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Abstract

Technological progress in the exploration and production of oil and gas during the
2000s has led to a boom in upstream investment and has increased the domestic supply
of fossil fuels. It is unknown, however, how many jobs this boom has created. We use
time-series methods at the national level and dynamic panel methods at the state level
to understand how the increase in exploration and production activity has impacted
employment. We find robust statistical support for the hypothesis that changes in
drilling for oil and gas as captured by rig counts do, in fact, have an economically
meaningful and positive impact on employment. The strongest impact is contempora-
neous, though months later in the year also experience statistically and economically
meaningful growth. Once dynamic effects are accounted for, we estimate that an addi-
tional rig count results in the creation of 31 jobs immediately and 315 jobs in the long
run, though our robustness checks suggest that these multipliers could be bigger.

1 Introduction

The development of shale has created a new boom in the oil and gas industry.1 There are

also indications that it has led to economic revitalization in places like North Dakota, Texas,

Alberta, West Pennsylvania, and Louisiana. This revolutionary increase in the production of

∗Research support was provided by the International Monetary Fund and the Center for Energy Studies
at Rice University’s Baker Institute for Public Policy. We also thank Natalia Sizova and Russell Green at
Rice University, Prakash Loungani and Akito Matsumoto at the IMF and workshop participants at the IMF
for insightful comments and suggestions. As usual, any errors are our own.

1See Figure A.1 in the Appendix for an Energy Information Agency (EIA) map of where unconventional
oil and gas is located in the continental United States.
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oil and natural gas has led to a discussion about its potential effects on employment. Anec-

dotal evidence about the employment experience of different states over the last recession

suggests that such effects may indeed be present. Figure 1 shows the difference in cumula-

tive employment growth of various states since January 2008 from the national average (in

approximate percentage terms).2 The base year roughly coincides with both a severe drop in

employment due to recession and the beginning of the boom in shale gas and tight oil pro-

duction. Casual inspection of the plots suggests that oil and gas states have generally grown

much faster than the rest of the nation for the past several years. North Dakota especially

has seen blistering employment growth (note the much larger scale of the y-axis). In fact,

North Dakota, Texas, Alaska, and Louisiana had the highest cumulative employment growth

from 2008 through 2013 out of all states—27.4, 7.86, 5.80, and 3.68 percent, respectively. In

2013, all were top producers of oil and gas.

While the aggregate effect on employment from developing different energy sources is

an important question, it cannot be readily answered in the context of traditional dynamic

general equilibrium macroeconomic models. As these models assume market clearing, they

cannot account for variations in unemployment rates and, thus, are not well suited to study

the employment consequences of alternative government policies or other shocks. Input-

Output (I/O) analysis, which is commonly used in economic impact studies, is also poorly

suited to answer our research question. It cannot incorporate induced price changes or sub-

stitution between inputs in production, which means that multipliers are usually overstated.

Furthermore, as Kinnaman (2011) points out, because these studies are calibrated with data

on a region’s existing industries, measuring or predicting the impact of a totally new industry

in the region—for example, shale gas in Pennsylvania—is problematic.

Our approach is an empirical one. We first consider the interrelationships between real

oil prices, national rig counts, the production of primary energy and employment in the oil

and gas extraction industry in a Structural Vector Autoregression (SVAR) at the national

2Following Blanchard and Katz (1992) cumulative employment growth relative to national is calculated
as log(Empit/Empi,Jan2008)− log(NatlEmpt/NatlEmp2008).
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Figure 1: Cumulative Employment Growth (Percent) Relative to National

level. After 24 months, we estimate that a 10% increase in national rig counts results in

an approximately 5% increase in employment in the oil and gas industry. Total changes

in employment will depend on the extent to which job gains in oil and gas extraction (and

related sectors) are offset by job losses in others as workers change industries. Because energy

production is a relatively small portion of the economy, a national SVAR framework is not

able to speak to a total employment multiplier in a statistically meaningful way.3

Our main results are obtained at the state level. The oil and gas boom varies widely

over time and states, which we exploit to identify the total employment effect of upstream

investment at the state level. Drilling activity varies significantly over time within states.

Furthermore, this within-state variation is also quite different between states.4 For example,

3For total employment and employment in manufacturing, our point estimates for the cumulative impact
of rig-counts after 24 months is approximately 1/10 of the size (half of a percentage point increase in
employment for each ten percentage increase in rig counts), and it is not statistically distinguishable from
zero.

4See Figure A.2 and A.3 in the Appendix for plots of rig counts in per-capita and level terms, respectively.
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North Dakota has seen continually increasing investment, while its neighbor, Wyoming, has

seen an increase and subsequent decrease in drilling activity during our sample. Based

on estimation of a dynamic panel model, we find that an additional rig count per million

people, as measured by the working-age civilian non-institutional population, is associated

with contemporaneous state-level employment growth of 0.010% and long-run growth of

0.064%. A per-capita specification suggests that a single rig count is associated with 31 new

jobs in the same month and 315 jobs in the long run. Finally, we also carry out a range

of sensitivity analyses that suggest our results are relatively robust to non-spherical errors,

different lag-lengths and measures of population. Furthermore, they are neither driven by

one state in particular nor are they driven by the pre- or post-2008 period only.

2 Literature Review

There are several industry related studies of the employment effects of upstream oil and gas

development (Considine et al., 2009; Considine, Watson, and Blumsack, 2010; Higginbotham

et al., 2010; IHS Global Insight, 2011; Murray and Ooms, 2008; Scott, 2009; Swift, Moore,

and Sanchez, 2011). Most of them use the Input-Output (I/O) methodology and predict

large increases, not only in employment but also in tax revenues and economic output.

Kinnaman (2011) provides a peer-reviewed survey and strong critique of a number of these.

He points out that several assume, perhaps counter-factually, that nearly all windfall gains

by households are spent locally and immediately, that most inputs are locally produced, and

that royalties are accrued locally. By taking an empirical approach, we can infer employment

multipliers while remaining agnostic about the parameters underlying consumer and firm

behavior. It is important to note that since we examine total employment, our analysis

allows for effects of oil and gas development on other industries.

Our analysis gives rise to lower multipliers than these I/O studies. For example, Considine

et al. (2009) estimate that upstream investment in the Marcellus shale created 29,284 jobs in
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Pennsylvania in 2008, and their follow-up study estimates that 44,098 jobs were created in

2009 (Considine, Watson, and Blumsack, 2010). We assert that the increase in Pennsylvania

rig counts in 2008 and 2009 should have led to a long-run increase of 1,812 and 11,930

jobs, respectively, after accounting for dynamic multiplier effects, an ultimate increase of

1,288 and 8,475 jobs (see Figures 2 and 3 for the cumulative impacts of rig-count changes

on employment).5 The IHS Global Insight (2011) study finds that the shale gas industry

“supported over 600,000 jobs” in 2010 once direct, indirect, and induced jobs were summed.

Using our multipliers, we find that national changes in rig counts in 2010 should lead to

173,794 jobs when dynamic effects are taken into account.6 Note that 2010 happens to be

the largest January to January increase in rig counts, so the estimates of job growth for 2009

were negative and had larger magnitudes.

One empirical approach, which we elect not to take, is the treatment-effect design, which

is common in labor economics. The first paper to use this design in relation to the em-

ployment impacts of a North American resource boom was Black, McKinnish, and Sanders

(2005), which examined the effect of coal booms and busts on county employment in Ap-

palachia. The authors use the presence of large coal reserves as their treatment indicator

variable and find modest multiplier effects: for every ten jobs created in the mining sector,

1.74 jobs in the local-goods sector are created, and for a bust, 3.5 local jobs are lost for each

ten mining jobs. Weber (2012) uses a similar study design and estimates a triple-difference

specification where the treatment is the value of gas production and the instrument used is

the percentage of a county covered by shale deposits. He finds that an additional million

dollars of natural gas production (resulting from increased price or production) leads to 2.35

additional jobs in the county. In a follow-up study, Weber (2014) examines the possibility

that the unconventional gas boom might lead to a resource curse in rural counties. He finds

5Figures 2 and 3 use the estimated cumulative impulse response function from the per-capita dynamic
panel model (2) and rig-count changes to calculate the employment impact over time.

6Applying our state-level multipliers to the national level is problematic since job gains in oil and gas
producing states may be offset by losses in other non-producing states, but the calculation is illustrative of
the different magnitudes obtained in I/O studies versus our empirical model.
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Figure 2: Estimated cumulative job creation due to rig-count changes
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Figure 3: Estimated job creation due to rig-count changes at national level

that an additional 22 billion cubic feet (bcf) of gas production creates 18.5 jobs in each

county (7.5 mining jobs and 11.5 non-mining jobs—a multiplier of 1.4 non-mining jobs per

mining job), but increased gas production does not lead to crowding out in manufacturing

or lower educational levels, which are outcomes associated with a Resource Curse. Other

studies which follow a similar design include a manuscript by Fetzer (2014), who concludes

that the natural gas boom does not lead to Dutch Disease and crowding-out of traded goods,

possibly because of the salutatory effects of lower energy prices, and Marchand (2012), who

examines the effect of energy booms on Canadian labor market outcomes and also finds

modest multiplier effects in the non-trade sector and no crowding out of manufacturing.

Our study is different because we use higher-frequency data and more fully exploit the time-

series variation in employment and upstream investment. This allows us to understand the

dynamics of job creation, though the use of higher-frequency data may limit our ability to

account for lower-frequency, structural shifts in the economy.
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A recent Baker Institute study (Hartley et al., 2013) considered a similar question to

ours using county-level data from Texas. Before the authors allow for cross-county spillovers,

they find that each well-count results in 77 short-term jobs, with within-county employment

impacts occurring primarily in months zero, one, five, and six. They find some evidence

that by allowing for county spillovers using a spatial auto-regressive model, the long-run

employment effects are almost three times as large. Our research design is a similar, dynamic

panel model, and we use a longer dataset (1990 to 2014) for the entire nation. Additionally,

where they focus on unconventional oil and gas production, we focus on all oil and gas

activity. We find a long-run multiplier that is approximately twice as big as in the basic

specification considered by Hartley et al. (2013), but still below the effects the authors

estimate after allowing for cross-county spillovers.

Hooker and Knetter (1997) investigate the employment impact of changes in military

spending using a panel of state-level data from 1936–1994. The authors find that exoge-

nous spending shocks (government procurement spending per capita) do lead to changes

in employment growth, but the effects of shocks are nonlinear: large, adverse shocks lower

employment growth more than smaller ones, while positive shocks also are less effective at

increasing employment growth than negative ones at decreasing it. While we use higher-

frequency data, we adopt their general model specification, including a set of state-specific

intercept terms and time fixed effects as Hooker and Knetter do.

Blanchard and Katz (1992) examine the dynamics of regional labor markets using a

vector autoregression (VAR) approach with annual state labor-market data. They argue that

labor-demand shocks are the primary drivers of changes in employment, unemployment and

participation. Furthermore, they provide evidence that migration of workers—not firms—

in response to low unemployment rates—not high wages—is the primary mechanism that

returns markets to their long-run equilibria. One of the implications of this for us is that

transforming exogenous variables into per-capita variables may be problematic if population

movements are endogenous. We run a series of robustness checks related to this issue (see
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Section 7.4).

Finally, Arora and Lieskovsky (2014) examine national economic impacts of the natural

gas boom using a Structural Vector Autoregression (SVAR) framework. They find evidence

that lower real natural gas prices due to increased supply positively impact industrial pro-

duction. Furthermore, they find that this effect is greater post-2008 and conclude that the

shale gas revolution has altered the relationship of natural gas to the macroeconomy. We

estimate a SVAR as well. However, while Arora and Lieskovsky look at the supply side of

the economy, we focus on job creation and do not distinguish between the positive supply-

side effects of lower energy prices and positive demand-side effects of additional upstream

investment.

3 Rig Counts

To capture upstream oil and gas investment we use the Baker Hughes rig counts, which

are publicly available on the firm’s website.7 Baker Hughes is a major supplier of oil-field

services and has been publishing reports on the industry since 1944. Each week, the firm

surveys rotary rig operators in North America and publishes a count of the number of rigs

that are “actively exploring for or developing oil or natural gas” in each state. Many firms

and industry analysts use the reports to gauge investment activity in the sector. Weekly

state-level data from Baker Hughes begin in 1990, and we average these figures to a monthly

frequency. Unfortunately, the weekly (and monthly) data do not provide detail on whether

rigs are engaged in unconventional activity or not, so we must use the total number of land-

based rigs in each state. We choose to exclude offshore rigs in the total since the investment

required for offshore wells is very different than onshore wells.

In our state-level model, we scale rig-counts by the US Census estimate of state population

in the year 2000. First, state population endogenous to state employment as shown by

7Baker Hughes publishes rig counts at http://phx.corporate-ir.net/phoenix.zhtml?c=79687&p=

irol-reportsother.
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Figure 4: Labor, Capital, and Prices in Oil and Gas (Standardized Variables)

Blanchard and Katz (1992), so we eliminate this variation from our model. Second, since

we take differences, if we scale rig-counts by time-varying population then differences will

capture both rig-counts as well as migration. Thus, multipliers will be “polluted” by this

extra variation. We check this by using a variety of constant and time-varying population

measures. See Section 7.4 for details.

Figure 4 plots seasonally adjusted national employment in oil and gas extraction plus

support activities along with the national average monthly rig count and the West Texas

Intermediate crude benchmark. The three are clearly linked. Plots of the rig count data in

per-capita and level terms are displayed in the Appendix (Figures A.2 and A.3, respectively).

Three points are worth making. First, in states with significant exploration and produc-

tion, there is substantial within-state time series variation in rig counts, which can provide

identification of employment impacts. Second, the magnitudes and pattern of variation are

different between states. For example, the maximum number of rigs per month in Texas is

946, while many states have no drilling activity (Connecticut, for example). Third, the states
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with the highest mean rig count levels (Texas at 488 and Louisiana at 156) are not those with

the highest per-capita count (Wyoming and North Dakota are the two highest, with 105 and

68 rig counts per million people respectively). Thus, estimates will be sensitive to whether

rig counts are in level or per-capita terms,8 and they may be overly influenced by outliers

like Texas and Wyoming since these have the largest rig-counts in level and per-capita terms,

respectively. We address the issue of outliers in our robustness checks.

4 Vector Autoregression Model

State-level variation in rig counts and employment may provide precision in estimating the

employment impacts of upstream activity, but these estimates cannot account for inter-state

effects. On one hand, an energy boom in one state may induce higher labor demand and

job creation in another as the boom state’s income rises. On the other, the boom state

may pull workers from nearby states, reducing net job creation at the national level. To

address this ambiguity, we model the interaction between real oil price shocks, upstream in-

vestment, industrial production, and employment. Specifically, we examine three Structural

Vector Autoregression (SVAR) models similar to those estimated by Arora and Lieskovsky

(2014). Our three models focus on (1) total IP and employment, (2) IP and employment in

manufacturing, and (3) IP in Primary Energy and employment in oil and gas extraction.

A vector autoregression (VAR) captures the interrelationships between variables that are

jointly determined. Unfortunately, shocks to each variable may be correlated, so causation is

unidentified without more structure. By imposing restrictions on the shocks, one can identify

causal effects of shocks and their relative importance to the system. We follow notation from

8We did consider a log-log specification where we used logEmploymenti,t and log(Rigs + 1). This
specification means we don’t need to include population measures. However, a number of states have very
low rig-counts, so a one unit change in rig-counts is a very large percentage change, while a state like
Texas (which has hundreds more rigs than most other state) may undergo a large change in levels but not
percentages. This means that identifying variation comes from the states without much activity—precisely
the wrong ones. Multipliers are much smaller in this model, but this is expected.
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Lütkepohl (2005) and define our vector of variables as

yt =

[
log(Real WTIt) log(Rigst) log(IPt) log(Employmentt)

]>

Since production and employment can both be highly seasonal, and since this seasonality can

be deterministic and stochastic in nature, we include monthly dummy variables and specify

our VAR in first differences as

A(L)∆yt = ∆yt + ν(t) + ut

where A(L) = I−A1(L)1− . . .−Ap(L)p is a polynomial in the lag operator, ν(t) corresponds

to a month-specific intercept that captures any deterministic seasonality, and ∆ is the first-

difference operator needed to make the variables stationary. The covariance of the error term

Σu = E[utu
>
t may not be diagonal, so we cannot make causal inference about which shocks

drive the system without further restrictions on the model. We choose to use the standard

Cholesky decomposition of Σu to do this. This corresponds to the following restriction

ut = Pεt

where P is a lower-triangular matrix such that Σu = PP> and implies a recursive system.

We are primarily interested in the cumulative orthogonalized impulse responses (COIRFs),

which show the cumulative impact of a one-standard deviation structural shock over time.

We calculate the COIRF of a rig-count shock in period t on variables in period t+ h as

h∑
j=0

Φ̂jP
>

where Φ̂(L) = Â(L)−1 is the VMA representation of the system and Φ̂j is the coefficient

matrix of the j-th order lag polynomial.
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4.1 Data and Identification

The real domestic price of oil is calculated as the West Texas Intermediate (WTI) spot price

scaled by the Producer Price Index (PPI) for all commodities. Oil is globally traded, and

its price is set in liquid, international markets. Thus, oil price shocks in time t should be

exogenous to the other variables in the model. Rig counts capture upstream investment

activity. Exploration and production firms make decisions based on the expected future

profitability of a well, which is determined by drilling costs and expected future oil prices.

Drilling changes in time t should respond to oil prices insomuch as they are an indicator

of future oil prices; however, since oil and gas production lags drilling activity, drilling

changes in t should not drive oil prices in t. By the same token, drilling decisions at time t

should not be affected by other contemporaneous economic shocks to industrial production or

employment. Three different measures of Industrial Production (not seasonally adjusted) are

taken from the Federal Reserve: Total IP, Manufacturing IP (as defined by SIC codes), and

IP in Primary Energy. It is generally accepted that employment is a lagging macroeconomic

indicator; thus, we order IP before employment. Employment is taken from the BLS Current

Establishment Survey and is not seasonally adjusted. Specifically, we use total private non-

farm employment, total employment in manufacturing, and the sum of employment in oil

and gas extraction plus oil and gas support activities. For more details on data, see the

Appendix.

4.2 Estimation and Results

We estimate the three versions of the above model. Lag selection was done using the mini-

mum of the AIC and checking ACFs of residuals to confirm that they are white noise. The

three models (of total, manufacturing and oil & gas activity) have twelve, twelve and three

lags, respectively. Since both IP and employment are very seasonal, it makes intuitive sense

that 12 lags would be required. Fossil-fuel production, however, is generally not seasonal

(though its consumption is), so the fact that only three lags are required is not surprising,
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either.

Figure 5a displays COIRFs from rig counts to employment for the three models. Since

all variables are in logs, the vertical axis represents the approximate percentage change in

the response variable with respect to a one standard-deviation shock in the impulse vari-

able. COIRFs from the Total and Manufacturing models do not appear to be statistically

significant at almost any lag. Given that these two models leave the majority of the econ-

omy unmodeled (in our sample, employment in oil and gas extraction is, on average, just

0.28% of total employment), this finding is not surprising. Our Oil and Gas model, on the

other hand, shows very positive and significant cumulative employment impacts of additional

rig counts. After re-scaling the COIRF(24) by standard deviation of uRigs,t (which is the

square-root of the second element of the diagonal of Σ̂u and represents the magnitude of a

one-standard deviation rig count shock), we calculate that a 1.0% increase in rig counts leads

to approximately 0.5% increase in employment in oil and gas extraction.9 Figure 5b, which

displays the Forecast Error Variance Decompositions for the impulse-response of rig counts

on employment, shows that rig count changes do not lead to major changes in employment

at the aggregate but do have significant impacts (both statistically and economically) on

employment in the oil and gas sector.

The set of COIRFs for the Oil and Gas VAR is in Figure 6 and the FEVD, in Figure 7.

A few causal relationships appear to be important. First, higher oil prices increase drilling

activity and employment in extraction, as expected, but, as shown by the FEVD, oil shocks

are less important than rig counts in generating oil and gas jobs. Oil prices do not appear

to have a strong impact on IP in Primary Energy, which suggests that energy production at

monthly frequencies is fairly price inelastic—a result theory predicts. Rig counts also have

an impact on employment and IP in Primary Energy and are associated with decreases in

oil prices, again, as expected. Employment shocks in oil and gas extraction do not seem

9A similar calculation for the total and manufacturing employment models suggests elasticities that are
about 1/10 the size. This could represent a substantial number of jobs, but the estimates are not at all
statistically meaningful.
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Figure 5: Employment responses in SVARs (95% CI) to rig-counts
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Figure 7: FEVD for Oil and Gas SVAR

to cause changes in other variables. Since labor demand in extraction is driven by drilling

decisions, not the converse, this is to be expected. Finally a shock to IP in Primary Energy

seems to prompt a positive, statistically significant response in oil prices but not in the other

variables.

5 State Dynamic Panel Model

At the state level, our goal is to understand the response of private non-farm employment

growth to changes in upstream drilling activity. Our primary model—which is least affected

by outliers or choice of population variable—is

∆ log(Empit) = α(L)∆ log(Empit) + β(L)∆(Rigs/Pop)it + νi(t) + νt + uit, (1)
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though we also estimate a secondary model in per-capita terms

∆(Emp/Pop)it = α(L)∆(Emp/Pop)it + β(L)∆(Rigs/Pop)it + νi(t) + νt + uit (2)

since estimates from the latter can be interpreted as “jobs per rig count.”10 The difference

operator is ∆, and α(L) and β(L) are polynomials in the lag operator. We allow states to

have different equilibrium growth rates and individual, deterministic seasonality, which is

captured by state-month fixed effects, νi(t). We do not try to model the impact of national

macroeconomic shocks on state employment; rather we simply theorize that national shocks

impact state employment growth rates uniformly across states and capture this with a time

fixed effect, νt. It is very important that the time fixed effect controls for oil prices, which

are common across states.11 Employment does not adjust immediately back to equilibrium

after a shock, and ACFs of state employment still show autocorrelation and seasonality after

state-month intercepts are removed. Therefore, we include lags one through twelve of state

employment.12 Similarly, employment may take time to adjustment to additional upstream

investment. Additional processing and transportation infrastructure may be needed and

constructed after initial production, and spillovers into housing, entertainment, and retailing

may take time. Finally, labor supply may be slow to respond, as appears to have been the

case with North Dakota and its labor shortages. Thus, we include the contemporaneous

change in rig counts per-capita plus ten lags.13 Omitted variable bias is a valid concern for

10See the Robustness Checks section for a further discussion on the precise interpretation of multipliers.
11We also estimated a model which included lags 0–12 of industrial production and lags 1–13 of national

employment in lieu of time fixed effects. The results were largely the same, though the savings on degrees of
freedom did not provide substantially improved precision. These results are in Tables 9 and 10, along with
three lag-length robustness checks similar to those in Tables 3 and 4.

12The BIC has a minimum with the inclusion of 24 lags and a local minimum at 13 lags. (See Figure A.4
in the Appendix.) However, Han, Phillips, and Sul (2013) show that the BIC is an inconsistent estimator in
dynamic panels with fixed effects and overestimates lag-length. Since the majority of the improvement in both
the BIC and residual ACFs is achieved with 12 lags, we use 12 lags of employment. Furthermore, intuition
suggests that 12 lags is an appropriate number of lags for a monthly series with substantial seasonality.
Robustness checks for different lag-lengths are discussed later.

13We pared the model back to 12 lags of both employment and rig counts using the BIC, inspection of
ACFs, and intuition. Since lags 11 and 12 of rig counts were not jointly significant at the 10% level even
with OLS standard errors, we eliminated them.
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our model since we do not include time-varying, state-specific controls. For instance, we do

not capture the housing bust, which did not affect oil states like Texas and North Dakota

as severely as non-oil states like Florida and Nevada. If housing markets are systematically

related to the oil and gas sector, this would bias our results. We are comfortable taking this

risk.

Rig counts are scaled by the population in the 2000 Census14 to account for the idea

that an additional rig count in Texas (with a 2000 population of almost 20 million) is a

proportionally much smaller shock to the economy than in North Dakota (with a population

of 0.64 million in 2000). Log employment and rig counts per capita both have unit roots,

and for some states with a very large share of employment in the upstream sector, the two

might be cointegrated. However, some states have zero upstream activity, so the two cannot

be cointegrated for all states. Since we cannot capture each state’s underlying labor-market

drivers (which would be cointegrated with total employment), we work in differences.15

The primary estimate of interest is the long-run multiplier (LRM), which is the employ-

ment impact of upstream activity once state employment returns to equilibrium. Long-run

multipliers from a VARX process are LRM = β(1)/[1 − α(1)], and they are guaranteed

to be positive if β(1) > 0.16 The impulse response function (IRF) and cumulative impulse

response function (CIRF) trace out the dynamic impact of drilling activity over time and

are also of interest.17 In model (1), we interpret β0× 100 and LRM × 100 to be the approx-

imate percentage change in employment (contemporaneously and long-run, respectively) to

an increase of one rig count per million people. In model (2), we interpret β0 and LRM as

jobs created per rig count.

14See Section 7.4 for robustness checks about the choice of population variables.
15One limitation of this is that we do not allow the possibility that upstream investment can cause per-

manently higher growth rates. However, monthly data may not be well suited to assessing questions of
endogenous growth.

16In time-series notation, replacing the lag operator L by 1 gives β(1) = β0 + β1 + . . .+ βs.
17Formulas for calculating the IRF, CIRF, and confidence intervals for both in the multivariate VARX

context are available in Lütkepohl (2005, Chapter 10). Note that what we call (Cumulative) Impulse Re-
sponse Functions, Lütkepohl calls (Cumulative) Dynamic Multipliers. Our single equation context is just a
special case.
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While our baseline estimation method is ordinary least squares (OLS), the error term may

suffer from heteroskedasticity and autocorrelation, as well as correlation between state em-

ployment shocks.18 Therefore, in addition to reporting OLS point estimates and t-statistics,

we report t-statistics and confidence intervals for IRFs and CIRFS using multi-way clus-

tered standard errors and Driscoll and Kraay (1998) serial correlation and cross-sectional

dependence-consistent (SCC) standard errors as well as OLS standard errors. The former,

detailed in Cameron, Gelbach, and Miller (2011), allow for errors to be serially correlated

within a state as well as contemporaneously across states.19 Driscoll-Kraay standard errors

are essentially a Newey-West estimator applied to cross-sectional averages of the model’s

moments (e.g., the cross-product of x̄tūt, not xituit, where x̄t denotes x̄t = n−1
∑n

i=1 xit).

6 State Panel Results

Coefficients and the three standard errors for model (1) are displayed in Table 1, and results

for model (2) are in Table 2. The OLS standard errors are tightest, and Driscoll-Kraay, the

largest. Even with the larger standard errors, however, t-tests that β(1) and the LRM are

less than zero are strongly rejected, and the contemporaneous rig count is highly significant.

Thus, we conclude that upstream investment does, in fact, create a statistically significant,

positive number of jobs. We estimate that an additional rig per million people increases

a state’s employment by 0.010% in the same month and 0.064% in the long run, though

standard error bounds imply some uncertainty about this impact. If the model is estimated

in per-capita terms, the immediate impact multiplier β̂0 indicates that one additional rig

count is associated with 31 additional jobs in the same month, and the LRM, 315 jobs in

the long run.

18We ignore the issue of lagged endogenous regressors since estimates are still consistent as T −→ ∞
and we have 265 observations per state. Judson and Owen (1999) perform a Monte Carlo study on the
relative performance of LSDV versus a corrected estimator and GMM-based estimators like the Arellano-
Bond approach, and they find that the LSDV estimator performs well.

19Point estimates and multi-way clustered standard errors were calculated using the felm function from R
package lfe. With multi-way clustered standard errors the variance matrix is not guaranteed to be positive
semi-definite. We adopt the standard time-series approach of simply setting negative eigenvalues to zero.
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Figure 8a shows the IRF and CIRF for model (1), along with 95% confidence intervals for

OLS, Multi-Clustered, and Driscoll-Kraay serial and cross-sectional correlation consistent

(SCC) errors. Figure 8b shows the same for model (2). While the individual impulse

responses themselves may not all be statistically significant at the 5% level, their sum is.

The biggest employment increase is coincident with an increase in rig counts, but months t+1

and t+ 8 through t+ 10 also see sizeable impacts. There are many possible explanations for

the delayed impact: subsequent infrastructure build-out; delayed labor supply responses; and

delay in increased consumption by owners of labor, capital, and minerals are all reasonable

possibilities.

Figures 2 and 3 plot the cumulative job-creation implied by the cumulative impulse re-

sponse function from model (2). As mentioned earlier, these estimates are much smaller

than those obtained via I/O models. Furthermore, as documented in the new EIA Drilling

Productivity Report, shale gas and tight oil production per new well has increased dramati-

cally since 2007.20 Thus, seemingly lower rig counts do not correspond to lower production.

Without more structure on our model or detail in our rig counts, we are unable to account for

these changes in productivity. Thus, it seems reasonable to view years such as 2009—which

corresponds to a drop in national rig counts and a resulting decrease of 182,934 jobs21 in the

long run—with some caution.

7 Four Robustness Checks

7.1 Lag Lengths

The first robustness check is to verify that multipliers do not vary greatly with lag-lengths.

In addition to our base model, we estimate our baseline model with three different sets of

lag-lengths. In the first set, we only include the contemporaneous and first lag of rig counts

20The EIA Drilling Productivity Report is available at http://www.eia.gov/petroleum/drilling/.
21Calculated as

∑
months

∑
states ∆rigsit × L̂RM .
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Figure 8: IRFs and CIRFs for base models

and 12 lags of employment. In the second and third we include through lags 13 and 24,

respectively, of both employment and rig counts since these lag lengths corresponded to

local minima in the BIC (see Figure A.4 in the Appendix). Plots of the IRFs and CIRFs for

model (1) are shown in Figure 9. When lags of rig-counts are truncated, the employment

response is more muted, which suggests that much of the employment activity happens with

a lag. As lags 11 to 13 and lags 11 to 24 are added, the shapes of the IRF and CIRF do not

change much, but the size of the effect does grow. A substantial portion of the increase in

the multiplier seems to be due to the inclusion of more positive rig count coefficients since

the ratio of β̂(1) to L̂RM is relatively stable across specifications (this implies that 1−α(1)

varies little with lag lengths greater than 12). It is not unreasonable to expect a boom in

upstream activity to have effects beyond one year, but our ability to accurately estimate

such long-run effects in a monthly regression is limited.
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Figure 9: IRF and CIRF for log model (1) with varying lags

7.2 Outliers

In addition to checking whether various lag-lengths and different controls changed estimates,

we estimated both models while dropping each of the 48 states. As shown in Tables 5 and

6, the estimates for both β(1) and LRM from models (1) and (2) are very stable with

respect to the subset of states included. In fact, the difference between the minimum and

maximum of each set of multipliers is only slightly larger than the smallest standard deviation

reported for each statistic. Interestingly, when North Dakota and Wyoming—the two states

with per-capita rig counts that are by far the largest—are dropped, the sum of the rig

count coefficients rises instead of falling in the log model. Given that the difference is not

statistically significant, however, not much can be made of this.
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7.3 Structural Breaks

One other concern is that the recession and its aftermath, not the unprecedented boom

in unconventional oil and gas resources from 2008–2013, drives our results. If there is a

structural break, it is unclear whether we would expect the pre-2008 long-run employment

multiplier to be smaller or larger than the post-2008 multiplier. On the one hand, the post-

2008 period corresponds to relatively high-cost drilling in areas that had historically seen less

production and, therefore, would require more infrastructure investment to support drilling.

On the other, firms drilling in these new areas might prefer to purchase inputs from areas

like Texas and Louisiana with a historical oil and gas presence if these are cheaper or of

higher quality, which would attenuate the state-level relationship between drilling and jobs.

To examine this issue, we estimate the following models

∆ log(Empit) = α(L)∆ log(Empit) + βpre(L)∆(Rigs/Popit)1[t < Jan2008]

+ βpost(L)∆(Rigs/Popit)1[t >= Jan2008] + νi(t) + νt + uit (3)

∆(Emp/Pop)it = α(L)∆(Emp/Pop)it + βpre(L)∆(Rigs/Popit)1[t < Jan2008]

+ βpost(L)∆(Rigs/Popit)1[t >= Jan2008] + νi(t) + νt + uit (4)

and test both that βpre = βpost as well as βpre(1) = βpost(1) using OLS, multi-way clustered,

and Driscoll-Kraay estimates for the variance matrix. Under all three variance estimates,

we reject both null hypotheses in favor of structural change at the 0.1% level (with the

exception of the second hypothesis for model (4) under Driscoll-Kraay estimates, where the

hypothesis was rejected at 1.5%). Post-2008 multipliers are more than twice as big as pre-

2008 multipliers: 0.038% versus 0.078%. In the per-capita model, this translates to 201

versus 375 jobs per rig count.22

Figures 10a and 10b show IRFs and CIRFs corresponding to the two periods for mod-

22This outcome would also be consistent with the larger employment effects found in Hartley et al. (2013),
where the wells drilled were all aimed at unconventional resources.
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els (3) and (4), respectively. It is clear that employment impacts are larger in the second

period.

7.4 Population Scaling

The choice of a population scaling variable does have implications for the magnitudes of the

employment-multiplier. There are two issues that may arise from the choice of population

variable. First, as pointed out by Blanchard and Katz (1992), population movements are

generally in response to changes in labor demand. This means that exogenous variation—rig-

counts—is polluted by an endogenous variable—population. Second, population growth—

not just the variables of interest—affects results if using time-varying population measures

(which are endogenous to employment) are used. To see this, first note the following equiv-

alence:

∆(x/z)t = z−1t [∆xt − xt−1(∆zt/zt−1)] .

In the case of model (2), the increase in employment per capita due to an increase in rig

counts per capita is simply L̂RM ×∆(Rigs/Pop)t. The the resulting change in jobs can be

decomposed as

∂∆Empt+∞
∂∆Rigst

= L̂RM ×∆Rigst + (∆Popt/Popt−1)(Empt−1 − L̂RM ×Rigst−1).

While ∂∆Empt+∞/∂∆Rigst = LRM , if long-run growth in jobs due to rigs is computed

using rigs per capita, the estimate will be polluted by population growth. In the log em-

ployment case, the problem is also present since the change in employment is computed

as

∂∆Empt+∞
∂∆Rigst

= Empt−1×exp
{[
L̂RM ×∆Rigst/Popt

]
−
[
L̂RM ×Rigst−1(∆Popt/Popt−1)

]}
.

Again, the second bracketed term involves ∆Popt, which distorts the multiplier.
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(a) Log model (3)
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(b) Per-capita model (4)

Figure 10: IRF and CIRF for Rig Counts, Pre- and Post-2008
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To address this concern, we estimate equations (1) and (2) using a variety of different

population measures:

1. Population in 1990 as given by the US Census,

2. Population in 2000 as given by the US Census (our base model),

3. Population in 2010 as given by the US Census,

4. Total population from the Current Population Survey, where months between June of

each year are linearly interpolated,

5. Working-age population as given in the Local Area Unemployment statistics from BLS,

and

6. Working-age population lagged by one month, which should be pre-determined with

respect to rig counts, which might drive population movements in time t.

The advantage of the first three population variables is that, with no population change,

the “polluting” population growth term drops out of the estimation. When we use a fixed

population parameter, model (2) is almost equivalent to weighted least squares (WLS) with

constant, state-specific weights. To see this, suppose that the variance of state’s idiosyncratic

shock uit is proportional to the square of its population. Then in OLS using first-differences of

level variables, large states receive many times more weight than smaller states. If variables

are all scaled by population, however, each state receives approximately the same weight in

the model. Scaling by a constant population is not exactly WLS since the common time-

shock νt is also implicitly divided by state population. Doing this, however, makes sense

since a common shock should induce a larger absolute employment change in larger states

and smaller absolute changes in smaller states.

Estimation results of these robustness checks are available in Tables 7 and 8 for the

log and per-capita models, respectively. The general result—that upstream drilling activity

causes statistically significant increases in employment—holds true in all of the models,
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as does the pattern of dynamic response to rig counts. Nevertheless, point estimates are

affected. In the log model (1), both β̂(1) and L̂RM decrease by around a quarter when

working-age population from the Local Area Unemployment statistics is used, though using

a time-varying CPS population measure has minimal impact. In the per-capita model (2),

the use of a time-varying population variable seems to drive a decrease of around a third,

not the change in dataset.

8 Conclusion

To date, most estimates of the impact of unconventional oil and gas activity have been

done through industry-related studies and using an Input-Output analysis. Analysis using a

national-level VAR framework suggests that a 10% increase in rig counts raises employment in

oil and gas extraction by approximately 5% after 24 months, but general employment impacts

and employment impacts in manufacturing are not statistically distinguishable from zero.

Using a dynamic panel model we confirm the hypothesis that increased drilling for oil and gas

creates jobs, but we find the employment impacts to be much smaller than figures put forward

by Input-Output studies. In particular, we estimate that the long-run employment impact

of an additional rig count per million people is an increase of 0.064% in total employment. A

per-capita formulation of the model yields a LRM of 315 jobs per rig count. Our estimates

appear robust to autocorrelation, heteroskedasticity, and cross-sectional dependency in the

error terms. They also appear to be consistent across sets of states included in our sample

and different lag-lengths. We find some evidence that upstream activity may have had a

larger impact post-2008, though we cannot say as to why this would be. Additionally, using

other measures of population decreases our job-creation estimates by up to a third, though

these measures of population do not seem as appropriate. The fact that different modeling

approaches result in substantially different estimates of the employment impacts suggests

the need for further research in order to better understand the role of alternative modeling
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assumptions on these results.
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Coefficient (%) OLS Cluster SCC

∆ logEmploymenti,t−1 −2.1305 (0.8906)∗ (3.7387)∗ (2.4636)

∆ logEmploymenti,t−2 1.4896 (0.8882) (2.2458) (1.7444)

∆ logEmploymenti,t−3 6.3648 (0.8870)∗∗∗ (1.8624)∗∗∗ (1.4389)∗∗∗

∆ logEmploymenti,t−4 0.1043 (0.8873) (1.6728) (1.2686)

∆ logEmploymenti,t−5 −1.3672 (0.8879) (2.3544) (1.1426)

∆ logEmploymenti,t−6 3.8131 (0.8863)∗∗∗ (2.5049)∗∗∗ (1.2945)∗∗

∆ logEmploymenti,t−7 2.6306 (0.8828)∗∗ (2.3930)∗∗ (1.1599)∗

∆ logEmploymenti,t−8 −0.8629 (0.8832) (1.7269) (1.0862)

∆ logEmploymenti,t−9 4.3981 (0.8811)∗∗∗ (1.5566)∗∗∗ (1.2407)∗∗∗

∆ logEmploymenti,t−10 2.3412 (0.8756)∗∗ (1.7832)∗∗ (1.1793)∗

∆ logEmploymenti,t−11 8.0504 (0.8744)∗∗∗ (2.9623)∗∗∗ (1.8155)∗∗∗

∆ logEmploymenti,t−12 22.1630 (0.8733)∗∗∗ (3.8013)∗∗∗ (2.7968)∗∗∗

∆Rigs/Pop2000i,t−0 0.0096 (0.0016)∗∗∗ (0.0022)∗∗∗ (0.0020)∗∗∗

∆Rigs/Pop2000i,t−1 0.0038 (0.0016)∗ (0.0017)∗ (0.0018)∗

∆Rigs/Pop2000i,t−2 0.0030 (0.0016) (0.0021) (0.0022)

∆Rigs/Pop2000i,t−3 −0.0008 (0.0016) (0.0017) (0.0025)

∆Rigs/Pop2000i,t−4 −0.0006 (0.0016) (0.0018) (0.0028)

∆Rigs/Pop2000i,t−5 −0.0002 (0.0016) (0.0018) (0.0022)

∆Rigs/Pop2000i,t−6 0.0026 (0.0016) (0.0035) (0.0023)

∆Rigs/Pop2000i,t−7 0.0014 (0.0016) (0.0030) (0.0024)

∆Rigs/Pop2000i,t−8 0.0057 (0.0016)∗∗∗ (0.0019)∗∗∗ (0.0026)∗

∆Rigs/Pop2000i,t−9 0.0036 (0.0016)∗ (0.0015)∗ (0.0021)

∆Rigs/Pop2000i,t−10 0.0062 (0.0016)∗∗∗ (0.0011)∗∗∗ (0.0022)∗∗

β̂(1) 0.0341 (0.0042)∗∗∗ (0.0038)∗∗∗ (0.0079)∗∗∗

L̂RM 0.0643 (0.0082)∗∗∗ (0.0102)∗∗∗ (0.0174)∗∗∗

NOTE: Estimates and SEs are scaled by 100 to represent percentages.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standard errors in parenthesis. 48 states, 265 months, 12,720
observations. State-month and Time FE included, as well as lags 1–12 of state employment.

Table 1: Base model (1) in logs with different standard errors
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Coefficient OLS Cluster SCC

∆Emp/Pop00i,t−1 −0.039 (0.009)∗∗∗ (0.036)∗∗∗ (0.024)

∆Emp/Pop00i,t−2 0.017 (0.009) (0.076) (0.017)

∆Emp/Pop00i,t−3 0.071 (0.009)∗∗∗ (0.068)∗∗∗ (0.015)∗∗∗

∆Emp/Pop00i,t−4 0.014 (0.009) (0.059) (0.015)

∆Emp/Pop00i,t−5 0.012 (0.009) (0.060) (0.012)

∆Emp/Pop00i,t−6 0.069 (0.009)∗∗∗ (0.029)∗∗∗ (0.013)∗∗∗

∆Emp/Pop00i,t−7 0.045 (0.009)∗∗∗ (0.035)∗∗∗ (0.012)∗∗∗

∆Emp/Pop00i,t−8 −0.001 (0.009) (0.016) (0.012)

∆Emp/Pop00i,t−9 0.046 (0.009)∗∗∗ (0.022)∗∗∗ (0.012)∗∗∗

∆Emp/Pop00i,t−10 0.011 (0.009) (0.015) (0.011)

∆Emp/Pop00i,t−11 0.062 (0.009)∗∗∗ (0.063)∗∗∗ (0.016)∗∗∗

∆Emp/Pop00i,t−12 0.217 (0.009)∗∗∗ (0.052)∗∗∗ (0.025)∗∗∗

∆Rigs/Pop00i,t−0 30.905 (5.912)∗∗∗ (7.240)∗∗∗ (7.801)∗∗∗

∆Rigs/Pop00i,t−1 11.962 (6.025)∗ (6.874)∗ (7.073)

∆Rigs/Pop00i,t−2 15.885 (6.019)∗∗ (6.132)∗∗ (8.058)∗

∆Rigs/Pop00i,t−3 3.416 (6.028) (6.502) (7.644)

∆Rigs/Pop00i,t−4 10.661 (6.053) (6.844) (8.055)

∆Rigs/Pop00i,t−5 6.524 (6.005) (5.920) (7.699)

∆Rigs/Pop00i,t−6 13.011 (6.023)∗ (12.159)∗ (8.036)

∆Rigs/Pop00i,t−7 5.576 (6.026) (13.022) (8.194)

∆Rigs/Pop00i,t−8 20.196 (6.010)∗∗∗ (6.255)∗∗∗ (8.486)∗

∆Rigs/Pop00i,t−9 10.759 (5.998) (6.812) (7.733)

∆Rigs/Pop00i,t−10 20.904 (5.885)∗∗∗ (2.846)∗∗∗ (7.450)∗∗

β̂(1) 149.800 (15.726)∗∗∗ (17.782)∗∗∗ (27.943)∗∗∗

L̂RM 315.187 (35.448)∗∗∗ (275.434) (77.946)∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standard errors in parenthesis. 48 states, 265
months, 12,720 observations. State-month and Time FE included.

Table 2: Base model (2) in per-capita terms with different standard errors
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Base Truncated lags 13 lags 24 lags

∆Rigs/Pop2000i,t−0 0.0096 (0.0020)∗∗∗ 0.0096 (0.0022)∗∗∗ 0.0096 (0.0020)∗∗∗ 0.0095 (0.0020)∗∗∗

∆Rigs/Pop2000i,t−1 0.0038 (0.0018)∗ 0.0042 (0.0019)∗ 0.0037 (0.0017)∗ 0.0033 (0.0016)∗

∆Rigs/Pop2000i,t−2 0.0030 (0.0022) 0.0029 (0.0021) 0.0030 (0.0021)

∆Rigs/Pop2000i,t−3 −0.0008 (0.0025) −0.0008 (0.0024) −0.0006 (0.0023)

∆Rigs/Pop2000i,t−4 −0.0006 (0.0028) −0.0005 (0.0027) 0.0000 (0.0027)

∆Rigs/Pop2000i,t−5 −0.0002 (0.0022) 0.0002 (0.0021) 0.0006 (0.0020)

∆Rigs/Pop2000i,t−6 0.0026 (0.0023) 0.0028 (0.0023) 0.0028 (0.0021)

∆Rigs/Pop2000i,t−7 0.0014 (0.0024) 0.0020 (0.0024) 0.0025 (0.0025)

∆Rigs/Pop2000i,t−8 0.0057 (0.0026)∗ 0.0056 (0.0026)∗ 0.0064 (0.0025)∗

∆Rigs/Pop2000i,t−9 0.0036 (0.0021) 0.0037 (0.0020) 0.0038 (0.0020)

∆Rigs/Pop2000i,t−10 0.0062 (0.0022)∗∗ 0.0058 (0.0022)∗∗ 0.0058 (0.0021)∗∗

∆Rigs/Pop2000i,t−11 0.0013 (0.0021) 0.0007 (0.0020)

∆Rigs/Pop2000i,t−12 0.0002 (0.0020) 0.0000 (0.0019)

∆Rigs/Pop2000i,t−13 0.0022 (0.0022) 0.0007 (0.0021)

∆Rigs/Pop2000i,t−14 0.0031 (0.0021)

∆Rigs/Pop2000i,t−15 −0.0029 (0.0020)

∆Rigs/Pop2000i,t−16 0.0006 (0.0022)

∆Rigs/Pop2000i,t−17 −0.0005 (0.0021)

∆Rigs/Pop2000i,t−18 0.0003 (0.0019)

∆Rigs/Pop2000i,t−19 −0.0021 (0.0026)

∆Rigs/Pop2000i,t−20 0.0027 (0.0020)

∆Rigs/Pop2000i,t−21 0.0043 (0.0023)

∆Rigs/Pop2000i,t−22 0.0035 (0.0023)

∆Rigs/Pop2000i,t−23 0.0062 (0.0021)∗∗

∆Rigs/Pop2000i,t−24 0.0042 (0.0023)

β̂(1) 0.0341 (0.0079)∗∗∗ 0.0138 (0.0029)∗∗∗ 0.0387 (0.0095)∗∗∗ 0.0578 (0.0112)∗∗∗

L̂RM 0.0643 (0.0174)∗∗∗ 0.0269 (0.0070)∗∗∗ 0.0759 (0.0210)∗∗∗ 0.1112 (0.0220)∗∗∗

BIC −106146.4584 −106172.7398 −106147.9075 −106149.0476

NOTE: Estimates and SEs are scaled by 100 to represent percentages. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
Driscoll-Kraay standard errors in parenthesis. 48 states, 265 months (Feb 1992–Feb 2014), 12,720 observations. State-
month and time fixed effects included. Tests that β(1) < 0 and that LRM < 0 both rejected at 0.001 level.

Table 3: Log model (1) with differing lag-lengths
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Base Truncated lags 13 lags 24 lags

∆Rigs/Pop2000i,t−0 30.91 (7.80)∗∗∗ 31.21 (8.09)∗∗∗ 31.17 (7.92)∗∗∗ 31.86 (7.57)∗∗∗

∆Rigs/Pop2000i,t−1 11.96 (7.07) 15.26 (7.60)∗ 12.19 (7.15) 11.25 (6.53)

∆Rigs/Pop2000i,t−2 15.89 (8.06)∗ 15.81 (8.08) 17.43 (8.21)∗

∆Rigs/Pop2000i,t−3 3.42 (7.64) 3.56 (7.62) 4.63 (7.31)

∆Rigs/Pop2000i,t−4 10.66 (8.06) 10.99 (7.97) 12.10 (8.09)

∆Rigs/Pop2000i,t−5 6.52 (7.70) 7.08 (7.77) 7.75 (7.51)

∆Rigs/Pop2000i,t−6 13.01 (8.04) 13.25 (8.13) 12.84 (7.62)

∆Rigs/Pop2000i,t−7 5.58 (8.19) 6.74 (8.59) 8.12 (8.76)

∆Rigs/Pop2000i,t−8 20.20 (8.49)∗ 20.34 (8.44)∗ 22.86 (8.15)∗∗

∆Rigs/Pop2000i,t−9 10.76 (7.73) 11.37 (7.66) 11.78 (7.25)

∆Rigs/Pop2000i,t−10 20.90 (7.45)∗∗ 20.96 (7.61)∗∗ 21.84 (7.84)∗∗

∆Rigs/Pop2000i,t−11 −0.21 (7.30) −1.32 (7.02)

∆Rigs/Pop2000i,t−12 −3.46 (7.88) −3.39 (8.16)

∆Rigs/Pop2000i,t−13 3.54 (8.86) −2.07 (8.74)

∆Rigs/Pop2000i,t−14 12.04 (7.83)

∆Rigs/Pop2000i,t−15 −8.13 (8.03)

∆Rigs/Pop2000i,t−16 12.29 (7.15)

∆Rigs/Pop2000i,t−17 4.45 (7.90)

∆Rigs/Pop2000i,t−18 4.84 (7.49)

∆Rigs/Pop2000i,t−19 −5.77 (9.00)

∆Rigs/Pop2000i,t−20 14.20 (7.46)

∆Rigs/Pop2000i,t−21 18.20 (9.40)

∆Rigs/Pop2000i,t−22 13.74 (8.11)

∆Rigs/Pop2000i,t−23 23.96 (8.03)∗∗

∆Rigs/Pop2000i,t−24 14.16 (8.61)

Employment lags included 12 12 13 24

β̂(1) 149.80 (27.94)∗∗∗ 46.47 (11.94)∗∗∗ 153.34 (34.96)∗∗∗ 259.67 (47.16)∗∗∗

L̂RM 315.19 (77.95)∗∗∗ 102.29 (34.89)∗∗∗ 331.77 (90.43)∗∗∗ 524.39 (97.64)∗∗∗

BIC 44762.48 44743.25 44786.77 44807.14

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Driscoll-Kraay standard errors in parenthesis. 48 states, 265 months (Feb 1992–Feb
2014), 12,720 observations. State-month and time fixed effects included. Tests that β(1) < 0 and that LRM < 0 both
rejected at 0.001 level.

Table 4: Per-capita model (2) with differing lag-lengths
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Base Truncated lags 13 lags 24 lags

∆Rigs/Pop2000i,t−0 0.0115 (0.0023)∗∗∗ 0.0116 (0.0024)∗∗∗ 0.0116 (0.0023)∗∗∗ 0.0114 (0.0021)∗∗∗

∆Rigs/Pop2000i,t−1 0.0035 (0.0019) 0.0038 (0.0020) 0.0030 (0.0019) 0.0031 (0.0017)

∆Rigs/Pop2000i,t−2 0.0023 (0.0025) 0.0022 (0.0025) 0.0030 (0.0023)

∆Rigs/Pop2000i,t−3 −0.0004 (0.0028) −0.0001 (0.0028) −0.0002 (0.0026)

∆Rigs/Pop2000i,t−4 −0.0011 (0.0034) −0.0011 (0.0033) −0.0003 (0.0031)

∆Rigs/Pop2000i,t−5 −0.0015 (0.0024) −0.0012 (0.0024) −0.0011 (0.0021)

∆Rigs/Pop2000i,t−6 0.0020 (0.0026) 0.0020 (0.0026) 0.0016 (0.0023)

∆Rigs/Pop2000i,t−7 0.0012 (0.0027) 0.0021 (0.0027) 0.0016 (0.0027)

∆Rigs/Pop2000i,t−8 0.0054 (0.0026)∗ 0.0054 (0.0027)∗ 0.0057 (0.0024)∗

∆Rigs/Pop2000i,t−9 0.0048 (0.0022)∗ 0.0049 (0.0021)∗ 0.0045 (0.0020)∗

∆Rigs/Pop2000i,t−10 0.0059 (0.0025)∗ 0.0050 (0.0025)∗ 0.0048 (0.0024)∗

∆Rigs/Pop2000i,t−11 0.0025 (0.0022) 0.0019 (0.0021)

∆Rigs/Pop2000i,t−12 −0.0003 (0.0022) −0.0007 (0.0020)

∆Rigs/Pop2000i,t−13 0.0020 (0.0023) 0.0004 (0.0022)

∆Rigs/Pop2000i,t−14 0.0033 (0.0024)

∆Rigs/Pop2000i,t−15 −0.0024 (0.0021)

∆Rigs/Pop2000i,t−16 0.0006 (0.0025)

∆Rigs/Pop2000i,t−17 −0.0002 (0.0022)

∆Rigs/Pop2000i,t−18 0.0007 (0.0020)

∆Rigs/Pop2000i,t−19 −0.0037 (0.0027)

∆Rigs/Pop2000i,t−20 0.0028 (0.0025)

∆Rigs/Pop2000i,t−21 0.0030 (0.0025)

∆Rigs/Pop2000i,t−22 0.0036 (0.0023)

∆Rigs/Pop2000i,t−23 0.0054 (0.0022)∗

∆Rigs/Pop2000i,t−24 0.0029 (0.0025)

β̂(1) 0.0336 (0.0085)∗∗∗ 0.0154 (0.0032)∗∗∗ 0.0380 (0.0101)∗∗∗ 0.0518 (0.0122)∗∗∗

L̂RM 0.0627 (0.0174)∗∗∗ 0.0296 (0.0079)∗∗∗ 0.0736 (0.0214)∗∗∗ 0.1043 (0.0249)∗∗∗

BIC −105020.3853 −105058.1508 −104962.3525 −105071.1135

NOTE: Estimates and SEs are scaled by 100 to represent percentages. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
Driscoll-Kraay standard errors in parenthesis. 48 states, 265 months (Feb 1992–Feb 2014), 12,720 observations. State-
month effects ONLY included. Control variables include national logEmploymentt−1 and log IPIt−0 with 12, 12, 13
and 24 lags. Tests that β(1) < 0 and that LRM < 0 both rejected at 0.001 level.

Table 9: Log model with differing lag-lengths and controls
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Base Truncated lags 13 lags 24 lags

∆Rigs/Pop2000i,t−0 39.22 (9.00)∗∗∗ 39.73 (9.45)∗∗∗ 39.39 (9.00)∗∗∗ 40.91 (8.25)∗∗∗

∆Rigs/Pop2000i,t−1 11.31 (7.80) 15.42 (7.94) 10.40 (7.86) 10.25 (6.93)

∆Rigs/Pop2000i,t−2 17.64 (8.75)∗ 17.96 (8.58)∗ 18.47 (8.56)∗

∆Rigs/Pop2000i,t−3 6.83 (8.70) 6.90 (8.73) 6.66 (8.40)

∆Rigs/Pop2000i,t−4 11.00 (9.89) 11.92 (9.74) 13.53 (9.55)

∆Rigs/Pop2000i,t−5 −1.71 (8.04) −0.40 (8.15) −1.06 (7.82)

∆Rigs/Pop2000i,t−6 10.89 (9.02) 10.50 (9.11) 9.13 (8.25)

∆Rigs/Pop2000i,t−7 3.45 (9.05) 4.58 (9.48) 3.46 (9.52)

∆Rigs/Pop2000i,t−8 19.73 (8.26)∗ 19.78 (8.40)∗ 20.41 (7.91)∗∗

∆Rigs/Pop2000i,t−9 14.45 (8.07) 14.97 (7.99) 14.64 (7.69)

∆Rigs/Pop2000i,t−10 21.58 (8.35)∗∗ 20.47 (8.37)∗ 20.30 (8.49)∗

∆Rigs/Pop2000i,t−11 4.05 (7.61) 2.33 (7.17)

∆Rigs/Pop2000i,t−12 −4.87 (8.47) −5.61 (8.37)

∆Rigs/Pop2000i,t−13 5.34 (9.18) −2.93 (8.97)

∆Rigs/Pop2000i,t−14 15.28 (8.70)

∆Rigs/Pop2000i,t−15 −5.10 (8.64)

∆Rigs/Pop2000i,t−16 13.55 (7.84)

∆Rigs/Pop2000i,t−17 1.89 (8.39)

∆Rigs/Pop2000i,t−18 6.63 (7.73)

∆Rigs/Pop2000i,t−19 −13.01 (9.08)

∆Rigs/Pop2000i,t−20 14.61 (8.63)

∆Rigs/Pop2000i,t−21 11.96 (9.83)

∆Rigs/Pop2000i,t−22 15.17 (7.97)

∆Rigs/Pop2000i,t−23 21.29 (8.44)∗

∆Rigs/Pop2000i,t−24 10.58 (9.14)

Lagged controls included 12 12 13 24

β̂(1) 154.38 (29.35)∗∗∗ 55.15 (13.58)∗∗∗ 160.99 (36.13)∗∗∗ 243.36 (49.13)∗∗∗

L̂RM 311.09 (76.59)∗∗∗ 115.78 (38.37)∗∗∗ 334.47 (89.43)∗∗∗ 493.97 (106.68)∗∗∗

BIC 45917.38 45885.50 45905.45 45925.13

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Driscoll-Kraay standard errors in parenthesis. 48 states, 265 months (Feb 1992–Feb
2014), 12,720 observations. Only state-month fixed effects included. Control variables include national logEmploymentt−1
and log IPIt−0 with 12, 12, 13 and 24 lags. Tests that β(1) < 0 and that LRM < 0 both rejected at 0.001 level.

Table 10: Per-capita model with differing lag-lengths and controls
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A Appendix

A.1 National Data

Summary statistics for national data are in Table 11. All data begin in January 1990 and

end in February 2014.

We measure oil prices by using the West Texas Intermediate (WTI) benchmark, which

we take from the Energy Information Agency (EIA) website. WTI is the primary North

American crude oil benchmark, and it is traded in a very deep and liquid market. We then

deflate this price by the Producer Price Index for All Commodities (PPIACO), which we

take from the FRED data service of the Federal Reserve Bank.

National rig counts are taken from two spreadsheets on the Baker Hughes website23:

historical data beginning in 1990 (“North America Rotary Rig Counts through 2013”) and

2014 data (“Rigs by State - Current and Historical”). We include both land and offshore

rigs.

Employment data are taken from the Bureau of Labor Statistics’ (BLS) Current Estab-

lishment Survey. We use three measures, which are all in units of 1,000 employees. Data are

not seasonally adjusted.

1. Private, Non-Farm Employment (CEU0500000001)

2. Employment in manufacturing (CEU3000000001)

3. Employment in Oil and Gas Extraction plus Oil and Gas Support Activities (CEU1021311201

plus CEU1021100001, which correspond to NAICS codes 211000 and 213112)

Industrial production is taken from the Federal Reserve website.24 We use three measures,

which correspond to the three employment measures. None of the variables are seasonally

adjusted.

23http://phx.corporate-ir.net/phoenix.zhtml?c=79687&p=irol-reportsother.
24http://www.federalreserve.gov/releases/g17/ipdisk/ip_nsa.txt.
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1. Total Industrial Production (B50001)

2. Industrial Production in Manufacturing as defined by SIC (B00004)

3. Industrial Production in Primary Energy (B53310), which includes natural gas, Louisiana

and other crude oil, nuclear electric power generation, coal mining, support activities

for oil and gas operations, Texas crude oil, Alaska and California crude oil, and hydro-

electric power generation.

A.2 State Data

Summary statistics for state-level data are in Table 11. All data begin in January 1990 and

end in February 2014. Land-based rig counts are taken from the Baker Hughes website.

Employment data are taken from the BLS Current Establishment Survey State and Metro

dataset. As in the national case, we use Private, Non-Farm Employment, which is not

seasonally adjusted and measured in thousands.

We work with a variety of population measures. Our primary measure of population is the

Census Bureau’s midyear population estimate, and we download it from the “Annual State

Personal Income and Employment” tables on the Bureau of Economic Analysis website.25 In

particular, we use the population in July 2000 as our base-line population estimate for the

sample, though in robustness checks we also use the measures from 1990 and 2010, as well as

a linear interpolation for intervening months. Our other measure of population is the BLS

Local Area Unemployment (LAU) Statistics series “Civilian noninstitutional population.”

As defined by the BLS, this panel captures the population of 16 years of age or older who

are not institutionalized or in the armed services.26

25http://www.bea.gov/iTable/iTable.cfm?ReqID=9&step=1#reqid=9&step=1&isuri=1.
26See http://www.bls.gov/lau/rdscnp16.htm for the exact definition.
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Figure A.2: Rig-count per million people
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Figure A.3: Rig-counts (level)
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Figure A.4: BIC for lag-length selection of model (1)
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