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Abstract 
Pricing greenhouse gas emissions is a risk management problem. It 

involves making trade-offs between consumption today and unknown and 
potentially catastrophic damages in the (distant) future. The optimal price 
is necessarily based on society’s willingness to substitute consumption 
across time and across uncertain states of nature. A large body of work in 
macroeconomics and finance has attempted to infer societal preferences 
using the observed behavior of asset prices, and has concluded that the 
standard preference specifications are inconsistent with observed asset 
valuations. This literature has developed a richer set of preferences that 
are more consistent with asset price behavior. The climate-economy 
literature by and large has not adopted this richer set of preferences. 

In this paper, we explore the implications of these richer preference 
specifications for the optimal pricing of carbon emissions. We develop a 
simple discrete-time model with Epstein-Zin utility in which uncertainty 
about the effect of carbon emissions on global temperature and on 
eventual damages is gradually resolved over time. We embed a number of 
features including tail risk, the potential for technological change and 
backstop technologies. When coupled with the potential for low-
probability, high-impact outcomes, our calibration to historical real 
interest rates and the equity risk premium suggests a high price for carbon 
emissions today which is then expected to decline over time. This is in 
contrast to most modeled carbon price paths, which tend to start low and 
rise steadily over time. 

Keywords: Asset pricing, discounting, climate change, global 
warming, Epstein-Zin utility. 
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1. Introduction 
 
Following Coase (1960), external damages from greenhouse gas emissions into the 
atmosphere can be accounted for by assigning full property rights to the atmosphere 
and allowing trading of those rights. While property rights to the atmosphere cannot 
reasonably be assigned in this way and enormous transactions costs prevent any true 
Coasian solution, we can nonetheless achieve the optimal level of emissions by setting a 
carbon price equal to its full social cost. The modern approach to asset pricing 
recognizes that the value of the full benefits achieved by reducing emissions is generally 
determined by appropriate discounting of those benefits at future times and states of 
nature (Hansen and Richard, 1987; Duffie, 2001). In practice this can be done by 
weighing the future benefits not only by a pure rate of time discount, but also by the 
probability and the marginal utility of consumption appropriate to each state. 
 
Meanwhile, climate modelers and environmental economists more broadly have long 
focused on ethical justifications for different values for the pure rate of time preference 
to value the costs of unmitigated climate change and the benefits of investments leading 
to lower greenhouse gas (GHG) pollution.2 Another more recent focus has been on the 
implication of a declining term-structure of discount rates associated with uncertainty of 
future interest rates.3 While relatively new in the climate economic literature, the notion 
that higher uncertainty about future interest rates causes the term structure of interest 
rates to decline is well-understood in the asset pricing literature (e.g. Litterman, 
Scheinkman, and Weiss, 1991). However, this climate-economic literature for the most 
part all but ignores the pricing of the risk in the payoffs arising from the mitigation of 
climate emissions.4 As we show here the risk premium can easily become the dominant 
influence on the appropriate value for the current price of emissions because climate 
science cannot rule out low-probability, high-impact outcomes. 
 
Improper accounting for low-probability, high-impact events in standard economic 
approaches to valuing returns on equities is one explanation for large equity premium 
puzzles (Weitzman, 2007).5 The valuation assigned to different traded assets suggests 
that society requires a far higher rate of return on investments in risky assets, and is 
willing to tolerate far lower returns on assets that provide insurance against unfavorable 
outcomes. For example, between 1871 and 2012, an investment in a portfolio in U.S. 
bonds would have earned an average annual real return of 1.6 percent. In contrast, over 
the same period an investment in a diversified portfolio in U.S. stocks would have 
earned an average annual real return of 6.4 percent 6 
 
Society requires a higher return for equities because equities have large payoffs in good 
economic times but often perform poorly precisely when the economy is doing poorly. 

                                                   
2 For some of the most prominent examples, see Stern (2007) and also Nordhaus (2013, 2014). 
3 E.g., Arrow et al. (2013, 2014). See Gollier (2012) for a comprehensive survey of discounting under uncertainty. 
Weitzman (2001) first formalized the idea of declining long-term discount rates in the context of climate policy. 
Gollier and Weitzman (2010) similarly argue for a declining rate. 
4 Two notable exceptions are Ackerman, Stanton, and Bueno (2012) and Crost and Traeger (2014). 
5 See our discussion in section 2.1 and references therein. 
6 Based on data collected by Shiller (2000) and since continuously updated: 
http://www.econ.yale.edu/~shiller/data.htm 

http://www.econ.yale.edu/~shiller/data.htm
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Conversely, society is willing to pay handsomely for the right pattern of cash flows 
across states. These numbers also reveal that the pattern across states of the payoffs 
associated with climate change mitigation will have a dramatic effect on the appropriate 
discount rate. Because the potential benefits from mitigation accrue many centuries into 
the future, even small changes in the discount rate can have a large effect on the 
appropriate emissions price. 
 
We approach climate change as a standard asset pricing problem. Carbon in the 
atmosphere is an ‘asset’—albeit one with negative payoffs—and ought to be treated as 
such. Our model uses a state-contingent discount rate, calibrated to the returns over 
time of financial assets. In contrast to the standard constant-elasticity of substitution 
(CES) utility function used in most climate studies, we use here a utility function 
proposed by Epstein and Zin (1989, 1991) and used throughout the asset pricing 
literature. It has CES utility as a special case and also allows for differences between the 
intertemporal marginal rate of substitution (IMRS) and risk aversion, which allows us to 
calibrate to standard financial returns, in particular the equity risk premium and risk-
free interest rates. 
 
To examine the implications we use a simple model that showcases the tradeoff between 
(known) climate action and (uncertain) climate damages. We employ a discrete time 
binomial tree model, building on one introduced by Summers and Zeckhauser (2008). 
Different states in the tree represent different degrees of fragility of the environment 
which, when combined with the level of greenhouse gases in the atmosphere, imply 
different damages, different consequences for the utility of the representative agent. 
Information about the state is revealed over time, and in each period the agent chooses a 
level of emissions mitigation, based on the information available at that time, that 
maximizes his expected discounted utility. The optimal level of emissions mitigation is 
obtained when the reduction in utility from additional expenditure on mitigation at each 
point in time is exactly offset by the probability-weighted increase in utility from 
reductions in damages in future states. The use of Epstein-Zin utility allows us to 
explore the impact on the optimal emissions price of the higher elasticity of marginal 
utility to uncertain outcomes associated with a risk-averse society. 
 
Figure 1 shows the profound implications. Under a standard constant relative risk-
aversion utility function with the IMRS calibrated to 0.643 in order to reflect a 2.5% 
yield on a zero-coupon bond that matures at the end of the last period, the optimal 
carbon price today is $36.28 per ton. With this standard utility specification the optimal 
carbon price today declines rapidly to zero with increasing risk aversion as the implied 
interest rates increase and less weight is given to future outcomes. In contrast, under 
Epstein-Zin utility, holding the IMRS fixed at 0.643 and increasing the degree of risk 
aversion, the carbon price increases, while the real interest rate remains at around 
2.5%/year.7 As the level of risk aversion is raised from a very low level to a level 
consistent with the historically observed equity-risk premium, the optimal carbon price 
increases from $36.28 to around $90 per ton. 
 
                                                   
7 The exact interest rate in our Epstein-Zin calibration with a risk aversion of 1/.643 starts at 2.506%/year (equivalent 
to CES), reaching 2.541%/year with risk aversion = 50. 
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Figure 1 — Using Epstein-Zin utility functions results in increasing carbon prices with 

increasing risk aversion translated into the implied equity risk premium using 
Weil (1989)’s conversion, while holding the implied market interest rate stable 
at our target rate of 2.5%.8 

 
 

2. The model set-up 
 
The setting of our model is a discrete time, endowment economy with a single 
representative agent. In each period 𝑡𝑡{0,1,2, … ,𝑇}, the agent is endowed with a certain 
amount of the consumption good, 𝐶𝑡̅. 
 
However, the agent is not able to consume the full endowed consumption for two 
reasons: climate change and climate policy. First, in periods 𝑡𝑡{1,2, … ,𝑇}, some of the 
endowed consumption may be lost due to climate change damages. Second, in periods 
𝑡𝑡{0,1,2, … ,𝑇 − 1}, the agent may elect to spend some of the endowed consumption to 
reduce his impact on the climate. The resulting consumption is given by: 
 
(1) 𝐶0 = 𝐶0̅ ∙ �1 − 𝜅0(𝑥0)� 
(2) 𝐶𝑡 = 𝐶𝑡̅ ∙ �1 − 𝐷𝑡(𝑋𝑡,𝜃𝑡) − 𝜅𝑡(𝑥𝑡)�, for 𝑡𝑡{1,2, … ,𝑇 − 1} 
(3) 𝐶𝑇 = 𝐶𝑇̅ ∙ (1 − 𝐷𝑇(𝑋𝑇 ,𝜃𝑇)) 
 
In equations (2) and (3), the climate damage function 𝐷𝑡(𝑋𝑡,𝜃𝑡) captures the fraction of 
endowed consumption that is lost due to damages from climate change. If 𝐷𝑡(𝑋𝑡,𝜃𝑡) = 0, 
the agent would receive the full consumption endowment. However, damages from 

                                                   
8 The discontinuity at an equity risk premium of 1.16 reflects a different local maximum becoming the global 
maximum in our optimization exercise. See Section 4 for a fuller explanation. 
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climate change can push 𝐷𝑡 above zero. 𝐷𝑡 depends on two variables: 𝑋𝑡, which we define 
as the cumulative GHG mitigation up to time t, and 𝜃𝑡, a parameter that characterizes 
the uncertain relation between the level of GHGs in the atmosphere and consumption 
damages. 𝜃𝑡 evolves stochastically as described in section 2.3. 
 
Cumulative mitigation 𝑋𝑡, in turn, depends on the level of mitigation at any time from 0 
to t, which is given by: 
 

(4) Xt = ∑ 𝑔𝑠∙𝑡
𝑠=0 𝑥𝑠
∑ 𝑔𝑠𝑡
𝑠=0

, 

 
where 𝑔𝑠 is the flow of GHG emissions into the atmosphere in period 𝑠, for each period 
up to t, absent any mitigation. The level of mitigation at any time s is given by 𝑥𝑠, where 
𝑥𝑠 = 0 denotes no climate action at time s, and 𝑥𝑠 = 1 denotes full mitigation, or zero net 
flow of new GHG emissions into the atmosphere at time s. In our base specification, 
𝑥𝑠𝜖[0,1]. In Section 2.2.1, we extend this to include a backstop technology, which allows 
for CO2 capture, and which can result in mitigation above 100%. 
 
Mitigation reduces the stock of GHGs in the atmosphere and leads to lower climate 
damages and hence higher future consumption. However, mitigating GHG emissions is 
costly. To mitigate a fraction 𝑥𝑡 of emissions costs a fraction 𝜅𝑡(𝑥𝑡) of the endowed 
consumption. We describe the details of the cost function, and our calibration, in 
Section 2.2. 
 
In the framework we propose, the representative agent’s optimization problem involves 
trading off the (known) costs of climate mitigation against the uncertain future benefits 
associated with mitigation. The agent does this by solving the dynamic optimization 
problem to determine the optional path of mitigation, 𝑥𝑡∗(𝜃𝑡), to maximize lifetime 
utility at each time and for each state of nature. In our baseline analysis, we start with a 
5 period tree with 30-year intervals, beginning in 2015. The subsequent years for 
calibration are: 2045, 2075, 2105, and 2135, followed by 𝑡 = 𝑇 at 2200. At each node of 
the tree, more information about the consumption damage function is revealed (and 
reflected in the parameter 𝜃𝑡), but uncertainty is not fully resolved until the final period. 
 
In the next section, we describe the agent’s preferences, and provide some motivation 
for the preferences specification we employ. In Sections 2.2 and 2.3, we lay out the cost 
and damage functions and describe their calibration. Section 3 presents the results of a 
set of simulations designed to illustrate the effects that various parameters have on 
optimal climate policies, Section 4 discusses the discontinuity in Figure 1, and Section 5 
concludes. 
 
 

2.1 Preferences 
 
The equity premium puzzle refers to the empirical regularity that the high average 
return and low volatility of U.S. equity return is not matched by a corresponding high 
covariance with consumption growth (Hansen and Singleton, 1982; Mehra and Prescott, 
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1985; Weil, 1989). Put simply, investors act more risk averse than standard economic 
theory prescribes they should. These observations are particularly problematic for 
Constant Relative Risk Aversion (CRRA) utility functions (see, e.g., Hansen and 
Jagannathan, 1991; Hansen, Heaton, Lee and Roussanov 2007). 
 
To resolve this puzzle, financial economists have long employed an alternative and more 
flexible preference specification. Epstein and Zin (1989, 1991) attempt to escape the 
hard link between risk aversion and the intertemporal discount rate by introducing a 
utility function that allows for different rates of substitution across time and states.9 
This is the specification we use here. 
 
In an Epstein-Zin utility framework, the agent maximizes at each time 𝑡: 
 

(5) 𝑈𝑡 = �(1 − 𝛽)c𝑡
𝜌 +  𝛽�𝜇𝑡�𝑈�𝑡+1��

𝜌
�
1 𝜌⁄

, 
 
where 𝜇𝑡�𝑈�𝑡+1� is the certainty-equivalent of future lifetime utility, based on the agent’s 
information at time 𝑡, and is given by: 
 
(6) µt�U�t+1� =  (𝐸𝑡[𝑈𝑡+1𝛼 ])1 𝛼⁄ . 
 
Note that with 𝜌 = 𝛼, equations (5) and (6) are equivalent to the standard 
CRRA/power/isoelastic utility specification. Setting 𝜌 = 0 and 𝛼 = 0 independently 
generates standard log-utilities across time and across states of nature, respectively. 
 
In this specification, (1 − 𝛽) 𝛽⁄  is the pure rate of time preference. The parameter 𝜌 
measures the agent’s willingness to substitute consumption across time. The higher is 𝜌, 
the more willing the agent is to substitute consumption across time. The elasticity of 
intertemporal substitution is given by 𝜎 = 1 (1 − 𝜌)⁄ . Finally, 𝛼 captures the agent’s 
willingness to substitute consumption across (uncertain) future consumption streams. 
The higher is 𝛼, the more willing the agent is to substitute consumption across (as yet 
unknown) states. 𝛾 = (1 − 𝛼) is the coefficient of relative risk aversion at a given point 
in time. This added flexibility allows for calibration across states of nature and time. 
 
Plugging (6) into (5) for our tree-structure model generates:  
 

(7) 𝑈0 =  �(1 − 𝛽)𝑐0
𝜌 + 𝛽�𝐸0�𝑈�1𝛼��

𝜌 𝛼⁄
�
1 𝜌⁄

 

(8) 𝑈𝑡 =  �(1 − 𝛽)𝑐𝑡
𝜌 + 𝛽(𝐸𝑡[U𝑡+1

𝛼 ])𝜌 𝛼⁄ �
1 𝜌⁄

, for 𝑡𝑡{1,2, … ,𝑇 − 1}, 

(9) 𝑈𝑇 =  �(1 − 𝛽)𝑐𝑇
𝜌�
1 𝜌⁄

 
 
with 𝑐0 and 𝑐𝑡, respectively, given by equations (1) and (2). 

                                                   
9 See Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008) for more detailed discussions. Bansal and Ochoa 
(2009, 2010) use this preference specification in combination with a framework in which temperature shocks affect 
future consumption growth. Ackerman, Stanton, and Bueno (2012) and Crost and Traeger (2014) use this utility 
function in William Nordhaus’s well-known DICE climate model (Nordhaus, 2013, 2014). 
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2.2 Mitigation Cost Function Specification and Calibration 
 
In this section we discuss the specification and the calibration of the mitigation cost 
function. 
 
To calibrate the model, we need to find a relationship between 𝜏, 𝑔, and 𝑥 (where 𝜏 is the 
tax rate per ton of emissions, 𝑔 is the resulting flow of emissions in gigatonnes of CO2-
equivalent emissions per year, Gt CO2e, and 𝑥 is the fraction of emissions reduced). To 
do so, we mimic Pindyck (2012), which calibrates gamma distributions for temperature 
levels given greenhouse gas concentrations, and for economic damages given 
temperature levels. 
 
McKinsey (2009) constructs a marginal abatement cost curve for GHGs that allows us to 
deduce 𝜏, 𝑔, and 𝑥 for the year 2030, the middle of period 1. We take McKinsey’s 
estimates but assume no mitigation (𝑥(𝜏) = 0) at 𝜏 = 0; i.e. no net-negative or zero-cost 
mitigation. Table 1 shows the resulting calibration.10 
 

Table 1—Marginal abatement cost curve for 2030, from McKinsey (2009). 
GHG taxation rate 

𝝉 
GHG emissions flow 

𝒈(𝝉) 
Fractional GHG 

reduction 
𝒙(𝝉) 

€0/ton 70 Gt CO2e/year 0 
€60/ton 32 Gt CO2e/year 0.543 

€100/ton 23 Gt CO2e/year 0.671 
 
Fitting McKinsey’s point estimates (in $US) from Table 1 to a power function for 𝑥(𝜏) 
yields: 
 
(10) 𝑥(𝜏) = 0.0923 ∙ 𝜏0.414. 
 
The corresponding inverse function, solving for the appropriate tax rate to achieve 𝑥 is: 
 
(11) 𝜏(𝑥) = 314.32 ∙ 𝑥2.413. 
 
We are interested in 𝜅(𝜏), the cost to the society when a GHG tax rate of 𝜏 is imposed. 
We can calculate 𝜅(𝜏)using the envelope theorem. Intuitively, GHG emissions are an 
input to the production process that generates consumption goods. At any tax rate 𝜏, 
assuming agents choose the level of GHG emissions 𝑔(𝜏) so as to maximize 
consumption given 𝜏, then the marginal cost of increasing the tax rate must be the 
quantity of emissions at that tax rate, that is: 
 

                                                   
10 We have emissions stabilize at 57% above current levels. In our unmitigated baseline scenario, GHG concentrations 
reach approximately 1,000 ppm by 2200. 
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(12) 𝑑𝑑(𝜏)
𝑑𝑑

= −𝑔(𝜏), 
 
Thus, to calculate the consumption associated with a GHG tax rate of 𝜏 we integrate this 
expression, giving: 
 
(13) 𝐶(𝜏) = 𝐶̅ − ∫ 𝑔(𝑠)𝜏

0 𝑑𝑑, 
 
where 𝐶̅ is the endowed level of consumption (assuming zero damages). However, this 
equation is correct only if the GHG tax is purely dissipative—that is, if the government 
were to collect the tax and then waste 100% of the proceeds. In our analysis, we instead 
assume that the tax is non-dissipative, meaning that the proceeds of the tax (𝑔(𝜏)  ·  𝜏) 
would be refunded lump-sum, making the decrease in consumption just equal to the 
distortionary effect of the tax (in dollars) which is:11 
 
(14) 𝐾(𝜏) = ∫ 𝑔(𝑠)𝜏

0 𝑑𝑑 −  𝑔(𝜏) ∙ 𝜏. 
 
Writing 𝑔(𝜏) = 𝑔0�1 − 𝑥(𝜏)�, where 𝑔0 is the baseline level of GHG emissions, we can 
rewrite 𝐾(𝜏) as: 
 

𝐾(𝜏) = 𝑔0 � �1 − 𝑥(𝑠)�𝑑𝑑 − 𝜏𝑔0�1 − 𝑥(𝜏)�
𝜏

0
 

= 𝑔0 �𝜏 − � 𝑥(𝑠)𝑑𝑑
𝜏

0
� − 𝜏𝑔0 + 𝜏𝑔0𝑥(𝜏) 

(15) = 𝑔0�𝜏𝜏(𝜏) − ∫ 𝑥(𝑠)𝑑𝑑𝜏
0 � 

 
Substituting (10) into (15) and simplifying gives the total cost 𝛫 as a function of the tax 
rate 𝜏: 
 
(16) 𝛫(𝜏) = 𝑔0[0.09230 ∙ 𝜏1.414 − 0.06526 ∙ 𝜏1.414] 
(17) = 𝑔0 ∙ 0.02704 ∙ 𝜏1.414, 
 
Substituting (11) into (17) gives 𝛫 as a function of fractional-mitigation x: 
 
(18) 𝛫(𝑥) = 𝑔092.08 ∙ 𝑥3.413, 
 
where total cost 𝛫(𝑥) is expressed in dollars. Finally, we divide by current (2015) 
aggregate consumption to determine the cost as a fraction of baseline consumption: 
 

                                                   
11 Note that were the proceeds from the (Pigouvian) GHG tax used to reduce other distortionary taxes, the effective 
cost of the carbon tax would be still lower than what we calculate here, and thus would justify a higher optimal 𝜏. For 
a summary of this “double-dividend” argument, see Goulder (1993). Separately, note that in this analysis we are 
necessarily not in a representative agent framework—in that we are assuming that individuals choice of the optimal 
level of GHG emissions takes into account the marginal effect of the tax 𝜏 they pay on GHG emissions, but not the 
marginal effect of the refund of the tax proceeds. 
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(19) 𝜅(𝑥) = �𝑔0∙92.08
𝐶0

� ∙ 𝑥3.413, 
 
where 𝑔0 = 52 Gt CO2e/year represents the current level of global emissions, and 𝐶0 = 
$31 trillion/year is current global consumption. This function expresses the total cost of 
a given level of mitigation as a percentage of consumption, and we hold that fixed in all 
periods except for the impact of technological change. We further assume that, absent 
technological change, the function 𝜅(𝑥) is time invariant. 
 
 

2.2.1 Backstop Technology Specification 
 
The McKinsey estimates on which our cost function 𝜅(𝑥) are based reflect the cost of 
traditional mitigation only. However, in addition to standard mitigation, technologies 
are available for pulling CO2 directly out of the atmosphere, such as carbon dioxide 
removal (CDR) or direct carbon removal (DCR). We label these as backstop 
technologies.  
 
We assume our backstop technology is available at a marginal cost of 𝜏∗, for the first ton 
of carbon that is removed from the atmosphere. The marginal cost increases as 
extraction increases. We assume that unlimited amounts of CO2 can be removed as the 
marginal cost approaches 𝜏̃ ≥ 𝜏∗. Under the most aggressive backstop scenario 
presented in the results section, we assume a price of $350 per ton today for 𝜏∗ and a 
price of $400 per ton for 𝜏̃. Given our underlying cost curve for emissions mitigation, 
these values imply that the backstop technology kicks in at mitigation levels above 
104%.  
 
In fitting the marginal cost curve to these lower and upper bounds for the backstop 
technology we build a marginal cost function for the backstop technology of the form: 
 

(20) 𝐵(𝑥) = 𝜏̃ − �𝑘 𝑥� �
1
𝑏� . 

 
The upper bound of the cost function is, thus, 𝜏̃. Moreover, we calibrate (18) for the 
backstop technology to be used once the mitigation level, 𝑥0, is such that: 
 

(21) 𝐵(𝑥0) = 𝜏̃ − �𝑘 𝑥0� �
1
𝑏� = 𝜏∗, 

 
which allows us to express: 
 
(22) 𝑘 = 𝑥0(𝜏̃ − 𝜏∗)𝑏. 
 
Second, we impose a smooth-pasting condition; i.e. the derivative of the marginal cost 
curve is continuous at 𝑥0. This allows us to solve for parameter 𝑏: 
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(23) 𝑏 = 𝜏�−𝜏∗

(𝛼−1)𝜏∗
. 

 
Figure 2 and Figure 3 show, respectively, the total cost of mitigation as a fraction of 
consumption, 𝜅(𝑥), and the marginal cost, 𝜏(𝑥), assuming a backstop technology at 
$400 per ton. 
 

 
Figure 2—Total cost of abatement as a fraction of consumption, 𝜿(𝒙). 
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Figure 3—Marginal cost of abatement (in $/ton), 𝝉(𝒙). 

 
 

2.2.2 Technological Change Specification 
 
These cost curves are calibrated to 𝑡 = 0. In subsequent periods, we allow the marginal 
cost curve to decrease at a rate determined by a set of technological change parameters: 
a constant component, 𝜑0, and a component linked to mitigation efforts to date, 𝜑1𝑋𝑡, 
where 𝑋𝑡 is the average mitigation up to time 𝑡 (equation (4)). Thus, at time 𝑡, the total 
cost curve is given by: 
 
(24) 𝜅(𝑥, 𝑡) = 𝜅(𝑥)[1 − 𝜑0 − 𝜑1𝑋𝑡]𝑡. 
 
This functional form allows for easy calibration. For example, if 𝜑0 = 0.005 and 
𝜑1 = 0.01, then with average mitigation of 50%, marginal costs decrease as a percentage 
of consumption at a rate of 1% per year. 
 
 

2.3 Damage Function Specification 
 
We next specify climate the damage function 𝐷𝑡(𝑋𝑡,𝜃𝑡). Damages are defined by 
temperature change, which is defined by greenhouse gas concentrations, which in turn 
is defined by levels of mitigation. The only way to affect the level of damages, then, is to 
change mitigation.  
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We first specify the distribution of temperature change as a function of mitigation. We 
then add a function that provides a mapping from temperature change to economic 
damages. The specification of damages has two components: a non-catastrophic 
component and an additional tipping-point element. The hazard rate associated with 
hitting a tipping point increases with temperature. If a tipping point is hit at any time, 
additional damages force down consumption in all future periods. 
 
The overall damage function 𝐷𝑡(𝑋𝑡,𝜃𝑡) is calculated via Monte-Carlo simulation. As we 
describe in detail below, we run a set of simulations for each of three mitigation levels 
𝑋𝑡. In each run of the simulation, we draw a set of random variables: (1) the temperature 
change; (2) the parameter characterizing damages as a function of temperature, and (3) 
for each period on each path an indicator variable which determines whether or not the 
atmosphere hits a tipping point at that time, and (4) the tipping point damage 
parameter. The state variable 𝜃𝑡 indexes the distribution resulting from these sets of 
simulations, and interpolation across these three mitigation levels gives us a continuous 
function of 𝑋𝑡. 
 
 

2.3.1 The Specification of Temperature as a Function of GHG Levels 
 
The distribution of temperature outcomes as a function of mitigation strategies is 
calibrated to three carbon scenarios, indexed by a maximum level of CO2 in the 
atmosphere. For the original calibration, we lean on Wagner and Weitzman (2015), who 
calibrate a log-normal distribution for equilibrium climate sensitivity—the eventual 
temperature rise as atmospheric concentrations of CO2 double—using a conservative 
interpretation of the IPCC’s “likely” range, as well as statements around extreme 
outcomes. Specifically, Wagner and Weitzman (2015) calibrate a log-normal function 
assuming a 78% probability of climate sensitivity being in the 1.5-4.5°C range. (The 
IPCC says that range is “likely,” which it defines as having at least a 66% probability. 
The IPCC’s “very likely” designation implies at least a 90% 
probability. Wagner and Weitzman (2015) split the difference to arrive at 78%.) 
Moreover, the IPCC Assessment Report Five (2013) judges climate sensitivity above 6°C 
to be “very unlikely,” giving it a 0-10% probability. Wagner and Weitzman's (2015) 
calibration assigns it a roughly 5% chance. 
 
Wagner and Weitzman (2015) then use this calibration to translate the International 
Energy Agency's projections for concentrations of CO2-equivalent tons into final 
temperature outcomes. Under the assumptions of their “new policies scenario,” IEA 
World Energy Outlook (2013) projects that atmospheric concentrations will reach 700 
ppm CO2e by 2100. That concentration would result in a projected, eventual median 
temperature increase of 3.6°C. Wagner and Weitzman (2015) present eventual median 
temperature outcomes for concentrations of between 400 and 800 ppm. We take their 
calibration and extrapolate to 1000 ppm, which we assume to be the zero-mitigation 
scenario, marking an upper bound of sorts. We similarly assume that 100% mitigation 
over time leads to a maximum GHG level of 400 ppm. Other levels of average mitigation 
are assumed to lead to damages associated with GHG levels linearly interpolated 
between those levels. Thus, an average mitigation of 50% through any point in time 
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leads to the interpolated damages associated with a maximum GHG level of 700 ppm at 
that time. We then use assumptions akin to Pindyck (2012) to fit a displaced gamma 
distribution around final GHG concentrations, while setting levels of GHG 100 years in 
the future equal to equilibrium levels. 
 
Table 2 gives the probability of different levels of Δ𝑇100 – the temperature change over 
the next 100 years – for given maximum levels of GHGs in atmosphere. The 450 ppm, 
650 ppm, and 1000 ppm maximum levels of CO2 equivalents in the atmosphere reflect, 
respectively, a strict, a modest, and an ineffective mitigation scenario. 
 
We then fit a displaced gamma distribution to each of these sets of probabilities. Table 3 
gives the parameters for these distributions, and the probabilities from the fitted 
displaced gamma distributions, which line up well with the numbers in Table 2. 
 

Table 2—Probability of ∆T100 > T. 

 Maximum GHG Level (ppm of CO2) 
T 450 650 1000 
2°C 0.400 0.850 0.990 
3°C 0.125 0.540 0.860 
4°C 0.040 0.300 0.655 
5°C 0.015 0.145 0.455 
6°C 0.002 0.072 0.303 
 
 

Table 3—Fitted values of Prob(∆T100 > T) for three specified gamma distributions. 

 Maximum GHG Level (ppm of CO2) 
T 450 650 1000 
2°C 0.396 0.870 0.994 
3°C 0.139 0.566 0.910 
4°C 0.042 0.289 0.696 
5°C 0.011 0.124 0.443 
6°C 0.003 0.047 0.242 
Gamma distribution parameters 
Alpha 2.810 4.630 6.100 
Beta 0.600 0.630 0.670 
Displace -0.25 -0.5 -0.9 
 
To obtain the temperature distribution at other times, we follow Pindyck (2012), and 
specify that the time path for the temperature change at time 𝑡 (in years) is given by: 
 

(25) Δ𝑇(𝑡) = 2 Δ𝑇100  �1 − 0.5
𝑡

100�. 
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The temperature paths are plotted for different levels of ∆T100. As time increases, the 
temperature change asymptotes to double the value of ∆T100. We note that both the 
distribution of ∆T100 and the functional form for the path in equation (25) merit further 
scrutiny and a more careful calibration to equilibrium temperature outcomes. 
 

 
Figure 4—Calibrated time path for temperature increases given assumed temperature 
increases by 2100. 
 
 

2.3.2 The Specification of Damages as a Function of Temperature 
 
Our next step is to translate average global surface warming into global mean economic 
losses via our damage function. There are two components to our damage function: a 
non-catastrophic and catastrophic component. The functional form of each component 
is known to the agent. However, as with the GHG-∆T100 relationship discussed in the 
previous section, the functional form for each damage function component contains a 
parameter that characterizes the high uncertainty in our present understanding of this 
relationship. In our model, the agent knows the form of the distribution of this 
parameter at the initial date, and in each period learns more about the distribution of 
the parameter. However, the final realization of the parameter is not known until the 
final period. 
 
The non-catastrophic component of our damages is based on Pindyck (2012), who fits a 
functional form to the data from the 2007 IPCC Assessment Report Four, and obtains a 
loss function of the form: 
 
(26) L(Δ𝑇(𝑡)) = 𝑒−13.97∙𝛾∙Δ𝑇(𝑡)2, 
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where 𝛾 is drawn from a displaced gamma distribution with parameters r = 4.5, λ= 
21341, and θ = −0.0000746. 
 
Based on non-catastrophic damages, consumption in any time t is reduced as follows: 
 
(27) CD𝑡 = 𝐶𝑡̅ ∙ L(Δ𝑇(𝑡)). 
 
A major concern with the damage function above is that it effectively rules out 
catastrophic risks, even at high temperature changes. Take an 8°C temperature change, 
well outside the range typically assumed to be ‘safe’. If per capita consumption is 
assumed to grow in real terms by 2% annually, then such damage applied to 
consumption 50 years hence would reduce the average consumption from 2.7 times 
today’s value to 2.2 times, a significant reduction, but hardly a catastrophe of significant 
concern today. Even the 1% point in the outcome distribution conditional on an 8°C 
average temperature change is assumed here to be a reduction in consumption of only 
32% which implies people are still 1.8 times wealthier than today. We hence augment 
Pindyck’s damage function with the possibility of tipping points, which themselves 
create the potential for a much larger impact on consumption. 
 
While the possibility of climate tipping points is receiving considerable attention in the 
scientific community, to our knowledge there is no accepted specification for tipping 
points. Hence, we employ an ad-hoc specification, which can be modified once more 
progress is made on this issue. In our specification, Prob(TP) denotes the probability of 
hitting a tipping point over a 30 year period as a function of the global temperature 
change as of that time (Δ𝑇(𝑡)), and of a parameter, peakT: 
 
(28) Prob(TP) = Δ𝑇(𝑡)

max[Δ𝑇(𝑡),𝑝𝑝𝑝𝑝𝑝]2 
 
Figure 5 plots Prob(TP) as a function of Δ𝑇(𝑡) for a set of values of peakT. As peakT 
increases, the probability of reaching a climatic tipping point increases as well. 
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Figure 5—Probability of reaching a climatic tipping point as a function of peakT 
 
In our simulations, in each 30-year period p and for each state, there is a probability 
Prob(TP) that a tipping point will be hit (given ∆T(t) and peakT). Conditional on hitting 
a tipping point in a period centered at time t* in a given run of the simulation, the level 
of consumption for each period 𝑡 ≥ 𝑡∗ is then at a level of: 
 
(29) CDTP𝑡 = CD𝑡 ∙ e−TP_damage = 𝐶𝑡̅ ∙ L(Δ𝑇(𝑡)) ∙ e−TP_damage for 𝑡 ≥ 𝑡∗, 
 
where TP_damage is a random variable drawn from a gamma distribution with 
parameters 𝛼 = 1 and 𝛽 = disaster_tail. The cumulative distribution for tipping point 
damage (i.e., �1 − e−TP_damage�) for values of disaster_tail ranging from 2 to 10 is 
plotted below: 

 
Figure 6—Damage conditional on crossing a tipping point probability of damage > x 
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2.3.3 Interpolation and Incorporation of Uncertainty in the Damage 

Function 
 
Comparing equation (29) with equation (2) shows that the damage function for a given 
level of mitigation and in a given state of nature is: 
 
(30) D𝑡 = (1 − L(Δ𝑇(𝑡)) ∙ �1 − I𝑇𝑇� 1 − e−TP_damage��, 
 
where I𝑇𝑇 is an indicator variable which is equal to one if a tipping point has been hit, 
and zero otherwise. However, recall that L(Δ𝑇(𝑡)), I𝑇𝑇, and  e−TP_damage are each 
dependent on the specific realization of the draws of random numbers in our 
simulations. 
 
Therefore, for each of three values for the maximum GHG, 450, 650, and 1000, we run a 
set of simulations to generate a distribution of D𝑡 for each period. We order the 
simulations based on D𝑇, the damage to consumption in the last period. 
 
We choose states of nature with specified probabilities to represent different percentiles 
of this distribution. For example, if the first state of nature is the worst 1% of outcomes, 
then we assume the damage coefficient at time t for the given level of mitigation is the 
average damage at time t for the worst 1% of values for D𝑡. 
 
More generally, if the k-th state of nature represents the simulation outcomes in the 
range [prob(k-1) , prob(k)], then the damage coefficient for the kth state of nature is the 
average damage in that range of simulations in which the distribution for D𝑡 lies within 
those percentiles. 
 
Below we show graphically the average damage functions D𝑡(𝑋𝑡) for the 450 and 1000 
ppm maximum GHG scenarios, with parameters peakT = 8 and disaster_tail = 6. 
 
Given the damage coefficients for these three scenarios, the next step is to calculate 
damages in any particular period for any particular state of nature and any chosen 
mitigation action. We do this by interpolating smoothly with respect to the average 
percentage mitigated up to each point in time. Zero mitigation corresponds to the 1000 
ppm maximum GHG scenario, whereas 100% average mitigation is assumed to 
correspond to a 400 ppm maximum GHG scenario. Since there is a potential total of 
600 ppm additional GHG in the atmosphere to be mitigated, the 450 ppm maximum 
GHG scenario corresponds to a 91.7% mitigation (=550/600) and the 650 ppm 
maximum GHG scenario corresponds to a 58.3% mitigation (=350/600). 
 
Our task is to calculate an interpolated damage function between the three scenarios 
where we have damage coefficients (for a given state and period) to find a smooth 
function that gives damages for any particular average mitigation percentage up to each 
point in time. 
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We first calculate a quadratic section of the damage function which starts (for a given 
state and period) at the level of damages in the 1000 ppm maximum GHG scenario and 
is assumed to have a zero derivative at that point. The curvature as a function of 
mitigation is calculated such that the damage function matches the damage coefficient 
at the 650 ppm maximum GHG scenario. For emissions mitigation percentages less 
than 58.3% we use this quadratic curve to interpolate damages. 
 

 
Figure 7—Damage coefficients over time in the 450ppm and 1000ppm scenarios. 
 
We next calculate a quadratic section of the damage function which starts at the level of 
damages in the 650 ppm maximum GHG scenario and is assumed to have a derivative 
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equal to that of the first quadratic where they meet at the 58.3% emissions mitigation 
point. The curvature of the second quadratic is then calculated such that the damage 
function matches the damage coefficient at the 450 ppm maximum GHG scenario. We 
use this quadratic curve to interpolate damages when emissions mitigation is greater 
than 58.3% and less than 100%. 
 
We allow for the possibility of net GHG removal from the atmosphere, in which case 
emissions mitigation can become greater that 100%. In that case we extend the second 
quadratic interpolation but decay it toward zero by dividing by 210(%𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−1). Thus at 
110% mitigation we divide by 2; at 120% mitigation we divide by 4; etc. The purpose of 
this decay is to cause the quadratic curve to smoothly decay toward zero damages.  
 
As an example, consider the 10% worst case in period 5, which is calculated for a peakT 
of 6 and disaster_tail of 4 to have the following damage coefficient values (Table 4). 
 
Table 4—Damage coefficients associated with peakT of 6 and disaster_tail of 4. 
GHG-level Mitigation 1% 10% 50% 90% 

450 .9167 .6590 .3098 .0326 .0050 
650 .5833 .7132 .4211 .1022 .0150 

1000 .0000 .7329 .4598 .1580 .0240 
 
These points determine the interpolated damage functions shown in Figure 8. 

 

 
Figure 8—Interpolated final period damage functions. 

 
The climate sensitivity—summarized by state of nature 𝜃𝑇—is not known prior to the 
final period (t=T). Rather, what the agent knows is the distribution of possible final 
states. We specify that the damage in period t, given average mitigation of 𝑋𝑡 up to time 
t, is the probability weighted average of the interpolated damage function over all final 
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states of nature reachable from that node. Specifically, the damage function at time t, for 
the node indexed by 𝜃𝑡 is assumed to be: 
 
(31) D𝑡�𝑋𝑡,𝜃𝑡� = ∑ Pr (𝜃𝑇 𝜃𝑇|𝜃𝑡) ∙ D𝑡�𝑋𝑡,𝜃𝑇�, 
 
where the sum is taken over all states that are possible from the node indexed by 𝜃𝑡 (i.e., 
for which Pr (𝜃𝑇|𝜃𝑡)>0). 
 
 

3. Results 
 
The main model output is the price of carbon in each of five periods. Figure 9 shows the 
results for the CRRA model run (top left) and two additions: a risk aversion coefficient 
of 7 (lower panel), calibrated to observed financial asset prices; and an inclusion of 
extreme events, what we call the ‘disaster’ scenario (right panel).12 It also shows the 
implications of using three different climate sensitivity distributions: one mimicking 
Pindyck (2012), the Roe and Baker (2007) distribution, and the log-normal calibration 
employed by Wagner and Weitzman (2015). 
 
Risk aversion alone increases prices slightly in the early periods, though barely 
noticeably. Disasters alone increase prices dramatically, an effect that is further 
magnified by the inclusion of risk aversion. Using a Pindyck (2012) calibration likely 
leads to conservative estimates. By instead using a heavy-tailed probability distribution 
function such as Roe-Baker or Wagner-Weitzman, implied prices increase dramatically. 
 
We proceed to use the Wagner-Weitzman distribution as our base case for the 
remainder of our runs. 
 

                                                   
12 Note that the 2015 price comes from a single node in the tree. In each subsequent year, that price is set in 
expectation over all possible states of nature in that given year. 
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Figure 9 – Expected price per ton of carbon under four different scenarios and three 
different assumed climate sensitivity distributions. (Data labels are for Wagner-Weitzman 
and Pindyck distributions.) 
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We illustrate the tree structure in the diagram below. In our base case each state has 
equal probability. The current optimal price of emissions is $47.18/ton for the 
representative agent. In period 1, in 2045, the agent learns that he has moved either up 
or down in the tree. The fragility of the environment is a function of the number of up 
moves as the agent traverses through the tree structure. Thus, moving up in the tree 
leads to states which on average have greater fragility and worse outcomes. It makes 
sense for the agent to spend more on mitigation, as the agent moves further up in the 
tree structure. The $84.62 expected price for emissions in period 1 which we show in the 
lower quadrant of Figure 9 is the average of the price in the up state, $117.91, and the 
price in the down state, $51.32. Below we show probabilities and emissions prices in 
each node, and color-code the nodes by the number of up moves. All nodes at a given 
time with the same number of up moves have the same degree of fragility and thus the 
same damage for a given amount of greenhouse gas in the atmosphere. Consider period 
2, in 2075, which has four equally probable nodes. The fragility in the up-down node is 
the same as in the down-up node, but because the agent mitigated more emissions in 
period 1 in the up state the damage is lower and he mitigates slightly less in period 2 
(leading to a slightly lower price) when he takes the up-down path than if he takes the 
down-up path. Thus, there are path dependencies in the tree and we keep track of each 
path-dependent node separately. 
 
Probabilities Emissions Price 

 
 
Below we show the amount of mitigation and the damage in each node of the tree. Note 
that mitigation becomes cheaper over time as technological change occurs. Thus, 46% of 
emissions are mitigated in the 30-year period from 2015 to 2045 with an emissions 
price of $47.20. If the agent gets two good draws (down moves in the tree) then in 
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period 2, the 30-year period from 2075 to 2105, the agent mitigates a larger fraction, 
54% of emissions, at a lower price of $38.61. On the other hand, if the agent gets two 
bad draws (up moves) then in period 2 he mitigates 101% of emissions at a price of 
$174.15. The last mitigation decision is made at the beginning of the final period in 2135, 
with final damages occurring at the end of the period in 2200. 
 
Mitigation Damages 

 
 
 
 
Next we show the consumption (as a multiple of consumption today) and the level of 
greenhouse gases in the atmosphere at each point in the tree. 
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Consumption Greenhouse gases (in ppm) 

 
 
Finally, we show the cost of emissions mitigation as a percentage of consumption and 
the stochastic discount factor (SDF), that is the ratio of the marginal utilities in the node 
to the marginal utility in the previous period times the rate of pure time preference. 
 
Mitigation cost Stochastic Discount Factors 
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The mitigation choices that optimize the utility of the representative agent in the tree 
structure and determine the social cost of carbon depend on a host of factors. We test 
them in turn. For one, our analysis so far puts equal weight on each state of the world. If 
instead we zero in on the tail and explore tail events more carefully, the optimal price 
goes up (Figure 10). 
 
The higher is 𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑒, the greater is the focus on higher damage tail events in the 
sense that states are no longer equally spaced. The probability of each state 𝑖 is given by: 
 

(32) 𝑃𝑃𝑃𝑃(𝑖) = 𝑃𝑃𝑃𝑃 (𝑖 − 1)𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑒
1
𝑖 . 

 
With 𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠 = 1, each of 16 states has equal chance of 6.25% of occurring. With 
𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠 = 3, the first state (with the highest damage) includes outcomes with the 
worst 0.33% probability, the second state includes the next worst outcomes with a 
0.99% probability, etc., increasing the focus on tails. 
 
The focus on states also allows us to explore the value of early information. The top 
panel of Figure 10 shows results when information is revealed earlier, while the bottom 
panel shows results after re-ordering states deliberately to model later revelation of 
information. In this order, for example, the worst case is in the top half of the tree 
structure, whereas the next worst case is included in the bottom half of the tree. Later 
revelation of information leads to lower prices and less mitigation early, with higher 
expected mitigation in the middle-term and lower in the very long term. 
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Figure 10—Social cost declines with increased tail focus. Early social cost declines with late 

revelation of information, but increases in the longer run.13 
 
Two key assumptions concern the rate of technical change and the potential for a 
backstop technology. We analyze both exogenous and endogenous technical change. The 
former has some surprising results, as the social cost first increases before decreasing 

                                                   
13 Note that in the base case, recombining trees are used in place of early or late revelation. The slight difference 
between the base case in Figure 10 (top left graph) and Figure 9 (lower right graph) is due to sampling differences 
from the Monte Carlo simulation. 
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again (Figure 11). As technical improvements change from 0% to 1, the social cost rises, 
only to fall again with annual technical improvements at 1.5% or higher. 
 

 
Figure 11—Social cost rises and then falls with increased exogenous technological change. 
Increased endogenous technical change decreases the social cost. 
 
We now explore the impact of the backstop technology. Including a backstop technology 
at a maxPrice of 350 decreases the social cost of carbon in both the exogenous and 
endogenous technology change scenarios (Figure 12). 
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Figure 12—Air capture backstop technology lowers the social cost. 
 
Next we investigate the effect of growth and interest rates, with corresponding changes 
in the elasticity of intertemporal substitution. Figure 13 shows social cost values with 
increasing growth rates around the central case of 2.0%. 
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Figure 13—Higher growth rates lead to higher social cost. 
 
Figure 14 shows results for different rates of interest around the central 2.5% case. High 
growth rates lead to higher social cost values, whereas higher interest rates have the 
opposite effect. 
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Figure 14—High interest rates lead to lower social cost. 
 
One caveat in all simulations is their inherent probabilistic outcome. All results shown 
so far are based on Monte Carlo simulations with 4 million draws. To test the accuracy 
of the model, we ran the ‘Risk Aversion & Disaster’ case with 4 million draws twenty 
times. The $47.18 number presented in Figure 10, which comes from a particular run, 
happens to equal the result for prices in 2015 averaged over all twenty model runs, but 
there is a standard deviation of $.04 for this value across the different runs. The average 
and standard deviations for all periods are shown in Table 5. 
 
Table 5—Means and standard deviations for twenty runs of the ‘Risk Aversion & Disaster’ 

base case with 4,000,000 each. 
 4,000,000 draws 
 Mean Std. Dev. 
2015 47.18 0.04 
2045 84.66 0.06 
2075 94.29 0.08 
2105 94.16 0.10 
2135 77.58 0.07 
 
Figure 15 shows the implications of changing the pure rate of time preference. The 
upper graph holds fixed the implied real yield on a zero-coupon bond that matures at 
the end of the last period. In early years, a lower discount associated with pure time 
preference increases the social cost of carbon, while the reverse is true in later years. 
This perhaps counter-intuitive result occurs because we hold the interest rate constant 
which implies a lower elasticity of substitution and a greater desire to smooth 

eis 1.28 0.773 0.643 0.552 0.42
interest rate 1.0 2.0 2.5 3.0 4.0
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consumption. When the climate model is calibrated to observed interest rates the pure 
rate of time preference is not a particularly important determinant of the emissions 
price. 
 
The lower graph changes the rate of time preference and holds the EIS fixed: in this case 
the higher the rate of time preference, the higher the interest rate and the lower the 
social cost. 
 

 
Figure 15 – As time preference increases and the EIS is held constant, the social cost 
decreases. 
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4. Optimization 
 
We optimize the utility function of the representative agent over choices of emissions 
mitigation in each of the 31 nodes in the tree. We use the optimization function, 
“fmin_l_bfgs_b” in the python library scipy, a quasi-Newton algorithm which makes 
use of analytic derivatives. In Figure 1 there is a discontinuity in the price of carbon as 
risk aversion is increased. The discontinuity occurs because as risk aversion is increased 
the strategy that maximizes the utility of the representative agent at lower risk aversion 
levels reaches a point where it equals the utility of a different strategy, one that requires 
a higher degree of emissions mitigation today. The latter strategy has higher mitigation 
and lower consumption in early periods, but the higher emissions reductions allow for 
higher consumption in high damage scenarios at later dates. 
 
Below we show the consumption in each node for the two strategies which have equal 
utility at the point where the price jumps up. The right hand side represents the lower 
bound of a strategy which is globally optimal for higher rates of risk aversion. The left 
hand side is the upper bound of a strategy with lower initial emissions mitigation which 
is globally optimal for lower rates of risk aversion. 
 

 
 
 

5. Conclusion 
 
An oft-told analogy in climate economics represents the climate system as a hard-to-
navigate ocean liner. This is used to argue for early action through a slow and gradually 
increasing carbon price. Too strong a policy early on would be overly costly; a small 
course correction now will save us from hitting the far-off proverbial iceberg. There are 
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clearly costs of action, but as our simulations show, once we do include a proper 
accounting of risk aversion and extreme events, this standard logic gets turned on its 
head: The optimal carbon price may, in fact, be high today, declining over time.14 
 
That decline reflects the rate at which information is revealed going forward, the degree 
of risk aversion, and the potential for technological progress and backstop technologies. 
Either way, the ‘ocean liner’ logic doesn’t hold. Or perhaps it gets completed: for turning 
a large ship long down the line takes bearing off decisively and early, especially in a 
world of uncertain obstacles. The less certain we are about the risks facing us in future 
states of the world, the greater is the need for climate action today. 
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