
Long-Run Risk is the Worst-Case Scenario

Rhys Bidder and Ian Dew-Becker∗

December 30, 2014

Abstract

We study an investor who is unsure of the dynamics of the economy. Not only are parameters

unknown, but the investor does not even know what order model to estimate. She estimates

her consumption process non-parametrically and prices assets using a pessimistic model that

minimizes lifetime utility subject to a constraint on statistical plausibility. The equilibrium is

exactly solvable and we show that the pricing model always includes long-run risks. With a

single free parameter determining risk preferences, the model generates high and volatile risk

premia, excess volatility in stock returns, return predictability, interest rates that are uncor-

related with expected consumption growth, and investor expectations that are consistent with

survey evidence. Risk aversion is equal to 4.8, there is no stochastic volatility or disasters, and

the pricing model is statistically nearly indistinguishable from the true data-generating process.

The analysis yields a general characterization of behavior under a very broad form of model

uncertainty.
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1 Introduction

Economists do not agree on the dynamic properties of the economy. There has been a long debate in

the finance literature over how risky consumption growth is in the long-run (e.g. Bansal et al. (2012)

and Beeler and Campbell (2012)), and it is well known that long-run forecasting is econometrically

diffi cult (Müller and Watson (2013)). It is likely that the average investor is also unsure of the true

model driving the world. This paper studies the behavior of such an agent.

With exactly solved results, we show that a model in which investors have Epstein—Zin prefer-

ences and uncertainty about consumption dynamics generates high and volatile risk premia, excess

volatility in stock returns, a large degree of predictability in stock returns, low and stable interest

rates, an estimated elasticity of intertemporal substitution from interest rate regressions of zero as

measured in Campbell and Mankiw (1989), and behavior of investor expectations for stock returns

that is consistent with survey evidence. The results hold with both exogenous and endogenous

consumption, and without needing stochastic volatility to generate excess variance in asset prices.

We argue that investors consider a set of models of the economy that is only weakly constrained.

Rather than just allowing uncertainty about the parameters in a specific model, or putting positive

probability on a handful of models, we treat them as considering an infinite-dimensional space of

autoregressive moving average (ARMA) specifications. People face pervasive ambiguity: no one

can say they know the exact specification to estimate to forecast economic activity.

Acknowledging the presence of ambiguity, investors use a model for decision making that is

robust in the sense that it generates the lowest lifetime utility among statistically plausible models.

That is, they make decisions that are optimal in an unfavorable world. We derive that "worst-case"

model in closed form and then explore its implications for asset prices.

The headline theoretical result is that for an ambiguity-averse agent whose point estimate is that

consumption growth is white noise, the worst-case model used for decision-making, chosen from

the entire space of ARMA models, is an ARMA(1,1) with a highly persistent trend —literally the

homoskedastic version of Bansal and Yaron’s (2004) long-run risk model. More generally, whatever

the investor’s point estimate, the worst-case model always adds a long-run risk component to it.

The results are derived in the frequency domain, which allows strikingly clear conceptual and

analytical insights. Two factors determine the behavior of the worst-case model at each frequency:
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estimation uncertainty and how utility is affected by fluctuations at that frequency. Growth under

the worst-case model has larger fluctuations at frequencies about which there is more uncertainty or

that are more painful. Quantitatively, we find that differences in estimation uncertainty across fre-

quencies are relatively small compared to differences in utility. Instead, since people with Epstein—

Zin preferences are highly averse to low-frequency fluctuations, those shocks play the largest role

in robust decision-making.

A criticism of the long-run risk model has always been that it depends on a process for con-

sumption growth that is diffi cult to test for (Beeler and Campbell (2012); Marakani (2009)). We

turn that idea on its head and argue that it is the diffi culty of testing for and rejecting long-run

risk that actually makes it a sensible model for investors to focus on. If anything, our result is

more extreme than that of Bansal and Yaron (2004): whereas they posit a consumption growth

trend with shocks that have a half-life of 3 years, the endogenous worst-case model that we derive

features trend shocks with a half-life of 70 years.

In a calibration of the model, we show that it explains a wide range of features of financial

markets that have been previously viewed as puzzling. Similar to the intuition from Bansal and

Yaron (2004), equities earn high average returns in our model because low-frequency fluctuations

in consumption growth induce large movements in both marginal utility and equity prices. In our

setup, though, long-run risk need not actually exist —it only needs to be plausible.1

The results that we obtain on excess volatility, forecasting, and interest rate regressions all follow

from the fact that the pricing model that our investor uses always involves more persistence than

her point estimate (i.e. the model used by an econometrician with access to the same data sample

as the investor). Since the pricing model has excess persistence, investors overextrapolate recent

news relative to what the point estimate would imply. Following positive shocks, then, stock prices

are high and econometric forecasts of returns are low. We are thus able to generate predictability

without any changes in risk or risk aversion over time. Moreover, investors’expectations for returns

are positively correlated with past returns and negatively correlated with econometric forecasts of

future returns, exactly as in the survey evidence discussed by Greenwood and Shleifer (2014) and

Koijen, Schmeling, and Vrugt (2014). Significantly, we obtain this result in a rational model where

1This result is similar to that of Bidder and Smith (2013), who also develop a model where the worst-case process
for consumption growth features persistence not present in the true process.
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people make no mistakes —they are not irrational, just uncertain.

In generating all these results we have no more free parameters than other standard models

of consumption and asset prices. We link the parameter that determines how the agent penalizes

deviations from her point estimate for consumption dynamics directly to the coeffi cient of relative

risk aversion. There is thus a single free parameter that determines risk preferences, and it corre-

sponds to a coeffi cient of relative risk aversion of only 4.8. We also take no extreme liberties with

beliefs —the investor’s pricing model is essentially impossible to distinguish from the true model

in a 100-year sample. Using a correctly specified likelihood ratio test, the null hypothesis that the

pricing model is true is rejected at the 5-percent level in only 6.6 percent of samples. And finally,

the results are not driven by our assumption of an endowment economy — they also hold when

consumption is endogenous.

It is diffi cult to argue that people do not face model uncertainty, but what is diffi cult is identify-

ing exactly what features of the world people are uncertain about. The types of model uncertainty

most diffi cult to resolve empirically can be divided into three classes: tail events, regime changes,

and long-run behavior. Important work has been and will be done on the first two areas.2 The

goal of this paper is to address the last phenomenon and provide a very general analysis of long-

run uncertainty and uncertainty about autocorrelations in the economy more broadly. So while

we choose to examine the asset pricing implications of our model as a way of understanding our

agent’s behavior, the applications and implications for our approach are much broader.

Our analysis directly builds on a number of important areas of research. First, the focus on a

single worst-case outcome is closely related to Gilboa and Schmeidler’s (1989) work on ambiguity

aversion. Second, we build on the analysis of generalized recursive preferences to allow for the

consideration of multiple models, especially Hansen and Sargent (2010) and Ju and Miao (2012).3

The work of Hansen and Sargent (2010) is perhaps most comparable to ours, in that they study

an investor who puts positive probability on both a white-noise and a long-run risk model for

2Among others, Liu et al. (2004) and Collin-Dufresne et al. (2013) study extreme events and Ju and Miao (2012)
study regime changes.

3See, e.g., Kreps and Porteus (1978); Weil (1989); Epstein and Zin (1991); Maccheroni, Marinacci, and Rustichini
(2006); and Hansen and Sargent (2005), among many others. There is also a large recent literature in finance that
specializes models of ambiguity aversion to answer particularly interesting economic questions, such as Liu et al.
(2004) and Drechsler’s (2010) work with tail risk and the work of Uppal and Wang (2003), Maenhout (2004), Sbuelz
and Trojani (2008), and Routledge and Zin (2009) on portfolio choice. Recent papers on asset pricing with learning
and ambiguity aversion include Veronesi (2000), Brennan and Xia (2001), Epstein and Schneider (2007), Cogley and
Sargent (2008), Leippold et al. (2008), Ju and Miao (2012) , and Collin-Dufresne et al. (2013).
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consumption growth. The key difference here, though, is that rather than imposing only two

possible choices for dynamics, we explicitly consider the agent’s estimation problem and allow her

to put weight on any plausible model. The emergence of the long-run risk model as the one that she

focuses on is entirely endogenous. We also show that the pessimistic model examined by Hansen

and Sargent is twice as easy for an investor to reject than the one we obtain.

Finally, since the worst-case model is more persistent than the point estimate, pricing behavior is

similar to the extrapolation implied by the "natural expectations" studied by Fuster et al. (2011).

Our results differ from theirs, though, in that we always obtain excess extrapolation, whereas

in their setting it results from the interaction of suboptimal estimation on the part of investors

with a specific data-generating process. Nevertheless, our paper complements the literature on

belief distortions and extrapolative expectations by deriving them as a natural response to model

uncertainty.4

More generally, we provide a framework for linking ambiguity aversion with non-parametric

estimation, which we view as a realistic description of how people might think about the models

they estimate. While people must always estimate finite-order models when only finite data is

available, they likely understand that those models almost certainly are misspecified. So if they

want to be prepared for a worst-case scenario, they need to consider very general deviations from

their point estimate. We provide a way to characterize and analyze those types of deviations.

The remainder of the paper is organized as follows. Section 2 discusses the agent’s estimation

method. Section 3 describes the basic structure of the agent’s preferences, and section 4 then

derives the worst-case model. We examine asset prices in general under the preferences in section

5. Section 6 then discusses the calibration and section 7 analyzes the quantitative implications of

the model. We extend the results to account for endogenous consumption in section 8, and section

9 concludes.

2 Non-parametric estimation

We begin by describing the set of possible models that investors consider and the estimation method

they use to measure the relative plausibility of different models.

4See Barsky and De Long (1993), Cecchetti et al. (1997), Fuster et al. (2011), and Hirshleifer and Yu (2012)
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2.1 Economic environment

For our main analysis we study a pure endowment economy.

Assumption 1. Investors form expectations for future log consumption growth, ∆c, using

models of the form

∆ct = µ+ a (L) (∆ct−1 − µ) + b0εt (1)

εt ∼ N (0, 1) (2)

where µ is mean consumption growth, a (·) is a polynomial function, L is the lag operator, and εt

is an innovation.

The change in log consumption on date t, ∆ct, is a function of past consumption growth and

a shock. We restrict our attention to models with purely linear feedback from past to current

consumption growth. It seems reasonable to assume that people use linear models for forecasting,

even if consumption dynamics are not truly linear, given that the economics literature focuses almost

exclusively on linear models. Moreover, the Wold theorem states that any covariance stationary

process can be represented in the form (1), or the associated moving average representation, with

uncorrelated, though not necessarily independent innovations εt. For our purposes, the restriction

to the class of linear processes is a description of the agent’s modeling method, rather than an

assumption about the true process driving consumption growth. The assumption that εt is normally

distributed is not necessary, but it simplifies the exposition.5

In much of what follows, it will be more convenient to work with the moving average (MA)

representation of the consumption process (1),

∆ct = µ+ b (L) εt (3)

where b (L) ≡ (1− La (L))−1 b0 (4)

=
∞∑
j=1

bjL
j (5)

We can thus express the dynamics of consumption equivalently as depending on {a, b0} or just on

the polynomial b, with coeffi cients bj . The two different representations are each more convenient

5The appendix solves the model when εt has an arbitrary distribution.
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than the other in certain settings, so we will refer to both in what follows. They are directly linked

to each other through equation (4), so that a particular choice of {a, b0} is always associated with

a distinct value of b and vice versa.

There are no latent state variables. When a model a (L) has infinite order we assume that the

agent knows all the necessary lagged values of consumption growth for forecasting (or has dogmatic

beliefs about them) so that no filtering is required.6 We discuss necessary constraints on the models

below. For now simply assume that they are suffi ciently constrained that any quantities we must

derive exist.

We assume that the investor knows the value of µ with certainty but is uncertain about con-

sumption dynamics.7

2.2 Estimation

For the purpose of forecasting consumption growth, the agent in our model chooses among specifi-

cations for consumption growth, b, partly based on their statistical plausibility. That plausibility is

measured by a loss function g
(
b; b̄
)
relative to a point estimate b̄. As a simple example, if a person

were to estimate a parameterized model, such as an AR(1), on a sample of data, she would have a

likelihood (or posterior distribution) over the autocorrelation, and she could rank different AR(1)

processes by how far their autocorrelations are from her point estimate. That example, though,

imposes a specific parametric specification of consumption growth and rules out all other possible

models.

In the spirit of modeling the agent as looking for decision rules that are robust to a broad

class of potential models, we assume that she estimates the dynamic process driving consumption

non-parametrically so as to make only minimal assumptions about the driving process. Following

Berk (1974) and Brockwell and Davis (1988), we assume that the investor estimates a finite-order

6Croce, Lettau, and Ludvigson (2014) study in detail issues surrounding filtering and the type of information
available to agents in long-run risk models. Our agent has less information than in Bansal and Yaron (2004), in some
sense, because she can only observe past consumption growth and no other state variables. Conditional on a model
for consumption growth, though, our agent filters optimally. Croce, Lettau, and Ludvigson (2014) suggest optimal
filtering may in fact be rather diffi cult.

7 In addition to parsimony, there are two justifications for that assumption. First, for the estimation method we
model the agent as using, estimates of the coeffi cients {a, b0} converge at an asymptotically slower rate than estimates
of µ. Second, we will model the agent as having Epstein—Zin (1991) preferences, which, as shown by Barillas, Hansen,
and Sargent (2009), can be viewed as appearing when an agent with power utility is unsure of the distribution of
the innovations of consumption growth. So uncertainty about the mean will implicitly be accounted for through the
preferences.
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AR or MA model for consumption growth, but that she does not actually believe that consumption

growth necessarily follows a finite-order specification. Instead, it may be driven by an infinite-order

model, and her finite-order model is simply an approximation. In terms of asymptotic econometric

theory, the way that she expresses her statistical doubts is to imagine that if she were given more

data, she would estimate a richer model. That is, the number of lags in her AR or MA model grows

asymptotically with the sample size, potentially allowing eventually for a broad class of dynamics.

The agent then has a non-parametric confidence set around any particular point estimate that

implicitly includes models far more complex than the actual AR or MA model she estimates in any

particular sample.8

Our analysis of the model takes place in the frequency domain because it will allow us to obtain

a tractable and interpretable solution. The analysis centers on the transfer function,

B (ω) ≡ b
(
eiω
)

(6)

for i =
√
−1. The transfer function measures how the filter b (L) transfers power at each frequency,

ω, from the white-noise innovations, ε, to consumption growth. Berk (1974) and Brockwell and

Davis (1988) show that under standard conditions, estimates of the transfer function, B̂ (ω), are

asymptotically complex normal and independent across frequencies, with variance proportional to

a function f̄ (ω) ≡
∣∣B̄ (ω)

∣∣2, the spectral density.9 ,10
Given a point estimate b̄ (with associated transfer function B̄ (ω)) a natural distance measure

relative to the point estimate is then embodied in the following assumption

Assumption 2. Investors measure the statistical plausibility of a model through the distance

measure,

g
(
b; b̄
)

=

∫ ∣∣B (ω)− B̄ (ω)
∣∣2

f̄ (ω)
dω (7)

8We provide a more detailed treatment of this estimation approach in the appendix.
9The key condition on the dynamic process for consumption growth that is required for the asymptotic distribution

theory is that the true spectral density is finite and bounded away from zero. Alternatively, one may assume that
the MA coeffi cients are absolutely summable. See Stock (1994) for a discussion of the relationship between such
conditions. The conditions eliminate some pathological processes and also fractional integration. The innovations to
consumption growth must also have a finite fourth moment.
10Technically, the two papers derive results on the spectral density of consumption growth. The appendix extends

their results to the transfer function.
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where f̄ (ω) measures the estimation uncertainty at frequency ω and, here and below, integrals

without limits denote (2π)−1
∫ π
−π.

g
(
b; b̄
)
is a χ2-type test statistic for the null hypothesis that B = B̄.11 The appendix gives a

fuller derivation of this distance measure and shows that it is essentially equivalent to a Wald test

in the time domain, based on the non-parametric asymptotics of Berk (1974) and Brockwell and

Davis (1988).

3 Preferences

We now describe the investor’s preferences. Given a particular model of consumption dynamics, she

has Epstein—Zin (1991) preferences. We augment those preferences with a desire for a robustness

against alternative models. The desire for robustness induces her to form expectations, and hence

calculate utility and asset prices, under a pessimistic but plausible model, where plausibility is

quantified using the estimation approach described above.

3.1 Utility given a model

Assumption 3. Given a forecasting model {a, b0}, the investor’s utility is described by Epstein—

Zin (1991) preferences. The investor’s coeffi cient of relative risk aversion is α, her time discount

parameter is β, and her elasticity of intertemporal substitution (EIS) is equal to 1.12 Lifetime

utility, v, for a fixed model {a, b0}, is

v
(
∆ct; a, b0

)
= (1− β) ct +

β

1− α logEt
[
exp

(
v
(
∆ct+1; a, b0

)
(1− α)

)
|a, b0

]
(8)

= ct +

∞∑
k=1

βkEt [∆ct+k|a, b0] +
β

1− β
1− α

2
b (β)2 (9)

where Et [·|a, b0] denotes the expectation operator conditional on the history of consumption growth

up to date t, ∆ct, assuming that consumption is driven by the model {a, b0}.
11Hong (1996) studies a closely related distance metric in the context of testing for general deviations from a

benchmark spectral density.
12We focus on the case of a unit EIS to ensure that we can easily derive analytic results. The precise behavior of

interest rates is not our primary concern, so a unit EIS is not particularly restrictive. The unit EIS also allows us to
retain the result that Epstein—Zin preferences are observationally equivalent to a robust control model, as in Barillas,
Hansen, and Sargent (2009), which will be helpful in our calibration below
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β
1−β

1−α
2 b (β)2 is an adjustment to utility for risk. The investor’s utility is lower when risk

aversion or the riskiness of the endowment is higher. The relevant measure of the risk of the

endowment is b (β)2, which measures the variance of the shocks to lifetime utility in each period.

b (β) measures the total discounted effect of a unit innovation to εt+1 on consumption growth, and

hence utility, in the future. It is the term involving b (β) that causes people with Epstein—Zin

preferences to be averse to long-run risk.

3.2 Robustness over dynamics

Equation (8) gives lifetime utility conditional on consumption dynamics. We now discuss the

investor’s consideration of alternative models of dynamics.

The investor entertains a set of possible values for the lag polynomial and can associate with

any model a measure of its plausibility, g
(
b; b̄
)
. Seeking robustness, the investor makes decisions

that are optimal in an unfavorable world —specifically, as though consumption growth is driven by

worst-case dynamics, denoted bw. These dynamics are not the worst in an unrestricted sense but,

rather, are the worst among statistically plausible models. So the investor does not fear completely

arbitrary models —she focuses on models that do not have Wald statistics (relative to her point

estimate) that are too high.

Assumption 4. Investors use a worst-case model to form expectations (for both calculating

utility and pricing assets) that is obtained as the solution to a penalized minimization problem:

bw = arg min
b

{
E
[
v
(
∆ct; b

)
|b
]

+ λg
(
b; b̄
)}

(10)

bw is the model that gives the agent the lowest unconditional expected lifetime utility, subject

to the penalty g
(
b; b̄
)
.13 λ is a parameter that determines how much weight the penalty receives.

As usual, λ can either be interpreted directly as a parameter or as a Lagrange multiplier on a

constraint on the Wald-type statistic g
(
b; b̄
)
.

Models that deviate from the point estimate by a larger amount on average across frequencies

(g
(
b; b̄
)
is big) are implicitly viewed as less plausible. The agent’s assessment of plausibility is

13Since consumption can be non-stationary, this expectation does not always exist. In that case, we simply rescale
lifetime utility by the level of consumption yielding E

[
v
(
∆ct; b

)
− ct|b

]
, which does exist. Scaling by consumption

is a normalization that has no effect other than to ensure the expectation exists.
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based on our statistical measure of distance, and controlled by λ. We are modeling the agent’s

beliefs about potential models by assuming that she compares possible models to a point estimate

b̄. The role of g
(
b; b̄
)
in our analysis is intuitively similar to that of the relative entropy penalty

(or distance constraint) used in the robust control model of Hansen and Sargent (2001), in that

it imposes discipline on what models the investor considers and prevents the analysis from being

vacuous.

It is important to note that the penalty function can be calculated for values of b that are ruled

out under the asymptotic assumptions of Berk (1974) and Brockwell and Davis (1988) that we

used in connecting g
(
b; b̄
)
to the estimation process. Most interestingly, g

(
b; b̄
)
is well defined for

certain fractionally integrated processes so that the agent therefore allows for fractional integration

in the models she considers. So if we find the worst case does not involve fractional integration (as,

in fact, will be the case below), it is a result rather than an assumption.

In the end, our ambiguity-averse investor’s utility takes the form of that of an Epstein—Zin agent

but using bw to form expectations about future consumption growth,14

vw
(
∆ct

)
= v

(
∆ct; bw

)
= ct +

β

1− β
1− α

2
bw (β)2 +

∞∑
k=1

βkEt [∆ct+k|bw] (11)

In modeling investors as choosing a single worst-case bw, we obtain a setup similar to Gilboa

and Schmeidler (1989), Maccheroni, Marinacci, and Rustichini (2006), and Epstein and Schneider

(2007) in the limited sense that we are essentially constructing a set of models and minimizing over

that set. Our worst-case model is, however, chosen once and for all and is not state- or choice-

dependent. The choice of bw is timeless —it is invariant to the time-series evolution of consumption

—so what it represents is an unconditional worst-case model: if an agent had to choose a worst-case

model to experience prior to being born into the world, it would be bw. Unlike in some related

recent papers, the investor in this model does not change her probability weights every day. She

chooses a single pessimistic model to protect against.

A natural question is why we analyze a worst case instead of allowing the agent to average as

a Bayesian across all the possible models. A simple and reasonable answer is that people may not

14Note that since utility is recursive, the agent’s preferences are time-consistent, but under a pessimistic probability
measure. Furthermore, the assumption that bw is chosen unconditionally means that bw is essentially unaffected by
the length of a time period, so the finding in Skiadas (2013) that certain types of ambiguity aversion become irrelevant
in continuous time does not apply here.
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actually be Bayesians, or they may not be able to assign priors to all models.15 This answer seems

particularly compelling in the context of uncertainty about the long run which, as we shall now

see, is an important concern of our agent.16

4 The worst-case scenario

The analysis above leads us to a simple quadratic optimization problem. The solution is summarized

in the following proposition.

Proposition 1 Under assumptions 1—4, for an agent who chooses a model bw (L) to minimize the

unconditional expectation of lifetime utility subject to the loss function g
(
b; b̄
)
, that is,

bw = arg min
b

β

1− β
1− α

2
b (β)2 + λg

(
b; b̄
)

(12)

the worst-case model is

Bw (ω) = B̄ (ω) + λ−1
β

1− β
α− 1

2
bw (β)× f̄ (ω)× Z∗ (ω) (13)

where Z (ω) ≡
∑∞

j=0 β
je−iωj, a ∗ denotes a complex conjugate, and bw (β) is given by

bw (β) =
b̄ (β)

1− λ−1 β
1−β

α−1
2

∫
Z (ω)∗ Z (ω) f̄ (ω) dω

(14)

The time-domain model bw (L) has coeffi cients bwj that are obtained through the inverse Fourier

transform,

bwj =

∫
Bw (ω) e−iωjdω (15)

15See Machina and Siniscalchi (2014) for a recent review of the experimental literature on ambiguity aversion.
16More practically, obtaining analytic solutions in a purely Bayesian model with a non-degenerate distribution over

the dynamic process for consumption growth is likely impossible: the distribution of future consumption growth in
that case is the product of the distributions for b and ε, which does not take a tractable form. Kreps (1998) discusses
related issues in models with learning. It is also worth noting that it would be impossible to obtain numerical
solutions when the distribution is infinite-dimensional, as it is here. By assuming that the agent behaves as if she
places probability 1 on a single model, we avoid the problem of having to integrate over the infinite-dimensional
distribution of possible models when forming expectations. The analysis of the worst-case model gives us a tractable
view into an agent’s decision problem that would otherwise not be available.
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We thus have a closed form expression for the worst-case model.17 The worst-case transfer

function Bw (ω) in (13) is equal to the true transfer function plus a term that depends on three

factors. First, λ−1 β
1−β

α−1
2 bw (β) represents the ratio of the utility losses from a marginal increase

in bw (β) to the cost of deviations from the point estimate, λ. When risk aversion, α, is higher or

the cost of deviating from the point estimate, λ, is lower, the worst-case model is farther from the

point estimate.

Second, f̄ (ω) represents the amount of uncertainty the agent has about consumption dynamics

at frequency ω. Where f̄ (ω) is high there is relatively more uncertainty and the worst-case model

is farther from the point estimate.

Finally, Z (ω) determines how much weight the lifetime utility function places on frequency ω.

Figure 1 plots the real part of Z (ω) for β = 0.99 , a standard annual calibration.18 It is strikingly

peaked near frequency zero; in fact, the x-axis does not even show frequencies corresponding to

cycles lasting less than 10 years because they carry essentially zero weight. Since the mass of Z (ω)

lies very close to frequency 0, the worst case shifts power to very low frequencies. In that sense,

the worst-case model always includes long-run risk.

Equation (13) represents the completion of the solution to the model. To summarize, given a

point estimate for dynamics, B̄ (ω) (estimated from a finite-order model that we need not specify

here), the agent selects a worst-case model Bw (ω), which is associated with a unique bw (L) through

the inverse Fourier transform. She then uses the worst-case model when calculating expectations

and pricing assets.

4.1 Long-run risk is the worst case scenario

Corollary 2 Suppose the agent’s point estimate is that consumption growth is white noise, with

b̄ (L) = b̄0 (16)

17 In the case where εt is not normally distributed, the solution is determined by the condition Bw (ω) = B̄ (ω) −
λ−1

2
β

1−β f (ω)Z∗ (ω) Γ′ (bw (β) (1− α)), where Γ′ is the derivative of the cumulant-generating function of ε.
18Dew-Becker and Giglio (2013) use the fact that B (ω) is a causal filter to show that the real part of Z (ω) is

suffi cient to characterize
∫
Z (ω)B (ω) dω.
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The worst-case model is then

bw0 = b̄0 + ϕ (17)

bwj = ϕβj for j > 0 (18)

where ϕ ≡ β

1− β
α− 1

2
bw (β) b̄20λ

−1 (19)

The MA process in (17-19) is an ARMA(1,1) and has an equivalent state-space representation

∆ct = µ+ xt−1 + ηt (20)

xt = βxt−1 + vt (21)

where ηt and vt are independent and normally distributed innovations.
19 The state-space form

in equations (20—21) is observationally equivalent to the MA process (17—19) in the sense that

they have identical autocovariances, and it is exactly case I from Bansal and Yaron (2004), the

homoskedastic long-run risk model. So when the agent’s point estimate is that consumption growth

is white noise, her worst-case model is literally the long-run risk model.

The worst-case process exhibits a small but highly persistent trend component, and the per-

sistence is exactly equal to the time discount factor. Intuitively, since βj determines how much

weight in lifetime utility is placed on consumption j periods in the future, a shock that decays with

β spreads its effects as evenly as possible across future dates, scaled by their weight in utility. And

spreading out the effects of the shock over time minimizes its detectability. The worst-case/long-

run risk model is thus the departure from pure white noise that generates the largest increase in

risk prices (and decrease in lifetime utility) for a given level of statistical distinguishability.

Figure 2 plots the real transfer function for the white-noise benchmark and the worst-case

model. The transfer function for white noise is totally flat, while the worst case has substantial

power at the very lowest frequencies, exactly as we would expect from figure 1.

19ηt ∼ N
(

0, θβ−1
(
b̄0 + ϕ

)2)
and vt ∼ N

(
0, (1− βθ) (β − θ)β−1

(
b̄0 + ϕ

)2)
, where θ ≡ β

(
1− ϕb̄−10

)
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5 The behavior of asset prices

The investor’s Euler equation is calculated under the worst-case dynamics. For any available return

Rt+1,

1 = Et [Rt+1Mt+1|bw] (22)

where Mt+1 ≡ β exp (−∆ct+1)
exp

(
v
(
∆ct+1; bw

)
× (1− α)

)
Et [exp (v (∆ct+1; bw)× (1− α)) |bw]

(23)

Mt+1 is the stochastic discount factor. The SDF is identical to what is obtained under Epstein—Zin

preferences, except that now expectations are calculated under bw. The key implication of that

change is that expected shocks to v
(
∆ct+1; bw

)
have a larger standard deviation since the worst-

case model features highly persistent shocks that affect lifetime utility much more strongly than

the less persistent point estimate.

5.1 Consumption claims

It is straightforward, given that log consumption follows a linear Gaussian process, to derive ap-

proximate expressions for prices and returns on levered consumption claims. We consider an asset

whose dividend is Cγt in every period, where γ represents leverage. Denote the return on that

asset on date t + 1 as rt+1 and the real risk-free rate as rf,t+1. We will often refer to the levered

consumption claim as an equity claim, and we view it as a simple way to model equity returns

(Abel (1999)).

From the perspective of an econometrician who has the same point estimate for consumption

dynamics as the investor, b̄, the expected excess log return on the levered consumption claim is

Et
[
rt+1 − rf,t+1|ā, b̄0

]
=

γ − δaw (δ)

1− δaw (δ)
(ā (L)− aw (L)) (∆ct − µ) +

−γ − δa
w (δ)

1− δaw (δ)
bw0 [bw0 − (1− α) bw (β)]︸ ︷︷ ︸
covw(rt+1,mt+1)

− 1

2

(
γ − δaw (δ)

1− δaw (δ)

)2
(bw0 )2︸ ︷︷ ︸

1
2
varwt (rt+1)

(24)

where δ is a linearization parameter from the Campbell—Shiller approximation that depends on the
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steady-state price/dividend ratio.20

The second line, which is equal to −covwt (rt+1, logMt+1) − 1
2var

w
t (rt+1) (i.e. a conditional

covariance and variance measured under the worst-case dynamics), is the standard risk premium,

and it is calculated under the worst-case model. The primary way that the model increases risk

premia compared to standard Epstein—Zin preferences is that the covariance of the return with the

SDF is higher. That covariance, in turn, is higher for two reasons. First, since the agent believes

that shocks to consumption growth are highly persistent, they have large effects on lifetime utility,

thus making the SDF very volatile (the term bw0 − (1− α) bw (β)). Second, again because of the

persistence of consumption growth under the worst case, shocks to consumption have large effects

on expected long-run dividend growth, so the return on the levered consumption claim is also very

sensitive to shocks (through γ−δaw(δ)
1−δaw(δ) b

w
0 ). These two effects cause the consumption claim to strongly

negatively covary with the SDF and generate a high risk premium.

The second difference between the risk premium in this model and a setting where the investor

prices assets under the point estimate is the term γ−δaw(δ)
1−δaw(δ) (ā (L)− aw (L)) (∆ct − µ), which reflects

the difference in forecasts of dividend growth between the point estimate, used by the econometri-

cian, and the worst-case model, used by investors. Since ∆ct − µ is zero on average, this term is

also zero on average. But it induces predictability in returns. When the worst-case implies higher

future consumption growth, investors pay relatively more for equity, thus raising asset prices and

lowering expected returns. This channel leads to procyclical asset prices and countercyclical ex-

pected returns when aw (L) implies more persistent dynamics than ā (L), similarly to Fuster et al.

(2011).

We also note that since risk aversion and conditional variances are constant, the excess return

on a levered consumption claim has a constant conditional expectation from the perspective of in-

vestors. That is, while returns are predictable from the perspective of an econometrician, investors

believe that they are unpredictable. So if investors in this model are surveyed about their expecta-

tions of excess returns, their expectations will not vary, even if econometric evidence implies that

returns are predictable.

20See the appendix for a full derivation.
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5.2 Interest rates

The risk-free rate follows

rf,t+1 = − log β + µ+ aw (L) (∆ct − µ)− 1

2
(bw0 )2 + bw0 b

w (β) (1− α) (25)

With a unit EIS, interest rates move one for one with expected consumption growth. In the present

model, the relevant measure of expected consumption growth is µ+ aw (L) (∆ct − µ), which is the

expectation under the worst-case model.

The appendix derives analytic expressions for the prices of long-term zero-coupon bonds, which

we discuss in our calibration below.

5.3 Investor expectations of returns

Because both risk aversion and the quantity of risk in the model are constant, investor expectations

of excess returns on consumption claims are constant. Equation (25), though, shows that interest

rates vary over time. If the worst-case model aw (L) induces persistence in consumption growth,

then interest rates are high following past positive shocks. Investors therefore expect high total

equity returns following past high returns. At the same time, when aw (L) induces more persistence

than ā (L), econometricians expect low excess returns following past high returns. So we find

that investor expectations for returns are positively correlated with past returns and negatively

correlated with statistical expectations of future returns. This behavior is exactly the qualitative

behavior that Greenwood and Shleifer (2014) observe in surveys of investor expectations. We

analyze these results quantitatively below.

6 Calibration

We now parameterize the model to analyze its quantitative implications. Most of our analysis will

be under the assumption that the agent’s point estimate implies that consumption growth is white

noise and that the point estimate is also the true dynamic model. Despite this parsimony, we obtain

striking empirical success in terms of matching important asset pricing moments.

Many of the required parameters are standard. We use a quarterly calibration of β = 0.991/4,
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implying a pure rate of time preference of 1 percent per year. The steady-state dividend/price ratio

used in the Campbell—Shiller approximation is 5 percent per year, as in Campbell and Vuolteenaho

(2004), so δ = 0.951/4. Other parameters are calibrated to match moments reported in Bansal and

Yaron (2004). The agent’s point estimate is that consumption growth is i.i.d. with a quarterly

standard deviation of 1.47 percent, which we also assume is the true data-generating process.

Finally, the leverage parameter for the consumption claim, γ, is set to 4.626 to generate mean

annualized equity returns of 6.33 percent.

The appendix shows that when α is interpreted as constraining a worst-case distribution of ε,

as in Hansen and Sargent (2005) and Barillas, Hansen, and Sargent (2009), we can directly link it

to λ through the formula

α = 1 +
1

2λ (1− β)
(26)

In Hansen and Sargent (2005) and Barillas, Hansen, and Sargent (2009), agents form expectations

as though the innovation εt is drawn from a worst-case distribution. That distribution is chosen to

minimize lifetime utility subject to a penalty, α, on its distance from the benchmark of a standard

normal, similarly to how we choose bw here. The coeffi cient of relative risk aversion in Epstein—Zin

preferences can therefore alternatively be interpreted as a penalty on a distance measure analogous

to λ.

We calibrate λ to equal 52.23 to match the observed Sharpe ratio on equities. Formula (26) then

implies α should equal 4.81. That level of risk aversion is extraordinarily small in the context of

the consumption-based asset pricing literature with Gaussian innovations. It is only half the value

used by Bansal and Yaron (2004), for example, who themselves are notable for using a relatively

low value. α therefore immediately seems to take on a plausible value in its own right, separate

from any connection it has to λ.

To further investigate how reasonable λ is, in the next section we show that it implies a worst-

case model that is rarely rejected by statistical tests on data generated by the true model. An

investor with the true model as her point estimate might reasonably believe the worst case could

have actually generated the data that led to that point estimate.

18



7 Quantitative implications

7.1 The white noise case

We report the values of the parameters in the worst-case consumption process in table 1. As noted

above, the autocorrelation of the predictable part of consumption growth under the worst-case

model is β, implying that trend shocks have a half-life of 70 years, as opposed to the three-year

half-life in the original calibration in Bansal and Yaron (2004). However, bw (β), the relevant

measure of the total risk in the economy, is 0.044 at the quarterly frequency in both our model

and theirs. The two models thus both have the same quantity of long-run risk, but in our case the

long-run risk comes from a smaller but more persistent shock.

Note also that bw0 is only 2 percent larger than b̄0. So the conditional variance of consumption

growth under the worst-case model is essentially identical to under the benchmark. However,

because the worst-case model is so persistent, bw (β) is 2.6 times higher than b̄ (β), thus implying

that the worst-case economy is far riskier than the point estimate.

7.1.1 Unconditional moments

Table 1 reports key asset pricing moments. The first column shows that the model can generate a

high standard deviation for the pricing kernel (and hence a high maximal Sharpe ratio), high and

volatile equity returns, and low and stable real interest rates, as in the data. The equity premium

and its volatility are 6.33 and 19.42 percent respectively, identical to the data. The real risk-free

rate has a mean of 1.89 percent and a standard deviation of 0.33 percent.

The second column in the bottom section of table 1 shows what would happen if we set λ =∞

but held α fixed at 4.81, so that we would be back in the standard Epstein—Zin setting where there

is no uncertainty about dynamics. The equity premium then falls from 6.3 to 1.9 percent, since the

agent exhibits no concern for long-run risk. Furthermore, because the agent no longer behaves as

if consumption growth is persistent, a shock to consumption has far smaller effects on asset prices.

The standard deviation of returns falls from 19.4 to 13.6 percent and the standard deviation of the

price/dividend ratio falls from 20 percent to exactly zero. The agent’s fear of a model with long-run

risk thus raises the mean of returns by a factor of more than 3 and the volatility by a factor of 1.4.

Going back to the first column, we see that there are large and persistent movements in the
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price/dividend ratio in our model. The one-year autocorrelation of the price/dividend ratio at 0.96

is somewhat higher than the empirical autocorrelation, while the standard deviation is 0.20, similar

to the empirical value of 0.29. These results are particularly notable given that there is no free

parameter that allows us to directly match the behavior of prices.

Volatility in the price/dividend ratio has the same source as the predictability in equity returns

discussed above: the agent prices assets under a model where consumption growth has a persistent

component. So following positive shocks, she is willing to pay relatively more, believing dividends

will continue to grow in the future. From the perspective of an econometrician, these movements

seem to be entirely due to discount-rate effects: dividend growth is entirely unpredictable, since

dividends are a multiple of consumption, and consumption follows a random walk. On the other

hand, from the perspective of the investor (or her worst-case model), there is almost no discount-

rate news. Rather, she prices the equity claim differently over time due to beliefs about cash

flows.

The bottom row of table 1 reports average gap between the yields on real 1- and 10-year zero-

coupon bonds. The term structure is very slightly downward-sloping in the model, a feature it

shares with Bansal and Yaron’s (2004) results. The downward slope is consistent with the long

sample of inflation-indexed bonds from the UK reported in Evans (1998). A thorough analysis of

the implications of our model for the term structure of interest rates is beyond the scope of this

paper, but we simply note that the implications of the model for average yields are not wildly at

odds with the data and are consistent with past work.

A final feature of the data that papers often try to match is the finding that interest rates

and consumption growth seem to be only weakly correlated, suggesting that the EIS is very small.

Since consumption growth in this model is unpredictable by construction, standard regressions of

consumption growth on lagged interest rates that are meant to estimate the EIS, such as those in

Campbell and Mankiw (1989), will generate EIS estimates of zero on average.

7.1.2 Return predictability

To quantify the degree of predictability in returns, figure 3 plots percentiles of sample R2s from

regressions of returns on price/dividend ratios in 240-quarter samples (the approximate length of

the post-war period). The gray line is the set of corresponding values from the empirical post-war
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(1950—2010) sample. We report R2s for horizons of 1 quarter to 10 years. At both short and long

horizons the model matches well. The median R2 from the predictive regressions at the ten-year

horizon is 37 percent, while in the data it is 29 percent.

7.1.3 Expectations of returns and expected returns

Greenwood and Shleifer (2014) summarize evidence from a wide range of surveys on investor ex-

pectations for equity returns. They obtain four key facts about investor expectations: they are

positively correlated with price/dividend ratios, positively correlated with past returns, negatively

correlated with future returns, and negatively correlated with statistical expectations of future

returns. Our model replicates all four of those facts.

Table 2 summarizes regression coeffi cients and correlations analyzed by Greenwood and Shleifer

(2014). All the regression coeffi cients and correlations in our model have the same sign as they

report. Specifically, a regression of investor expectations (calculated under the pricing measure) on

the log price/dividend ratio for the market yields a coeffi cient of 1.98, versus 1.08 in Greenwood

and Shleifer (the difference is within their confidence intervals). A regression of expected returns

on past returns yields a positive coeffi cient, though with a value much smaller than they observe.

In terms of forecasting, we replicate their finding that future excess returns are negatively

predicted by the price/dividend ratio and also negatively predicted by investor expectations of

future returns. The coeffi cients again differ somewhat from their reported values, but the results

are qualitatively consistent: investor forecasts run the wrong direction.

7.1.4 Probability of rejecting the worst-case dynamics

For our calibration of λ to be intuitively reasonable, the worst case model should be thought

plausible by the agent. One way of interpreting this statement is that the worst-case model should

fit a sample of data generated by the true model nearly as well as the true model itself.

We consider two tests of the fit of the worst-case model to the true white-noise consumption

process: Ljung and Box’s (1978) portmanteau test and the likelihood-based test of an ARMA(1,1)

suggested by Andrews and Ploberger (1996).21 The likelihood-based test is in fact a correctly

21The intuition behind this approach is similar to that underpinning the detection error probability (DEP) calcula-
tions of Barillas, Hansen, and Sargent (2009), which are widely used to calibrate robustness models. Although we do
not report them here, the DEPs in our case also indicate that the worst-case and benchmark models are extremely
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specified likelihood-ratio test and thus should be asymptotically most powerful. To test that the

worst-case model is the correct specification, we take a simulated sample of consumption growth,

∆ct, and construct artificial residuals,

ε
{aw,bw0 }
t ≡ (∆ct − µ− aw (L) (∆ct−1 − µ)) (bw0 )−1 (27)

Under the null that the worst-case model is the correct specification, ε
{aw,bw0 }
t should be white

noise. The Ljung—Box and Andrews—Ploberger tests both ask whether that null can be rejected.

Since consumption growth is generated as white noise, ε
{aw,bw0 }
t is in fact not i.i.d.. In a suffi ciently

large sample, an investor will be able to reject the hypothesis that consumption was driven by the

worst-case model by observing that ε
{aw,bw0 }
t is serially correlated.22

The top section of table 3 reports the probability that the agent would reject the hypothesis that

consumption growth was driven by the worst-case model after observing a sample of white-noise

consumption growth. We simulate the tests in both 50- and 100-year samples. In all four cases, the

rejection probabilities are only marginally higher than they would be if the null hypothesis were

actually true. The Ljung—Box test is the weaker of the two, with rejection rates of 4.7 and 4.8

percent in the 50- and 100-year samples, respectively, while the ARMA(1,1) likelihood ratio test

performs only slightly better, with rates of 5.6 and 6.6 percent.

Table 3 thus shows that the worst-case model, while having economically large differences from

the point estimate in terms of its asset pricing implications, can barely be distinguished from the

point estimate in long samples of consumption growth. From a statistical perspective, it is entirely

plausible that an investor would be concerned that the worst-case model could be what drives the

data. Thus both λ and α (which were calibrated jointly with only a single degree of freedom) take

on independently reasonable values.

7.1.5 Alternative calibrations of the pricing model

We derive the worst-case model endogenously, but similar models have also been assumed for

investor expectations. Bansal and Yaron (2004) argue that a model with trend shocks with a

quarterly persistence 0.94 fits the data well. Hansen and Sargent (2010) consider a setting where

diffi cult to distinguish.
22We obtain small-sample critical values for the two test statistics by simulating their distributions under the null.
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investors believe that consumption may be driven by one of two models, the more persistent of

which has a trend component with an autocorrelation of 0.99. Due to ambiguity aversion in their

model, asset prices are primarily driven by the more persistent model.

The bottom section of table 3 examines how rejection probabilities change if we modify the

pricing model to use a less persistent trend. In all rows we hold the price of risk (proportional

to bw (β)) fixed, and we simply modify the persistence of consumption growth under the pricing

(null) model. In other words, we ask how easy different models are to distinguish from white noise,

holding the price of risk under them fixed and varying their persistence.

The top row is the calibration from the main analysis, where persistence is equal to the time

discount factor. As the degree of persistence falls, the investor’s ability to reject the pricing model

in a century-long sample rapidly improves. When the persistence is 0.99, as in Hansen and Sargent

(2010), the pricing model is rejected 12.5 percent of the time —twice as often as our endogenous

worst-case model. When the persistence falls to 0.94 as in Bansal and Yaron (2004), the pricing

model is rejected 86.9 percent of the time.23 The result that the persistence of the worst-case model

should be equal to β is clearly key to ensuring that the model is diffi cult to reject in simulated

data.

7.2 Historical aggregate price/dividend ratios

To try to compare the model more directly to historical data, we now ask how the price/dividend

ratio implied by the model compares to what we observe empirically. A natural benchmark is

to treat investors’point estimate for consumption growth as a white-noise process and then use

our model to construct the historical price/dividend ratio on a levered consumption claim given

observed consumption data. As an alternative, we also try replacing consumption growth with

dividend growth, which can be motivated either by treating expectations about dividend growth

as being formed in the same way as those for consumption growth or by assuming dividends are

the consumption flow of a representative investor.

Since the average level of the price/dividend ratio depends on average dividend growth, which

we have not yet needed to calibrate, we simply set it so that the mean price/dividend ratio from

23To be clear, the statistics reported in this table do not constitute a rejection of Bansal and Yaron’s (2004)
calibration. Rather, they just quantify the statistical difference between their calibration and white noise.
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the model matches the data.

Figure 4 plots the historical price/dividend ratio on the S&P 500 from Robert Shiller against

the price/dividend ratios implied by consumption and dividend growth from 1882 to 2012 derived

from the model (see the appendix). The consumption growth data is from Barro and Ursua (2010)

(and extended by us to 2012), while the dividends also come from Shiller.24

Both the consumption- and dividend-implied price/dividend ratios perform well in matching

historical price/dividend ratios up to the late 1970’s, matching the declines in 1920 and 1929

particularly well. After 1975, the consumption-based measure no longer seems to match the data

as well, while the dividend-based measure works until the enormous rise in valuations in the late

1990’s. The full-sample correlations between the consumption- and dividend-based measures with

the historical price/dividend ratio are 39 and 50 percent respectively. If we remove the post-1995

period, the correlation rises to 60 percent for the dividend-based measure, while it falls to 32 percent

for the consumption-based measure. One possible explanation for the change in the late 1990s is

that discount rates fell persistently, as argued by Lettau, Ludvigson, and Wachter (2008). In the

end, though, figure 4 shows that our model performs well in matching historical price/dividend

ratios, at least up to the 1990s.

7.3 An AR(2) point estimate

To emphasize the robustness of the result that the ambiguity aversion we study here only affects the

very low-frequency features of consumption growth, we now analyze a case where the point estimate

for consumption dynamics is an AR(2) model. The AR(2) process we examine in this section implies

a hump in the spectral density at an intermediate frequency. This value of b̄ generates power at

business-cycle frequencies as in many economic time series of interest (see Baxter and King (1999),

for example), as illustrated by the spectral density shown in figure 5. This alternative calibration

implies that the term f̄ (ω) in (13) varies across frequencies, which allows us to ask whether variation

in estimation uncertainty across frequencies is quantitatively relevant in determining the worst-case

model.
24The dividend-based series is highly similar to the exercise carried out by Barsky and De Long (1993), who also

treat expected dividend growth as a geometrically weighted moving average of past growth rates, though without
the ambiguity motivation used here, while the series based on consumption is similar to that used by Campbell and
Cochrane (1999), but without the non-linearities they included.
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We first consider what worst-case model the agent would derive if she were constrained to min-

imize utility with respect to a transfer function implied by an AR(2). That is, utility is minimized

by choosing a worst-case {a1, a2, b0} in the model

∆ct = µ+ a1 (∆ct−1 − µ) + a2 (∆ct−2 − µ) + b0εt (28)

This is the usual approach taken in the literature; it assumes that investors know the model driving

consumption growth and they need only estimate its parameters.25

We hold the value of λ fixed at its calibration from the previous section, to ensure that the

results are comparable. We also assume that when the agent chooses a worst-case model, she

still uses the penalty function g
(
b; b̄
)
. The only difference is that bw must be an AR(2), so the

optimization problem is highly restricted.

The worst case that emerges implies the real transfer function, Bw
r (ω), plotted in figure 6; we

refer to it as the parametric worst case. The parametric worst case is essentially indistinguishable

from the point estimate — it is the gray line that lines up nearly perfectly with the black line

representing the point estimate in the figure. Intuitively, since there are only two free parameters, it

is impossible to generate the deviations very close to frequency zero that have both high utility cost

and low detectability. So, instead of large deviations on a few frequencies, as in the non-parametric

case, the parametric worst-case puts very small deviations on a wide range of frequencies.26

When we allow the agent to choose an unrestricted worst-case model, the outcome is very

similar to what we obtained for the white-noise benchmark, as shown in figure 6. The figure is

dominated by the non-parametric worst-case mainly deviating from the benchmark at very low

frequencies. Again this reflects Z (ω) being small at all but the lowest frequencies, which implies

that the worst-case leaves Br (ω) essentially unchanged at all but very low frequencies. The worst-

25See Collin-Dufresne, Johannes, and Lochstoer (2013) for a deep analysis of the case of parameter uncertainty
with Epstein—Zin preferences. Andrei, Carlin, and Hasler (2013) study a model in which investors disagree about the
persistence of trend growth rates.
26The specific parameters in the benchmark and parametric worst-case models are (dropping µ for legibility)

Benchmark: ∆ct = (0.6974)×∆ct−1 + (−0.34)×∆ct−2 + (0.0118)× εt (29)

Parametric worst case: ∆ct = (0.6996)×∆ct−1 + (−0.3478) ∆ct−2 + (0.0118)× εt (30)

The parametric worst-case model is thus nearly identical to the benchmark model. Under the benchmark, b̄ (β) =
0.01807, while under the worst case, bw (β) = 0.01825. The relevant measure of risk in the economy is thus essentially
identical under the two models, meaning that the equity premium is almost completely unaffected by parameter
uncertainty in the AR(2) model. In contrast, under the unconstrained non-parametric worst case bw (β) = 0.04049.
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case thus inherits the local peak in power at middle frequencies that we observe in the benchmark

AR(2).

8 Endogenous consumption

Throughout the paper so far, we have taken consumption as exogenous. While the analysis of

endowment economies is standard in the literature, it is a natural question in our case whether

what investors would really be worried about is the risk that their consumption is shifted by forces

beyond their control to a bad path. It seems more natural to think that in the face of uncertainty,

people would choose policies to ensure that consumption does not actually have persistently low

growth. That is, a person who believes income growth will be persistently low in the future might

simply choose to consume less now and smooth the level of consumption. In at least one important

case with endogenous consumption, though, that intuition turns out to be incorrect and our results

are unchanged.

Suppose investors have the same Epstein—Zin preferences over fixed consumption streams as

above given a known model. Rather than taking consumption as exogenous, though, they choose it

optimally. In each period, investors may either consume their wealth, Wt, or invest it in a project

with a log return rt+1. The project may be thought of as either a real or financial investment; the

only requirement is that it have constant returns to scale. The budget constraint investors face is

Wt+1 = exp (rt)Wt − exp (ct) (31)

Investors perceive the return process as taking the same MA (∞) form as above

rt = µret + bret (L) εt (32)

εt ∼ N (0, 1) (33)

As is well known, with a unit EIS, an agent will always consume a constant fraction of current

wealth, regardless of expectations for future returns. In our case, optimal consumption is,

exp (ct) = (1− β) exp (rt)Wt (34)
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The income effect from higher future expected returns is exactly offset by the substitution effect

caused by the increased price of consumption in the current period compared to future periods, so

consumption is invariant to expected future returns.

Using the budget constraint, the consumption function (34) implies

∆ct = rt + log β (35)

Consumption growth itself then directly inherits the dynamics of returns: if investors believe that

real returns to investment are persistent, then they also believe that consumption growth is persis-

tent.

A common metaphor in the ambiguity aversion literature is that people play a game with an

evil agent who chooses the worst-case model for returns conditional on the consumption policy the

agent chooses. If that game has a Nash equilibrium, then our investor’s consumption policy must be

optimal taking the worst-case model chosen by the evil agent as given. So the investor understands

that the evil agent will choose a process bwret (L), and she chooses an optimal consumption policy,

taking the return process as given. That optimal consumption policy is always to consume a

constant fraction of wealth, regardless of bwret (L). Under her forecasting model, consumption growth

then inherits the dynamics of bwret (L) through equation (35).

It is then straightforward to show that lifetime utility takes the form,

vt = ct + log (1− β) +
β

1− β log β +
β

1− β
(1− α)

2
bwret (β)2 (36)

If the worst-case process is again chosen as a minimization over lifetime utility, the worst-case

model bwret (L) takes exactly the same form as in the endowment economy since the utility cost of

uncertainty is again determined by bwret (β)2. Our analysis of worst-case persistence in consumption

growth can thus also be interpreted as worst-case persistence in the returns to financial or real

investment with endogenous consumption.
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9 Conclusion

This paper studies asset pricing when agents are unsure about the endowment process. The funda-

mental insight is that the long-run risk model, precisely because it is diffi cult to test for empirically

and yet has important welfare implications, represents a natural model for investors who are un-

sure of the true data-generating process to use for pricing assets. More technically, for an agent

with Epstein—Zin preferences who estimates consumption dynamics non-parametrically, the model

that leads to the lowest lifetime utility for a given level of plausibility displays large amounts of

long-run risk in consumption growth. In fact, when the agent’s point estimate is that consumption

growth is i.i.d., the worst-case model is literally the homoskedastic long-run risk model of Bansal

and Yaron (2004). Furthermore, the non-parametric worst-case model can differ substantially from

a parametric worst case that only features parameter uncertainty, instead of uncertainty about the

actual model driving consumption growth.

We are able to obtain solutions in a setting that previously resisted both analytic and numerical

analysis. The results show exactly what types of models agents fear when they contemplate unre-

stricted dynamics: they fear fluctuations at the very lowest frequencies. Not only do these fears

raise risk premia on average, but they also induce countercyclical risk premia, raising the volatility

of asset prices and helping to match the large movements in aggregate price/dividend ratios.

In a calibration of our model where the true process driving consumption growth is white noise,

we generate a realistic equity premium, a volatile price/dividend ratio, identical persistence for the

price/dividend ratio as what is observed empirically, returns with similar predictability to the data

at both short and long horizons, and estimates of the EIS from aggregate regressions of zero. None

of these results require us to posit that there is long-run risk in the economy. They are all driven

by the agent’s worst-case model. And we show that the worst-case model is not at all implausible:

it is rejected at the 5 percent level in less than 10 percent of simulated 100-year samples.

Economists have spent years arguing over what the consumption process is. We argue that a

reasonable strategy, and one that is tractable to solve, for an investor facing that type of uncertainty,

would be to make plans for a worst-case scenario. The message of this paper is that worst-case

planning is able to explain a host of features of the data that were heretofore viewed as puzzling

and diffi cult to explain in a setting that was even remotely rational.
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A Asymptotic distribution of the transfer function for non-parametric

estimators (assumption 1)

This section derives an asymptotic distribution for estimates of the transfer function, B (ω). Berk provides

a distribution theory for the spectral density, and we show that it can be modified to provide results for

the transfer function.

Berk (1974) studies estimates of the spectral density based on AR(p) processes. He shows (theorem

5) that if p grows with the sample size T , such that p → ∞ as T → ∞ and p3/T → 0, then the inverse

of B (ω) will be normally distributed around its true value. Specifically, define A (ω) ≡ b0B (ω)−1, where

B (ω) is b
(
eiω
)
as in the main text. A (ω) is the Fourier transform of the AR coeffi cients, A (ω) = a

(
eiω
)
.
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We consider the real and complex parts of A (ω) separately, A (ω) = ar (ω) + iai (ω). Berk shows

(T/p)1/2

[
ar (ω)− aTruer (ω)

ai (ω)− aTruei (ω)

]
∼ N

([
0

0

]
,

1

4π
I2b

2
0f

True (ω)−1

)
(A.1)

where, I2 is the 2× 2 identity matrix, ar (ω) and ai (ω) are the real and complex components of estimates

of A and f (ω) is the spectral density, and f (ω) = B (ω)B (ω)∗ =
b20

A(ω)A(ω)∗ , with an asterisk denoting the

complex conjugate. From here on we ignore the scaling factors (T/p)1/2 and 1
4π .

1

Now we have

b−1
0 B (ω) = A−1 (ω) (A.2)

=
A (ω)∗

A (ω)A (ω)∗
(A.3)

=
ar (ω)− iai (ω)

ar (ω)2 + ai (ω)2 (A.4)

We can use the delta method then to find the asymptotic distribution of the real and complex components of

B (ω), which we denote br (ω) and bi (ω). For compactness, drop the (ω) notation and the True superscripts

for now. We have

B = br + ibi (A.5)

br = ar
a2r+a2i

b0 and bi = −ai
a2r+a2i

b0

The derivatives with respect to ai and ar are

dbr
dar

=
a2
i − a2

r(
a2
r + a2

i

)2 b0 (A.6)

dbr
dai

=
−2arai(
a2
r + a2

i

)2 b0 (A.7)

dbi
dar

=
2aiar(
a2
r + a2

i

)2 b0 (A.8)

dbi
dai

=
a2
i − a2

r(
a2
r + a2

i

)2 b0 (A.9)

1 In Berk’s notation, σ2 = b20.
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The covariance matrix of [br, bi]
′ is then

(
a2i−a2r

(a2r+a2i )
2

)2

+

(
−2arai

(a2r+a2i )
2

)2
−2arai

(a2r+a2i )
2

a2i−a2r
(a2r+a2i )

2 + 2aiar

(a2r+a2i )
2

a2i−a2r
(a2r+a2i )

2

−2arai

(a2r+a2i )
2

a2i−a2r
(a2r+a2i )

2 + 2aiar

(a2r+a2i )
2

a2i−a2r
(a2r+a2i )

2

(
a2i−a2r

(a2r+a2i )
2

)2

+

(
2arai

(a2r+a2i )
2

)2

 b40f (ω)−1(A.10)

=

 1

(a2r+a2i )
b20 0

0 1

(a2r+a2i )
b20

 = I2f (ω) (A.11)

where b20
(a2r+a2i )

=
b20

A(ω)A(ω)∗ = B (ω)B (ω)∗ = f (ω). The two components of B (ω) are thus independent

with variances fTrue (ω). Finally, then, a Wald statistic (again, ignoring scaling factors) for a particular

B (ω) is (
B (ω)−BTrue (ω)

) (
B (ω)−BTrue (ω)

)∗
fTrue (ω)

(A.12)

We construct g
(
b; b̄
)
by integrating the Wald statistic across frequencies.

The original results from Berk (1974) and Brockwell and Davis (1988) include an extra restriction that

we do not impose here. The asymptotics imply that the variance of the innovations, b20, is estimated at a

faster asymptotic rate than the other lag coeffi cients. Were we to impose that part of the result, we would

add an extra constraint in the optimization problem that bw0 = b̄0 (which is a restriction on the integral

of the transfer function Bw (ω)). The results are essentially unaffected by this constraint (which we know

from the fact that in the calibration bw0 is nearly identical to b̄0).

B Alternative time-domain derivation of g
(
b; b̄
)
(assumption 1)

Brockwell and Davis (1988) show that for an MA model of order m, the coeffi cients are asymptotically

normal with a covariance matrix denoted Σm. As m→∞, Σm converges to a product,2

Σm → JTruem JTrue′m (B.1)

where JTruem ≡


bTrue0 bTrue1 · · · bTruem

0 bTrue0 · · · bTruem−1
...

...
. . .

...

0 0 · · · bTrue0

 (B.2)

A natural empirical counterpart to that variance is to replace JTrue with J̄ , defined analogously using the

point estimate b̄. The Wald statistic for the MA coeffi cients (ignoring scale factors) is then

m−1
(
b1:m − b̄1:m

) (
J̄mJ̄

′
m

)−1 (
b1:m − b̄1:m

)′ (B.3)

2The distribution result used here is explicit in Brockwell and Davis (1988). It is implicit in Berk (1974) from a simple
Fourier inversion of his result on the distribution of the spectral density estimates. Note that Brockwell and Davis (1988)
impose the assumption that b0 = 1, which we do not include here.
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where b1:m is the row vector of the first m elements of the vector of coeffi cients in the model b.

Jm is a Toeplitz matrix, and it is well known that Toeplitz matrices, their products, and their inverses,

asymptotically converge to circulant matrices (Grenader and Szegő (1958) and Gray (2006)). So Σ̄−1
m has

an approximate orthogonal decomposition, converging as m→∞, such that3

Σ̄−1
m ≈ ΛmF̄

−1
m Λ∗m (B.4)

where ∗ here represents transposition and complex conjugation, Λm is the discrete Fourier transform matrix

with element j, k equal to exp (−2πi (j − 1) (k − 1) /m), F̄m is diagonal with elements equal to the discrete

Fourier transform of the autocovariances. Now if we define the vector B to be the Fourier transform of b,

B1:m ≡ b1:mΛm, we have

m−1
(
b1:m − b̄1:m

)
Σ̄−1
m

(
b1:m − b̄1:m

)′ ≈ m−1
(
BmΛ∗m − B̄mΛ∗m

)
ΛmF̄

−1
m Λ∗m

(
B∗′mΛ′m − B̄∗′mΛ′m

)′(B.5)
= m−1

(
Bm − B̄m

)
F̄−1
m

(
Bm − B̄m

)∗ (B.6)

which itself, by Szegő’s theorem, converges as m→∞ to an integral,

m−1
(
Bm − B̄m

)
F̄−1
m

(
Bm − B̄m

)∗ → ∫ ∣∣B (ω)− B̄ (ω)
∣∣2

f̄ (ω)
dω (B.7)

This section thus provides an alternative derivation of the quadratic distance measure based on a

specific Wald statistic. An alternative and equivalent definition of the distance measure is g
(
b; b̄
)

=(
b− b̄

)
Σ̄−1

(
b− b̄

)′.
C Lifetime utility (assumption 2)

As discussed in the text, the agent’s expectation of future consumption growth, Et [∆ct+j |a, b0] is equal to

expected consumption growth at date t+ j given the past observed history of consumption growth and the

assumption that εt has mean zero. Given that the agent believes that the model {a, b0} drives consumption
growth, we can write the innovations implied by that model as

ε
{a,b0}
t = (∆ct − µ− a (L) (∆ct−1 − µ)) /b0 (C.1)

That is, ε{a,b0}t is the innovation that the agent would believe occurred given the observed history of

consumption growth and the model {a, b0}. The agent’s subjective expectations for future consumption
growth are then

Et [∆ct+j |a, b0] = µ+

∞∑
j=0

bk+jε
{a,b0}
t−j (C.2)

3Specifically, J̄m ≈ ΛmB̄mΛ∗m = Λ∗′mB̄
∗
mΛ′m, and thus J̄mJ̄

′
m ≈ ΛmB̄mΛ∗mΛmB̄

∗
mΛ∗m = Λm

(
B̄mB̄

∗
m

)
Λ∗m = ΛmF̄mΛ∗m,

where B̄m is the diagonal matrix of the discrete Fourier transform of
[
b̄0, b̄1, ..., b̄m

]
. Again, the aproximations become exact

as m→∞.
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with subjective distribution
∆ct+1 − Et [∆ct+1|a, b0]

b0
∼ N (0, 1) (C.3)

We guess that v
(
∆ct; a, b0

)
takes the form

v
(
∆ct; a, b0

)
= ct + k̄ +

∞∑
j=0

kjε
{a,b0}
t−j (C.4)

Inserting into the recursion for lifetime utility yields

k̄ +

∞∑
j=0

kjε
{a,b0}
t−j =

β

1− α logEt

exp

k̄ + µ+

∞∑
j=0

(kj + bj) ε
{a,b0}
t−j+1

 (1− α)

 |a, b0
 (C.5)

= β
(
k̄ + µ

)
+ β

∞∑
j=0

(kj+1 + bj+1) ε
{a,b0}
t−j + β

1− α
2

(k0 + b0)2 (C.6)

Matching the coeffi cients on each side of the equality yields

v
(
∆ct; b

)
= ct +

β

1− β
1− α

2
b (β)2 +

β

1− βµ+
∞∑
k=1

βk
∞∑
j=0

bj+kε
{a,b0}
t−j (C.7)

= ct +
β

1− β
1− α

2
b (β)2 +

β

1− βµ+
∞∑
j=0

( ∞∑
k=1

βkbj+k

)
ε
{a,b0}
t−j (C.8)

= ct +
β

1− β
1− α

2
b (β)2 +

∞∑
k=1

βkEt [∆ct+k|a, b0] (C.9)

D Proposition 1

The optimization problem is

Bw (ω) = arg min
b(L)

β

1− β
1− α

2

 ∞∑
j=0

bjβ
j

2

+ λ

∫ ∣∣B (ω)− B̄ (ω)
∣∣2

f̄ (ω)
dω (D.1)

= arg min
b(L)

β

1− β
1− α

2

 ∞∑
j=0

bjβ
j

2

+ λ

∫ (∑∞
j=0 exp (iωj)

(
bj − b̄j

))(∑∞
j=0 exp (−iωj)

(
bj − b̄j

))
f̄ (ω)

dω(D.2)

We guess that

Bw (ω) = B̄ (ω) + kf̄ (ω)Z (ω)∗ (D.3)
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for a real constant k. The first-order condition for bj is

0 = 2
β

1− β
1− α

2
bw (β)βj + λ

∫
exp (iωj)

(
B (ω)− B̄ (ω)

)∗
+ exp (−iωj)

(
B (ω)− B̄ (ω)

)
f̄ (ω)

dω(D.4)

= 2
β

1− β
1− α

2
bw (β)βj + λ

∫
exp (iωj) kf̄ (ω)Z (ω) + exp (−iωj) kf̄ (ω)Z (ω)∗

f̄ (ω)
dω (D.5)

= 2
β

1− β
1− α

2
bw (β)βj + 2λkβj (D.6)

where the third line follows from the definition of Z (ω) =
∑∞

j=0 β
j exp (−iωj). Clearly, then, our guess is

the correct solution if

k = −λ−1 β

1− β
1− α

2
bw (β) (D.7)

which is the result from the text,

Bw (ω) = B̄ (ω) + λ−1 β

1− β
α− 1

2
bw (β) f̄ (ω)Z (ω)∗ (D.8)

D.1 Time-domain version

The above result can also be derived using the time-domain Wald statistic. We have

bw = arg min
b

{
−β (1− α) b′zz′b + λ

(
b− b̄

)
Σ̄−1

(
b− b̄

)′} (D.9)

where z ≡
[
1, β, β2, ...

]′
and Σ̄ is the asymptotic covariance from Brockwell and Davis (1988). The solution

is (
bw − b̄

)′
= λ−1Σ̄β (1− α) zbw (β) (D.10)

The interpretation of this result is far less clear than that of the spectral version due to Σ̄. To move from

this to the spectral result, we simply use the facts that b = BΛ∗ and Σ̄ = ΛF̄Λ∗ to replace bw, b̄, and Σ̄

with Bw, B̄, and F̄ .

E Solution for non-normal innovations (proposition 1)

E.1 Lifetime utility

We now assume that εt has an arbitrary distribution (with mean zero) that is characterized by a cumulant

generating function Γ. We assume that εt is serially independent.

39



The recursion remains,

k̄ +

∞∑
j=0

kjε
{a,b0}
t−j =

β

1− α logEt

exp

k̄ + µ+

∞∑
j=0

(kj + bj) ε
{a,b0}
t−j+1

 (1− α)

 |a, b0
 (E.1)

= β
(
k̄ + µ

)
+ β

∞∑
j=0

(kj+1 + bj+1) ε
{a,b0}
t−j +

β

1− α logEt

[
exp

(
(k0 + b0) ε

{a,b0}
t+1 (1− α)

)]
(E.2)

= β
(
k̄ + µ

)
+ β

∞∑
j=0

(kj+1 + bj+1) ε
{a,b0}
t−j +

β

1− αΓ ((k0 + b0) (1− α)) (E.3)

Again, by matching coeffi cients, we obtain

v
(
∆ct; b

)
= ct +

β

1− β
1

1− αΓ (bw (β) (1− α)) +
∞∑
k=1

βkEt [∆ct+k|a, b0]

E.2 Worst-case transfer function

The optimization problem is now

Bw (ω) = arg min
b(L)

β

1− β
1

1− αΓ (bw (β) (1− α)) + λ

∫ ∣∣B (ω)− B̄ (ω)
∣∣2

f̄ (ω)
dω (E.4)

= arg min
b(L)

β

1− β
1

1− αΓ (bw (β) (1− α)) + λ

∫ (∑∞
j=0 exp (iωj)

(
bj − b̄j

))(∑∞
j=0 exp (−iωj)

(
bj − b̄j

))
f̄ (ω)

dω(E.5)

We again guess that

Bw (ω) = B̄ (ω) + kf̄ (ω)Z (ω)∗ (E.6)

for a real constant k. The first-order condition for bj is

0 =
β

1− βΓ′ (bw (β) (1− α))βj + λ

∫
exp (iωj)

(
B (ω)− B̄ (ω)

)∗
+ exp (−iωj)

(
B (ω)− B̄ (ω)

)
f̄ (ω)

dω(E.7)

=
β

1− βΓ′ (bw (β) (1− α))βj + λ

∫
exp (iωj) kf̄ (ω)Z (ω) + exp (−iωj) kf̄ (ω)Z (ω)∗

f̄ (ω)
dω (E.8)

=
β

1− βΓ′ (bw (β) (1− α))βj + 2λkβj (E.9)

where the third line follows from the definition of Z (ω) =
∑∞

j=0 β
j exp (iωj). Clearly, then, our guess is a

valid solution if

k =
−λ−1

2

β

1− βΓ′ (bw (β) (1− α)) (E.10)

Bw (ω) = B̄ (ω)− λ−1

2

β

1− βΓ′ (bw (β) (1− α)) f̄ (ω)Z (ω)∗ (E.11)
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Note also that the CGF for the standard normal distribution is Γ (x) = x2/2, so Γ′ (x) = x, so (E.10)

reduces to (D.7) when ε is a standard normal.

F Long-run risk is the worst-case (corollary 1)

Bw (ω) = B̄ (ω) + λ−1 β

1− β
α− 1

2
bw (β)× f̄ (ω)× Z∗ (ω) (F.1)

For a white-noise point estimate, B̄ (ω) = b̄0 and f̄ (ω) = b̄20. So then

∞∑
j=0

bwj e
iωj = b̄0 + ϕ

∞∑
j=0

βjeiωj (F.2)

ϕ ≡ λ−1 β

1− β
α− 1

2
bw (β)× b̄20 (F.3)

This immediately yields the result in the text, repeated here:

bw0 = b̄0 + ϕ (F.4)

bwj = ϕβj for j > 0 (F.5)

To see more clearly the equivalence (in terms of sharing the same autocovariance structure) with

the homoskedastic long-run risk system we here provide mappings between a long-run risk system to an

ARMA (1, 1) reduced form and then from the MA coeffi cients derived above to a particular ARMA (1, 1).

A long run risk system takes the form of an unobserved components model where the series of interest,

yt, is given by an AR (1) plus ‘noise’

yt = xt−1 + ηt (F.6)

xt = ρxt−1 + νt (F.7)

ηt v N
(
0, σ2

η

)
νt v N

(
0, σ2

ν

)
We shall show that the autocovariances of yt are identical to those of an ARMA (1, 1)

yt = φyt−1 + εt + θεt−1 (F.8)

εt v N
(
0, σ2

)
for an appropriate mapping between χLRR ≡ {ρ, ση, σν} and χ11 ≡ {φ, θ, σ}.

We begin by noting that the LRR representation implies

yt − ρyt−1 = νt−1 + ηt − ρηt−1 (F.9)

The term on the right hand size is a MA (1) plus ‘noise’, and therefore has a MA (1) reduced form.
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Thus, the LRR model implies an ARMA (1, 1) with an autoregressive root, ρ = φ. We consider two

representations for the right hand side

zt = νt−1 + ηt − ρηt−1 (F.10)

and

zt = εt + θεt−1 (F.11)

To obtain a mapping between {ση, σν} and {θ, σ} we match the first two autocovariances, shown in the
table below (note that zt has zero mean).

Repr.1 Repr.2

E
[
z2
t

] (
1 + ρ2

)
σ2
η + σ2

ν

(
1 + θ2

)
σ2

E [ztzt−1] −ρσ2
η θσ2

Matching the first order autocorrelation we have

θ

1 + θ2 = κ ≡
−ρσ2

η

(1 + ρ2)σ2
η + σ2

ν

so that θ solves the quadratic (assuming invertibility)

0 = aθ2 + bθ + c

a = κ

b = −1

c = κ

We can then obtain σ as

σ = ση

√
−ρ
θ

(F.12)

which completes our mapping between χLRR and χ11.

Now, we can obtain the ARMA (1, 1) parameters implied by bw by matching MA coeffi cients:

Repr.1 Repr.2

bw0 b̄0 + ϕ σ

bw1 βϕ σ (θ + φ)

bwj βbwj−1 φbwj−1
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Consequently we have that

φ = β (F.13)

θ = − b̄β

b̄0 + ϕ
(F.14)

σ = b̄0 + ϕ (F.15)

With these mappings between bw and the ARMA (1, 1) representation and between the ARMA (1, 1)

and LRR representations we can obtain the particular LRR system described in the text.

G Asset prices and expected returns

Using the Campbell—Shiller (1988) approximation, the return on a levered consumption claim can be

approximated as (with the approximation becoming more accurate as the length of a time period shrinks)

rt+1 = δ0 + δpdt+1 + γ∆ct+1 − pdt (G.1)

where δ is a linearization parameter slightly less than 1.

We guess that

pdt = h̄+
∞∑
j=0

hj∆ct−j (G.2)

for a set of coeffi cients h̄ and hj .

The innovation to lifetime utility is

vt+1 − Et [vt+1|bw] =
∞∑
k=0

βk∆Et+1 [∆ct+k|bw] (G.3)

= bw (β) ε
{a,b0}
t+1 (G.4)

where the investor prices assets as though ε{a,b0}t+1 is a standard normal.

The pricing kernel can therefore be written as

Mt+1 = β exp

(
−∆ct+1 + (1− α) bw (β) ε

{a,b0}
t+1 − (1− α)2

2
bw (β)2

)
(G.5)

The pricing equation for the levered consumption claim is
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0 = logEt

[
β exp

(
δ0 + (δ − 1) h̄+ (δh0 + γ − 1) ∆ct+1 +

∑∞
j=0 (δhj+1 − hj) ∆ct−j

+ (1− α) bw (β) ε
{a,b0}
t+1 − (1−α)2

2 bw (β)2

)
|bw
]
(G.6)

= (δh0 + γ − 1) aw (L) ∆ct +
∞∑
j=0

(δhj+1 − hj) ∆ct−j (G.7)

+δ0 +

(
1

2
(δh0 + γ − 1)2 (bw0 )2 + (δh0 + γ − 1) (1− α) bw (β) bw0

)
+ (δ − 1) h̄+ log β (G.8)

Matching coeffi cients on ∆ct−j and on the constant yields two equations,

(δ − 1) h̄+ log β = −δ0 −
(

1

2
(δh0 + γ − 1)2 (bw0 )2 + (δh0 + γ − 1) (1− α) bw (β) bw0

)
(G.9)

(δhj+1 − hj) = − (δh0 + γ − 1) awj (G.10)

And thus

h0 =
(γ − 1) aw (δ)

1− δaw (δ)

and

h̄ =
1

1− δ

[
log β + δ0 +

(
1

2
(δh0 + γ − 1)2 (bw0 )2 + (δh0 + γ − 1) (1− α) bw (β) bw0

)]
(G.11)

G.1 The risk-free rate

For the risk-free rate, we have

rf,t+1 = − logEt

[
β exp

(
−∆ct+1 + (1− α) bw (β) ε

{a,b0}
t+1 − (1− α)2

2
bw (β)2

)
|bw
]

(G.12)

= − log β + aw (L) ∆ct −
1

2
(bw0 )2 + bw0 (1− α) bw (β) (G.13)
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G.2 Expected excess returns

The expected excess return on the levered consumption claim from the perspective of an econometrician

who believes that consumption dynamics are the point estimate b̄ is

Et
[
rt+1 − rf,t+1|b̄

]
= Et

[
δ0 + (δ − 1) h̄+ (δh0 + γ) ∆ct+1 −

∑∞
j=0 (δh0 + γ − 1) awj ∆ct−j

+ log β − aw (L) ∆ct + 1
2 (bw0 )2 − bw0 (1− α) bw (β)

|b̄
]

(G.14)

= (δh0 + γ) (a (L)− aw (L)) ∆ct +
1

2
(bw0 )2 + δ0 + (δ − 1) h̄+ log β − bw0 (1− α) bw (β)(G.15)

= (δh0 + γ) (a (L)− aw (L)) ∆ct +
1

2
(bw0 )2 + δ0 (G.16)

−δ0 −
(

1

2
(δh0 + γ − 1)2 (bw0 )2 + (δh0 + γ − 1) (1− α) bw (β) bw0

)
− bw0 (1− α) bw (β)(G.17)

= (δh0 + γ) (a (L)− aw (L)) ∆ct +
1

2
(bw0 )2 (G.18)

−
(

1
2 (δh0 + γ)2 (bw0 )2 + 1

2 (bw0 )2 − (δh0 + γ) (bw0 )2

+ (δh0 + γ − 1) (1− α) bw (β) bw0

)
− bw0 (1− α) bw (β) (G.19)

= (δh0 + γ) (a (L)− aw (L)) ∆ct (G.20)

−
(

1

2
(δh0 + γ)2 (bw0 )2 − (δh0 + γ) (bw0 )2 + (δh0 + γ) (1− α) bw (β) bw0

)
(G.21)

= (δh0 + γ) (a (L)− aw (L)) ∆ct − cov (mt+1, rt+1)− 1

2
var (rt+1) (G.22)

Where

varwt (rt+1) = (δh0 + γ)2 (bw0 )2 (G.23)

cov (rt+1,mt+1) = (δh0 + γ) bw0 (−bw0 + (1− α) bw (β)) (G.24)

= − (δh0 + γ) (bw0 )2 + (δh0 + γ) (1− α) bw (β) bw0 (G.25)

Substituting in

δh0 + γ = δ
(γ − 1) aw (δ)

1− δaw (δ)
+ γ =

γ − δaw (δ)

1− δaw (δ)
(G.26)

yields the result from the text.

G.3 The behavior of interest rates

The mean of the risk-free rate is

− log β − 1

2
(bw0 )2 + bw0 (1− α) bw (β) (G.27)

And its standard deviation is

std (aw (L) ∆ct) (G.28)
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When consumption growth is white noise, this is

std (aw (L) ∆ct) = std

(β − θ)
∞∑
j=0

θj∆ct−j

 (G.29)

= (β − θ) σ∆c√
1− θ2

(G.30)

We denote the log price on date t of a claim to a unit of consumption paid on date t+ j as pj,t, and we

guess that

pj,t = φ(j) (L) ∆ct + nj (G.31)

for a lag polynomial φ(j) and a constant nj that differ with maturity.

The pricing condition for a bond is

Mt+1 = β exp

(
−∆ct+1 + (1− α) bw (β) ε

{a,b0}
t+1 − (1− α)2

2
bw (β)2

)
(G.32)

m(j) (L) ∆ct + nj = logEt

[
exp

(
log β −∆ct+1 + (1− α) bw (β) ε

{a,b0}
t+1

− (1−α)2

2 bw (β)2 + φ(j−1) (L) ∆ct+1 + nj−1

)
|bw
]

(G.33)

= log β − aw (L) ∆ct −
(1− α)2

2
bw (β)2 +

∞∑
k=0

φ
(j−1)
k+1 ∆ct−k + nj−1 (G.34)

+
1

2

((
φ

(j−1)
0 − 1

)
bw0 + (1− α) bw (β)

)2
(G.35)

Matching coeffi cients yields,

φ(j) (L) = −aw (L) +

∞∑
k=0

φ
(j−1)
k+1 Lk (G.36)

nj = log β − (1− α)2

2
bw (β)2 + nj−1 +

1

2

((
φ

(j−1)
0 − 1

)
bw0 + (1− α) bw (β)

)2
(G.37)

We also have the boundary condition that the price of a unit of consumption today is 1, so that n0 = 0

and m(0) (L) = 0.

G.4 Expectations of returns and expected returns

The risk-free rate is

rf,t+1 = − log β + µ+ aw (L) (∆ct − µ)− 1

2
(bw0 )2 + bw0 b

w (β) (1− α) (G.38)
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Expected returns are

Et
[
rt+1|ā, b̄0

]
=

γ − δaw (δ)

1− δaw (δ)
(ā (L)− aw (L)) (∆ct − µ) +

−γ − δa
w (δ)

1− δaw (δ)
bw0 [bw0 − (1− α) bw (β)]− 1

2

(
γ − δaw (δ)

1− δaw (δ)

)2

(bw0 )2 (G.39)

− log β + µ+ aw (L) (∆ct − µ)− 1

2
(bw0 )2 + bw0 b

w (β) (1− α) (G.40)

Expected returns from the perspective of the investor are

Et [rt+1|bw] =
γ − δaw (δ)

1− δaw (δ)
bw0 [bw0 − (1− α) bw (β)]− 1

2

(
γ − δaw (δ)

1− δaw (δ)

)2

(bw0 )2 (G.41)

− log β + µ+ aw (L) (∆ct − µ)− 1

2
(bw0 )2 + bw0 b

w (β) (1− α) (G.42)

The realized return is

rt+1 = δ0 + (δ − 1) h̄+ (δh0 + γ) ∆ct+1 −
∞∑
j=0

(δh0 + γ − 1) awj ∆ct−j (G.43)

h0 =
(γ − 1) aw (δ)

1− δaw (δ)

and

h̄ =
1

1− δ

[
log β + δ0 +

(
1

2
(δh0 + γ − 1)2 (bw0 )2 + (δh0 + γ − 1) (1− α) bw (β) bw0

)]
(G.44)

G.5 Results for the white-noise case for the calibration

Under the worst-case, consumption growth follows an ARMA(1,1). We have

∆ct = β∆ct−1 + εt + θεt−1 (G.45)

aw (L) = (β − θ)
∞∑
j=0

θjLj (G.46)

where θ ≡ β
(
1− ϕb̄−1

0

)
and ϕ ≡ β

1−β
α−1

2 bw (β) b̄20λ
−1.

aw (δ) =
β − θ
1− θδ (G.47)

bj = βj (β − θ) (G.48)
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The price/dividend ratio is

pdt = k̄ +
(δk0 + γ − 1) (β − θ)

1− δθ

∞∑
j=0

θj∆ct−j

and its standard deviation is
(δk0 + γ − 1) (β − θ)

1− δθ
σ∆c√
1− θ2

(G.49)

H Linking α and λ (equation 26)

H.1 KL distance

It is well known that Epstein—Zin preferences can be reinterpreted as the outcome of a robust-control model

(see Hansen and Sargent (2005) and Barillas, Hansen, and Sargent (2009)). In those models, agents form

expectations as though the innovation εt is drawn from a worst-case distribution. That distribution is

chosen to minimize lifetime utility subject to a penalty on its distance from the benchmark of a standard

normal, similarly to how we choose bw here, and that distance depends on α. The coeffi cient of relative

risk aversion in Epstein—Zin preferences, α, can therefore alternatively be interpreted as a penalty on a

distance measure. We take advantage of that interpretation of recursive preferences here.

Formally, Barillas, Hansen, and Sargent (2009) model lifetime utility as

vBHS
(
∆ct; a, b0

)
= (1− β) ct + β min

h̃(εt+1)

 Et

[
h̃(εt+1)
h(εt+1) exp

((
vBHS

(
∆ct+1; a, b0

)))
|a, b0

]
+ 1

(α−1)Et

[
h̃(εt+1)
h(εt+1) log h̃(εt+1)

h(εt+1)

]
 (H.1)

where h (εt+1) is the benchmark (standard normal) probability density for εt+1, and h̃ (εt+1) is the worst-

case density. The penalty function is

KL
(
h, h̃

)
≡ Et

[
h̃ (εt+1)

h (εt+1)
log

h̃ (εt+1)

h (εt+1)

]
(H.2)

Barillas, Hansen, and Sargent (2009) show that vBHS
(
∆ct; a, b0

)
= v

(
∆ct; a, b0

)
, where v

(
∆ct; a, b0

)
is

the utility function under Epstein—Zin preferences. We now show that the Kullback—Leibler (KL) distance

can be interpreted as a penalty on a χ2 test statistic.

Consider the case where

εt ∼ hN
(
0, σ2

)
(H.3)

εt ∼ h̃N
(
µ, σ2

)
(H.4)

The KL distance is then 1
2
µ2

σ2
. The KL distance here is related to to a rejection probability. Suppose we

take a sample of length T and split it into m equal-length groups (so we assume T is an integer multiple
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of m for the sake of simplicity). Denote the sum of εt in each of those m pieces as εi. We have

εi ∼ hN

(
0,
T

m
σ2

)
(H.5)

εi ∼ h̃N

(
T

m
µ,
T

m
σ2

)
(H.6)

So then

m∑
i=1

(
εi(

T
m

)1/2
σ

)2

∼ hχ
2
m (0) (H.7)

m∑
i=1

(
εi(

T
m

)1/2
σ

)2

∼ h̃χ
2
m

m( T
mµ(

T
m

)1/2
σ

)2
 = χ2

m

(
T
µ2

σ2

)
(H.8)

where χ2
m (k) denotes a non-central χ2 variable with m degrees of freedom and non-centrality parameter

k. Therefore, the standard χ2 test statistic
∑m

i=1

(
εi

( Tm)
1/2

σ

)2

, if the data is generated by h̃, is a χ2
m

with non-centrality parameter T µ2

σ2
. Note that the non-centrality parameter is proportional to the sample

size, showing how larger samples make it easier to reject the null given a fixed alternative. Moreover, the

non-centrality parameter does not depend on m.

Finally, we have

1

(α− 1)
KL

(
h, h̃

)
=

1

(α− 1)

1

2

µ2

σ2
(H.9)

=
1

(α− 1)

1

T

1

2

(
T
µ2

σ2

)
(H.10)

So the multiplier on the non-centrality parameter in the utility function is 1
(α−1)

1
T

1
2 .

H.2 Spectral distance

We first simply define a measure of the goodness of fit. This applies to general time series models, and is

basically a portmanteau test like Box and Pierce (1970), Ljung and Box (1978), and, most importantly,

Hong (1996).

Suppose we have data generated by b (L),

xt = b (L) εt (H.11)

where εt is i.i.d. standard normal white noise. For our measure of fit, we will filter by b̄ (L)−1, where b̄ (L)

represents the null hypothesis of the point estimate. We then have

1

b̄ (L)
xt =

b (L)

b̄ (L)
εt (H.12)

49



The way we test the fit of the model b̄ is by measuring whether b̄ (L)−1 xt is white noise.

To test for white noise, we fit an MA (m) to a sample of 1
b̄(L)

xt. m will grow with the sample size. Call

the sample lag polynomial d̂ (L). If b (L) = b̄ (L), i.e., if the null hypothesis is correct, then d̂ (L) should

equal 1 on average. We also know the distribution of the d̂ coeffi cients from Brockwell and Davis (1988).

Denote d̄ (L) = b(L)

b̄(L)
. The test statistic is

1

m

m∑
j=1

d̂2
j (H.13)

In the case where d̄ (L) = 1 (i.e. under the null), we have, using the results from Brockwell and Davis

(1988), for j > 1, and m,T →∞ (at the appropriate joint rate),

T 1/2d̂j ⇒ N (0, 1) (H.14)

and thus
1

m

m∑
j=1

T d̂2
j ⇒ χ2

m (H.15)

under the null.

More generally, Brockwell and Davis (1988) show that d̂j ⇒ N
(
d̄j , var

(
d̄ (L) εt

))
. So 1

m

∑m
j=1 T d̂

2
j is

not exactly a non-central χ2 under the alternative hypothesis that b (L) 6= b̄ (L). The difference appears

because under the alternative hypothesis the variance of the test statistic is not the same as under the

null. However, if d̄ (L) is close enough to 1 asymptotically (i.e. b is close enough to b̄), we can treat the

deviation in the variance as small.

We now define vectors, d̂ ≡
[
d̂1, d̂2, ..., d̂m

]
, d̄ ≡

[
d̄1, d̄2, ...

]
. The null hypothesis is that d̄ = 0. We

model d̄ as local to zero by defining d̄T to be the value of d̄ in a sample of size T , and setting d̄T = γT−1/.2

for some vector γ (with elements γj). A sample value of the MA polynomial in a sample of size T is

denoted analogously as d̂T . By scaling by T−1/2, we are using a Pitman drift to study local power.

We have, from Brockwell and Davis (1988),

T 1/2
(
d̂T − d̄T

)
⇒ N (0,ΣT ) (H.16)

T 1/2d̂T ⇒ N
(
T 1/2d̄T ,ΣT

)
= N (γ,ΣT ) (H.17)

where ΣT is the covariance matrix of [xt, xt−1, ..., xt−m] when xt = d̄T (L) εt. Element i, j of ΣT is

cov (xt−i, xt−j). For j 6= 0, we have

cov (xt, xt−j) =
∞∑
k=0

d̄Tk d̄
T
k+j (H.18)

= γjT
−1/2 + T−1

∞∑
k=1

γkγk+j (H.19)
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where the first term comes from the fact that d̄T0 = 1. For j = 0,

cov (xt, xt) = 1 +
∞∑
k=1

(
d̄Tk
)2

(H.20)

= 1 + T−1
∞∑
k=1

γ2
k (H.21)

We then define two matrices. Ω1 has element (h, j) equal to
∑∞

k=1 γkγk+|h−j| and Ω2 has element (h, j)

equal to γ|h−j| if h− j 6= 0, and 0 if h = j. Finally, then

ΣT = I + T−1Ω1 + T−1/2Ω2 (H.22)

We then have

T 1/2d̂T ⇒ N
(
T 1/2d̄T , I + Ω1T

−1 + Ω2T
−1/2

)
(H.23)

T 1/2
(
d̂T − d̄T

)
⇒ εI + εΩ1T

−1/2 + εΩ2T
−1/4 (H.24)

where εx is a mean-zero normally distributed vector of innovations with covariance matrix x, for x ∈
{I,Ω1,Ω2}. Therefore

T
(
d̂T − d̄T

)(
d̂T − d̄T

)′
= εIε

′
I + εΩ1ε

′
Ω1T

−1 + εΩ2ε
′
Ω2T

−1/2 (H.25)

+2εIε
′
Ω1T

−1/2 + 2εIε
′
Ω2T

−1/4 + 2εΩ1ε
′
Ω2T

−3/4 (H.26)

The terms involving negative powers of T approach zero asymptotically, so we have(
T 1/2d̂T − T 1/2d̄T

)(
T 1/2d̂T − T 1/2d̄T

)′
≈ εIε

′
I = χ2

m (0) (H.27)(
T 1/2d̂T

)(
T 1/2d̂T

)′
≈ χ2

m

(
T d̄T d̄T ′

)
(H.28)

That is, the test statistic is a non-central χ2
m, with non-centrality parameter T d̄T d̄T ′.

Now, finally, we want to compute the test statistic. For any alternative hypothesis d̄T , and defining

D̄T (ω) = d̄T
(
eiω
)
, we have∫ ∣∣D̄T (ω)− 1

∣∣2 dω =

∫ ∣∣D̄T (ω)
∣∣2 − D̄T (ω)− D̄T (ω)∗ + 1dω (H.29)

=

∫ ∣∣D̄T (ω)
∣∣2 − 1dω (H.30)

=
∞∑
j=1

(
d̄Tj
)2

= d̄T d̄T ′ (H.31)

where the second line follows from the fact that
∫
D̄T (ω) = d̄T0 = 1, and the third line is then just Parseval’s

theorem. So we have that for a given m,
∫ ∣∣D̄T (ω)− 1

∣∣2 dω is equal to the non-centrality parameter in the
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χ2
m when you generate data under the model Bw and test the null that the data was driven by B̄.

Now note that
∫ ∣∣D̄T (ω)− 1

∣∣2 dω is exactly our g (b) from the text. Specifically,

∫ ∣∣D̄T (ω)− 1
∣∣2 dω =

∫ ∣∣∣∣b (L)

b̄ (L)
− 1

∣∣∣∣2 dω (H.32)

=

∫ ∣∣∣∣b (L)− b̄ (L)

b̄ (L)

∣∣∣∣2 dω (H.33)

=

∫ ∣∣b (L)− b̄ (L)
∣∣2

f̄ (L)
dω (H.34)

So we have that

g (b) =
∞∑
j=1

(
d̄Tj
)2

= d̄T d̄T ′ (H.35)

λg (b) = λd̄T d̄T ′ (H.36)

=
λ

T

(
T d̄T d̄T ′

)
(H.37)

Therefore λT−1 is what multiplies the non-centrality parameter in a χ2 specification test, the same as
1

(α−1)
1
T

1
2 multiplies a non-centrality parameter on the KL distance. To equate them, we say

1

1− β
1

(α− 1)

1

T

1

2
= λT−1

The extra term multiplying the left-hand side reflects the fact that the penalty on the dynamic model

ambiguity is paid only once, while the penalty on the ε ambiguity is paid in every period.

Solving for α yields

α = 1 +
1

2λ (1− β)
(H.38)

I Endogenous consumption

Suppose the agent can invest in a single asset that faces log-normal shocks. The recursion for lifetime

utility is

vt = max
ct

(1− β) ct +
β

1− α logEt exp ((1− α) vt+1) (I.1)

Wealth follows

Wt+1 = RtWt − Ct (I.2)

where C = exp (c) and R = exp (r). Think of Wt measuring investment in some technology that shifts

consumption across dates. It might be a financial asset or it might be a real investment project with payoff

Rt. It might also represent storage.

Now suppose

rt ≡ logRt = b (L) εt (I.3)
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Lower-case letters are logs. We guess that vt = v̄ + vw (wt + rt) +
∑∞

j=0 vjεt−j . The optimization problem

is then

max
ct

(1− β) ct +
β

1− α logEt exp

(1− α)

v̄ + vw (log (RtWt − Ct) + rt+1) +
∞∑
j=0

vjεt+1−j

(I.4)
= max

ct
(1− β) ct + β

v̄ + vw log (RtWt − Ct) +
∞∑
j=1

(vwbj + vj) εt+1−j

+
1

2
β (1− α) (vw + v0)2 b20(I.5)

The first-order condition for consumption is

1− β
Ct

=
βvw

RtWt − Ct
(I.6)

vwβCt = (1− β) (RtWt − Ct) (I.7)

Ct =
(1− β)RtWt

vwβ + (1− β)
(I.8)

So then,

RtWt − Ct = RtWt −
(1− β)RtWt

vwβ + (1− β)
(I.9)

= RtWt
vwβ

vwβ + (1− β)
(I.10)

We can then plug optimal consumption back into the equation for lifetime utility (starting from the point

above where we already took the log-normal expectation)

v̄ + vw (wt + rt) +

∞∑
j=0

vjεt−j = (1− β) log
(1− β)RtWt

vwβ + (1− β)
+
β (1− α)

2
(vwb0 + v0)2 + (I.11)

β

v̄ + vw log

(
RtWt

vwβ

vwβ + (1− β)

)
+
∞∑
j=1

(vwbj + vj) εt+1−j

(I.12)
Matching coeffi cients (noting that (wt + rt) = logWtRt)

vw = (1− β) + βvw = 1 (I.13)

vj = β (vwbj+1 + vj+1) (I.14)

So for v0,

v0 = βb1 + βv1 (I.15)

=

∞∑
j=1

βjbj (I.16)

53



We then have

v̄ = (1− β) log (1− β) + β (v̄ + log β) +
β (1− α)

2
b (β)2 (I.17)

= log (1− β) +
β

1− β log β +
β (1− α)

(1− β) 2
b (β)2 (I.18)
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Figure 1. Weighting function Z
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Figure 5. Spectral density of  benchmark AR(2) process (coefficients = {0.70, -0.35})
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Table 1: Asset pricing moments for the white-noise benchmark
Fundamental parameters Implied worst-case
b0 Cons. vol. point est. 0.0147 b0

w 0.015
b(β) Long-run vol. point est. 0.0147 bw(β) 0.039
μ Mean cons. growth 0.0045 θ 0.989312
β Time discount 0.997
λ Ambiguity aversion 52.23 Standard Epstein–Zin / robust-control

α RRA (implied by λ) 4.81 b0 0.0147
γ Leverage 4.626 b(β) 0.0147

Asset pricing moments (annualized)
Model Standard EZ Data

std(M) 0.33 0.14 N/A
E[r-rf] 6.33 1.91 6.33
std(r) 19.42 13.55 19.42
E[rf] 1.89 2.43 0.86
std(rf) 0.33 0 0.97
AC1(PD) 0.96 N/A 0.81
std(P/D) 0.20 0 0.29
E[y10-rf] -15bp 0 N/A
EIS estimate 0 N/A 0.14

Notes: Moments from the model with a white-noise benchmark process for consumption growth. The "standard  
Epstein–Zin" results are for where the agent is sure of the consumption process. For the asset pricing moments, r is the 
log return on the levered consumption claim, and rf is the risk-free rate. P/D is the price/dividend ratio for the levered 
consumption claim. The values in the data treat the aggregate equity market as analogous to the levered consumption 
claim. E[y10-rf] is the average spread between annualized yields between a one-quarter and a ten-year real riskless zero-
coupon bond in basis points The EIS estimate is based on a regression of consumption growth on interest rates. In the 
second column interest rates are constant, so the regression is degenerate.



Table 2. Expectations of returns and expected returns
Regressions
Dependent var. Independent var. Coefficient Value in Greenwood and Shleifer (2014)
Et[rt+1|bw] log pt/dt 1.68 1.08

Et[rt+1|bw] rt 0.0034 0.0334
rt+1-rf,t+1 log pt/dt -10.57 -0.07
rt+1-rf,t+1 Et[rt+1|bw] -6.3 -1.61

Correlations

Corr(Et[rt+1|bw],log pt/dt) -1 -0.3
Corr(Et[rt+1|bw],Et[rt+1|b) -1 N/A

Notes: Regressions and correlations involving expectations for returns calculated under investors' pricing model. The 
statistics are calculated for the case with the white-noise point estimate. The values from Greenwood and Shleifer (2014) 
are for their index of survey-based expectations. 



Table 3. Probability of rejecting the pricing model
Rejection probs. (5% critical value, H0=worst-case model)

50-year sample 100-year sample
Ljung–Box 4.7% 4.8%
ARMA(1,1) 5.6% 6.6%

ARMA(1,1) rejection probabilities for alternative persistence in pricing model
Persistence 100-year sample

0.9975 6.6% (Our worst case)
0.995 7.7%
0.99 12.9% (Hansen and Sargent (2010))
0.98 27.1%
0.94 86.6% (Bansal and Yaron (2004))

Notes: Rejection probabilities are obtained by simulating the distributions of the three statistics in 50- and 100-year 
simulations of the cases where consumption growth is generated by the worst-case and white-noise models and 
asking how often the test statistics in the latter simulation are outside the 95% range in the former simulation. In 
the bottom section, persistence is reduced but the price of risk in the pricing model is held constant.
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