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Abstract

Using asset prices I estimate the marginal value of capital in a dynamic sto-

chastic economy under general assumptions about technology and preferences. The

state-space measure of marginal q relies on the joint measurability of the value func-

tion, i.e. firm market value, and its underlying firm state variables. Unlike existing

methodologies, the state-space marginal q requires only general restrictions on the

stochastic discount factor and the firm investment technology, and it uses simple

linear estimation methods. Consistently with a large class of neoclassical invest-

ment models, I construct the state-space marginal q using the firm capital stock and

profitability shocks. I show that this new measure of real investment opportunities

is substantially different from the conventional Tobin’s Q, it yields more plausible

and robust estimates of capital adjustment costs, it increases the correlation with

investment and the sensitivity of investment to fundamentals.
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Tobin’s Q-theory of investment emphasizes a fundamental connection between finan-

cial markets and the real economy: marginal q - i.e. marginal value of capital - is a

suffi cient statistic to describe investment behavior (Hayashi, 1982). As any other shadow

value in economics, however, the marginal value of capital is not directly observable. To

overcome such empirical limitation, researchers have thus mainly used the “observable”

(average) Tobin’s Q - i.e. ratio of market value of capital to its replacement cost - in

empirical studies. Such common practice, however, relies on a set of very restrictive

underlying assumptions under which marginal q is equal or proportional to (average)

Tobin’s Q.1 Despite the long-standing consensus that the restrictive underlying assump-

tions of perfect competition and homogeneity are misspecified, particularly at the firm

level, the use of (average) Tobin’s Q remains still predominant in the empirical litera-

ture, primarily for lack of model-free and easy-to-compute alternatives.2 In this paper, I

provide a new measure of marginal q to fill this gap.

I propose a new methodology to measure marginal q under general assumptions re-

garding the nature of technology, markets, and preferences. This general procedure is

both theoretically justified, and useful, empirically. Under general regularity conditions

for the differentiability of the value function and the measurement of its underlying firm

state variables, I show how marginal q can be easily estimated as market price elasticity

of capital using a two-stage procedure, which I refer to as state-space approach. First,

I project the observable market values - i.e. value function - onto the measurable firm-

level state-space, which includes also the firm capital stock, and then I differentiate the

projected market values with respect to the firm capital stock to obtain the marginal

value of capital. The key insight underlying the state-space measure of marginal q rests

on the joint measurability of the value function - i.e. market values - and its underly-

ing set of firm state variables. Unlike the demand side of the economy, where one get

1Hayashi (1982), and Abel and Eberly (1994) in a more general stochastic economy, showed that

under the joint assumption of perfect competition and homogeneity of a firm production and adjstment

cost technologies in investment and capital, marginal q is equal or proportional to (average) Tobin’s Q.
2Possible departures from perfect competition and homogeneity include market power or decreasing

returns to scale in production (Gomes, 2001; Cooper and Ejarque, 2003; Abel and Eberly, 2011), and

inhomogeneous costs of investment (Abel and Eberly, 1994, 1997; Cooper and Haltiwanger, 2006).
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to observe neither the value function - i.e. indirect utility - nor its underlying state

variables including above all household’s wealth, in the production side of the economy

one get to observe, or at least easily measure in most cases, both the value function -

i.e. market values - and its underlying state variables including above all the stock of

capital. Although some of the firm’s state variables are not directly available, they can

be readily constructed from observables in most cases.3

Consistently with a large class of neoclassical investment models a la’ Abel and

Eberly (1994), I identify empirically the firm capital stock and profitability shock as the

key state variables for market values and investment. I construct the state-space measure

of marginal q, which I then use to address several open questions in economics. In this

paper, I focus on the empirical relationship between marginal q and (average) Tobin’s Q,

the estimation of capital adjustment costs, and investment-q sensitivity.

I provide direct empirical evidence that marginal q is indeed statistically different

from (average) Tobin’s Q, with marginal q being substantially lower on average and less

volatile than Tobin’s Q. A statistical variance decomposition also shows that marginal

q accounts only for about 25 percent of the variation in (average) Tobin’s Q. Therefore,

using Tobin’s Q instead of marginal q may lead to incorrect inference.

Under the optimal investment policy, marginal q provides an upper bound on the total

capital adjustment costs paid by the firm as a share of capital expenditure. Regardless

of the specification of capital adjustment costs, I then show that using the empirical

estimates of marginal q rather than observed Tobin’s Q provides much tighter and more

plausible bounds. If one were to use observed Tobin’s Q, or equivalently, were to estimate

adjustment costs under the assumptions of perfect competition and linear homogeneity,

one would have estimated on average an upper bound about four times higher than

estimated with marginal q.

Lastly, I investigate empirically the shape of the investment policy function and the

magnitude of the investment-q sensitivity using the new measure of marginal q. I found

3Gala (2013) provides a general treatment of the state-space methodology for the estimation of shadow

values of any measurable input of the value function in dynamic stochastic production economies.
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that investment is substantially more responsive to changes in marginal q than (average)

Tobin’s Q. Specifically, the use of (average) Tobin’s Q systematically under-estimates the

sensitivity of investment to fundamentals by several orders of magnitude, ranging from

a factor of seven for low levels of investment up to a factor of seventeen for high levels

of investment. Most importantly the use of marginal q increases the correlation with

investment. Furthermore, convex adjustment costs as a share of investment expenditure

range from 16 percent when using marginal q up to 117 percent when using (average)

Tobin’s Q.

Abel and Blanchard (1986) and Gilchrist and Himmelberg (1995) offer an alternative

methodology to estimate directly marginal q. They propose using VAR-based forecasts of

the future expected marginal profit of capital. However, their approach requires explicit

functional forms for the marginal revenue product of capital, the marginal adjustment

cost, and the stochastic discount factor. Furthermore, their approach also imposes im-

portant restrictions on the formation of expectations which are outside of the structural

model. Differently, the state-space approach only requires standard regularity conditions

for the differentiability of the value function and for the measurement of the firm-level

state variables. These conditions are generally satisfied in any well-behaved model of in-

vestment. In addition, the state-space approach imposes more discipline over the choice

of firm-level state variables as implied by the structural model.

The Euler equation approach (e.g. Abel (1980), Shapiro (1986), and Whited (1992),

among others) also provides an alternative methodology to estimate indirectly marginal

q. Exploiting the first-order condition for investment, one can replace unobservable mar-

ginal q with a parameterized marginal investment cost in the Euler equation, and then

estimate it using structural GMM. However, also this approach requires specific func-

tional forms for the marginal profit of capital and the stochastic discount factor. In

contrast, the state-space approach requires significantly fewer restrictions on the func-

tional forms of technology and preferences, and can be implemented using fairly standard

linear estimation methods rather than resorting to nonlinear GMM techniques.

More recently, Gala and Gomes (2013) propose a new methodology to estimate in-
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vestment equations directly by approximating the optimal investment policy as function

of a model’s underlying state variables. The policy function approximation is partic-

ularly useful to describe firm investment behavior and quantify, through a statistical

variance decomposition, the importance of various state variables, and corresponding

class of investment models. However, the policy function approximation does not use as-

set prices and, while requiring fewer structural restrictions than the state-space approach,

does not provide direct identification of marginal q. The state-space approach, instead,

provides direct identification and estimates of marginal q imposing only additional stan-

dard restrictions on the firm production technologies, and almost no restrictions on the

functional forms of the stochastic discount factor and firm investment technologies.

Unlike these estimation methodologies, which do not rely on asset prices, the state-

space measure of marginal q makes an effi cient use of market values. In the construction of

marginal q, I only use market values, which are maximally correlated with the underlying

fundamentals or “instrumented”market values. As such, the state-space approach avoids

measurement error problems induced, for instance, by potential stock market ineffi ciencies

(Blanchard, Rhee and Summers (1993), Erickson and Whited (2000)).

Most importantly, unlike previous methods, which cannot disentangle the estimation

of marginal q from the functional forms of adjustment costs and stochastic discount factor,

the state-space approach allows for such separation. Therefore, the state-space measure

of marginal q provides an estimate of the shadow value of capital robust to adjustment

costs and stochastic discount factor misspecification. Furthermore, this separation allows

to estimate easily structural parameters of adjustment cost technologies even in highly

nonlinear models without resorting to simulation-based indirect inference methods.

While the focus in this paper is mainly on investment models only with frictions

to capital adjustment, it is easy to modify the state-space approach to accommodate

labor market frictions and financial market imperfections. Intuitively, any deviations

from frictionless labor markets and/or from the Modigliani-Miller theorem imply that

the value function and the optimal investment policy now depend on an augmented set

of measurable state variables, which also include labor and/or (net) financial liabilities.
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Those additional state variables would indeed accommodate investment models with la-

bor market frictions as in Hall (2004), Merz and Yashiv (2007), and Bazdresch, Belo,

and Lin (2014), and financial frictions as in Hennessy, Levy, and Whited (2004), Busta-

mante (2011), Bolton, Chen, and Wang (2011), Bolton, Schaller, and Wang (2013) and

Hugonnier, Malamud, and Morellec (2014).

This paper contributes to the literature in three significant ways. First, and foremost,

it provides a new general methodology to estimate the shadow price of capital in pro-

duction economies. Unlike existing methodologies, the state-space measure of marginal q

makes an effi cient use of market values, and requires only standard regularity conditions

for the differentiability of the value function. Imposing almost no restrictions on the func-

tional forms of the stochastic discount factor and firm investment technologies makes the

estimate of the shadow value of capital more robust to model misspecification. Second, I

provide direct empirical evidence on the existence of a significant wedge between marginal

and (average) Tobin’s Q, and I obtain model-free estimates of capital adjustment costs,

which are both more plausible and more robust to model misspecification than existing

ones. Lastly, I show that investment is a convex function of fundamentals, and that

the sensitivity of investment to fundamentals as measured by marginal q is substantially

higher than estimated in conventional Tobin’s Q regressions.

The rest of our paper is organized as follows. The next section describes the general

model, the implied value and optimal investment functions, and how to estimate empir-

ically the marginal value of capital as function of the key state variables. In Section 3,

I describe the data and the empirical implementations including the main findings. I

conclude with a discussion of the potential extensions and generalization of the approach

in Section 4. The Appendices contain additional estimation details, and a detailed review

of the alternative methodologies available to estimate marginal q.
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I. A General Model of Investment

This section describes the general model of investment. I use a generalized version of

the model in Abel and Eberly (1994), which allows for a weakly concave production

technology and asymmetric, non-convex and possibly discontinuous capital adjustment

costs. This model is flexible enough to include the large majority of investment models

in the literature as special cases.

A. Production and Investment Technologies

Consider a firm that uses capital and a vector of costlessly adjustable inputs, such as la-

bor, to produce a nonstorable output. At each point of time, the firm chooses the amounts

of costlessly adjustable inputs to maximize the value of its revenue minus expenditures on

these inputs. Let Π (Kit, Ait) denote the maximized value of this instantaneous operating

profit at time t, where Kit is firm i’s capital stock at time t and Ait is a random vari-

able representing uncertainty in technology, in the prices of costlessly adjustable inputs,

and/or in the demand facing the firm.

Assumption 1. Profit. The function Π : K × A→ R satisfies: (i) ΠK (K,A) > 0 and

ΠA (K,A) > 0; and (ii) ΠKK (K,A) ≤ 0.

This formulation of the profit function allows the firm to be either a price-taker or a

price-setter. The random variable Ait evolves according to a diffusion process:

dAit = µA (Ait,Ψt) dt+ σA (Ait,Ψt) dW
A
it (1)

where dWA
it is standard Wiener process. The vector of aggregate random variables, Ψt,

summarizes the state of the economy and evolves as

dΨt = µΨ (Ψt) dt+ σΨ (Ψt) dW
Ψ
t (2)

with dWΨ
t being a vector of standard Wiener processes independent of dW

A
it . The general

formulation in (1) allows for common systematic variation in the shocks to technology,

prices of costlessly adjustable inputs, and demand facing the firm.
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Capital is acquired by undertaking gross investment at rate I, and the capital stock

depreciates at a fixed proportional rate δ ≥ 0, so that the capital stock evolves according

to

dKit = (Iit − δKit) dt. (3)

When the firm undertakes gross investment, it incurs costs, which reduce operating prof-

its. The adjustment costs are summarized by the function Φ (I,K).

Assumption 2. Adjustment Costs. The function Φ : I×K → R+ satisfies: (i) twice

continuously differentiable for I 6= 0; (ii) Φ (0, K) = 0; (iii) ΦI (·) × I ≥ 0; (iv)

ΦK (·) ≤ 0; and (v) ΦII (·) ≥ 0.

Conditions (ii) and (iii) imply that capital adjustment costs are non negative and

minimized at I = 0. Assumption 2 allows for the possibility of very general non-convex

and discontinuous adjustment costs. A general function satisfying all the conditions in

Assumptions 2 is:

Φ (I,K) =


f+K + p+I + γ+

ϕ

(
I
K

)ϕ
K if I >0

0 if I =0

f−K + p−I + γ−

ϕ

(
I
K

)ϕ
K if I <0

(4)

where the constants f+, f−, p+, p−, γ+, γ−, and ϕ are all non-negative. The constant

f+ R f− ≥ 0 denotes non-convex and discontinuous fixed cost of investment incurred

whenever I 6= 0. The constant p+ ≥ p− ≥ 0 denotes the purchase and sale price

per unit of capital, and γ− ≥ γ+ ≥ 0 allows for potentially asymmetric and convex

(ϕ ≥ 2) adjustment costs reflecting costly reversibility. The standard smooth quadratic

adjustment costs are obtained as special case of (4) with ϕ = 2, p+ = p− > 0, γ− = γ+ >

0, and f+ = f− = 0.

B. Optimal Investment Decisions

Each firm chooses optimal investment by maximizing the expected present value of op-

erating profit, Π (K,A) less total investment cost Φ (I,K). The value of the firm is
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thus

V (Kit, Ait,Ψt) = max
{It+s}

Et

∫ ∞
0

Λt+s

Λt

[Π (Kit+s, Ait+s)− Φ (Iit+s, Kit+s)] ds (5)

subject to the capital accumulation equation in (3), the firm shock process in (1), the

dynamics for the vector of aggregate random variables in (2), and the pricing-kernel

dynamics
dΛt

Λt

= −r (Ψt) dt− σΛ (Ψt) dW
Ψ
t (6)

where rt denotes the instantaneous riskless rate, and σΛ (Ψt) denotes the market prices

of risks associated with the vector of aggregate systematic shocks, Ψt.4

The firm value function V (K,A,Ψ) satisfies the following Hamilton-Jacobi-Bellman

(HJB):5

0 = max
I
{Λ [Π (K,A)− Φ (I,K)] +D [ΛV ]} (7)

with D [·] denoting the infinitesimal generator of the Markov processes A and Ψ, and the

process K

D [M (·)] = µA (·)MA +
σ2
A (·)
2

MAA + µΨ (·)MΨ +
σ2

Ψ (·)
2

MΨΨ + (I − δK)MK

applied to the discounted firm value ΛV , along with the transversality (“no bubble”)

condition:

lim
T→∞

Et [|Λt+TVit+T |] = 0.

Substituting for D [ΛV ] in (7), the optimal investment policy then satisfies

I∗ (q,K) = arg max
I

[qI − Φ (I,K)] (8)

where the marginal value of capital q ≡ VK , by the Fayman-Kac Theorem, is equal to

q (Kit, Ait,Ψt) = Et

∫ ∞
0

e−δs
Λt+s

Λt

[
ΠK (Kit+s, Ait+s)− ΦK

(
I∗it+s, Kit+s

)]
ds. (9)

4The vector Ψt summarizes the aggregate state of the economy, which potentially includes moments of

the cross-sectional firm distribution, aggregate shocks to productivity, wages, relative price of investment

goods, and household preferences.
5For simplicity of exposition, we have suppressed the firm and time subscripts i and t.
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As shown in Abel and Eberly (1994), the marginal q is the present value of the stream of

expected marginal profit of capital which consists of two components: ΠK is the marginal

operating profit accruing to capital, and −ΦK is the reduction in the adjustment cost

accruing to the marginal unit of capital.

C. Measuring Marginal q

Marginal q in (9) does not yield an explicit closed form solution under the general condi-

tions under consideration. Hence, we cannot directly test the optimal investment policies

in (8), unless we can measure the unobservable marginal q.

C.1 State-Space Approach

I propose a new methodology to measure marginal q that rests on the joint measurability

of the firm value function, V (·), and its underlying state variables, Ω = {Kit, Ait,Ψt}.

Specifically, I can measure marginal q according to its definition as partial derivative of

the observable value function - i.e. market value of the firm - with respect to its observable

capital stock, q ≡ VK (Ω).6

First, I approximate the (scaled) market value of firm i at time t, Qit ≡ Vit/Kit, using

a tensor product polynomial in the state variables as

vit ≡ logQit =

nk∑
jk=0

na∑
ja=0

nΨ∑
jΨ=0

cjk,ja,jΨ × [kit]
jk × [ait]

ja × [Ψt]
jΨ + εit (10)

where kit ≡ logKit, ait ≡ logAit, and εit captures measurement error in market values.7

Given the state-space variables kit, ait and Ψt, the coeffi cients cjk,ja,jΨ are the subject of

6The identification of marginal q rests on the ability to identify the exogenous state variables, A and Ψ.

Therefore, the selection of the relevant state variables for the representation of the value function should

always include the exogenous state variables implied by the model (or any one-to-one transformation).
7Under the null of the model, the value function, V , depends only on the set of state variables Ω.

Therefore, I estimate the value function under the standard assumption that firm intrinsic values are

observed only with error by the econometrician. The measurement error εit (which can be serially

correlated) does not affect firm optimal policies, and as such is orthogonal to the firm intrinsic value.
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the estimation procedure. Then, I estimate the marginal q according to its definition of

partial derivative of the value function as

q̂it = Q̂it

(
1 +

∂ log Q̂it

∂ logKit

)
= Q̂it

(
1 +

nk∑
jk=0

na∑
ja=0

nΨ∑
jΨ=0

ĉjk,ja,jΨ × jk × [kit]
jk−1 × [ait]

ja × [Ψt]
jΨ

)
(11)

Rather than imposing additional restrictive conditions concerning the functional forms

of the stochastic discount factor and adjustment cost functions, the state-space approach

only requires general regularity conditions for the existence and differentiability of the

value function as well as for the measurement of the firm-level state variables.

C.1.1 Measuring the State Variables In order to estimate marginal q using the state-

space approach, we need to measure the relevant state variables in Ω. First, we focus on

the firm-level state variables K and A. The firm capital stock, K, is directly observable.

Differently, the firm shocks, A, are not directly observable, but can be easily estimated

using the theoretical restrictions imposed by the model. As standard in the literature,

and in accordance with Assumption 1, the operating profit evaluated at the optimal

choice of the costlessly adjustable inputs of production can be represented as:

Π (K,A) = AKθ (12)

where θ denotes the share of capital in profits. I estimate the firm shocks, A, following

the procedure in Cooper and Haltiwanger (2006) - see Appendix for more details. Having

estimated a statistically significant θ̂ = 0.51, I then recover A from equation (12).

Given a large panel of firms, one can also account for unobserved time-invariant

heterogeneity across firms by allowing the constant term c0,0,0 in (10) to be firm-specific.

The complete knowledge of the aggregate state variables in Ψ is not necessary for the

purpose of estimating firm level marginal q. In fact, one can capture the impact of all

unobserved aggregate state variables by allowing for time-specific polynomial coeffi cients

in (10). Specifically, one can fit a separate cross-section of (scaled) firm market values
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for each year as

vit ≡ logQit =

nk∑
jk=0

na∑
ja=0

bjk,ja,t × [kit]
jk × [ait]

ja + εit (13)

where I have suppressed the direct dependence on the aggregate state variables, Ψ, and I

have allowed the polynomial coeffi cients bjk,ja,t to vary over time. For easy of exposition

and comparison with the existing literature, I focus the empirical analysis on unobserved

aggregate variation that affects only linearly the value function.8

D. Discussion

In general, we cannot directly observe shadow prices. Therefore, most of the literature

follows Hayashi (1982) and assumes perfectly competitive firms with homogeneous profit

function, Π (·), and investment cost function, Φ (·), to derive expression for q in terms of

observable variables. Specifically, Abel and Eberly (1994) prove that if Π (·) and Φ (·) are

homogeneous of degree ρ in both I and K, then marginal q is proportional to (average)

Tobin’s Q: q = ρ V
K
. Hayashi (1982) conditions of linear homogeneity follows as a special

case with ρ = 1. The theoretical appeal of Q-theory lies on the fact that it is possible to

summarize all relevant information about the state variables in a single (relative) market

price. While this is often convenient and may well be a useful approximation in aggregate

environments where homogeneity assumptions are more likely to hold, the identification

and measurement of marginal q with (average) Tobin’s Q under these restrictive homo-

geneity assumptions offer a fairly poor fit to the data at the firm level (e.g. Gala and

Gomes (2013), among others).

I show instead how one can still use asset prices to estimate directly marginal q under

general assumptions concerning technology and preferences. The state-space measure of

marginal q rests on the joint measurability of the value function - i.e. market values

- and the underlying set of state variables. As long as the observable value function

depends on a set of measurable firm-level state variables, we can estimate marginal q

8Gala (2012) allows aggregate state variables to enter non-additively the value function and investi-

gates empirically alternative state-space representations of asset prices.
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by differentiating the projection of market values onto the firm level “state-space”with

respect to the capital stock. The successful empirical identification of the marginal value

of capital does not require the complete identification and measurement of all state

variables affecting the value function, but only the identification of a subset affecting

its partial derivative with respect to capital. As such, the state-space estimate of the

marginal q is robust to the omission of any state variable that is independent of the firm

capital stock. In addition, when using a large panel of firms, it is possible to allow for

firm fixed effects to account for unobserved time-invariant firm heterogeneity. Similarly,

one can allow for time-specific polynomial coeffi cients to fully account for the impact of

any aggregate state variable.

Abel and Blanchard (1986) and Gilchrist and Himmelberg (1995) offer an alterna-

tive methodology to measure marginal q. They propose estimating marginal q using

VAR-based forecasts of the future expected marginal profit of capital according to the

definition in (9) - see Appendix for more details. However, their approach requires ex-

plicit simplifying assumptions, suitable for linear VAR, concerning the functional forms

for the marginal revenue product of capital, ΠK , the marginal adjustment cost, ΦK , and

the stochastic discount factor, Λ. Furthermore, their approach also imposes important

restrictions on the formation of expectations which are outside of the structural model.

In contrast, the state-space approach only requires standard regularity conditions for the

differentiability of the value function as well as for the identification and measurement

of the firm-level state variables (indeed, it can accommodate a larger class of functional

forms beyond those suitable for linear VARs). These conditions are generally satisfied

in any well-behaved model of investment. In addition, the state-space approach imposes

more discipline over the choice of firm-level state variables as implied by the structural

model. Within a neoclassical model of investment, I focus on firm size and profitability

shocks.

The Euler equation approach (e.g. Abel (1980), Shapiro (1986), and Whited (1992),

among others) also provides an alternative methodology to measure marginal q. Ex-

ploiting the first-order condition for investment, which requires the marginal benefit of
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investment to equal its marginal cost, one can replace unobservable marginal q with a

parameterized marginal investment cost in the Euler equation; and then use nonlinear

GMM to estimate the underlying parameters of the model as well as marginal q - see

Appendix for more details. However, also this approach requires specific functional forms

for the marginal profit of capital and the stochastic discount factor. In addition, even

though the estimation of the Euler equation allows to control for expectations without

modelling them explicitly (under the assumption of rational expectations), in practice it

still requires to make a (somewhat arbitrary) choice of variables among the set of valid

instruments in the econometrician information set. In contrast, the state-space approach

requires significantly fewer restrictions on the functional forms of technology and pref-

erences, and can be implemented using standard linear estimation methods rather than

nonlinear GMM techniques. Furthermore, the state-space approach identifies explicitly

the set of relevant variables in the econometrician information set according to the struc-

tural model. Finally, and unlike the state-space approach, the measurement of marginal q

in the Euler equation approach is subject to the occurrence of investment activity. Thus,

the Euler equation approach is less suitable for the estimation of models with non-convex

adjustment costs where investment activity is infrequent.

Unlike the existing estimation methodologies, which do not rely on asset prices, the

state-space measure of marginal q makes an effi cient use of market values. In the construc-

tion of marginal q, I only use the variation in market values driven by fundamental state

variables, thus avoiding measurement error concerns induced, for instance, by potential

stock market ineffi ciencies (Blanchard, Rhee and Summers (1993)).

Finally, an important point of departure from existing methodologies is that the state-

space approach allows to estimate marginal q separately from adjustment cost technolo-

gies. This separation thus ensures a model-free estimate of the shadow value of capital.

Importantly, given such a model-free estimate of marginal q one can then recover easily

structural parameters of adjustment cost technologies, even in highly nonlinear and inho-

mogeneous models, and without resorting to computationally intensive simulation-based

estimation methods.
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II. Empirical Implementation

I now describe the data used in the empirical analysis and additional issues concerning the

state-space representation of marginal q. I then use the state-space measure of marginal

q to estimate capital adjustment costs and investigate the shape of the investment policy

function.

A. Data

Our data comes from the combined annual research, full coverage, and industrial COM-

PUSTAT files. To facilitate comparison with much of the literature our sample is made of

an unbalanced panel of firms for the years 1972 to 2010, that includes only manufacturing

firms (SIC 2000-3999).

I keep only firm-years that have non-missing information required to construct the

primary variables of interest, namely: investment, I, firm size, K, Tobin’s Q, and sales

revenues, Y . These variables are constructed as follows. Firm size, or the capital stock, is

defined as gross property, plant and equipment. Investment is defined as capital expendi-

tures in property, plant and equipment. Sales are measured by net sales revenues. These

last two variables are scaled by the beginning-of-year capital stock. Finally, Tobin’s Q is

measured by the market value of capital (defined as market value of equity plus debt net

of current assets) scaled by gross property, plant and equipment.9

The sample is filtered to exclude observations where total capital, Tobin’s Q and

sales are either zero or negative. To ensure that the measure of investment captures

the purchase of property, plant and equipment, I eliminate any firm-year observation

in which a firm made an acquisition. Finally, all variables are trimmed at the 1st and

99th percentiles of their distributions to reduce the influence of any outliers, which are

common in accounting ratios. This procedure yields a base sample of 29,564 firm-years

9Erickson and Whited (2006) show that using a perpetual inventory algorithm to estimate the replace-

ment cost of capital and/or a recursive algorithm to estimate the market value of debt barely improves

the measurement quality of the various proxies for Q.
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observations. Table I reports summary statistics including mean, standard deviation and

main percentiles for the variables of interest.

B. Findings

I now describe our main findings. I first examine the variation of market values and

investment rates across portfolios sorted by firm size, K, and profitability shock, A. I

then proceed to estimate marginal q, and use it for the estimation of adjustment costs

and investment-q sensitivity.

C. Market Values and Investment by State-Variables Portfolios

To gain some insights about the role of size and profitability shock in spanning the true

underlying state-space for market values and investment rates, I sort all firms into 25

portfolios double-sorted on the empirical distribution of profitability shock conditional on

firm size. Specifically, each firm is allocated annually first across five firm size quintiles,

and then, within each size quintile, to five profitability shock quintiles. Table II reports

the equally-weighted average market values and investment rates across the resulting 25

conditionally double-sorted portfolios.

Across all firm size quintiles the pattern in average market values and investment

rates shows a monotonic increasing relation with the productivity shock. This relation

is statistically and economically significant. In the smallest firm size decile, the equal-

weighted average market value increases from $0.02 billions for the lowest profitability

shock quintile to $0.11 billions for the highest. Similarly, the average investment rates

increases from 0.12 percent for the lowest profitability shock quintile to 0.32 percent for

the highest. In the highest firm size quintile, average market values and investment rates

increase from $1.83 billions and 0.10 percent for the lowest profitability shock quintile

to $23.11 billions and 0.14 percent for the highest, respectively. These relations are

statistically and economically significant across these portfolios.
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Thus, the double-sort portfolio analysis confirms that there is substantial variation in

market values and investment rates as functions of the underlying state-variables. I now

turn to estimate the marginal q using the state-space approach.

D. Empirical Value Function

I now turn to formally estimate firm market values (scaled by the capital stock) as

function of the firm-level state variables in (10). The goal is to find a parsimonious

polynomial representation in terms of order of approximation that provides the best

overall fit for market values empirically and can be used to evaluate marginal q.

Several practical questions arise when implementing these approximations in empiri-

cal work. The first issue is whether to use natural or orthogonal terms in the estimation.

In this paper, I opt for natural polynomials as they make easier the interpretation of

the estimated coeffi cients. The second issue concerns the order of the polynomial. The

choice of the polynomial order can be made according to standard model selection tech-

niques based on a measure of model fit such as Akaike information criterion (AIC). Using

stepwise regression analysis, I find that a second order complete polynomial in k and a is

often suffi cient, and higher order terms are generally not necessary to improve the quality

of the approximation.

Table III reports the empirical estimates for various specifications of the value function

polynomial regression:

vit =

nk∑
jk=0

na∑
ja=0

cjk,ja × [kit]
jk × [ait]

ja + δi + ηt + εit (14)

where the left-hand side is the log market value scaled by capital, lnV/K, k is firm size,

lnK, a is profitability shock, lnA. As discussed above, all estimates use year- and firm-

fixed effects to account for potential aggregate shocks and unobserved firm heterogeneity.

I find that first and second order terms are all strongly statistically significant. The

complete second order polynomial in k and a, which also includes the interaction term,

explains up to 64% (including fixed effects) of the total variation in log (scaled) market
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values.10 Based on the Akaike information criteria, I then choose the complete second

order polynomial in firm size and productivity shock (column 3) as the best parsimonious

state variable representation of market values empirically.11

D.1 Variance Decomposition of Value Function

To better understand the relative importance of various variables in capturing variation

in log (scaled) market values, I perform the analysis of covariance (ANCOVA) to the

empirical value function specification in (14).

Table IV reports the results of this covariance decomposition for several polynomial

specifications. Each column in the table corresponds to a different specification for the

(scaled) value function. The numbers reported in the table, excluding the adjusted R2

reported in the last row, correspond to the fraction of the total Type III partial sum of

squares for a particular specification.12 That is, I normalize the partial sum of squares

for each effect by the aggregate partial sum of squares across all effects in the model, so

that each column sums to one. Intuitively, each value in the table corresponds to the

fraction of the model sum of squares attributable to a particular effect - i.e. firm, year,

and state variable polynomial.

As shown in Table IV, firm-fixed effects account for most of the explained variation

in log Tobin’s Q across all polynomial specifications, with values ranging from 76 to 78

percent. Such a large contribution of firm-fixed effects makes them good control variables

to better identify empirically the partial derivative of the value function with respect to

the capital stock, i.e. marginal q. Year-fixed effects, which capture unobserved aggregate

variation, account instead for, at most, only 7 percent of the total explained variation

in log Tobin’s Q. Finally, the state variable polynomials in k and a provide sizable

10I omit higher order terms because they are mostly insignificant and do not improve the overall

quality of the approximation.
11Even if the quadratic and interaction terms do not increase substantially the overall fit of the value

function, they are statistically significant and might be still important to explain variation in investment

through marginal q.
12I use Type III sum of squares because is not sensitive to the ordering of the covariates.
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contributions with values up to 18 percent of explained variation in log Tobin’s Q.

E. Marginal and Average Tobin’s Qs

Given the estimates of the (scaled) value function in (14), I can then compute the Fitted

Q and marginal q. The Fitted Q is computed from the fitted values of the specification in

(14), and it provides a measurement error-free measure of (average) Tobin’s Q, which is

maximally correlated with fundamental state variables. The firm marginal q is computed

according to its definition as partial derivative of the value function with respect to the

capital stock as in (11).

Table V reports summary statistics for the empirical distributions of estimated mar-

ginal q, Fitted Q, and observed (average) Tobin’s Q. Tobin’s Q is on average higher and

more volatile than both Fitted Q and marginal q. Fitted Q is on average higher and

more volatile than marginal q.

Figure 1 plots the empirical distributions of the logs of the ratio of (average) Tobin’sQ

to marginal q (left panel), and Fitted Q to marginal q (right panel). Marginal q can take

on values substantially higher than observed (average) Tobin’s Q. However, marginal q is

always lower than Fitted Q. This is indeed consistent with the model-implied concavity

of the firm value as a function of the firm capital stock (Hayashi, 1982).

In order to better understand the differences among these alternative Q measures and

quantify the contribution of marginal q in explaining variation in both (average) Tobin’s

Q and Fitted Q, I perform the analysis of covariance.

Table VI reports the results of a variance decomposition of (average) Tobin’s Q and

Fitted Q using firm- and year-fixed effects and marginal q as covariates. Marginal q

accounts only for 25 percent (0.47 × 0.53) of total variation in (average) Tobin’s Q.

Therefore, only this 25 percent of variation in Tobin’s Q as identified by marginal q

should be relevant in explaining variation in investment. Marginal q contributes for 67

percent (0.47 × 0.53) to the total variation in Fitted Q. As expected, marginal q has a
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larger contribution in explaining variation in Fitted Q than (average) Tobin’s Q because

Fitted Q is measurement error-free.

E.1 Equivalence Between Marginal and Average Q

For each state variable representation of the value function in terms of polynomials in

k and a, I can test directly the equivalence between marginal q and average Q. Test-

ing such an equivalence requires that ∂v̂it/∂kit = 0, or equivalently that all coeffi cients

corresponding to terms involving k are jointly equal to zero:

cjk,ja = 0 for jk = 1, ..., nk; and ∀ja. (15)

The null hypothesis in (15) corresponds to a test of linear restrictions on the coeffi cient

estimates. Such an hypothesis can be tested using a Wald statistic (“qQ-test”), which is

distributed as χ2
r with degrees of freedom r equal to the number of restrictions.

The last row of Table III reports the p-values corresponding to the “qQ-test” for

each polynomial specification. In all cases, I can strongly reject the null hypothesis that

marginal q is equal to average Q.

F. Estimating Adjustment Costs

Under the optimal investment policy, the maximand in (8) - i.e. qI − Φ (I,K) - is

nonnegative. As such, the estimate of marginal q provides an upper bound on the total

capital adjustment costs paid by the firm as a share of capital expenditure, Φ (·) /I.

Therefore, one can use the empirical distribution of marginal q to draw inference about

the upper bound on the total capital adjustment costs as a share of investment. As shown

in Table V, marginal q is on average much lower and less volatile than both Fitted Q and

(average) Tobin’s Q. As such, the total adjustment costs (including the purchase price)

do not exceed on average 103 percent of the cost of investment for the average firm in the

sample. In contrast, under the Hayashi (1982)’s assumptions of homogeneity and perfect

competition, one would have estimated on average an upper bound of 364 percent of the
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cost of investment based on the implied equivalence between observed (average) Tobin’s

Q and marginal q. A similar comparison holds true when considering the values for the

median firm in the sample. Tobin’s Q implies an upper bound of 139 percent for the

total adjustment costs as share of investment expenditure, which is 2.6 times higher than

the upper bound implied by marginal q.

Therefore, these estimates of marginal q provide much tighter (and plausible) bounds

on the total adjustment costs as a share of investment, regardless of the specific assump-

tions concerning the investment technology.

F.1 Smooth Adjustment Costs

With smooth adjustment costs, the optimality condition for investment requires the

marginal cost of investment to equal marginal q. As such, the distribution of marginal q

corresponds exactly to the distribution of marginal adjustment costs.

Under smooth adjustment costs, the average of the firm marginal adjustment cost of

investment (including the purchase price) is only about 1.03 for each additional dollar of

investment. This estimate is about 2.8 times smaller than the estimate under the Fitted

Q. Thus, if I were to use the Fitted Q as a measurement error-free estimate of marginal q

under the assumption of homogeneity, I would have substantially over-estimated the firm

marginal adjustment costs. Even more so, if I were to use the observed (average) Tobin’s

Q. In such a case, I would have estimated the average marginal cost of investment at

about 3.64, which is 3.6 times higher than under marginal q.

Therefore, while accounting for mismeasurement in marginal q - i.e. using FittedQ - is

important, it is accounting for misspecification - i.e. using marginal q - that substantially

improves the estimates of firm capital adjustment costs.
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G. Investment-q Sensitivity

In this section I investigate the shape of the investment policy function. I provide struc-

tural estimates of the investment-q sensitivity and capital adjustment costs using alter-

native measures of Tobin’s Q including the new measure of marginal q.

In line with the existing literature, I focus on a generalized adjustment cost function,

Φ (·), that is homogeneous of degree one in investment and capital. Specifically, I use the

following polynomial specification for the adjustment cost function:

Φ (Iit, Kit; δi, ηt)

Kit

= (δi + ηt)

(
Iit
Kit

)
+

M∑
m=2

γm
m

(
Iit
Kit

)m
(16)

where the variables δi and ηt allow for firm- and year-specific elements to the investment

price. For example, the price of capital may systematically vary across firms due to tax

considerations such as the value of investment tax credits and depreciation allowances.

While this function is not restricted to be globally convex, I verify that the estimates

imply convexity.

This functional form yields the following expression for the optimal investment policy

in (8) and can be estimated as

qit =
M∑
m=2

γm

(
Iit
Kit

)m−1

+ δi + ηt + εit (17)

where the error term ε captures measurement or estimation error in the alternative

measures of Q. I use the different measures of Q as dependent variables to mitigate

concerns about attenuation bias due to measurement error in market values.

G.1 Quadratic Adjustment Costs

Table VII reports the estimates of the adjustment cost parameters γm in (17) obtained

with the widely used (average) Tobin’s Q, Fitted Q, and the state-space measure of

marginal q. I concentrate first on the linear-quadratic adjustment costs specification.

Panel A of Table VII shows that the positive and significant coeffi cient on investment
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when using marginal q in specification (5) implies an adjustment cost parameter of only

about 1.46. This is several orders of magnitude smaller than the value implied by the

use of (average) Tobin’s Q in specification (1), 12.18, and Fitted Q in specification (3),

6.65.

Figure 2 shows that the sensitivity of investment to fundamentals implied by these

estimates differs substantially across alternative measures of Q.13 As shown in Panel

A, the sensitivity of investment to fundamentals as measured by marginal q is more

than eight times higher than estimated in conventional (average) Tobin’s Q regressions.

Accounting for measurement error in (average) Tobin’s Q - i.e. using Fitted Q - increases

only slightly the investment sensitivity relative to observed Tobin’s Q.

Following Abel and Eberly (2002), one could also obtain an estimate of the quadratic

adjustment costs as a share of investment expenditure by multiplying γ/2 by 0.15, the

sample mean for the investment rate.14 The magnitudes of quadratic adjustment costs

as a share of investment expenditure implied by these coeffi cient estimates range on

average from 11 percent of investment expenditure up to 91 percent.15 These numbers

imply that estimated quadratic adjustment costs are nearly 4.6 times higher under the

Fitted Q specification, and 8.3 times higher under the observed (average) Tobin’s Q. In

light of the skewness in investment rates noted in Table 1, one could also evaluate the

quadratic adjustment costs at the median investment rate, which is 0.10, rather than its

sample mean. In such a case, the magnitudes of quadratic adjustment costs as a share

13The investment sensitivity to fundamentals is defined as

∂

(
Iit
Kit

)
/∂qit = 1/

(
M∑
m=2

γm (m− 1)

(
Iit
Kit

)m−2)
.

14The total amount of quadratic adjustment costs is given by γ
2

(
I
K

)2
K. Therefore, the ratio of total

adjustment costs to investment I is γ2
I
K .

15Given the quadratic adjustment cost specification, I can also compare these estimates with previous

studies. For instance, Gilchrist and Himmelberg (1995) find estimates of γ = 20 when using (average)

Tobin’s Q and γ = 5.46 when using the VAR-based measure of marginal q (i.e. Fundamental Q). These

estimates, which correspond (' γ
2 × I/K = γ

2 × 0.17) to 170 percent and 47 percent, respectively, are

still an order of magnitude higher than the ones reported here.
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of investment expenditure range from 7 percent of investment expenditure when using

marginal q up to 61 percent when using observed (average) Tobin’s Q. This last value is

comparable with the lower estimate of 59 percent in the linear investment specification

reported in Abel and Eberly (2002).

Importantly, investment is substantially more correlated with marginal q than with

the measures of Tobin’s Q including the measurement error-free Fitted Q.

Finally, as reported in Panel B of Table VII, I obtain similar results when I estimate

the investment equation in (17) using first-differences rather than using the within-groups

estimator. In such instance, the estimates of quadratic adjustment costs are even lower

across alternative Q measures. Figure 2 Panel C displays the corresponding higher in-

vestment sensitivity to fundamentals.

While accounting for mismeasurement - i.e. using Fitted Q - helps to some extent,

accounting for misspecification - i.e. using marginal q - substantially improves both

the correlation with investment and the structural estimates of investment sensitivity to

fundamentals.

This evidence still rests on the strong (though common) assumption of a linear re-

lationship between investment and marginal q. Given that the state-space estimation

of marginal q is independent of the specific assumptions concerning adjustment costs, a

further investigation of nonlinearities in the relation between investment and marginal

value of capital may improve our understanding of the shape of the optimal investment

policy function.

G.2 Polynomial Adjustment Costs

Previous work has shown that the relationship between firms’investment and their (av-

erage) Tobin’s Q is highly nonlinear (Barnett and Sakellaris, 1999; Abel and Eberly,

2002). This suggests that the responsiveness of investment to fundamentals may not be

the same at all levels of the fundamentals as would be implied by the commonly used

quadratic adjustment cost specification. I now revisit this empirical relationship using
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the new measure of marginal q.

Table VII reports the adjustment cost parameters for the polynomial specification.

The empirical results suggest to include only up to cubic terms (M = 3). At all in-

stances, I estimated this polynomial adjustment cost function to be convex for the range

of investment rates observed in the sample.

Figure 2 demonstrates that the sensitivity of investment to fundamentals implied by

these estimates exhibits substantial variation over the different levels of investment. It

ranges from 0.06 to 0.14 for (average) Tobin’s Q, from 0.12 to 0.22 for Fitted Q, and from

0.44 to 2.40 for marginal q. At the average level of investment, the sensitivity is 0.07, 0.13,

and 0.50, correspondingly. Similarly, the corresponding sensitivity at the median level of

investment is 0.07, 0.13, and 0.48, respectively. These figures show that the response of

investment to marginal q is uniformly much higher than estimated in nonlinear (average)

Tobin’s Q regressions. For instance, using (average) Tobin’s Q systematically under-

estimates the sensitivity of investment to fundamentals by several orders of magnitude,

ranging from a factor of seven for low levels of investment up to a factor of seventeen for

high levels of investment.

From Figure 2, it is evident that firm investment is more responsive to fundamentals

as fundamentals improve - i.e. investment is a convex function of fundamentals. While

this is true for all three alternative measures of Q, it is particularly pronounced when

fundamentals are measured by marginal q.16 According to the standard neoclassical

model of investment, this rising sensitivity to fundamentals is due to the curvature of the

convex adjustment costs. The estimated marginal cost of adjusting capital is increasing

in the investment rate at a decreasing rate. Thus, as marginal q rises, the firm has to

keep on increasing its investment rate at an ever-increasing rate in order to maintain

equality between the marginal value and the marginal cost of investment.

16Although based on different time periods and data samples, Barnett and Sakellaris (1999) and Abel

and Eberly (2002) also find evidence that investment is a convex function of fundamentals. However,

their investigation of the relationships between investment and fundamentals is performed under the

convetional homogeneity assumptions and therefore limited to the use of (average) Tobin’s Q.
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Given the estimates in Table VII, one can also obtain structural estimates of the

convex adjustment costs as share of investment expenditures.17 I discuss adjustment

costs at the mean investment rate of 0.15. The magnitudes of convex adjustment costs

as a share of investment expenditure implied by the coeffi cient estimates range from 16

percent when using marginal q up to 117 percent when using (average) Tobin’s Q. These

numbers imply that estimated convex adjustment costs are nearly 3.7 times higher for

the Fitted Q specification, and 7.0 times higher for the (average) Tobin’s Q specification

relative to the marginal q specification. In light of the skewness in investment rates, one

could also evaluate the convex adjustment costs at the median investment rate, which is

0.10, rather than its sample mean. In such a case, the magnitudes of convex adjustment

costs as a share of investment expenditure range from 11 percent when using marginal

q up to 78 percent when using observed (average) Tobin’s Q.

As shown in Panel B of Table VII, I obtain similar results when I estimate the

investment equation in (17) using first-differences rather than using the within-groups

estimator. In such instance, the estimates of convex adjustment costs are uniformly

lower across alternative Q measures. Figure 2 Panel D displays the corresponding higher

investment sensitivity to fundamentals.

Consistently with the empirical evidence based on quadratic adjustment costs, invest-

ment is substantially more correlated with marginal q than with the observed (average)

Tobin’s Q or the measurement error-free Fitted Q.

Based on this empirical evidence, one can conclude that accounting for misspecifica-

tion - i.e. using marginal q - increases substantially the correlation with investment, the

investment sensitivity to fundamentals, and yields plausible estimates of capital adjust-

ment costs.

17The total amount of convex adjustment costs is given by γ2
2

(
I
K

)2
K + γ3

3

(
I
K

)3
K. Therefore, the

ratio of total adjustment costs to investment I is γ22
I
K + γ3

3

(
I
K

)2
.
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III. Concluding Discussion and Extensions

A new measure of firm marginal q - i.e. firm real investment opportunities - is surely

a basis for a better understanding of corporate policies. Unlike much of the existing

empirical literature that relies on counterfactual assumptions to replace unobservable

marginal q with observable (average) Tobin’s Q, I show instead how to estimate directly

marginal q using asset prices under general assumptions concerning technology and pref-

erences. A general measure of marginal q can then ultimately be applied to address

several open questions in economics without making conterfactual assumptions. In this

paper, I investigate the empirical relationship between marginal and average Tobin’s Q,

the estimation of capital adjustment costs, and investment-q sensitivity. I provide direct

empirical evidence that marginal q differs substantially from average Tobin’s Q. I show

how the use of marginal q rather than (average) Tobin’s Q or Fitted Q (measurement

error-free counterpart of observed Tobin’s Q) yields plausible estimates of capital adjust-

ment costs, increases the correlation with investment and the response of investment to

fundamentals.

In this paper, I focus only on two firm-level state variables shared by a large class of

neoclassical investment models: firm capital and profitability shocks. While I show that

these firm-level state variables capture already substantial variation in market values,

the overall empirical value function approximation can be further improved by augment-

ing the firm-level state space with additional measurable variables including labor and

(net) financial liabilities. Those additional state variables would indeed accommodate in-

vestment models with labor market frictions as in Hall (2004), Merz and Yashiv (2007),

and Bazdresch, Belo, and Lin (2014), and financial frictions as in Bond and Meghir

(1994), Hennessy, Levy, and Whited (2004), Bustamante (2011), Bolton, Chen, and

Wang (2011), and Hugonnier, Malamud, and Morellec (2014). In such instances, the

state-space methodology can be used not only to measure marginal q, but also to mea-

sure the marginal value of labor (as partial derivative of value function w.r.t. labor) and

the marginal value of cash/debt (as partial derivative of value function w.r.t. cash/debt)

so as to assess the overall contribution of technological versus financial market frictions
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on real investment. Furthermore, given any set of firm-level state variables, the overall

empirical value function approximation can also be improved by allowing for time-specific

polynomial coeffi cients so as to account for the full impact of any aggregate state variable.

Unlike the existing methodologies, the state-space measure of marginal q is indepen-

dent of the assumptions concerning capital adjustment costs. Therefore, it provides an

ideal measure to investigate further the relationship between investment and the marginal

value of capital in search of potential discontinuities to identify fixed costs of investment,

fire sales, and investment irreversibility. In addition, this independence can also be

exploited to validate empirically alternative class of adjustment costs including those de-

pending on the growth rate of investment as in Eberly, Rebelo and Vincent (2012) rather

than on its level. Even more so, the joint measurability requirement in the state-space

methodology also allows for a fully nonparametric kernel density estimation of marginal

q, which seems a new direction of promising research.
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IV. Appendix A: Estimating Profitability Shocks

I follow Cooper and Haltiwanger (2006) to measure profitability shocks. I assume that

each firm has a Cobb-Douglas revenue function F (Z,K,N) = ZKαKNαN , where Z

denotes the productivity shock, K is physical capital, N is the variable factor(s), and

W is the price of the variable factor(s). The equations that follow are based on one

variable factor for expositional purposes but extend easily to multiple variable fac-

tors. Maximization of operating profit, Π (Z,K,N) = F (Z,K,N) − WN , over the

flexible factor, N , leads to a reduced form profit function, Π (K,A) = AKθ, where

A = (1− αN) [Z (αN/W )αN ]
1

(1−αN ) includes shocks to productivity as well as variations

in factor prices and in demand. The exponent on capital θ is αK/ (1− αN). Similarly,

the revenue function evaluated at the optimal flexible factor takes the reduced form

F (K,A) = A
(1−αN )

Kθ.

The coeffi cient on K measuring the degree of returns-to-scale in capital (θ) in both

the revenue and profit functions is the same. Moreover, the properties of the shocks to

revenue and profits are the same up to a factor of proportionality. Thus, the estimation

strategy is to estimate θ from either a quasi log-linear first-differenced profit or revenue

regression on the capital stock. The latter seems preferred since there is potentially less

measurement error involved.

Let ait = ln (Ait) have the following structure

ait = γt + εit

where γt is a common shock, and εit is a firm-specific shock, whose dynamics are given

by

εit = ηi + ρεεit−1 + ωit; ωit ∼MA (0)

where ηi is a firm-specific time-invariant effect capturing heterogeneity in the average

firm profitability shocks. Taking logs and quasi-differencing yields

πit = ρεπit−1 + θkit − ρεθkit−1 + γt − ρεγt−1 + ηi + ωit
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or

πit = β1πit−1 + β2kit + β3kit−1 + γ∗t + ηi + ωit

where kit = ln (Kit) and πit = ln (Πit), β1 = ρε, β2 = θ; β3 = −ρεθ, γ∗t = γt − ρεγt−1.

Whenever, the standard assumption on the initial conditions hold (E [xi1ωit] = 0 for

t = 2, ..., T ), then by first differencing, we have

E [xit−s∆ωit] = 0 where xit = (kit, πit)

for s ≥ 2 if ωit ∼ MA (0). This allows the use of suitably lagged levels of the variables

as instruments, after the equation has been first-differenced to eliminate the firm-specific

effects (cf. Arellano and Bond, 1991) as:

∆πit = β1∆πit−1 + β2∆kit + β3∆kit−1 + ∆γ∗t + ∆ωit .

I estimate this equation via GMM using a complete set of time dummies to capture

the aggregate shocks and using twice and thrice-lagged capital and twice and thrice-

lagged revenue as instruments. Table A reports both the unconstrained and constrained

GMM estimates. All coeffi cient estimates are statistically significant and the test of over-

identifying restrictions (J-test) does not reject the model. In addition, the GMM distance

test (D-test) also does not reject the nonlinear constraint on the coeffi cient estimates (i.e.

β3 = −β1β2). Having estimated a statistically significant θ̂ = 0.51 (0.13), I then recover

ait from Π (Ait, Kit) = AitK
θ
it.
18

18Although based on a different dataset - i.e. plant-level data - Cooper and Haltiwanger (2006) also

obtain a similar estimate (θ = 0.59).
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V. Appendix B: Alternative Methodologies

I now review the alternative existing methodologies available to estimate marginal q: (i)

VAR approach; and (ii) Euler equation approach.

A. VAR Approach

In their seminal work, Abel and Blanchard (1986) and Gilchrist and Himmelberg (1995)

propose to estimate marginal q using VAR-based approximations of marginal q computed

according to its definition as the expected present value of the future marginal profit of

capital:

qit = E

[∫ ∞
0

e−δs
Λt+s

Λt

DK (Kit+s, Ait+s) ds | Θit

]
(18)

where DK ≡ ΠK −ΦK denotes the marginal profit of capital, and Θit denotes the time t

information set.

Estimation of marginal q then requires the specification of functional forms for the

marginal profit of capital (i.e. Π and Φ), the stochastic discount factor, Λ, together with

a method of evaluating the expected discounted stream of marginal profit of capital. To

this end, one can assume that the marginal profit of capital and the stochastic discount

factor are each generated as linear combinations of the elements of some observable vector

which evolves according to a vector autoregressive process. The choice of some vector of

fundamentals observable to the econometrician then identifies the relevant variables in

the time t information set Θit for the computation of expectations.

In summary, the VAR-based approximation of marginal q requires: 1) (usually linear)

approximations of marginal q (as function of Λ and DK) to facilitate the computation

of expectations of long products of stochastic variables; 2) specific functional forms for

Π, Φ and Λ (usually, ΠK = Π/K; ΦK = 0; and Λ ≡ weighted average of equity and

debt discount factors); 3) the specification of the relevant observable variables (often not

implied by the model) in the time t information set Θit; 4) assumptions on the dynamics

of the relevant variables observable to the econometrician (usually linear VAR); 5) no
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direct use of asset prices (unless potentially included in the time t information set Θit).

B. Euler Equation Approach

An alternative methodology available to estimate structural investment equations is based

on the Euler equation (e.g. Abel (1980), Shapiro (1986), Whited (1992), and Bond and

Meghir (1994)). We can rewrite the equation defining marginal q in (18) as

qit = E

[∫ ∆

0

e−δs
Λt+s

Λt

DK (Kit+s, Ait+s) ds+ e−δ∆
Λt+∆

Λt

qit+∆| Θit

]
(19)

for any time interval ∆ > 0. This is the standard (continuos-time) Euler equation for

investment: the shadow value of capital at time t equals its discounted expected value at

time t+ ∆ plus any marginal profit flow generated over the time interval ∆.

Since marginal q is unobservable, one can exploit the optimality condition for invest-

ment in (8) - i.e. q = ΦI at any times t and t+ ∆ when capital adjustment occurs - and

substitute marginal q in the Euler equation (19) with the parameterized marginal cost

of investment ΦI :19

ΦI (I∗it, Kit) = E

[∫ ∆

0

e−δs
Λt+s

Λt

DK (Kit+s, Ait+s) ds+ e−δ∆
Λt+∆

Λt

ΦI

(
I∗it+∆, Kit+∆

)
| Θit

]
.

(20)

Equation (20) is now only a function of “observables”and its estimation then follows

the procedure introduced by Hansen and Singleton (1982). The expectation operator in

(20) is replaced with an expectational error uncorrelated with any information known

at time t.20 Ex-post errors based on specific functional forms for the marginal profit

of capital (i.e. Π and Φ) and the stochastic discount factor, Λ, are calculated using

19In models without non-convex adjustment costs, investment activity occurs each period. However,

with non-convex adjustment costs, investment activity becomes infrequent, and the equivalence between

marginal q and the marginal cost of investment holds only when investment activity takes place. Cooper,

Haltiwanger, and Willis (2010) consider the Euler equation estimation in the presence of non-convex

adjustment costs.
20If expectations are formed rationally, the difference between the realized and expected value should

be orthogonal to information available at time t.
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observations on capital and profit flows. Then structural parameters are estimated using

Hansen’s (1982) GMM based on appropriate orthogonality conditions. The choice of

some vector of fundamentals observable to the econometrician then identifies the relevant

variables in the time t information set Θit which can be used as instruments for the

computation of orthogonality conditions.

In summary, the Euler equation approach requires: 1) specific functional forms for

Π, Φ and Λ; 2) the specification of the relevant observable variables (often not implied

by the model) in the time t information set Θit; 3) no direct use of asset prices (unless

potentially included in the time t information set Θit); 4) (usually) nonlinear structural

estimation methods.

Unlike the VAR-based approach, the Euler equation approach circumvents the di-

rect estimation of marginal q by replacing it with the parameterized marginal cost of

investment whenever investment activity takes place. One can then compute the implied

marginal q from the optimality conditions for investment using the estimated structural

parameters.

In models without non-convex adjustment costs, one can always compute the implied

marginal q as investment activity takes place each period. However, in models with non-

convex adjustment costs, where investment activity is infrequent, one can only recover

marginal q from the optimality conditions for investment when investment activity takes

place. As such the measurement of marginal q in the Euler equation approach is subject

to the occurrence of investment activity.
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Table I: Summary Statistics

This table reports summary statistics for the primary variables of interest from Compustat

over the period 1972-2010. Investment rate, I/K, is defined as capital expenditures in property,

plant and equipment scaled by the beginning-of-year capital stock. The capital stock, K, is

defined as gross property, plant and equipment. Firm size, ln(K), is the natural logarithm of

the beginning-of-year capital stock. The sales-to-capital ratio, ln(Y/K), is computed as the

natural logarithm of end-of-year sales scaled by the beginning-of-year capital stock. Tobin’s Q

is defined as the market value of capital (market value of equity plus debt net of current assets)

scaled by gross property, plant and equipment.

Obs. Mean Std. Dev. 25th 50th 75th

I/K 29, 564 0.15 0.16 0.06 0.10 0.18

ln (K) 29, 564 4.30 2.26 2.58 4.23 5.96

ln (Y/K) 29, 564 0.97 0.74 0.50 0.95 1.42

Q 29, 564 3.64 7.09 0.55 1.39 3.54
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Table II: Market Value and Investment by State-Variable Portfolios

This table reports equal-weighted averages of market values and investment rates for port-

folios based on conditional sorts on firm size, K, and profitability shock, A. The sample period

is 1972 to 2010.

Market Value, V ($, bn) Profitability Shock (A)

Q1 2 3 4 Q5

Firm Size (K) Q1 0.02 0.02 0.03 0.04 0.11

2 0.07 0.08 0.12 0.19 0.34

3 0.18 0.27 0.34 0.44 0.90

4 0.43 0.66 1.04 1.48 2.59

Q5 1.83 3.35 5.54 11.20 23.11

Investment Rate, I/K Profitability Shock (A)

Q1 2 3 4 Q5

Firm Size (K) Q1 0.124 0.132 0.183 0.225 0.318

2 0.111 0.138 0.148 0.205 0.264

3 0.110 0.131 0.143 0.170 0.222

4 0.106 0.119 0.128 0.136 0.169

Q5 0.098 0.107 0.116 0.120 0.139
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Table III: Empirical Value Function

This table reports estimates from the empirical value function:

vit =

nk∑
jk=0

na∑
ja=0

cjk,ja × [kit]
jk × [ait]

ja + δi + ηt + εit

where the left-hand-side is the log market value scaled by capital, lnV/K, k is firm size, lnK, a

is profitability shock, lnA, δi is a firm fixed effect, and ηt is a year fixed effect. Robust standard

errors are clustered by firm and reported in parenthesis. R2 denotes adjusted R-square and

AIC is the Akaike Information Criterion. “qQ-test”is a Wald test of the equivalence between

marginal q and average Q as described in (15). P-values are reported. The sample period is

1972 to 2010.

(1) (2) (3)

lnK -0.60 -0.76 -0.67

(0.02)
∗∗∗

(0.04)
∗∗∗

(0.04)
∗∗∗

lnA 1.01 0.50 0.42

(0.02)
∗∗∗

(0.05)
∗∗∗

(0.05)
∗∗∗

lnK2 0.02 0.03

(0.00)
∗∗∗

(0.00)
∗∗∗

lnA2 0.09 0.15

(0.01)
∗∗∗

(0.01)
∗∗∗

lnA× lnK -0.07

(0.01)
∗∗∗

R
2

0.63 0.64 0.64

AIC 77, 507 76, 919 76, 861

qQ-test 0.00 0.00 0.00
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Table IV: Variance Decomposition of Value Function

This table presents a variance decomposition for several polynomial specifications of the

log (scaled) value function in (14). I compute the Type III partial sum of squares for each

effect in the model and then normalize each estimate by the sum across the effects, forcing each

column to sum to one. For example, in specification (2), 6% of the explained sum of squares

captured by the included covariates can be attributed to year-fixed effects. Firm FE are firm

fixed effects. Year FE are calendar year fixed effects. Poly(1) denotes the polynomial of degree

one in k and a, Poly(2) denotes the polynomial of degree two in k and a, Poly(2C) denotes

the complete polynomial of degree two in k and a including the interaction term. R2 denotes

adjusted R-square. The sample period is 1972 to 2010.

(1) (2) (3)

Firm FE 0.78 0.77 0.76

Year FE 0.07 0.06 0.06

Poly(1) 0.15

Poly(2) 0.17

Poly(2C) 0.18

R
2

0.63 0.64 0.64

39



Table V: Distribution of Marginal q

This table reports summary statistics for (average) Tobin’s Q, and the estimated marginal

q and Fitted Q. Fitted Q is computed as the fitted value of the value function approximation

in (14). Marginal q is computed according to its definition as partial derivative of the value

function approximation with respect to the capital stock. The sample period is 1972 to 2010.

Obs. Mean Std. Dev. 25th 50th 75th

Tobin’s Q 29, 564 3.64 7.09 0.55 1.39 3.54

Fitted Q 29, 564 2.85 5.14 0.62 1.28 2.93

Marginal q 29, 564 1.03 1.64 0.26 0.53 1.13
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Table VI: Variance Decomposition of Tobin’s Qs

This table presents a variance decomposition of (average) Tobin’s Q and Fitted Q using

firm- and year-fixed effects and marginal q as covariates. I compute the Type III partial sum

of squares for each effect in the model and then normalize each estimate by the sum across

the effects, forcing each column to sum to one. For example, in the variance decomposition

of Tobin’s Q, 47% of the explained sum of squares captured by the included covariates can

be attributed to marginal q. Firm FE are firm fixed effects. Year FE are calendar year fixed

effects. R2 denotes adjusted R-square. The sample period is 1972 to 2010.

Tobin’s Q Fitted Q

Firm FE 0.49 0.25

Year FE 0.05 0.02

Marginal q 0.47 0.73

R
2

0.53 0.92
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Table VII: Investment-q Sensitivity

This table reports estimates from the following regression:

Yit =

M∑
m=2

γm

(
Iit
Kit

)m−1

+ δi + ηt + εit

where the left-hand side variable Yit is either marginal q, Fitted Q or (average) Tobin’s Q,

and the right-hand side variables include the investment rate (I/K), δi is a firm fixed effect,

ηt is a year fixed effect. Specifications (1)-(2) report estimates using (average) Tobin’s Q

as dependent variable. Specifications (3)-(4) report estimates using Fitted Q as dependent

variable. Specifications (5)-(6) report estimates using marginal q as dependent variable. Panel

A reports estimates based on fixed-effect estimators (Within-Groups), while Panel B reports

estimates based on first-difference estimators. Robust standard errors are clustered by firm and

reported in parenthesis. R
2
denotes adjusted R-square. The sample period is 1972 to 2010.

Tobin’s Q Fitted Q Marginal q

A: Within-Groups

(1) (2) (3) (4) (5) (6)

γ2 12.18 15.97 6.65 8.25 1.46 2.29

(0.73)∗∗∗ (1.58)
∗∗∗

(0.54)∗∗∗ (0.83)
∗∗∗

(0.13)∗∗∗ (0.23)
∗∗∗

γ3 -4.27 -1.81 -0.94

(1.29)
∗∗∗

(0.71)
∗∗∗

(0.17)
∗∗∗

R
2

0.12 0.12 0.13 0.14 0.16 0.17

B: First-Difference

γ2 5.56 6.42 4.17 4.38 0.94 1.26

(0.46)∗∗∗ (1.25)
∗∗∗

(0.39)∗∗∗ (0.57)
∗∗∗

(0.10)∗∗∗ (0.13)
∗∗∗

γ3 -0.90 -0.22 -0.33

(1.12) (0.47) (0.08)
∗∗∗

R
2

0.05 0.05 0.14 0.15 0.21 0.21
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Table A: Estimating Productivity Shocks

This table reports GMM estimates of the following specification:

∆πit = β1∆πit−1 + β2∆kit + β3∆kit−1 + ∆γt + ∆ωit

using a complete set of time dummies, twice and thrice-lagged capital and twice and thrice-

lagged profits as instruments. Standard errors are reported in parenthesis. CRS-test is a

test of constant returns to scale hypothesis β2= 1. J -test denotes the test of overidentifying

restrictions, and D-test denotes the GMM distance test concerning the constraints on the

coeffi cient estimates as described in Appendix. P-values are reported. The sample period is

1972 to 2010.

Unconstrained GMM Constrained GMM

β1 0.54 0.63

(0.13)
∗∗∗

(0.10)
∗∗∗

β2 0.47 0.51

(0.12)
∗∗∗

(0.13)
∗∗∗

β3 -0.29 -0.32

(0.09)
∗∗∗

(0.09)
∗∗∗

J-test 0.18 0.20

CRS-test 0.00 0.00

D-test 0.25
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Figure 1: Empirical Distribution of Q Wedges

This figure plots the empirical distributions of the log ratio of (average) Tobin’s Q to

marginal q (left panel) and Fitted Q to marginal q (right panel). The sample period is 1972 to

2010.

4 2 0 2 4 6
0

1000

2000

3000

4000

5000

6000
Distribution of Tobin Q / q

ln(Q/q)
0 0.5 1 1.5 2 2.5 3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Distribution of F itted Q / q

ln(Q/q)

44



Figure 2: Investment Sensitivity to Fundamentals

This figure plots the investment sensitivity to alternative measures of Tobin’s Q - i.e.

∂(I/K)/∂Q - as a function of investment (I/K). Each panel displays the investment sensitivity

to marginal q (solid line), FittedQ (dashed line), and (average) Tobin’sQ (dotted line). Panel A

and C display investment sensitivities under quadratic adjustment costs (M = 2), while Panel

B and D display investment sensitivities under polynomial adjustment costs (M = 3). Panel A

and B display investment sensitivities based on fixed-effect estimators (Within-Groups), while

Panel C and D display investment sensitivities based on first-difference estimators. The sample

period is 1972 to 2010.
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