2009).

This appendix gathers the main results. LG processes are given by , a pricing kernel 

times a dividend , and , an -dimensional vector of factors (that can be thought of as

stationary). For instance, for bonds, the dividend is  = 1.

By definition, a process  (1 ) is LG if and only if there are constant  ∈ R, ,
 ∈ R, and Γ ∈ R× such that for all  = 0 1    0 and

E

∙
+1+1



¸
= + 0 (34)

E

∙
+1+1



+1

¸
=  + Γ (35)

Higher moments need not be specified. For instance, the distribution of the noise does not

matter, which makes LG processes parsimonious. As a shorthand,  (1) =:  is an LG

process with generator Ω =

⎛⎝  0

 Γ

⎞⎠. It satisfies E [+1] = Ω.

Stock and bond prices obtain in closed form. The price of a stock  = E
£P

≥

¤


is, with , the identity matrix of dimension :

 = 

1 + 0 ( − Γ)
−1



1− − 0 ( − Γ)
−1


 (36)

The price-dividend ratio of a “bond,” or  ( ) = E [++ ]  (), is:

 ( ) =
³
1 0

´
Ω

⎛⎝ 1



⎞⎠ (37)

=  + 0
  − Γ

 − Γ
 when  = 0 (38)

Hence, the “recipe” to solve a model using LG processes is very simple: First, calculate the

LG moments (34)-(35), to obtain the values of    and Γ. Second, use (36) and (37)-(38)

to solve for stock and bond prices.

Conversely, the “recipe” to construct a model using LG processes is to force the model’s

primitives (e.g., twists in the AR(1) processes) to satisfy (34)-(35). Then, the model is very

easy to solve by the above procedure.

To ensure that the process is well-behaved (and, hence, will prevent prices from being

negative), the volatility of the process has to go to zero near some boundary. Gabaix (2009)

and the online appendix to this paper detail these conditions.
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Appendix B: Complements and Proofs

5.1 Different Notions of the Exchange Rate

In the paper, we define the “absolute” exchange rate  to be the price of the non-traded good

in country  in terms of the world numéraire. The more traditional definition would be E, the
price of the consumption basket in country  in terms of the world numéraire.51 Using the usual

algebra of CES price indices, the link between the two is:

E =
³

1
 + 

−1


´ 
−1

 (39)

The share of traded goods in consumption is 
1


³

1
 + 

−1


´−1
. In the data, this share

is small, so that  is close to 0. The consequence is that E '  and
E
E '



, so that the

two notions are quantitatively close. This approximation is exact up to a term 
³

1


´
. It is

analytically simpler to characterize the behavior of . In any case, it is possible to go back

and forth between the two notions using equation (39).

5.2 Proofs

We present here the proofs to the main results. Additional proofs are in the online appendix.

For simplicity, we drop the country index  in most proofs.

Proof of Proposition 2. Let  = exp (−) and  = b (for simplicity, we drop

the subscript  in this proof). By Proposition 1, we have

0 = E0

" ∞X
=0

∗
 

#
∗

0  (40)

We calculate the moments:

E

∙
∗

+1+1

∗
 

¸
= exp (−− + )

©
(1− ) + E

£

−
++1

¤ª
= exp (−− + ) (1 +) = exp (−− + ) (1 +∗) + exp (−− + ) b

= exp (−− + ) (1 +∗) + exp (−− + )

= exp (−) + exp(− − ∗)

51The bilateral exchange rate between country  and country  is then E
E .
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using  = + −  − ∗. Also:

E

∙
∗

+1+1

∗
 

+1

¸
= E

∙
∗

+1+1

∗
 

¸
E [+1]

= −−+ (1 +)
1 +∗
1 +

− b

= −−+− (1 +∗) b = −−

There are two ways to conclude. The first way uses the notations of Appendix A: the above

two moment calculations show that  =∗
  (1) is an LG process, with generator Ω:

Ω =

⎛⎝ exp (−) exp (− − ∗)

0 exp (− − )

⎞⎠ 

Using equation 36, we find

0 =
0

1− exp (−)

Ã
1 +

exp (− − ∗)

1− exp ¡− − 

¢ b0

!
 (41)

More generally,

 =


1− exp (−)

Ã
1 +

exp (− − ∗)

1− exp ¡− − 

¢ b

!
 (42)

where  is the current productivity of the country.

The second way (which is less rigorous, but does not require the results on LG processes) is

to look for a solution of the type  = 

³
+  b

´
, for some constants  and , which satisfies:

 =  + E
£
∗

+1 exp (−) +1∗


¤
. Dividing by , this is:

+  b = 1 + E

∙
∗

+1+1

∗
 

³
+  b+1

´¸
= 1 + E

∙
∗

+1+1

∗
 

¸
+ E

∙
∗

+1+1

∗
 

b

¸
= 1 + 

h
− + −−∗ b

i
+ −− b

which should hold for all b. Solving for  and , we get  = 1+−,  = −−∗+−− ,

and (42).

Proof of Proposition 3. In this proof, it is useful to define  = −∗ b. Then,

E
h
∗
+1+1

∗
 

i
= exp (−+ ) (1 +) = exp (− + ) (1 + ).

Also, E [+1] = exp (−) 
1+

, and  =  (1 +) with  = 1 (1− exp (−)),  =

exp(−)
1−exp(−−) . Thus:
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1 +  =
∗

 

E
£
∗

+1+1
¤ =  (1 +)

E
h
∗
+1+1

∗
 

 (1 ++1)
i = 1 +

E
h
∗
+1+1

∗
 

i
E [1 ++1]

=
1 +

exp (− + ) (1 + )
³
1 +

exp(−)
1+

´ = exp ( − )
1 +

1 +  (1 + exp (−))

= exp ( − )
1 +

exp(−)
1−exp(−−)

1 + 1
1−exp(−−)

= exp ( − )

"
1− (1− exp (−)) exp (−∗) b

1− exp (− − ) + exp (−∗) b

#


Hence,

 = exp ( − )

"
1− (1− exp (−)) exp (−∗) b

1− exp ¡− − 

¢
+ exp (−∗) b

#
− 1 (43)

Proof of Proposition 4. Derivation of (15). Using (11), we calculate (up to second

order terms  (2))

E


∙
+1 − 



¸
= E



⎡⎣+1



1 +
+1

+

1 +


+

− 1
⎤⎦

= E


⎡⎣(1 + )
1 +

+1

+

1 +


+

− 1
⎤⎦+

¡
2
¢

=  + E


⎡⎣1 + +1

+

1 +


+

− 1
⎤⎦+

¡
2
¢

=  + E


" b+1 − b

 + 

#
+

¡
2
¢

=  −


b

 + 

+
¡
2
¢


which together with (13) gives (17).

We next turn to the unconditional Fama regression. Using equation (12), we have:

1 + 

1 + 
=
E
h
∗
+1+1

∗
 

i
E
h
∗
+1+1

∗
 

i  (44)
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which in the limit of small time intervals can be expressed as:52

 −  = E

∙
+1 − 


− +1 − 



¸
+Cov

µ
∗

+1

∗



+1 − 


− +1 − 



¶


i.e.,

E

∙
+1 − 


− +1 − 



¸
=  −  −Cov

µ
∗

+1

∗



+1 − 


− +1 − 



¶


This expression highlights the role of the risk premium 

 :



 = −Cov

µ
∗

+1

∗



+1 − 


− +1 − 



¶


Consider now the Fama (1984) regression of the change in the exchange rate between coun-

tries  and  regressed on the interest rate differential in a full sample:

Fama regression: E

∙
+1 − 


− +1 − 



¸
=  − ( − ) (45)

The coefficient  is now given by:

 = 1− Cov(

   − )

Var ( − )


Therefore, we can have   0 if and only if the risk premium covaries positively enough

with the interest rate differential. It is easy to compute



 = (1− )( − ) + E [+1 − +1] 

which leads to

 =  − Cov (E [+1 − +1]   − )

Var ( − )

 =  + (1− )
Cov

³
E [+1 − +1]  b − b

´
Var

³ b − b

´  (46)

52To see this, express
∗+1
∗

= 1 +∗+1, and
+1−


= 1 + +1, where 

∗
+1 and +1 are small. Then,

(44) becomes, up to second order terms (denoted (2)):

1 +  −  +(2) =
E
£¡
1 +∗+1

¢
(1 + +1)

¤
E
£¡
1 +∗+1

¢
(1 + +1)

¤
=
1 + E

£
∗+1 + +1

¤
+Cov

¡
∗+1 +1

¢
1 + E

£
∗+1 + +1

¤
+Cov

¡
∗+1 +1

¢
= 1 + E

£
∗+1 + +1

¤− E £∗+1 + +1
¤
+Cov

¡
∗+1 +1

¢−Cov ¡∗+1 +1¢+(2)

= 1 + E [+1 − +1] + Cov
¡
∗+1 +1 − +1

¢
= E

∙
+1 − 


− +1 − 



¸
+Cov

µ
∗+1
∗


+1 − 


− +1 − 



¶
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In the case where+1 is constant and equal to, and E [+1 − +1] =
³ b − b

´
,

we have:

 =  + (1− ) = −

+

µ
1 +




¶


Proof of Proposition 6. Call price. We start with the call price:

  () = E0

"
∗
1

∗
0

µ
1

0
−

1

0

¶+#

= (1− 0)E
0

"
∗
1

∗
0

µ
1

0
−

1

0

¶+#
+ 0E0

"
∗
1

∗
0

µ
1

0
−

1

0

¶+#

= (1− 0) 
−E

0

"µ
1

0
−

1

0

¶+#
+ 0

−E0

"

−
1

µ
1

0
−

1

0

¶+#


where  and  superscripts denote expectation conditional on no disasters and disaster,

respectively. The next calculation uses the following lemma, which is standard.53

Lemma 4 (Discrete-time Girsanov) Suppose that ( ) are jointly Gaussian distributed under

 . Consider the measure  defined by  = exp (− E []−Var () 2). Then, under ,
 is Gaussian, with distribution

 ∼ N (E [] + Cov ( ) Var ())  (47)

where E [], Cov ( ), and Var () are calculated under  .

To perform the calculation, write for the ND case
1
0

= exp ( +  − 2 2), and the

analogue for . We call  =  − , and calculate:

1 = E
0

"µ
1

0
−

1

0

¶+#
= E

0

h¡
exp

¡
 +  − 22

¢− exp
¡
 +  − 2 2

¢¢+i
= exp ()E


0

h
exp

¡
 − 2 2

¢ ¡
exp

¡
 −  − 22 + 2 2 + 

¢−
¢+i



53To verify it, we calculate that the characteristic function of  is the characteristic function of distribution

(47):

E
£

¤
= E

h
−E[]−

2
2

i
= exp

Ã
E [] +

22

2
+ Cov ( )

!
= exp

"
 (E [] + Cov ( )) +

22

2

#

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We define  = exp ( − 2 2), and use Lemma 4. Under,  = −−22+2 2+
is a Gaussian variable with variance 2 and mean:

E [] =  −  − 22 + 2 2 + Cov ( −  )

=  −  − 22− 2 2 +  =  −  −Var () 2

Hence,

1 = exp ()E

£
( −)

+
¤
= exp ()E


h¡
exp

¡
 −  −Var () 2 + 

¢−
¢+i

= exp
¡

¢
 


¡
 exp

¡
 − 

¢
 

¢


where | = (Var ( − ))
12
and  

 () = E
h
(exp (− 22)−)

+
i
(with  a standard

Gaussian) is the Black-Scholes call value when the interest rate is 0, the maturity 1, the strike

, the spot price 1, and the volatility .

Next, we observe that:

E0

"

−
1

µ
1

0
−

1

0

¶+#
= E0

h

−
1

¡
exp

¡

¢
1 − exp ()1

¢+i


We conclude that the value of the call is (21).

Put price. We use the put-call parity. Using the identity + = + (−)+ and the fact that
E0
h
∗
1

∗
0

1
0

i
= exp (−), we have:

  () = E0

"
∗
1

∗
0

µ

1

0
− 1

0

¶+#
= E0

∙
∗
1

∗
0

µ

1

0
− 1

0

¶¸
+ E0

"
∗
1

∗
0

µ
1

0
−

1

0

¶+#
=



1 + 
− 1

1 + 
+   () 

The following analogue of (21) also holds:

  () = exp
¡−+ 

¢
(1− 0)




¡
 exp

¡
 − 

¢
 |

¢
+

+ exp
¡−+ 

¢
0E0

h

−
1

¡−1 + exp
¡
 − 

¢
1

¢+i
 (48)

Proof of Proposition 7 Using the same proof as in Gabaix (2012, Theorem 1), the price

of the stock in the international numéraire (the traded good) is:

 = 

1 +


+





Hence, expressed in the domestic currency, the price is:  =



= 

1+


+



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The model with nominal prices. The inflation process is as in Gabaix (2012), so we

can take results from that paper. Let  = 0

−1Y
=0

(1− ) be the value of money (the inverse

of the price level). The expected value of one unit of currency  periods later is:

E

∙
+



¸
= (1− ∗)



µ
1− 1− exp (− )

1− exp (−)
 − ∗
1− ∗

¶
 (49)

or E
h
+



i
= exp (−∗ )

³
1− 1−exp(− )


( − ∗)

´
in the continuous-time limit.

The time- price of a nominal bond yielding one unit of currency at time +  is e ( ) =

E
h
∗
+ ++

∗
 

i
. Because we assume that shocks to inflation are uncorrelated with disasters,

the present value of one nominal unit of the currency is:

e ( ) = E

∙
∗

+++

∗
 

¸
= E

∙
∗

++

∗
 

¸
E

∙
+



¸


Proposition 8. The derivation of the forward rate is as in Gabaix (2012, Theorem 2 and

Lemma 2).

Proof of Proposition 9. We start with the case of the regression in a sample that does

not contain disasters. So, up to second-order terms in b and 

E


∙e+1 − ee − e+1 − ee
¸
=
−

 + 

³ b − b

´
− ( − )

≡ 
³ b − b

´
+  ( − ) + 

e − e = − 

 + 

³ b − b

´
+ ( − )

≡ 
³ b − b

´
+ ( − ) + 

hence

̃
0

= −
Cov

³
E


h+1− − +1−
i
 e − e´

Var (e − e) = −
Var

³ b − b

´
+ Var ( − )

2Var
³ b − b

´
+2Var ( − )

= − 

− (1− )




=  + 1− 

where  = 1

1+
2 Var(−)
2 Var( − )



The case of the full sample regression is proved similarly.
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Online Appendix for “Rare Disasters and Exchange Rates”

Emmanuel Farhi and Xavier Gabaix

September 2014

This online appendix presents extensions of the model to business cycle shocks, and nominal

bond risk premia. It also provides extra proofs, and technical complements on the calibration

of the model.

6 A Setup with a Risk Factor and a Business Cycle Fac-

tor

6.1 Basic Theory with a Business Cycle

So far, we have only introduced one factor, so that, controlling for current productivity, exchange

rates and risk premia are perfectly correlated. This is an undesirable feature. In this section,

we extend our framework to a two-factor model with a risk factor and a business cycle factor

(see Pavlova and Rigobon 2007, 2008 for a different framework with several factors).

We model country ’s export sector productivity as follows:  =  (1 + ) where  is

the (stochastic) trend component of productivity and  is a deviation from the trend that we

refer to as the business cycle factor. The trend  behaves according to:

+1



= exp ()×
⎧⎨⎩ 1 in normal times,

+1 if disaster.

The business cycle factor  follows a linearity-generating process

E [+1] =
1 +∗
1 +

exp
¡−¢ 

with innovation uncorrelated with those of  and ∗
 .

Proposition 10 (Business cycle factor). The exchange rate is given by

 =


1− exp (−)

Ã
1 +

exp (− − ∗)

1− exp ¡− − 

¢ b +
1− exp (−)

1− exp ¡− − 
¢!  (50)
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In the limit of small time intervals, the exchange rate is given by

 =




Ã
1 +

b

 + 

+


 + 

!
 (51)

In the limit of small time intervals, the interest rate is

 =  − +
− 

+

b +

+



1 +


+
+ 

+

 (52)

The resilience b affects the exchange rate and the interest rate in the same way as in

the setup without the business cycle factor: a risky country with a low b has a depreciated

exchange rate  and a high interest rate . As a result, the disaster factor captured byb induces a negative correlation between  and . In contrast, the business cycle factor

induces a positive correlation between these two variables: a country with an above-trend export

sector productivity  has an appreciated exchange rate  and a high interest rate . The

correlation between the exchange rate and the interest rate depends on the relative importance

of the disaster factor and the business cycle factor.

Fama regressions with two factors. Denote by 0 and 0 respectively the constant term

and the Fama coefficient for the Fama regression in the two-factor model:

+1 − 


− +1 − 


= 0 − 0( − ) + +1 (53)

The next proposition relates the coefficient 0 in a sample with no disasters and the coefficient

0 in a full sample to their counterparts  and  in the one-factor model.

Proposition 11 (Fama regression with two factors). Consider two countries  and  with

 =  =  
= 

= , and  =  =  Consider the limit of small time intervals

as well as small b and b. Let  be the share of the interest rate differential variance due tob − b:

 =

³


+

´2
Var

³ b − b

´
³


+

´2
Var

³ b − b

´
+
³


+

´2
Var ( − )

 (54)

The coefficient 0(respectively 0) in the Fama regression (53) for a sample with no dis-

51



asters (respectively for a full sample) is given by54

0 =  + 1−  (55)

0 =  + 1− 

In equation (55), 0 is the weighted average of two Fama coefficients: the first coefficient,

, corresponds to variations in exchange rates and interest rate differentials driven by the

disaster factor; the second coefficient, 1, corresponds to variations in exchange rates and interest

rate differentials driven by the business cycle factor. The weight  is the share of the disaster

factor in the variance of interest rate differentials.

6.2 Predicting the Exchange Rate with Forwards

Nominal yield curves contain a lot of information potentially useful for predicting exchange

rates. We now explain how best to extract the relevant information to compute exchange rate

risk premia. As above, the expected depreciation of the nominal exchange rate is, up to second

order terms, and conditional on no disasters:

E


∙
ee
¸
 =  − 

b

 + 
− 

 + 
−  (56)

It involves three factors that are also reflected in the nominal forward curve. Note, however, that

it does not involve the inflation risk premium . So, an optimal combination of forward rates

should predict expected currency returns with more accuracy than the simple Fama regression.

Boudoukh, Richardson and Whitelaw (BRW, 2012) propose to regress the exchange rate

movement on the  -period forward rate from  periods ago:

BRW regression: E

∙
+1 − 


− +1 − 



¸
=  ( )− ( ) ( − ( + 1)− − ( + 1))

(57)

Our model’s prediction is in the next Proposition.

Proposition 12 (Value of the  coefficient in the Fama regression, with two factors, with

forward rates). Up to second order terms, in the BRW (57) regression with forward rates, the

coefficients are:

 ( ) =  ( ) + 1−  ( ) (58)

54The formula 0 =  + 1−  is valid even when  is not constant. The only difference in this case

is that  is no longer given by equation (16).
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and

 ( ) =  ( ) + 1−  ( ) (59)

where  and  are given in Eqs. 15 and 16, and

 ( ) =

³


+

´2
Var

³ b − b

´
exp (−2 )³


+

´2
Var

³ b − b

´
exp (−2 ) +

³

+

´2
Var ( − ) exp

¡−2¢ (60)

is the share of variance in the forward rate due to b − b. In particular, when   , the

long horizon regression has a coefficient going to 1: lim→∞  ( ) = lim→∞  ( ) =

1.

Boudoukh, Richardson and Whitelaw (2012) find that  ( ) increases toward 1 with the

horizon. Our theory is consistent with this empirical finding. Indeed, to interpret Proposition

12, consider the case where risk-premia are quickly mean-reverting, and the business cycle factor

is slowly mean reverting,   
55. Then, for large  ,  ( ) tends to 0, which means that, at

long horizons, the forward rate is mostly determined by the level of the business cycle factor,

not of the risk premium. Hence, at a long horizon the model behaves like a model without risk

premia, hence generates a coefficient  close to 1.

7 Richer Nominal Model

7.1 Basic Theory

We now develop a richer model with an inflation-specific risk premium. This allows us to speak

about a basic fact about the yield curve: on average, the (nominal) yield curve is upward sloping,

i.e., long term interest rates are higher than short term interest rates. To do so, we extend the

framework by incorporating inflation risk along the lines of Gabaix (2012): as inflation rises

(on average) during disasters, long term bonds are riskier, which makes the yield curve slope

upward. This will allow us to study the term premium across countries.

The variable part of inflation now follows the process:

b+1 = 1− ∗
1− 

·
³
exp (−) b + 1{Disaster at +1} ³∗ + b´´+ +1 (61)

55The same reasoning would hold replacing the business cycle factor by inflation
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In case of a disaster, inflation jumps by an amount  = ∗+ b. This jump in inflation makes
long term bonds particularly risky. ∗ is the baseline jump in inflation, b is the mean-reverting
deviation from baseline. It follows a twisted auto-regressive process, and, for simplicity, does

not jump during crises: b+1 = 1− ∗
1− 

· exp () b + +1 (62)

We define

 ≡
E

£

−
+1+1

¤
1 +∗

b (63)

which is the mean-reverting part of the “risk adjusted” expected increase in inflation if there is a

disaster. We parametrize the typical jump in inflation ∗ in terms of a number  ≤ (1− ) 2:

E
£

−
+1+1∗

¤
1 +∗

= (1− ∗) (1− exp (−)− ) 

 represents a risk premium for the risk that inflation increases during disasters. Also, we define

∗∗ ≡ ∗ +  (64)

and  ≡  − . They represent the “risk adjusted” trend and mean-reversion parameter in

the inflation process. In the continuous-time limit,

 ( − ) = E
£

−
+1+1∗

¤
= ∗ ( + ) (65)

As before, we denote nominal variables with a tilde. The price of a long term nominal bond

yielding one unit of the currency at time  +  is e ( ) = E
h
∗
+ ++

∗
 

i
, where  is the

inverse of the price level.

The yield at maturity  , e ( ), and the forward rates e ( ) are defined by − ln e ( ) =e ( ) = P

 0=1
e ( 0). The forward rates can be derived in closed form. For completeness,

we also import the part with business cycle risk from section 6 (the  term below).

Proposition 13 (Forward rates with inflation risk premia). In the continuous time limit, in

up to second order terms in
³ b    

´
:

e ( ) =  − − 

 + 
exp (− ) b +



 + 
exp

¡−¢ + (66)

+ ∗∗ (1− exp (− )) + exp (− )  +
exp (− )− exp (− )

 − 

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where b is the transitory part of the country’s resilience,  is the state of the business cycle, 

is inflation,  is the transitory part of the bond risk premium: they are all for a given country

 (for simplicity, we omit here the index ).

Proof. The proof is along the lines of the Gabaix (2012, Theorem 2 and Lemma 2), and

we only sketch it here as the mechanics are very similar. The first step is to calculate that

 :=

³
1 b  b ´ is LG (to the leading order), with continuous time generator:

 = ( − )  +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 
+


+

1 0

0  0 0 0

0 0  0 0

− ( − ) 0 0  −1
0 0 0 0 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(67)

Then, we derive the bond price as  ( ) = (1 0 0 0 0)
0
−. The forward rate is then

 ( ) = − ln ( ). Here we report the limit for  → 0, which makes terms cleaner, and

gives a sense in which the proposition is only up to second order terms. The nominal forward

rate in (66) depends on real and nominal factors. The real factors are the resilience of the

economy (the b) term, the expected growth rate of productivity (−). The nominal factors
are inflation , and the variable component of the the risk premium for inflation jump risk, .

¤
When a disaster occurs, inflation increases (on average). As very short term bills are essen-

tially immune to inflation risk, while long term bonds lose value when inflation is higher, long

term bonds are riskier, hence they get a higher risk premium. Hence, the yield curve slopes up

on average — as implied by the term ∗∗ (1− exp (− )) ∼ ∗∗ .

Each of the three terms is multiplied by a term of the type exp (− ). For small speeds
of mean reversion , it means that the forward curve is fairly flat. The last term, however,

is close to  for small maturities (
exp(− )−exp(− )

− ∼  ). It creates a variable slope in the

forward curve.

Hence, we obtain a rich forward curve. Gabaix (2012) shows that this type of yield curve

generates a realistic term premium and volatility of the yield curve. Here, we have two extra

terms: the country-specific resilience b, and the state of the business cycle .

55



7.2 The Term Premium Across Countries

Proposition 13 implies that the short-term nominal interest rate is e = e (0) :
e =  − − 

 + 

b +


 + 
 + 

so that on average,

E [e] =  − + ∗

(up to second order terms), while the long-term nominal interest rate (e = lim→∞ e ( )) is
equal to: e :=  − + ∗ + 

It is independent of time, as is normal in those models.

The difference between the two rates is

e − E [e] = 

We will call this the “term premium”.56 It is also the expected excess return of long-term

bonds conditional on no disasters. Below, we define ∗ as the average value of the probability

of disasters.

Proposition 14 (Slope of the yield curve / Term premium) On average (and up to second

order terms), the term premium (the average value of long term bond yields minus short term

bond yields) in country , , is the smaller positive root of


¡
 − 

¢
= ∗ (∗ + ∗) (68)

The term premium  is increasing with the expected increase of inflation in disasters (∗),

and increasing with resilience. In words, controlling for the inflation process ( and ∗),

countries that are relatively riskier (lower resilience ∗) have a lower term premium  than

countries that are safer (higher resilience ∗).

Lustig, Stathopoulos and Verdelhan (2014) find evidence for this effect (see also Ang and

Chen (2010) for related work). In their sample, risky (high interest rate) countries have lower

term premia than less risky (low interest rate) countries.

56Empirically, the term premium is often drawn from the properties of finite-maturity bonds, e.g. 30 year

bond, but for conceptual discussions very long term bonds are clearer.
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The intuition is the following. To make the benchmark starker, suppose that all countries

have the same inflation processes (same  and ∗). Because a risky currency will depreciate

in a disaster, a “term premium trade” portfolio long its long-term bond and short its short-

term bond will have little value in a disaster: in the limit where the currency is due to entirely

collapse in a disaster (∗ = 0, so that ∗ + ∗ = 0, and  = 0) this “term premium trade”

will have exactly zero payoff. Hence, perhaps surprisingly at first, it should have a zero risk

premium.

However, the same “term premium trade” with a safe currency will do very poorly during

disasters, as the value of long term bonds falls (on average) during disasters because of the

increase in inflation: this trade is risky, hence commands a risk premium, which is the term

premium, .
57 In some sense, disasters “democratize” risk premia, i.e. dull the differences in

riskiness between bonds (here, between short-term and long-term bonds of a risky countries),

as extreme disasters just wipe out the value of all very risky bonds.58

8 Proofs that were omitted in the paper

Proof of Lemma 1. Call  and 
 country ’s endowment of the traded good and

nontraded good, respectively. We work out under which conditions they generate the announced

equilibrium. Say that the equilibrium is described by a social planner’s maximization of
P

 

 

where  = E0

"P∞
=0 exp (−)

(
)

1−
+





1−
1


1−

#
is country ’s utility and 


 the Negishi

weight on country . We normalize
P

 = 1. Denote by  the Arrow-Debreu price of one unit

of the traded good at date  and by  
 the world production of the traded good. Among other

things, the planner optimizes the consumptions of the traded good, and solves:

max



X






∞X
=0

exp (−) 
¡



¢1−
+
¡



¢1−
1− 

+
X




Ã
 
 −

X





!


so that exp (−) 
¡



¢− −  = 0 and 
 = 

1
−1
 exp (−). Using  

 =
P



 ,

we get: 
 = 


 .

57More precisely, consider small jumps and risk premia: inflation jumps by ∗, but with a speed of mean-

reversion  , so that the loss in value of long-term bonds is ∗

. Hence, the risk premium  satisfies:  =

E
h

−
+1+1

∗


i
, i.e.  = E

£

−
+1+1∗

¤
, which is equation (65), up to a second order term in .

58A similar intuition holds in Gabaix (2012), Proposition 4, point (i).
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Let us now study country ’s consumption and investment decisions. At time , country 

solves max

  




(
)

1−
+





1−
1− s.t. 

 +

 = expenditure at time , so

¡



¢−
=


¡



¢−
, hence 

 = 
−1
 −1 

 . The investment in the capital good (i.e., the non-

traded good) is 
 −

 = 
 − 

−1
 −1 

 , so that the accumulated quantity of the

capital good is  =
P∞

=0 
−
³

− − 

−1
− 

−1 
−
´
. As country  produces  of

the world good, and also has an endowment  of it, the total available consumption of the

world good at time  is:

 
 =

X


 +
X




∞X
=0

−
³

− − 

−1
− 

−1

−
´
. (69)

The first term is the endowment of the world good, and the second term is its production.

The equilibrium is described as in the paper if the endowment processes  and 

 satisfy

(69), with  
 = ∗

 . By inspection, there is an infinity of such endowment processes.

Proof of Lemma 3. The quick intuition is the following: The expected excess return of the

stock claim in term of the international numéraire is E
£

−
+1 (1− +1)

¤
, while the expected

excess return on holding the currency is E
£

−
+1 (1− +1)

¤
. Hence, the excess return on

holding the domestic stock is the difference between the two, namely E
£

−
+1 (+1 − +1)

¤
.

A derivation via calculations is the following: conditional on no disasters, the return on a

stock, in the domestic currency, is: (we neglect the Jensen’s inequality / Ito terms variance

terms, which are second order).

E =




+






=




− 


+



1 + 

+






=  −  − 

1 + 
+



1 + 

+


1 + 

=  −  +  +  − ( + )

while  =  − − , so

E −  =  −  +  −  + + ( + ) − ( + )

= + b − b
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where the constant  is:

 =  −  +  −  + 

=  −  + (−  − ∗)− (+ −  − ∗) + 

= ∗ − ∗

so

E −  = ∗ − ∗ + b − b =  − = −0

9 Allowing for Different Time Scales in Resilience

9.1 The model with two time scales for resilience

There are different time scales in most measures of risk. For instance, the VIX index (of stock

market volatility) features low-frequency epochs of low vs high volatility (e.g. pre-2008 vs post-

2008), and high-frequency variations (e.g. temporary rises in volatility level, e.g. after bad

macroeconomic news). To capture them, we propose an extension of the model with two time

scales of resilience. We decompose resilience  as:

 = ∗ +
2X

=1

b (70)

where b for  = 1 2 are the two transitory components of resilience, one slow-moving, one

fast-moving ( indicates the time-scale). Their laws of motion are:

b+1 =
1 +∗
1 +

exp(−
) b + +1 (71)

where E
£
+1

¤
= E

£
+1

¤
= 0.

We assume that 1
 2

, so that b1 is the slow component of resilience, and b2 is

its fast component. For instance, b1 can capture the movements of resilience happening at

business cycle frequency, and b2 the movements happening at higher (e.g. monthly) frequency.

All our results are easily adapted to this multi-scale setup.

Proposition 15 (Modifications when there are two time scales for resilience). The theory’s

basic formulas carry over to the setup with two time scales for resilience, with minor modifica-

tions as follows. In the limit of small time intervals, the exchange rate (11), interest rate (13),
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and the Fama coefficients become:

 =




Ã
1 +

2X
=1

b

 + 

!
 (72)

 =  − − 

P2

=1



+

1 +
P2

=1



+

 (73)

 = −
P2

=1



(+)
2 Var

³ b − b

´
P2

=1


(+)
2 Var

³ b − b

´  (74)

while the expected return of the carry trade (18), and the risk-reversal (25) are unchanged.

Proof of Proposition 15. The values of  is derived as in Gabaix (2012, Proposition

12, Online Appendix). The proof for the interest rate is as above. For completeness, we state

the value of the nominal Fama coefficient with two time scales.

e
=

−P



(+)
2 Var

³ b − b

´
+Var ( − )P



³


+

´2
Var

³ b − b

´
+Var ( − )

 (75)

Proof sketch. We proceed as in the original proof of Proposition 4. Up to second order

terms,

E


∙e+1−ee
¸
= −

X




 + 

b −  +

e = −X


 b

 + 

+  + 0


so

e
=
−Cov

³
E


h+1−
i
− E



h+1−
i
 e − e´

Var (e − e)
=

−P



(+)
2 Var

³ b − b

´
+Var ( − )P



³


+

´2
Var

³ b − b

´
+Var ( − )



9.2 Calibration with two time scales

9.2.1 Parameter Values

We present a calibration of the model. Our data is nominal; we therefore use the extension

to a nominal setup. In order to match the observed autocorrelation structure of risk reversals,
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we use the two time scales model.59 Up to second order terms, the differences in resiliences

− are a sufficient statistic for the quantities of interest (which are bilateral, e.g. ln
³



´
,

 − , etc.). Hence we specify parameters for those differences in resilience — rather than

the absolute resilience  and  and their correlation. These differences in resiliences could

come from various combinations of shocks to the world disaster probability , severity +1

and country-specific factors +1. We discuss them later.

Table 1 summarizes the main inputs of the calibration. The justification is as follows.

Exchange rate and interest rate. We call ∆ the time-difference operator, ∆ =  − −1,

and  =  (∆) the volatility of a variable . For two countries, define the volatility

of the bilateral exchange rate as  = 
³
∆ ln 



´
and the volatility of the difference in

interest rates  =  (∆ ( − )). Equations (11) and (13) give  = 

 .
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above equation constrains our calibration.61 We will match  ' 11%. In the sample, the

volatility of the nominal interest rate is  ' 07%. We therefore set  = 6%.62

The speeds of mean-reversion 1
 2

and the variances of − are chosen to roughly

match the level and volatility of the risk reversals, their autocorrelations at different lags, as well

as the volatility of the exchange rate. For the speed of mean-reversion of the slow component,

we take 1
= 01, which gives a half-life of ln 2 = 7 years, in line with estimates from the

59We also performed a calibration with one time scale (available upon request). That calibration is essentially

equally successful, except that it does not match the high-frequency movements of the risk reversals (volatility

and autocorrelation), and it generates a close to perfect correlation between innovations to the exchange rate

and to resilience.
60To keep the model parsimonious, we assume no default risk on debt. This is the cleanest assumption for

developed countries. Of course, in many cases (e.g., when pricing sovereign debt), default risk can be added

without changing anything about the exchange rate.
61This expression also holds in the two time scales model (Proposition 15).
62The growth rate of productivity  is irrelevant in practice, but for completeness we propose a specific

value. We choose the growth rates so that in normal times consumption of non-tradables grows at a rate

 = 2%. We set  = , but results are not sensitive to the choice of this parameter. We make sure that the

riskless domestic short-term rate is on average around 2%, which pins down the rate of time preference . This

parameter  = +−  − ∗ is driven in the model by deeper combinations of underlying factors  
−
+1,

and  but mainly three parameters govern the key statics that we explore in Table 2. We take  = 4% which

generates a real interest rate of  −  = 2%. The underlying rate of time preference  is calibrated to match

the value of . For simplicity, we take the recovery rate of productivity to be the average recovery rate of

consumption, ∗ = E [− ]
1
. Hence we find a rate of time preference  = 49%.

61



exchange rate predictability literature (Rogoff 1996). For the speed of mean-reversion 2
of

the fast component, we target the autocorrelations of the RR (Table 6): the RR has a fast-mean

reverting component, with a half-life of about 4 months. We choose the volatilities of resilience

to target the volatilities of RR and the exchange rate reported in Table 6. For parsimony,

we take the innovations of the fast and slow component (1 − 1 and 2 − 2) to be

uncorrelated.

Table 5: Key Parameter Inputs.

Exchange rate discount rate  = 6%

Volatility of  1−1
= 174% 2−2

= 397%

Mean reversion of resilience  1
= 10% 2

= 210%

Inflation: volatility and speed of mean-reversion  = 05%  = 30%

Notes. This table reports the coefficients used in the model.  is the average volatility, and 

is the speed of mean-reversion. The time unit is the year (the model is simulated at the monthly

frequency, but for readability the numbers reported above are all annualized).

Inflation. Data (e.g., on currency options) are nominal, and the essence of our model is real.

We pick inflation parameters that are broadly in line with averages in our sample.

Carry trade returns. We proceed as is usual in the carry trade literature, see e.g. Farhi et al.

(2014). However, to better capture disaster risk, we sort on risk reversals rather than interest

rates. We divide countries into two equal-sized bins of resilience; the risky countries are those

in the bottom half of resilience, the less risky countries those in the top half. We define the

carry trade as going long $1 in the equal-weighted portfolio of risky countries and going short

$1 in the equal-weighted portfolio of safer countries (high b).

Interpreting resilience processes in terms of deeper disaster parameters Re-

silience differentials are sufficient statistics for the calibration. We now discuss how their vari-

ations are related to deeper disaster parameters.

We take numbers from Barro and Ursua (2008).63 The average probability of disasters is

 [] = 36%. An important parameter in the calibration is the risk-adjusted probability of

63See also Gabaix (2012), Gourio (2012) and Wachter (2013) for related calibrations of disaster models in

closed economies.
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disasters  [−]. Disasters are overweighted compared to their physical probability by a

factor  [−]. This factor is very sensitive to the severity of disasters and to the coefficient

of relative risk aversion. We take  = 4, which yields  [−]1 = 066. Hence, the “risk

neutral” (i.e., risk-adjusted) probability of disasters equals  [−] = 192%. Note that though

 [−]1 = 066, which corresponds to a risk-adjusted average size of disaster of 34%, the

median disaster in Barro and Ursua (2008) is much smaller: because of risk aversion, the small

possibility of a large disaster matters a lot.

This calibration, strictly speaking, relies on a stark idealization in which consumption is

permanently affected after disasters. In practice, there is a partial recovery from disasters

(Barro and Ursua 2008). For a given , that lowers the disaster risk premium (Gourio 2008).

However, this can be remedied by increasing  slightly. Indeed, Barro and Jin (2011) find an

empirical power-law distribution of disaster sizes, so that a moderate  can generate a very

large (indeed infinite for a large enough ) risk premium. In addition, for our purposes, the

idealization of a permanent disaster seems like a good compromise between parsimony and

realism.

Our calibration only requires the law of motion of the differential resilience,  −  =



£

−
+1 (+1 − +1)

¤
. The results of the calibration do not depend on whether the shocks

come from movements in , 
−
+1 or +1 − +1.

6465

To interpret the volatility of− = 

£

−
+1 (+1 − +1)

¤
, we present the standard

deviation of changes in  − over a horizon of one year. Generally, call this object 
for

the standard deviation of a variable  at a one-year horizon: 
=  (+1year −). We

take some polar cases. If the innovations come entirely from idiosyncratic movements of 

(keeping  and 
−
+1 constant at  [] and  [−]), then  = 129%. This is broadly in line

with Gabaix (2012), who argues that a one-year horizon volatility  ' 10% for the resilience
of the aggregate stock market is plausible and does not violate variance bounds from historical

data: hence, that calibration seems acceptable too. Conversely, suppose that innovations in

differential resilience come entirely from movements in  (keeping 

£

−
+1 (+1 − +1)

¤
constant). With fixed values of , e.g. |+1 − +1| = 04 (similar to the numbers above),
64For instance, movements in  generate a positive covariance between the innovations of  and , while

idiosyncratic movements of +1 and +1 generate a 0 covariance. For the calibration, the covariance between

the innovations of  and  does not matter per se — only the variance of the innovations of ( −).
65This is true up to second order terms. We verify numerically that this is a good approximation.
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then we write  = 16%. This is of the same order of magnitude as the calibration in Wachter

(2013), which uses  ' 11%.

9.2.2 Implications

Table 6 presents the main results from the calibration in Table 5.

Table 6: Moments: Empirical and in the Model

Moments Data Calibration

Std Dev(∆ ln ̃) 1235% 1100%

Carry Trade Return 344% 251%

Mean(||) 131% 102%

Std Dev() 124% 112%

Std Dev(∆) 260% 183%

Std Dev(̃) 138% 104%

Std Dev(∆(̃ − ̃)) 071% 105%

Corr(∆ ln ̃∆) −057 −032
Corr(ln ̃+1 ln ̃) 0.88 0.97

Corr(∆ ln ̃+1∆ ln ̃) -0.13 -0.012

Corr(̃ − ̃ ) 0.55 0.43

(1) 0.77 0.88

(6) 0.45 0.53

(12) 0.31 0.38

Notes for the Table. The table reports the moments generated by the model, using the

inputs from Table 5. The risk reversal  is defined as the implied volatility of an out-of-

the-money put minus the implied volatility of an out-of-the-money call, all at 25-delta. A high

 means that the price of protection from depreciation of currency  (against country ) is

high. ̃ is the nominal interest rate. We define e =  , the nominal bilateral exchange rate
between countries  and : a high e means that currency  appreciates. Carry trade returns are
the returns from a long-short portfolio going $1 long (resp. short) an equal-size portfolio of high

(resp. low) RR countries.  () is the autocorrelation of  at lag . ∆ = −−1 is the
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time-difference, annualized. The time unit is the year (the model is estimated and simulated

at the monthly frequency, but for readability the numbers reported above are all annualized).

The model hits the volatility of the bilateral exchange rate, i.e. generates the right amount

of “excess volatility” in exchange rates. The model also roughly matches (and slightly under-

shoots) the size of disaster risk as measured by the average size of risk reversals.66 67 At the

same time, the model generates a moderate volatility of the interest rate, as in the data.

We showed earlier that in the model countries with high risk reversals have high interest rates

and that increases in risk reversals are associated with depreciations of the exchange rate. The

calibration shows that these predictions hold not just qualitatively, but also quantitatively:

Table 2 reports the calibrated values of Cov (e − e ) and Corr(∆ ln ̃∆) and

shows that they broadly match up with their empirical counterparts.

The carry trade generated by the model gives average returns in line with the empirical

evidence (see Farhi et al. 2014 for more variants of the carry trade). Investing in countries

with high risk reversals generates high expected returns. Indeed, the expected return of the

carry trade (given positive ) is about 3% per annum. Finally, the model generates Fama

coefficients  = −066 in line with estimates of the literature cited above.
We conclude that the disaster model can be made quantitatively broadly congruent with

the empirical facts.

10 Details of the Calibration

Derivations for the main calibration. We will also consider the dispersion of variables, defined

as the standard deviation of their population distributions. Recall that, for a process +∆ =

(1− ∆) +
√
∆+1, the dispersion (in the limit of small time intervals) is  () =


p
2 . Hence, the standard deviation of the steady-state distribution of

b is:


³ b

´
=

√
2



66We take the mean of the absolute values of risk reversals because, by symmetry, the mean of risk reversals

is 0.
67If we increased the value of E [− ], for example by slightly increasing , we could match better the average

value of the RR and other moments, without requiring a larger volatility of the relative prospective recovery

rate − or of the probability of disaster . We thought it was more parsimonious to stick to the numbers

from the previous literature for E [− ], e.g. Gabaix (2012).
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Note that these results hold exactly in the limit of small shocks, i.e., 
³ b

´

³

√
2

´
→ 1 as

 → 0.

Recall that, for a Gaussian variable  ∼  (0 2),  [ |   0] = − [ |   0] =q
2

. As b is approximately Gaussian distributed (when the process goes to continuous time

and b is small, it is approximately an Ornstein-Uhlenbeck), we find that the carry trade return

is

 = 2

r
2



³ b

´
=

2√


 

Variance processes. Consider an LG process centered at 0,  = − (+) +

 ()  where  is a standard Brownian motion. Because of economic considerations, the

support of  needs to be some (min∞) with − ≤ min  0. min cannot be less than

− since the random variable  must always be mean reverting. For the simulation, we take

min = −, maintaining full generality of the allowed domain. The following variance process
makes this possible:

2 () = 2 (1−min)
2
 (76)

with   0.  is in units of [Time]
−3
. The average variance of  is: 2 =  [2 ()] =R max

min
 ()

2
 ()  where  () is the steady-state distribution of . It can be calculated

via the Forward Kolmogorov equation, which yields:

 ln  ()  = 2 (+) 2 ()−  ln2 () 

Numerical simulations show that the process for volatility is fairly well approximated by:

 ' 12 with  =
√
2. Also, the standard deviation of ’s steady-state distribution is well

approximated by ()
12
.

Asset prices often require to analyze the standard deviation of expressions like ln (1 + ).

Numerical analysis shows that the Taylor expansion approximation is a good one, yielding as

the average volatility of ln (1 + ) ' 12, which numerical simulations prove to be a good

approximation, too.

When the process is not centered at 0, one simply centers the values. For instance, in

our calibration, the recovery rate of the country productivity, , has support [min max],

centered around ∗. The probability and intensity of disasters ( and ) are constant. Define

 =  (− − 1) and the associated min, max, ∗. The associated centered process is

 = b =  −∗. We use values of  and  from Gabaix (2012). Since we explicitly target
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a bilateral exchange rate volatility (between two uncorrelated countries) of 11%, we use the

relation  =
√
2 

 ( + ) to obtain a target for the resilience innovation volatility,  
.

We then take the volatility parameter to be  =
¡
 


¢2
. The resulting volatility of  is

equal to  =  
 (−).

Methodology for the simulations The methodology followed in code is as follows:

1) Initialize variables in monthly units.

2) Simulate 500 shocks, obtaining monthly time series of resilience, inflation values.

3) Use resilience, inflation values and other fundamentals to obtain series of interest rates, spot

rates.

4) At every date , using the two interest rates computed at , and the bilateral volatility, we

backsolve for a pair of strikes that would give Put, Call Deltas of 0.25,-0.25. The formula used

is the one in Garman-Kohlhagen (with maturity of 1 unit).

5) For the pair of strikes computed, we compute values of Calls and Puts using the formula

in Farhi-Gabaix (2014); again using monthly parameters and with a time of 1 unit (which is a

month in this case).

6) We use the computed prices of Puts and Calls to obtain implied volatilities using the Garman-

Kohlhagen formula.

7) The risk reversal is just the difference in implied volatilities, and this is in monthly units.

8) The desired moments are obtained.

Details for the interpretation of the calibration in section 4.2. The calculations

reported in the text come from:

 =
−

E [−]
1√
2


where the
√
2 come from the assumption of independent movements in  (it is easy to

generalize) and

 =
−

E
£

−
+1 |+1 − +1|

¤ 
Stocks: details of the resilience process The core of the methodology deals with

simulating a permissible value of 

+1. On the one hand, since

̂+1 =
1 +∗
1 +

exp(−
)̂ + 

+1
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then, to respect the LG bound (̂+1 ≥ −
), we must have that 

+1 = 0 whenever

̂ = −
. If not, there is a strictly positive probability that ̂+1  −

, violating the

LG bound. On the other hand, we must make sure that 

+1 − +1 is uncorrelated with +1.

As such, we use the following methodology.

Let 

+1 = 
0


+1 + +1, where 
0


+1 is uncorrelated with +1.

Let  and 
be the standard deviations of +1 and 

+1.

Then (

+1 

+1) = 2 , and (

+1 

+1) = 

=  (). Thus, it is now

sufficient to simulate the 

+1 so that it has a correlation of  with 

+1 and has the appropriate

LG-implied vanishing properties.

The way to do this is by simulating



+1 =
p
2

(1 +
̂


)[

+1 +
p
1− 2 0+1]

where 
+1 is the random number drawn to simulate 


+1, (i.e. 


+1 =

√
2(1+

̂


)

+1) and

( 0+1 

+1) = 0.

Finally, we separately simulate dividends to obtain prices and returns.

Methodology to simulate the one-factor structure in exchange rates We used the

following setup:

̂+1 =
1 +∗
1 +

exp(−)̂ + +1

where +1 =
√
2(1 + ̂)


+1.

Now, we introduce aggregate shocks to the resilience innovations as follows:

+1 = +1 + +1

where we set  = (−)(1+ ̂), and we set +1 = +1 where +1 is a common

innovation and  is the average resilience across countries. We further assume that the ∗

are the same across countries. The above formulation assures that +1 = 0 whenever

̂ = −. By the Law of Large Numbers, the above reduces to

+1 = −̂(1 + ̂)+1

Let +1 = (1 + ̂)

+1 where 


+1 is a shock to country  alone and  is a constant.

Therefore,

+1 = −̂(1 + ̂)+1 + (1 + ̂)

+1
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where  is such that the volatility of +1 matches with the data. The above formulation

ensures that +1 = 0 whenever ̂ =  and so the LG bounds are satisfied.

To simulate the resilience innovations for stocks, we follow the below steps:

1) Recall that  = 
0

 +  , where 
0

 is orthogonal to the  . We also have common

innovations to the 
0

 so we simulate it as follows:


0

+1 = [
+1 + ̃

+1]

where  is a set of common innovations with a correlation of  = 03 to  and with

unit variance. ̃ is a set of idiosyncratic innovations with unit variance.  is such that

(  

) = 1, where 1 = 


 , where  is the standard deviation of ̂ and  is

the standard deviation of ̂. This ensures that (
0

  ) = 0.

2) From the simulated 
0

 , obtain  = 
0

 +  , and obtain the time series of resilience for

each country.

3) Separately simulate dividends to obtain prices and returns.

To obtain correlations, we perform the following steps:

1) Using the methodology outlined above, simulate time series for resilience.

2) From the obtained time series, obtain exchange rates for both countries and the resulting

(log of) bilateral exchange rate, and also obtain risk reversals.

3) Sort the real interest rate  into terciles, and obtain a corresponding series of “high shocks”,

“medium shocks” and “low shocks” of .

4) Look at the correlations of each tercile of  with the corresponding bilateral exchange rate

and the change in risk reversals at those indices.

Annualization Methodology This section details the techniques used to convert num-

bers from both the calibration and the data to annualized figures. Note that all values reported

are annualized. The “annualization factor” (Ann. Factor) is the number we use to multiply

the value directly obtained (from data/calibration) to annual terms.
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Moments Ann. Factor (Data) Ann. Factor(Calibration)

E(||) 1
√
12

Std.Dev() 1
√
12

Std.Dev(∆())
√
12

√
12×√12

Std.Dev()(real) 1 12

Std.Dev()(nominal) 1 12

Std.Dev(∆( − ))(real)
√
12 12×√12

Std.Dev(∆( − ))(nominal)
√
12 12×√12

Std.Dev(∆ ln())
√
12

√
12

Carry Trade Return 1 12
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