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Abstract 

 

Farmers’	
  decisions	
  about	
  how	
  much	
  crop	
  insurance	
  to	
  buy	
  are	
  not	
  generally	
  consistent	
  with	
  
either	
  expected	
  profit	
  or	
  utility	
  maximization.	
  They	
  do	
  not	
  pick	
  coverage	
  levels	
  that	
  maximize	
  
expected	
  subsidy	
  nor	
  do	
  they	
  demand	
  full	
  insurance	
  coverage.	
  In	
  addition,	
  the	
  absolute	
  size	
  of	
  
farmer-­‐paid	
  premium	
  seems	
  to	
  influence	
  the	
  type	
  of	
  insurance	
  product	
  farmers	
  buy.	
  
Understanding	
  demand	
  drivers	
  for	
  crop	
  insurance	
  has	
  taken	
  on	
  new	
  importance	
  because	
  of	
  the	
  
expanded	
  role	
  Congress	
  has	
  designated	
  for	
  crop	
  insurance	
  as	
  a	
  key	
  part	
  of	
  Federal	
  farm	
  policy.	
  
By	
  modeling	
  financial	
  outcomes	
  as	
  gains	
  and	
  losses,	
  prospect	
  theory	
  offers	
  an	
  appropriate	
  
framework	
  to	
  better	
  understand	
  farmers’	
  purchase	
  decisions.	
  Because	
  insured	
  events	
  are	
  best	
  
modeled	
  as	
  continuous	
  random	
  variables,	
  cumulative	
  prospect	
  theory	
  is	
  used	
  to	
  find	
  a	
  
theoretical	
  foundation	
  that	
  can	
  explain	
  farmers’	
  anomalous	
  decisions.	
  The	
  role	
  of	
  the	
  reference	
  
point	
  that	
  defines	
  outcomes	
  as	
  either	
  a	
  gain	
  or	
  a	
  loss,	
  the	
  degree	
  of	
  loss	
  aversion,	
  and	
  the	
  
probability	
  weighting	
  function	
  are	
  explored	
  under	
  typical	
  distributions	
  of	
  price,	
  yield,	
  and	
  
revenue	
  for	
  a	
  corn	
  producer.	
  Choice	
  of	
  reference	
  points	
  that	
  are	
  consistent	
  with	
  farmers	
  using	
  
crop	
  insurance	
  to	
  manage	
  risk	
  are	
  not	
  consistent	
  with	
  observed	
  purchase	
  decisions.	
  Choosing	
  
the	
  reference	
  point	
  to	
  make	
  crop	
  insurance	
  akin	
  to	
  a	
  stand	
  alone	
  investment	
  generates	
  optimal	
  
choices	
  that	
  are	
  consistent	
  with	
  observed	
  decisions	
  and	
  with	
  the	
  way	
  that	
  insurance	
  agents	
  sell	
  
the	
  product.	
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Using Prospect Theory to Explain Anomalous Crop Insurance Coverage Choice 

A missing market justification for subsidizing the provision of crop insurance seems 

plausible because of findings that the systemic nature of claims leads to an inability to 

pool losses, which leads to underprovision of crop insurance (Miranda and Glauber 

1997). The argument is that private insurers would not supply enough crop insurance to 

meet the private demand for insurance by farmers. The standard assumption that farmers 

are risk averse expected utility maximizers creates an automatic demand for crop 

insurance because risk averters will demand full insurance if insurance is actuarially fair 

(Arrow 1974). If risk aversion is the motivation for farmers purchasing insurance, and if 

premiums are set at actuarially fair levels then we should see farmers buying 85% 

coverage, which is the highest coverage for farm-level crop insurance allowed. 

According to USDA’s Risk Management Agency’s summary of business reports, 

aggregating across corn, soybeans, wheat and cotton in 2013, only 12% of insured acres 

were insured at the 85% coverage level; 20% were insured at 80%; 28% were insured at 

75%; 21% at 70% and 18% were insured at the 65% coverage level or lower. It is clear 

that farmers are not demanding more insurance than they can purchase. 

One explanation for a lack of demand for full coverage is that premiums are 

loaded. Risk averters will demand less than full coverage with loaded premiums 

(Pashigian, Schkade, and Menefee, 1966). But the evidence is overwhelming that crop 

insurance premiums are subsidized, not loaded. The level of premium subsidy can be 

calculated either by the nominal premium subsidy rate that varies by the coverage level a 

farmer selects or by the extent to which historical indemnities paid to producers have 

exceeded premiums paid by producers. The nominal subsidy rate varies from 38% at the 

85% coverage level available to 67% at the 50% coverage level. Figure 1 provides data 
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that shows indemnities paid to farmers have exceeded indemnities in every year since 

2001. The implied average annual premium subsidy over this time period is 50%.  

The large dispersion in insurance coverage across producers suggests that farmers 

generally do not buy the level of coverage that maximizes per-acre subsidies. To 

demonstrate this better requires a lower level of aggregation. In Jasper County, Iowa, 

Risk Management Agency summary of business data shows that per-acre premium 

subsidies in 2013 for soybean farmers who purchased Revenue Protection, ranged from a 

low of $7.07 per acre at the 65% coverage level to a high of $19.13 per acre at the 85% 

coverage level. The 80% subsidy was $17.32 per acre. But less than 25% of soybean 

acreage was insured at the 85% coverage level. A total of 64% was insured at either 80% 

or 75%.  

If farmers do not maximize expected utility or expected profit, what do they 

maximize? The answer to this question has policy implications because understanding 

why farmers buy crop insurance is needed to determine the impact of participation if 

subsidy levels are changed. One possibility is that farmer preferences for crop insurance 

can be captured by prospect theory (Kahneman and Tversky 1979; Tversky and 

Kahneman 1992). The key features of prospect theory is the reference point that 

distinguishes gains from losses, the degree of loss aversion, and the weighting function. 

Eckles and Wise (2013) show that how insurance is framed by choice of the 

reference point in prospect theory can change the value of insurance and the level of the 

insurance deductible chosen. When crop insurance is used to manage risk from farming it 

seems natural to use a reference point that calculates gains and losses accounting for 

market income, the premium paid for insurance, and any indemnity received. A reference 
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point that accomplishes this is initial wealth. If net income from farming, including the 

cost of insurance and any insurance indemnity received, is positive then final wealth will 

exceed initial wealth and a gain is felt. As will be demonstrated, this natural view of how 

crop insurance should be framed does not generate optimal coverage levels that are 

consistent with farmers’ observed choices. Treating crop insurance as a risk management 

strategy under prospect theory generates insurance demand that is consistent with 

expected utility theory. That is, farmers will buy full insurance if it is actuarially fair.  

An alternative reference point is motivated by Brown et al. (2008) who argue that 

consumers view insurance as an investment and judge its value on the basis of insurance 

gains or losses in isolation from the effects of insurance on overall income or 

consumption. This way of viewing crop insurance treats it not as a risk management tool 

but rather as a simple investment or lottery. A loss occurs when the premium paid is 

greater than the indemnity. A gain occurs when the indemnity exceeds the premium paid.  

This view of crop insurance is consistent with educational material at a prominent 

educational website (farmdoc) that shows the historical pattern of gains and losses from 

buying crop insurance. Furthermore, some agents use the historical record of payouts and 

premiums to sell crop insurance on the basis of the odds that indemnities will exceed 

premium paid. 

This paper makes two contributions. First, it demonstrates a practical way to 

implement prospect theory to evaluate choices involving the types of risks and models 

often used by agricultural economists. Second, it shows that modeling crop insurance as 

an investment leads to simulated optimal coverage levels that are consistent with how 

much crop insurance actually buy. The results are consistent with earlier findings (Just, 
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Calvin and Smith (1999); Goodwin (1993)) that crop insurance is viewed by producers as 

a form of income support rather than as a risk management tool. 

 

Implementation of Cumulative Prospect Theory Using Monte Carlo Simulation 

To run simulations using cumulative prospect theory requires specification of a value 

function, a probability weighting function, and a cumulative distribution function. The 

value function used here is taken directly from Tversky and Kahneman (1992): 
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where x is a monetary gain or loss, λ  determines the degree of loss aversion, and α  

determines the curvature of the value function for gains and losses. The decision weight 

( )pπ given to each value of x depends on the probability p of that value occurring. The 

overall value of an uncertain prospect that can take on N values is the weighted average 

of the value of each outcome with weights given by the decision weights:  

1
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Tversky and Kahneman (1992) propose a cumulative probability modification of 

their original theory. This modification ranks the gains from lowest gain to highest gain 

and the losses from lowest loss to highest loss. The decision weight for any gain xi 

depends on the probability of achieving a gain larger than xi and the probability of 

achieving a gain that is at least as large as xi. If probability weights equal probabilities 

then the decision weight just equals the difference in cumulative probabilities, which, by 

definition, is equal to the probability of xi occurring. But decision weights do not, in 

general, equal probabilities. Tversky and Kahneman (1992) propose a probability 
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weighting function designed to allow for underweighting of moderate and high 

probabilities and overweighting of low probabilities: 

1/ 1/( ) ; ( )
( (1 ) ) ( (1 ) )

p pw p w p
p p p p

γ δ

γ γ γ δ δ δ
+ −= =

+ − + −
   (2) 

 If there are n possible gains, then the decision weight for any gain i is: 

1( ... ) ( ... ); ( )i i n i n n nw p p w p p w pπ π+ + + + +
+= + + − + + =    (3) 

If there are m possible losses, then the decision weight for any loss i is: 

1( ... ) ( ... ); ( )i i i
i m i m i m mw p p w p p w pπ π− −

−= + + − + + =   (4) 

The decision weight of any outcome under this formulation equals the incremental value 

of the weighting function at each possible outcome. This formulation suggests a way to 

implement cumulative prospect theory numerically when there is no closed form solution 

for the distribution of outcomes.  

Let F(r) be the cumulative distribution function of revenue that will be insured by 

crop insurance. Let xi be a random draw from F(r), N be the total number of draws, and 

rref be the reference value of revenue such that all values less than rref are losses and all 

values greater than rref are gains. Let N+ be the number of gains and N- be the number of 

losses. Now order the gains from smallest to largest gain, and order the losses from 

smallest to largest lost. By definition the probability of any of the N draws is 1/N. Thus 

the probability that a gain will be greater than the smallest possible gain is given by 

1N
N

+ − . The probability of a gain equal to or greater than the smallest gain is given by 
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N
N

+

. Therefore, following (3) the decision weight for the smallest gain is 

1( ) ( )N Nw w
N N

+ +
+ + −

− . Similarly, the decision weight assigned to the second to smallest 

gain is 1 2( ) ( )N Nw w
N N

+ +
+ +− −

− . The decision weight given to the largest gain would be 

1( )w
N

+ .  

For losses, the decision weight for the smallest loss using equation (4) is 

1( ) ( )N Nw w
N N

− −
− − −

− . The decision weight for the second-to-smallest loss is

1 2( ) ( )N Nw w
N N

− −
− −− −

− , and the decision weight for the largest loss is 1( )w
N

− . Using 

draws from a distribution with no closed form solution is a standard way of calculating 

probabilities. Extending this use of Monte Carlo methods to implementation of 

cumulative prospect theory replaces equal weighting of all outcomes with unequal 

weights determined by the difference in the weighting function between two adjacent 

outcomes, which approximates the derivative of the weighting function. If the parameter 

in the probability weighting functions for gains and losses are both equal to one, then this 

procedure reduces to equal weighting used by Monte Carlo methods. If, in addition, the 

loss aversion parameter and the value function parameter both equal one, then this 

procedure simply calculates expected value of the outcome. Thus by varying the 

parameters of the value function, one can isolate the effects of loss aversion from risk 

seeking and risk averse behavior. By varying the parameters of the probability weighting 

function, one can determine the effects of using decision weights instead of probabilities. 
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Modeling the Distribution of Corn Revenue in Iowa  

Numerical implementation of cumulative prospect theory to explore valuation of crop 

insurance requires specification of the cumulative distribution function of the risk. In the 

simulations that follow this distribution is obtained by taking correlated draws from a 

representative yield distribution and a representative price distribution following Babcock 

and Hennessy (1996). Harvest price is assumed to be log-normally distributed with a 

mean of $3.72 per bushel and a volatility of 20%. Yield is assumed to be beta-distributed 

with a mean of 170 bushels per acre, a maximum yield of 242 bushels per acre, a 

minimum of 17 bushels per acre, and a standard deviation of 38.22. This parameterization 

of the yield distribution is calibrated to an average corn farmer in Hamilton County, 

Iowa. The distribution generates expected indemnities that are consistent with current 

crop insurance rates for yield-only insurance. The correlation between price and yield is 

set at -0.5. The resulting cumulative distribution function of revenue has no analytical 

function form. Random draws from the distribution are used to show the form of the 

distribution in figure 2. This distribution was constructed by calculating 5,000 revenue 

draws from 5,000 correlated yield and price draws. The draws are ranked from low to 

high and a weight of 1/5000 is assigned to each of the draws to form the distribution.  

 

Implementation of Cumulative Prospect Theory 

A key feature of prospect theory is the reference point that distinguishes between gains 

and losses and the degree of loss aversion. A loss aversion coefficient of 2.25, which was 

the median coefficient found in a series of experiments conducted by Tversky and 

Kahneman (1992) means that a person values avoiding a loss 2.25 times as much as 

obtaining the same magnitude of gain. Suppose a representative farmer has an initial 
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wealth level of w0. Revenue from farming is r, and the cost of production is c. Final 

wealth will be wf = w0 + r – c. If r – c  > 0 then the farmer’s final wealth is greater than 

initial wealth and a gain is felt. If r – c < 0, then the farmer feels a loss. Thus it seems 

natural to set the reference revenue level as the amount of revenue needed by a grower to 

cover their cash production costs using prospect theory. 

When cash costs are above available insurance guarantees then insurance 

indemnities will be paid but the farmer will still feel a loss. When cash costs are below 

available insurance guarantees, as they arguably are when market prices are high, then 

indemnities could be paid even when market revenue is sufficient to cover cash costs and 

no loss would be felt even without insurance. To capture these two situations we could 

vary expected market price or we could vary cash costs. Varying the expected market 

price would represent how the crop insurance program works in different years in the 

same region. Varying cash costs would represent how crop insurance works in a given 

year across regions with different cash costs. Below we vary cash costs to illustrate how 

the relationship between insurance guarantees and cash costs affect the value of crop 

insurance.  

High cash costs relative to expected market prices and insurance guarantees are 

represented by a break-even reference point of $600. Low cash costs are represented by a 

reference point of $400. Mean revenue is $618.23. The annual per-acre value of farming 

for this representative producer is found by first transforming 5,000 revenue draws from 

the figure 2 revenue distribution into 5,000 losses and gains. Losses and gains are 

calculated by subtracting the reference point from each revenue draw. The probability of 

a loss is the number of losses divided by 5,000. The expected gain is the simple average 
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of all gains and losses. Total value is calculated by summing the total value of gains and 

the total value of losses. The total value of losses is determined by calculating the value 

of each loss by equation (1), multiplying this value by the decision weight calculated by 

equations (3) and (4), and then summing over all losses. The total value of gains is 

calculated similarly. 

Certainty equivalent returns is the certain amount of money that makes a decision 

maker indifferent between taking the money and taking the risk of a gain or loss. The risk 

premium equals the expected gain minus certainty equivalent returns. Figure 3 shows 

how certainty equivalent returns are calculated when the total value of the risk is positive 

and negative. When total value equals V1, certainty equivalent returns equals CER1 in 

figure 3. It is calculated using the value function defined over gain because the total value 

is a gain. When total value equals V2, certainty equivalent returns equals CER2 using the 

value function defined over losses.  

Table 1 shows the impact of the reference point, loss aversion, curvature of the 

value function, and the probability weighting function parameters on certainty equivalent 

returns and the risk premium. When the probability of a loss is small, as it is when the 

reference point is $400, the impact of loss aversion, as measured by the risk premium of 

$3.47, is small. Increasing the reference point to $600 increases the risk premium to 

$35.32. The higher reference point also makes total value go negative, which is reflected 

by negative certainty equivalent returns.  

Adding curvature to the value function has two effects. The first is that for any 

given level of total value, adding curvature makes certainty equivalent returns more 

positive (less negative) when total value is positive (negative) simply by adding more 
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concavity (convexity) to the value function. But curvature also affects total value. Large 

gains and losses have less impact on total value when curvature is increased so adding 

curvature reduces total value when it is positive and increases total value when it is 

negative. The two effects work together to reduce the risk premium when total value is 

negative. The two effects work opposite each other when total value is positive. In table 

1, the risk premium increases from $3.47 to $10.98 when curvature is added. 

Figure 4 shows how the probability weighting functions work for both gains and 

losses when the reference point is $600. The values of the parameters are set equal to 

those used by Tversky and Kahneman (1992) reported in table 1. As shown the 

probability weighting functions undervalue small probabilities and overvalue moderate 

probabilities. But recall that decision weights are determined by the slope of these 

functions, not by their level. Using the $600 reference point figure 5 shows how the 

decision weights for gains change as cumulative probability increases compared to using 

marginal probabilities directly. The probability weighting functions result in large 

overweighting of small probability events and underweighting of almost all other events. 

Subadditivity is evident with these weighting functions also. The sum of decision weights 

shown in Figure 5 is 0.43. The cumulative probability is 0.536. Adding the probability 

weighting function increases the risk premium from $10.98 to $47.03 when the reference 

point is $400. The risk premium is changed a small amount when the reference point is 

$600. The substantial increase when the reference point is $400 largely reflects 

subadditivity because the drop in total value reflects the lower average decision weight. 

This lower total value translates into lower certainty equivalent returns which in turns 

implies a higher risk premium.   
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This preliminary discussion of how cumulative prospect theory can be implemented 

using Monte Carlo draws from a revenue distribution reveals the importance of the 

reference point, the value function, and the probability weighting function in determining 

total value and the resulting risk premium. The large effect that the reference point and 

subadditivity can have in determining the risk premium shows the importance of 

determining the value of insurance holding constant the reference point and the 

probability weighting function.  

Value of Crop Insurance  

Insurance is valued under expected utility maximization because it is typically assumed 

that the utility function is concave in wealth. Full insurance is demanded when the 

insurance premium is set at actuarially fair levels. Partial insurance is optimal under 

expected utility when an insurance load is applied. Consumer demand for low deductible 

insurance with loaded premiums has long been known to exceed levels predicted by 

expected utility (Pashigan, et al 1966). Rabin (2000) demonstrates that support for a 

globally concave utility function is weak, which led to efforts by Koszegi and Rabin 

(2006, 2007, 2009) to explain this anomalous demand with prospect theory preferences. 

This series of papers imposed linear utility, which runs counter to the Kahneman and 

Tversky’s (1978) finding that people are risk averse in gains and risk seeking in losses. 

Eckles and Wise (2013) relax this linearity assumption and focus on the reference point 

to explain the demand for low deductible policies. They show that when insurance 

preferences are modeled using prospect theory then full insurance is demanded if 

premiums are actuarially fair.  However, their paper does not incorporate probability 

weighting functions that are used to determined decisions weights under cumulative 
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prospect theory. The purpose of the Eckles and Wise (2013) paper is to show that 

prospect theory preferences induce demand for low deductible insurance even if 

premiums contain a load. The purpose of this study is to see if prospect theory can 

explain less-than-full insurance when premiums are subsidized.  

Preference ranking over insurance alternatives is given by simulated certainty 

equivalent returns holding constant the degree of loss aversion, the curvature of the value 

function, the probability weighting function parameters, and the reference point. If 

certainty equivalent returns at a given deductible is higher than certainty equivalent 

returns without crop insurance, then crop insurance will be purchased. The coverage level 

(value of the deductible) that maximizes certainty equivalent returns will be assumed to 

be optimal. 

The most widely-used form of crop insurance in the United States is called 

Revenue Protection. This product establishes an initial revenue guarantee before a crop is 

planted that equals up to 85% of the product of expected price and expected yield. If the 

price at harvest moves higher than this expected price then the guarantee is revised by 

replacing expected price with harvest price the calculation. A more straightforward 

product is called Revenue Protection – Harvest Price Exclusion, which does not allow 

revision of the guarantee. An insurance indemnity is paid if the product of harvested yield 

and harvest-time price is less than the final revenue guarantee. The amount of the 

indemnity is the difference between the guarantee and harvest revenue. 

To begin, the value of crop insurance with actuarially fair premiums at different 

deductibles levels is simulated using the same parameter values and cash costs in table 1.  

Total value without insurance is simulated by setting the coverage level equal to zero. 
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The crop insurance premium is included as an optional cost of doing business. When an 

indemnity I occurs, it is added to revenue. We initially set max( ,0)gI r r= −  where 

( ) ( ) 3.72 170gr E P E Yα α= = ⋅ ⋅ , where ( )E P  is expected price, ( )E Y is expected yield, 

market revenue at harvest is r and α  is the coverage level. Market revenue at harvest is 

the product of actual yield and actual price at harvest. This indemnity formula is 

consistent with RP-HPE (Revenue Protection with the Harvest Price Exclusion), a 

revenue insurance product sold throughout the United States because the insurance 

guarantee does not increase if the price at harvest is greater than expected price. With 

production costs of c final wealth is greater than initial wealth with insurance when r + I 

– c – p > 0, or when r + I  – p >  c.  Thus c defines the reference level of revenue, 

assuming that net revenue from insurance is added to revenue from farming when 

determining if there is a gain or loss. If no indemnity is received a loss will be felt if r – p 

< c. If the insurance guarantee is less than c, then whenever an indemnity is paid, a loss 

will be felt. If the insurance guarantee is greater than c, then even when an indemnity is 

paid, a gain may be felt. 

Table 2 presents the first set of results modeling crop insurance for the two 

reference points for coverage levels varying from 65% to 85%. Also included are a 

hypothetical 100% coverage level and the results under no insurance. Crop insurance 

with the low cash cost of $400 per acre eliminates all losses. With the $600 reference 

level the probability of a loss actually increases as coverage increases because paying the 

premium can turn a gain into a loss and the insurance guarantee minus the premium is 

always below 600. Increasing the probability of a loss should decrease value because of 

loss aversion. But the table 2 results show that benefit of reducing the severity of losses 
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with insurance outweighs the greater frequency of a loss and certainty equivalent returns 

increase with coverage level with the 600 reference point. It is not surprising that 

certainty equivalent returns increase with coverage level with the 400 reference point 

because the 65% coverage level eliminates any chance of a loss, which means that loss 

aversion no longer affects value. Only the concave value function and the probability 

weighting function determine total value and both tend to favor insurance. The last two 

columns of Table 2 show the value of insurance, which is calculate as the difference 

between certainty equivalent returns with insurance and without insurance. As shown, the 

value of insurance is less with the 600 reference point than the 400 reference point. This 

suggests that when insurance increases the chances of a loss, then it has less value then 

when it allows a producer to lock in a gain. Because the value of insurance increases with 

coverage level, treating crop insurance as a risk management tool does not generate 

predictions that are consistent with the observatins that most farmers do not choose to 

buy the maximum amount of coverage available. 

 

Crop Insurance as an Investment 

Suppose that producers treat crop insurance as an investment activity separate 

from their production activities. Such a treatment is analogous to economic modelers 

ignoring other household activities when modeling farming decisions. Further suppose 

that a producer with prospect theory preferences can choose to buy actuarially fair crop 

insurance at different coverage levels. The gain or loss in this situation is simply the 

indemnity payment less the insurance premium. A loss is felt if the investment does not 

pay off, which occurs when the indemnity payment is less than the premium paid. 

Defining gains and losses in this manner runs counter to the notion that farmers suffer a 
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loss when they receive a crop insurance payment. But, as shown above, defining gains 

and losses from crop insurance as a risk management device does not generate coverage 

level choices consistent with observed choices. 

Table 3 presents summary results from the same set of indemnity calculations 

used to generate the table 2 results. The second column shows the simulated actuarially 

fair premium for each coverage level. Certainty equivalent returns in the third column 

assumes that the column two premium is paid. Returns in the fourth column assume that 

the premiums are subsidized following the premium subsidy percentages published by 

the USDA’s Risk Management Agency. The amount of the subsidy is shown in the 

rightmost column. The probability of a loss is shown for both subsidized and 

unsubsidized premiums. As shown, premium subsidies reduce the probability that a loss 

will be felt by only a small amount. 

Treating crop insurance as an investment rather than a risk management tool leads 

to sharply different coverage level rankings. When the premium is not subsidized, the 

coverage level that maximizes value is the 60%. When the premium is subsidized, 70% 

coverage maximizes value. The variation in certainty equivalent returns seem small 

across coverage levels, particularly with the unsubsidized insurance, but at the low 

coverage levels, the value of this investment relative to the premium paid is large. At the 

60% coverage level, the premium paid is $1.84 per acre. This investment cost generates 

certainty equivalent returns, which represents the total value of the net indemnity 

received, of $1.28. A negative value for certainty equivalent returns indicates that the 

producer would not make the investment. With unsubsidized insurance, negative returns 

begin at 75% coverage and increase as coverage increases.  
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When premiums are subsidized, there is no coverage level that generates negative 

value. Thus, from an investment perspective, prospect theory predicts that crop insurance 

generates positive value to farmers when premiums are subsidized. This result 

demonstrates that the prospect theory framework as implemented here leads to common 

sense findings as well as more nuanced findings. The rankings reported in Table 3 are 

largely consistent with the actual choices of most producers regarding coverage level. 

That is, the coverage level that generates the highest certainty equivalent returns with 

premium subsidies is 70%. The reduction in value moving to 75% is small. The reduction 

in value moving to 80% or 65% is somewhat larger but not dramatically smaller.  

To further investigate the ability of prospect theory to generate predictions that 

are consistent with observed crop insurance choices needs to account for the fact that 

most producers who have the choice buy Revenue Protection. Under this type of 

insurance max[ max( , (P))E(Y) r,0]I P Eα= − . Approximately 90% of 2013 corn acres 

insured under farm-level crop insurance of the type considered here was insured with RP. 

Only 1.2% was insured with RP-HPE. 

Table 4 presents simulation results for RP. Both out-of-pocket expenses and 

premium subsidies increase with RP because of the feature that allows the insurance 

guarantee to increase. If RP premiums were not subsidized the model predicts that this 

representative producer would choose the 60% coverage level, which is the same result as 

in Table 3. Of course whether producers would actually buy unsubsidized crop insurance 

would depend on the premium load to cover other costs not considered here. When 

premiums are subsidized the coverage level that maximizes subsidy, 85%, is not the 

coverage level that maximizes certainty equivalent returns. Certainty equivalent returns 
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for available coverage levels are at their highest at 75% coverage with the 80% coverage 

level returns almost as high. Again these simulation results lead to the conclusion that 

modeling crop insurance coverage level decisions as an investment using prospect theory 

preferences predicts coverage level decisions that are more consistent with observed 

choices than competing models. 

 

 

Policy Implications  

The question of whether there is any economic basis for the extensive government 

involvement in providing US producers with crop insurance hinges in part on the value 

that crop insurance provides farmers. If farmers value crop insurance as their primary 

means of managing risk, as industry and Congressional supporters claim, then 

government provision of insurance may be justified if the private sector cannot provide 

the level or type of insurance needed by farmers. This would be a classic missing market 

justification for government intervention. Evidence needed to support this justification is 

that farmers buy crop insurance to manage risk. Empirical evidence (Just, Calvin, and 

Quiggin (1999)) indicates that farmers buy crop insurance more for the opportunity to 

increase income rather than to manage risk. If this were finding were strictly true and 

farmers were profit maximizers then we should see farmers choosing the level of 

coverage that maximizes expected subsidy. But Du, Feng and Hennessy (2014) 

demonstrate that farmers maximize neither expected utility nor expected profits.  

Here I show that the use of prospect theory to value crop insurance as an 

investment rather than a risk management tool results in predicted choices about the level 

of coverage that are consistent with observed choices and not consistent with either 
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expected utility or profit maximization. Thus the best explanation for why farmers buy 

crop insurance is that it is appealing as a risky investment. The implication of this finding 

is that there is little economic justification for public provision of crop insurance in terms 

of meeting unmet demand for risk management tools. Given the large number of private 

opportunities for investment that exist, it makes little economic sense to provide an 

investment opportunity for farmers that only exists because it is subsidized. 

Of course the crop insurance program does not exist solely on the basis that it 

improves social welfare. Even though there is growing agreement among economists 

(Wright 2014) that crop insurance is mainly a means of supporting farm incomes, two 

political realities likely mean that the program will continue to exist for some time. First, 

history shows that Congress needs to act when a crop disaster strikes politically important 

regions of the country. It is possible that having farmers purchase crop insurance before 

any disaster strikes forestalls an ex post response by Congress that could do more 

economic harm than is done by supporting the program. Second, the widespread support 

the crop insurance program garners from farmers, crop insurance agents and companies 

and the reinsurance industry means that it is a public program that serves the political 

needs of elected officials. Given these political realities perhaps the growing realization 

that there is no real public benefit provided by crop insurance will lead to reform of the 

program that lowers its cost to taxpayers without significantly lowering the political 

benefits that it generates to its supporters. 
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Figure 1. Farmer premium vs. indemnities paid since 2001 

Source: USDA-RMA Summary of business reports 
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Figure 2. Cumulative distribution of Iowa corn revenue used in simulations 
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Figure 3. Calculation of certainty equivalent returns in prospect theory 
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Figure 4. Probability weighting functions 
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Figure 5. Decision weights vs equal weights 
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Table 1. Impact of Prospect Theory Parameters on Total Value, Certainty 

Equivalent Returns and Risk Premia  

            Reference Point            

 

$600 $400 

Probability of a Loss 0.46 0.052 

Expected Gain $18.23  $218.23  

Loss Aversion Onlya 

       Total Value -38.5 214.76 

     Certainty Equivalent Returns -$17.10 $214.76 

     Risk Premium $35.32  $3.47 

Loss Aversion plus Curved Value 

Functionb 

       Total Value -22.3 109.27 

     Certainty Equivalent Returns -$13.60 $207.25 

     Risk Premium $31.81  $10.98 

Prospect Theoryc 

       Total Value -28.2 92.36 

     Certainty Equivalent Returns -$17.70 $171.00 

     Risk Premium $35.92 $47.03 

aLoss aversion coefficient 2.25λ =  from equation (1). 

bCurvature parameter 0.88α =  from equation (1). 

cProbability weighting parameters 0.61; 0.69γ δ= =  from equation (2). 
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Table 2. Value of Insurance under Prospect Theory 

 

Probability of a loss 

Certainty Equivalent 

Returns 

Value of 

Insurance 

 

Reference Revenue Level 

Coverage 600 400 600 400 600 400 

0% 0.46 0.052 92.36 171.20 

  65% 0.478 0 97.40 181.81 5.04 10.61 

70% 0.482 0 101.10 189.73 8.74 18.53 

75% 0.494 0 104.71 197.45 12.35 26.25 

80% 0.510 0 108.21 204.97 15.85 33.77 

85% 0.530 0 111.50 211.97 19.14 40.77 

100% 0.647 0 117.90 225.94 25.54 54.74 

Source: Calculated 
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Table 3. Simulated Returns Treating Crop Insurance as an Investment  

 

 Certainty Equivalent 

Returns          Probability of a Loss       

Insurance 

Coverage 

Fair 

Premium Unsubsidized Subsidized  Unsubsidized Subsidized  

Amount of 

Subsidy 

 $ per acre   $ per acre 

50% 0.40 0.77 0.51 0.99 0.99 0.27 

55% 0.92 1.09 2.49 0.98 0.98 0.59 

60% 1.84 1.28 3.91 0.96 0.96 1.18 

65% 3.73 1.25 5.30 0.94 0.94 1.99 

70% 5.83 0.81 7.72 0.91 0.91 3.44 

75% 9.56 -0.02 7.25 0.88 0.87 5.26 

80% 14.96 -0.63 5.83 0.83 0.81 7.18 

85% 23.34 -1.69 2.48 0.78 0.76 8.53 
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Table 4. Simulated Returns from Revenue Protection  

 

 Certainty Equivalent 

Returns          Probability of a Loss       

Insurance 

Coverage 

Fair 

Premium Unsubsidized Subsidized  Unsubsidized Subsidized  

Amount of 

Subsidy 

 $ per acre   $ per acre 

50% 1.43 1.82 3.74 0.98 0.98 0.96 

55% 2.72 1.96 6.76 0.96 0.96 1.74 

60% 4.83 2.10 8.48 0.94 0.94 3.09 

65% 8.01 1.61 10.49 0.90 0.90 4.75 

70% 12.43 0.60 13.30 0.87 0.87 7.53 

75% 18.48 -0.26 15.04 0.83 0.82 10.16 

80% 26.65 -1.14 14.94 0.79 0.78 12.79 

85% 37.64 -2.47 11.67 0.74 0.72 14.30 

 


