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Abstract

This paper analyzes cordon tolling using a simple model where space is discrete rather than

continuous, with commuting costs incurred only on two congested bridges. The first-best

regime requires tolls on both bridges, whereas only the inner bridge is tolled under the cordon-

toll regime. While less realistic than the continuous-space frameworks used in previous work,

this simple setup allows the derivation of a number of analytical results, which were mostly

unavailable to authors relying on more-complex models. The paper derives the rule for the

optimal cordon toll, showing that it points to a toll level higher than first-best toll on the

same bridge. In addition, the analysis shows that cordon tolling leads to a redistribution of

population away from the zone immediately outside the cordon, with residents moving to the

central zone or to the suburbs. The analysis also shows that the cordon toll raises more revenue

than is necessary to pay for the bridge where it is levied, while also tending to increase the

capacity of the untolled suburban bridge.
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1. Introduction

Road congestion involves a market failure that, when uncorrected, distorts urban land-

use. With individual commuters ignoring the congestion externalities they create, perceived

commuting costs are too low and commute trips are too long from society’s point of view. The

result is inefficient urban sprawl, with cities being too spread out.

Congestion pricing serves to internalize the congestion externality, leading to more-compact

cities. Analysis of such pricing in the monocentric urban model has a long tradition. Early

contributions include Solow (1971) and Mills and de Ferranti (1971), with later work carried

out by Kanemoto (1976), Arnott (1979), and Wheaton (1988), among others. In these models,

congestion tolls are levied in a continuous fashion across space, so that a commuter pays a

separate, spatially dependent toll for each mile traveled on a work trip to the CBD. One result

of such a congestion-pricing regime is efficient shrinkage of the city’s spatial size.

Real-world implementation of congestion pricing, however, takes a simpler form. The

existing toll systems in London, Stockholm, and Singapore all involve some form of “cordon

pricing,” where a commuter pays a single toll upon entering a zone surrounding the CBD.

The border of this zone constitutes a “cordon,” the crossing of which triggers payment of a

congestion toll. This relatively crude charging system stands in strong contrast to the regime of

continuous, spatially differentiated tolls envisioned in the early theoretical work on congestion

pricing.

Recognizing this mismatch, a number of recent studies have analyzed the features of an

optimal cordon-toll regime, emphasizing that it represents a second-best form of congestion

pricing. Mun, Konishi and Yoshikawa (2003) offer the first such analysis in the economics

literature, and their work was followed by Verhoef (2005) and more recently by De Lara, de

Palma, Kilani and Piperno (2013).1 Mun et al. (2003) use a model without a land market and
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derive analytical conclusions, while the latter two papers rely on numerical analysis applied to

the standard urban model. The common goal of all three papers is to find the best location

for the cordon and the optimal size of the cordon toll. The latter two papers show that, like

a first-best system of continuous congestion tolls, cordon tolling shrinks the spatial size of the

city. In addition, all the papers show that the welfare gain from an optimally chosen cordon

toll can be surprisingly close to that generated by the first-best regime.

One limitation of the studies by Verhoef (2005) and De Lara et al. (2013), which arises from

the complexity inherent in a continuous representation of space in the presence of a land market,

is the need to rely heavily on numerical analysis to generate results. As a consequence, these

studies offer few purely analytical insights into the cordon-tolling problem in a land-market

context. Moreover, the analytical results of Mun et al. (2003), while useful, are derived in

the absence of land market. In view of these limitations, the purpose of the present paper is

to analyze cordon tolling in the presence of a land market using a simple setting in which a

number of analytical results can be derived. The setting is the one by used Brueckner (2014),

which was in turn adapted from Brueckner and Helsley (2011), and it substitutes a discrete

spatial setup for the continuous space used in previous papers. In particular, the city occupies

three islands connected by two congestible bridges, as seen in Figure 1. The CBD is located on

the leftmost island, which also contains residences, while the “midcity” and suburban islands

are purely residential. The edge of the city lies in the suburban zone, with vacant land outside

it. The suburban bridge connects the suburbs to the midcity zone, while the midcity bridge

connects that zone to the center. Suburban residents must cross both bridges to reach jobs in

the CBD, while midcity residents need only cross the midcity bridge (central residents are not

bridge users). Intrazone travel costs are zero, so that the only commuting costs are incurred

on the congested bridges. Travel demand is completely inelastic, so that bridge traffic levels

are influenced only by the endogenous distribution of the population across the city’s zones.

Under the first-best regime, congestion tolls are levied on both the suburban and midcity

bridges. With space measured in discrete fashion, cordon tolling has a very a simple repre-

sentation in this framework. Under a cordon-toll regime, only a single toll is charged, being

levied on the midcity bridge, which is closest to the CBD. The toll on the suburban bridge is
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constrained to be zero.2

The purpose of the analysis in the paper is to characterize the resulting second-best opti-

mum, comparing it to the outcome under the first-best regime. Unlike in the previous papers,

the exact location of the cordon is not an issue in the analysis. But a major contribution of

the paper is derivation of the rule that characterizes the level of the optimal cordon toll. The

rule shows that the cordon toll is given by the first-best toll expression for the midcity bridge

plus a positive term whose magnitude is endogenous. This difference in toll rules suggests that

cordon toll that is actually charged on the midcity bridge will be larger than the first-best toll

on levied on that bridge. But, since the toll rules contain endogenous quantities that differ

between the regimes, this conclusion cannot be established in general but must be affirmed by

investigating numerical examples, which show the expected result.

The analysis also investigates the differences in the population distributions across zones

under cordon tolling and the first-best regime, with the goal of comparing the city’s spatial

sizes in the two cases. The one available analytical result establishes that cordon tolling leads

to a redistribution of population away from the zone immediately outside the cordon, with

residents moving to the central zone or the suburban zone. However, since the comparison of

the city’s spatial sizes requires comparing the suburban populations under the two regimes,

this conclusion leaves the comparison ambiguous. But numerical results show that, while

making the city more compact than in the untolled equilibrium, cordon tolling leaves it more

spread out than under the first-best regime, a conclusion also reached by Verhoef (2005) and

De Lara et al. (2013). Finally, the last part of the analysis introduces bridge capacity choices

under the conditions of the self-financing theorem. The analysis demonstrates that revenue

from the cordon toll more than pays for the capacity of the midcity bridge, while showing that

the capacity rule for the untolled suburban bridge points to a larger capacity than under the

first-best regime.

The plan of the paper is as follows. The next section analyzes the first-best toll regime.

Section 3 analyzes the cordon-toll regime, while section 4 adds bridge capacity choices to both

regimes. Second 5 offers conclusions.
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2. First-Best Regime

The variables in the model are as follows. Individual land consumption is denoted q, with

consumption in the suburban, midcity, and central zones denoted by qs, qm, and qc. Land rent

is equal to the land’s fixed opportunity cost r (the agricultural rent) throughout the suburban

zone, while land rents in the midcity and suburban zones are given by rm and rc, respectively.

The nonland composite good, which is numeraire, is denoted e, and consumption levels in the

three zones are given by ei, i = s, m, c. To simplify the analysis, preferences are assumed to

take the quasi-linear form e + v(q), where v′ > 0, v′′ < 0. The populations of the three zones

are ni, i = s, m, c, and they must sum to the city’s fixed overall population N , so that

ns + nm + nc = N. (1)

The cost of crossing a bridge depends on the level of congestion, which is determined by the

traffic volume and the bridge’s capacity. Bridge capacities are fixed until later in the analysis

and are thus suppressed, with an individual commuter’s costs of crossing the suburban and

midcity bridges given by t(ns) and t(ns +nm), respectively. To avoid inessential complications,

the fixed bridge capacities are assumed to be equal, so that the same cost function t(·) applies

to both bridges. This function satisfies t′ > 0 and t′′ ≥ 0.

In Brueckner and Helsley (2011) and Brueckner (2014), the planner’s goal was to minimize

the city’s resource consumption while generating a fixed common utility level u for the city’s

residents. However, analysis of the second-best problem involved in cordon tolling requires a

different approach. Following Pines and Sadka (1985), the planner is portrayed as maximizing

the city’s utility level u subject to a resource constraint and other feasibility constraints.

While the two approaches are clearly equivalent in characterizing the first-best outcome, the

latter approach facilitates the second-best analysis. In addition, the planner is viewed as

choosing land rents optimally, rather than choosing consumption levels, an approach that is

more illuminating in the second-best problem.

In choosing their land consumption levels, central and midcity consumers satisfy v ′(qi) = ri

for i = c, m, yielding consumption levels of qc = q(rc) and qm = q(rm), where q(·) = v ′−1(·),
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with q′ < 0. In contrast to the endogeneity of qc and qc, suburban land consumption is fixed

at qs = q(r), a consequence of the exogeneity of r.

Since it is inefficient to leave vacant land inside the city, the central and midcity zones

will be fully occupied, with vacant land found only in the suburban zone. Normalizing the

individual land areas of the two inner zones to 1, the constraints

ncq(rc) = 1, nmq(rm) = 1 (2)

must be satisfied. Since the total occupied land area in the suburban zone is nsq(r), the spatial

size of the city is then 2 + nsq(r). With q(r) fixed, the city’s spatial size thus depends solely

on ns, the population of the suburban zone.

Imposing the two constraints in (2) and the overall population constraint, the Lagrangean

expression for the planner’s utility maximization problem is

u + µc(1 − ncq(rc)) + µm(1 − nmq(rm)) + θ[N − (ns + nm + nc)]

+ λ[I − {nc[u− v(q(rc))] + nm[u − v(q(rm))] + ns[u− v(q(r))]

+ [ncq(rc)) + nmq(rm) + nsq(r)]r + nst(ns) + (nm + ns)t(nm + ns)}], (3)

where µm, µc, θ, and λ are Lagrange multipliers and where the expression in brackets in the

last two lines (when set equal to zero) represents the city’s resource constraint. To understand

this constraint, note first that the expression u−v(q(rc)) equals ec, nonland consumption in the

central zone, with a parallel statement applying to the other similar expressions. Therefore,

the three terms in the second line equal total nonland consumption, ncec + nmem + nses. The

bracketed term in the last line of (3), when multiplied by r, gives the opportunity cost of the

land occupied by the city. The final two terms in (3) give the total commuting cost incurred

on the two bridges, while I gives the exogenous endowment of the nonland good available to

the city. This endowment can be viewed as coming from a fixed wage income y earned by each

resident in CBD employment, so that I = Ny.
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It is important to note that, since the resource constraint indicates that the outlay for land

involves only the opportunity cost, the constraint implicitly assumes that the city residents,

acting through a city corporation, acquire land from absentee owners at r per unit and rent the

land to themselves. The residents earn equal per capita shares of total rental income, so that

rental outlays and rental income in excess of r cancel in the aggregate, therefore not appearing

in the resource constraint. In the language of Pines and Sadka (1986), the city is fully closed.

Similarly, the congestion tolls that are needed to support the optimum appear nowhere in the

resource constraint. The reason is that the tolls are levied and the revenue then returned to

the city’s residents in lump-sum fashion by the local government, so that they do not appear

in the constraint.

The first-order condition for u is 1 − λ(nc + nm + ns) = 0, or λ = 1/N > 0, given (1).

Note that λ, being the multiplier on the resource constraint, gives the marginal utility from

an extra unit of endowment. The first-order conditions for rc and rm are

λniq
′(ri)[v

′(q(ri)) − r] − µiniq
′(ri) = 0, i = c, m. (4)

Canceling niq
′(ri) and recognizing that v′(q(ri)) ≡ ri, i = c, m, (4) reduces to

ri = r +
µi

λ
, i = c, m. (5)

This condition says that a zone’s land rent equals the opportunity cost r plus a premium equal

to the shadow price of land in the zone in terms of the nonland good (the shadow price µi

divided by the marginal utility of extra endowment).

The first-order condition for nc is

−θ/λ = u − v(q(rc)) + rq(rc) +
µcq(rc)

λ
= u − v(q(rc)) + rcq(rc), (6)

where (5) has been used. Note that the rightmost expression in (6) equals individual consump-

tion expenditure in the central zone (recall ec = u−v(q(rc))). With expenditure positive, θ < 0
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must then hold, a natural conclusion since θ gives the utility change from an increase in N ,

which must be negative.

While a change in nc generates no changes in commuting cost, as seen in (6), differentiating

the Lagrangean with respect to nm yields a commuting-cost effect. The first-order condition

for nm is then

−θ/λ = u − v(q(rm)) + rq(rm) +
µmq(rm)

λ
+ t(nm + ns) + (nm + ns)t

′(nm + ns)

= u − v(q(rm)) + rmq(rm) + t(nm + ns) + (nm + ns)t
′(nm + ns), (7)

where (5) is again used.

With the RHS of (6) equal to consumption expenditure in the central zone, it follows that

−θ/λ equals the common income level of city residents, which includes wage and rental income

and any government transfers. But with the LHS of (7) then equal to income, the equation

implies that, beyond outlays on e, land, and commuting cost t(nm + ns) (the first three RHS

terms), an additional component of expenditure is the expression (nm + ns)t
′(nm + ns). This

expression represents the congestion toll that must be levied on midcity residents to generate

the first-best optimum. As usual, the toll equals the increase in individual cost generated by

an extra commuter (t′) times the number of commuters affected (nm + ns).

Similarly, the first-order condition for ns reduces to

−θ/λ = u − v(q(r)) + rq(r) + t(nm+ns) + (nm +ns)t
′(nm+ns) + t(ns) + nst

′(ns). (8)

This condition says that, in addition to incurring t(nm + ns) + t(ns) in commuting costs on

the midcity and suburban bridges, suburban residents make an additional outlay of (nm +

ns)t
′(nm + ns) + nst

′(ns), which represents the congestion tolls levied on the two bridges.

The planning problem has ten unknowns: u, rc, rm, nc, nm, ns, and the four multipliers.

Solutions are determined by the nine equations consisting of (1), the two equations in (2), the

two equations in (5), (6), (7), (8), the resource constraint in (3), and λ = 1/N .
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3. Second-Best Cordon-Toll Regime

3.1. Setup and first-order conditions

Under cordon tolling, only a single toll is levied in the city. The toll on the suburban

bridge is constrained to be zero, with the toll on the midcity bridge constituting the cordon

toll. This zero-toll constraint can be introduced in the model via a requirement that forces toll

outlays on the suburban bridge to be zero. Letting T denote the cordon toll, this requirement

is embodied in the following constraint:

u − v(q(rm)) + rmq(rm) + t(nm+ns) + T = u − v(q(r)) + rq(r) + t(nm+ns) + T + t(ns).

(9)

The LHS of (9) is total expenditure for a midcity resident, while the RHS is total expenditure

for a suburban resident, an expression that does not include a toll on the suburban bridge

(only the private cost of crossing that bridge, t(ns), is present). With equal incomes, these

expressions must be the same. Canceling u, t(nm + ns), and T and appending a Lagrange

multiplier τ , the following term is then added to the Lagrangean expression (3) for the first-

best problem:

τ{rmq(rm) − v(q(rm)) − [rq(r) − v(q(r)) + t(ns)]}. (11)

With only rm and ns present in (11), the first-order conditions for the remaining choice

variables are unaffected. However, the condition for rm becomes

λnmq′(rm)[−v′(q(rm))+r] + µmnmq′(rm) + τ{[−v′(q(rm))+rm]q′(rm)+q(rm)} = 0. (12)

Recognizing again that v′(q(rm)) ≡ rm and rearranging (12), the condition reduces to

rm = r +
µm

λ
−

τq(rm)

λnmq′(rm)
. (13)

Since τ is negative, as shown in the appendix, while q′ < 0 holds, last term in (13) is positive.

Therefore, the rule giving the second-best midcity land-rent solution points to a smaller value
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than the analogous first-best rule (compare (5)). However, although λ = 1/N holds in both the

first-best and cordon-toll regimes, the magnitude of the µm multiplier will differ between the

regimes. As a result, (13) does not allow the levels of rm that actually emerge to be compared.

Subsequent analysis shows, however, that the value of rm is indeed lower under cordon tolling.

The first-order condition for ns is given by (8) with the LHS replaced by −[θ + τt′(ns)]/λ.

The second-best problem has one additional unknown, the multiplier τ , but the new constraint

together with the previous conditions (modified in the case of (8) and (13)) yield the second-

best solutions.

3.2. The cordon toll

The magnitude of the cordon toll T is of central interest, and optimality conditions can be

manipulated to provide an expression for T . To do so, note from (13) that the term r + µm/λ

is no longer equal to rm but instead equals

rm +
τq(rm)

λnmq′(rm)
. (14)

Therefore, substituting in the first line of (7), expenditure by a midcity resident is

u − v(q(rm)) + rmq(rm) + t(nm + ns) + (nm + ns)t
′(nm + ns) +

τq(rm)2

λnmq′(rm)
. (15)

The toll outlay of this resident is captured by the last two terms in (15). As a result, the

optimal cordon toll is given by

T = (nm + ns)t
′(nm + ns) +

τq(rm)2

λnmq′(rm)
. (16)

Since τ, q′ < 0, the second term in (16) is positive. Its magnitude depends in part on the size of

the multiplier τ , which measures the negative welfare effect of restricting the suburban-bridge

toll to be zero (a larger impact calls for a larger cordon toll). Since the first term in (16) is the

first-best toll, the following important conclusion can be stated:
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Proposition 1. The cordon-toll rule points to a higher toll than the first-best toll rule
for the midcity bridge. The difference in the actual toll levels, however, depends on
other endogenous values under the two regimes.

To understand the second part of the proposition, suppose that nm +ns were larger under

cordon tolling than in the first-best regime. Then, since the second term in (16) is positive

and nt′(n) is increasing in n, the optimal cordon toll would be higher than the first-best toll

on the midcity bridge. But if nm + ns were instead smaller at the second-best optimum, the

relationship between the toll levels would be ambiguous. Nevertheless, an outcome where the

cordon toll ends up being lower than the first-best midcity toll would appear to be implausible,

given the difference in the toll rules. Thus, as intuition would suggest, the inability to levy

a toll on the suburban bridge is likely to raise the toll charged on the midcity bridge. The

numerical example presented below confirms this view.

The analysis of Mun et al. (2003) generates results similar to Proposition 1. They show

that, at locations just inside an optimally located cordon, commuting is underpriced (with

congestion costs uninternalized), while commuting is overpriced just outside the cordon, with

the optimal cordon toll charging more than external congestion costs at these locations. This

latter result is similar to the conclusion stated in the proposition, although it comes from a

very different model.

3.3. First-best and second-best population distributions

As Proposition 1 makes clear, the population distributions will differ between the two

tolling regimes, and one important question is whether the city is more or less spread out

under cordon tolling than under the first-best regime. As explained in the introduction, first-

best tolls serve to efficiently restrain the spatial size of the city, reducing ns relative to the

equilibrium outcome without tolls. This conclusion is established for the present model in

the second part of the appendix. Unfortunately, whether cordon tolling reduces or increases

the city’s spatial size relative to the first-best regime is ambiguous in general. However, the

following analysis establishes a more-limited result, showing that the population nm of the

midcity zone is smaller under cordon tolling. Since the difference in nc is ambiguous, however,

no conclusion about the magnitudes of ns = N −nc−nm under the two regimes can be stated.
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The analysis is carried out by focusing on the land consumption levels qc and qm rather

than the rent levels rc and rm. Using this approach, the condition that equates expenditures

in the suburban and midcity zones can be written

u − v(qs) + v′(qs)qs + t(nm + ns) + (nm + ns)t
′(nm + ns) + t(ns) + nst

′(ns) + δm + δs =

u − v(qm) + v′(qm)qm + t(nm + ns) + (nm + ns)t
′(nm + ns) + δm. (17)

Note first that expenditure on land is written as v′(qi)qi, recognizing that v′(qi) equals land

rent in zone i. In addition, note that the terms δm and δs capture whether cordon tolling or

the first-best regime is in place. Under the latter regime, δm = δs = 0 holds, while δm > 0

holds under cordon tolling, given (16). In addition, δs < 0 must also hold so as to eliminate

the suburban toll expression nst
′(ns) in (17). Thus, a shift to cordon tolling corresponds to an

increase in δm and a decrease in δs, starting at values of zero. The analogous condition that

equates expenditures in the central and midcity zones is

u− v(qc) + v′(qc)qc = u− v(qm) + v′(qm)qm + t(nm + ns) + (nm +ns)t
′(nm +ns) + δm. (18)

Cancelling terms and using (1) and (2) to substitute ns = N − 1/qc − 1/qm and nm +ns =

N − 1/qc, (17) and (18) can be rewritten as

−v(qs) + v′(qs)qs + t(N − 1/qc − 1/qm) + (N − 1/qc − 1/qm)t′(N − 1/qc − 1/qm) + δs

− [−v(qm) + v′(qm)qm] = 0 (19)

−v(qc) + v′(qc)qc − [−v(qm) + v′(qm)qm + t(N − 1/qc) + (N − 1/qc)t
′(N − 1/qc) + δm] = 0.

(20)
With qs fixed from above, (19) and (20) determine solutions for qc and qm conditional on δm

and δs.

It can be shown that, when graphed in (qm, qc) space, (20) yields an upward-sloping curve,

with ∂qc/∂q
(20)
m > 0, and (19) yields a downward-sloping curve, with ∂qc/∂q

(19)
m < 0. In addi-

tion, an increase in δm (movement to the cordon reqime) shifts the curve from (20) downward,
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so that ∂qc/∂δ
(20)
m < 0 holds, and a decrease in δs (movement to the cordon regime) shifts the

curve from (19) upward, so that ∂qc/∂δ
(19)
s > 0 holds. These conclusions make use of the facts

that t(n) + nt′(n) is increasing in n and −v(q) + v′(q)q is decreasing in q.

Figure 2 shows this information, with the intersections between the curves in the first-

best and cordon-toll regimes, respectively, illustrating qc and qm differences between regimes

(the curves are drawn as linear for simplicity). The no-toll outcomes shown in the figure are

discussed below. Note that, since δm and δs are in fact endogenous quantities when they are

non-zero, the actual solutions in the cordon-toll case are not pinned down in the diagram (doing

so would require knowledge of the δ values at the solution). But the fact that, whatever their

actual values, δm and δs are respectively positive and negative under cordon tolling allows a

comparison of outcomes under the two regimes. As can be seen from the figure, the solution

under cordon tolling must lie to the right of the first-best solution. As result, qm is larger, and

thus nm = 1/qm is smaller under cordon tolling than under the first-best regime. However, as

can be seen from Figure 1, qc could be larger or smaller under the cordon-toll regime, depending

on the exact positions of the curves. Given this ambiguity, the value of ns = N − 1/qc − 1/qm

cannot be compared between the regimes, precluding a comparison of the city’s spatial sizes

in the two cases. A formal comparative-static analysis of (19) and (20), which is equivalent to

the demonstration in Figure 2, affirms these conclusions.

Summarizing yields

Proposition 2. The population of the midcity zone is smaller under cordon tolling
than under the first-best regime. However, the central populations under the two
regimes, as well the populations of the suburban zone (which determine the city’s spatial
sizes), cannot be compared unambiguously.

The conclusions in Proposition 2 make intuitive sense. On the one hand, elimination of

the suburban-bridge toll tends to make the suburbs more attractive relative to the midcity

zone since one of the two previous tolls paid by suburban residents is no longer levied. But

the likely increase in the toll on the midcity bridge also increases the attractiveness of the

central zone relative to the midcity zone. Given these two attractive forces, the population of

the midcity zone should decrease. But the distribution of the relocating population between
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the central and suburban zones is unclear, with a decline in the central zone even a possibility.

Therefore, the extent to which cordon tolling shares the first-best regime’s ability to shrink ns

and thus make the city more compact is unclear. The numerical examples in the next section

shed light on this question. Note finally that, with qm larger under cordon tolling, land rent

in the midcity must be smaller than under the first-best regime, confirming the tendency seen

in (12).

Despite the ambiguity in Proposition 2, the population distributions under the cordon-toll

and no-toll regimes can be fully compared. To make this comparison, observe that t(N −

1/qc − 1/qm) − [−v(qm) + v′(qm)qm] in (19) equals a constant in both the cordon-toll and

no-toll cases, with this relationship represented by a downward-sloping curve corresponding

to the upper equation-(19) curve in Figure 2. While (20) with δm > 0 again represents the

cordon-toll regime, the no-toll case corresponds to (20) with δm < 0. The no-toll regime thus

has an equation-(20) curve in Figure 2 that lies above the first-best curve, in the position of

the dashed line. As can be seen from the two intersections in the figure, the cordon-toll regime

then has a larger qm and a smaller qc than the no-toll regime, yielding a smaller nm and a larger

nc under the cordon-toll regime. With qm larger, it then follows that ns, the argument of t in

the above expressions from (19), must be smaller under the cordon-toll regime. Summarizing

yields

Proposition 3. Relative to the no-toll regime, the city’s population is more concen-
trated in the central zone under cordon tolling, with ns and nm smaller and nc larger.

Therefore, like the first-best regime, cordon tolling shrinks the size of the city by reducing

ns. Moreover population from both non-central zones moves inside the cordon to avoid payment

of the toll, with nm smaller along with ns. These conclusions stand in contrast to the effects of

the first-best regime. The appendix establishes that ns is smaller under the first-best regime

than in the absence of tolls, and inspection of Figure 2 shows that qc is lower (and nc is thus

higher) in the first-best regime. But the figure indicates that the comparison of qm (and thus

nm) magnitudes is ambiguous. This ambiguity contrasts with the determinate effects seen in

Proposition 3.
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3.4. Numerical example

To generate a numerical example, the following assumptions are used. The utility from

land is given by v(q) = αqγ , and the bridge-crossing cost is given by t(n) = ρ + φnω. The

following parameter values are used: N = 1, I = 100, α = 4, γ = 0.5 ρ = 0, φ = 0.5,

ω = 1, and r = 1. Mathematica could not compute solutions when the exponents γ and ω

differed from the assumed values, but variation in the other parameter values was feasible and

generated solutions with the same qualitative properties as the solution shown in Table 1.

As seen in Table 1, moving from an untolled city to the first-best regime reduces ns, curbing

inefficient urban sprawl, while raising both nm and nc. While the effect on nm of adopting

first-best tolls was ambiguous in general, nm rises along with nc under the assumptions of

the example. Land rents move in step with the higher populations in the central and midcity

zones.

In moving from the first-best regime to cordon tolling, the toll on the midcity bridge rises

substantially, matching the outcome suggested by Proposition 1. In addition, the midcity

population falls, as predicted by Proposition 2. Although the destinations of these relocating

residents were ambiguous in general, Table 1 shows that population shifts to both the central

and suburban zones, with the latter influx increasing the spatial size of the city relative to

the first-best outcome.3 However, the city remains more compact than in the no-toll regime,

as predicted by Proposition 3, a pattern that also appears in the numerical results of Verhoef

(2005) and De Lara et al. (2013). Rents in the central and midcity zones rise and fall respec-

tively, in step with the population changes. Note also that, since the rise in nc reduces nm +ns,

the first term in the cordon toll formula (15) falls, with the toll increase seen in Table 1 due

to the dominant effect of the change in the toll rule (the second term in the formula).

Utility rises by a small amount in moving from the no-toll to the first-best regime, matching

other numerical results showing relatively small welfare gains from congestion pricing (see, for

example, Verhoef (2005) and Brueckner (2007)). Utility is lower under cordon tolling than

under the first-best regime, as expected. However, the cordon toll achieves 92% of the welfare

gain generated by the first-best tolls, a favorable conclusion in line with the findings of previous

work in this area (see Mun et al. (2003) and Verhoef (2005)).4
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Confirming Proposition 3, Table 1 shows that moving from the no-toll regime to the cordon-

toll regime raises nc while reducing both nm and ns. Therefore, nm changes in opposition

directions when moving to the different toll regimes, falling (rising) in moving to the cordon-

toll (first-best) regime.5

4. Adding Bridge-Capacity Choices

While bridge capacities were fixed in the preceding analysis, introducing capacity choices

generates some additional insights on the effects of cordon tolling.6 To make this change,

suppose that the conditions leading to the famous self-financing theorem hold (see Small and

Verhoef (2007)). In particular, bridge capacity is provided with constant returns to scale,

implying that the cost of a bridge with capacity k is βk, where β > 0. In addition, the bridge-

crossing cost is homogeneous of degree zero in traffic volume n and capacity, so that the t

function depends on the volume/capacity ratio n/k, being written t(n/k). With capacities of

km and ks, respectively, the costs of crossing the midcity and suburban bridges are then given

by t((nm + ns)/km) and t(ns/ks).

To include capacity choices, the costs βks and βkm are added to the resource constraint in

(3), and the arguments of the t functions are modified as just decribed. In the first-best case,

the first-order conditions for km and ks are given by

β =

(
nm + ns

km

)2

t ′
(

nm + ns

km

)
(21)

β =

(
ns

ks

)2

t ′
(

ns

ks

)
(22)

As usual, these conditions yield the self-financing theorem, which can be seen in (21) by

multiplying through by km. The resulting LHS expression βkm is the cost of capacity, and the

RHS expression is equal to nm + ns times the toll per commuter, equal to [(nm + ns)/km]t′,

or total toll revenue from the midcity bridge. Toll revenue thus exactly pays for capacity, an

outcome that also holds on the suburban bridge.

Under the cordon-toll regime, the first-order condition for km is the same as (21). In

addition, the toll rule in (16) continues to apply, although the new first-best toll expression
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([nm + ns]/km)t′([nm + ns]/km) replaces the first term. Since the cordon-toll rule continues to

call for larger toll than the first-best rule, it follows from (21) that

βkm =
(nm + ns)

2

km
t ′

(
nm + ns

km

)
< toll revenue from the midcity bridge. (23)

Therefore, the midcity bridge’s toll revenue exceeds its capacity cost, while the suburban bridge

generates no toll revenue. Whether the revenue from the cordon toll is sufficient to pay for

both bridges is, however, unclear.7

In contrast to the choice of km, the first-order condition for ks is altered under the cordon-

toll regime. The term (τ/λ)(ns/k
2
s )t′(ns/ks) is subtracted from the RHS of (22), so that the

condition becomes

β =

(
ns

ks

)2

t ′
(

ns

ks

) (
1 −

τ

λns

)
. (24)

Since τ < 0, the marginal benefit from extra suburban bridge capacity on the LHS of (24) is

greater under cordon tolling than under the first-best regime. As a result, the capacity rule

points to a larger capacity for the suburban bridge than under the first-best regime. As before,

however, this conclusion involves a comparison of rules that contain endogenous quantities

that will differ between the regimes. Thus, the intuitive conclusion that the suburban bridge

is larger when cordon tolling constrains its toll to be zero is not guaranteed to hold, although

the conclusion is highly plausible. Note that, by the same argument, the identical conditions

for choice of km under the two regimes need not imply identical capacities given the presence

of other endogenous quantities.

Summarizing yields

Proposition 4. (i) Cordon-toll revenue from the midcity bridge exceeds the cost
of optimal capacity for that bridge. (ii) The capacity rule for the suburban bridge
under cordon tolling points to a capacity larger than the first-best level, although actual
capacity levels, which depend on other endogenous quantities, are not guaranteed to
have this relationship.
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5. Conclusion

This paper has analyzed cordon tolling using a simple model where space is discrete rather

than continuous, with commuting costs incurred only on two congested bridges. While less

realistic than the continuous-space frameworks used in previous work, this simple setup allows

the derivation of a number of analytical results, which were mostly unavailable to authors

relying on more-complex models. The paper derives the rule for the optimal cordon toll,

showing that it points to a toll level higher than first-best toll on the midcity bridge. In

addition, the analysis shows that cordon tolling leads to a redistribution of population away

from the zone immediately outside the cordon, with residents moving to the central zone or to

the suburbs. The analysis also shows that cordon tolling raises more revenue than is necessary

to pay for the midcity bridge where it is levied, while also tending to increase the capacity of

the untolled suburban bridge.

With congestion pricing in the form of cordon tolls now in place in a number of the world’s

major cities, research on this second-best tolling approach deserves higher priority than before.

Use of simple frameworks like the present one may offer new insights about the effects of such

toll regimes.
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Appendix

A1. Proof that τ is negative

Equating (7) and the cordon-tolling version of (8) (which has −[θ +τt′(ns)]/λ on the LHS)

yields, after canceling t(nm + ns) + (nm + ns)t
′(nm + ns),

u − v(q(rm)) + q(rm)(rm︸ ︷︷ ︸
a

− τq(rm)/λnmq′(rm))

= u− v((q(r)) + q(r)r + t(ns)︸ ︷︷ ︸
b

+nst
′(ns) + (τ/λ)t′(ns) (a1)

The terms a and b in (a1) are equal since they equal midcity and suburban expenditure,

respectively, less the crossing cost and toll incurred on the midcity bridge. Rearranging, (a1)

then becomes

nst
′(ns) + τ

(
t′(ns)

λ
−

q(rm)2

λnmq′(rm)

)
= 0. (a2)

Since the term multiplying τ is positive, τ itself must be negative for (a2) to hold.

A2. Proof that first-best tolls reduce ns relative to the no-toll regime

To carry out this demonstration, consider (19) and (20) with δs and δm set at zero. The

resulting equations characterize the first-best regime, while the equations yielded by suppress-

ing the t′ terms characterize the no-toll regime. Letting the first-best values be denoted by

stars and no-toll values by hats, suppose n∗

s ≥ n̂s. Since t(n∗

s) + n∗

st
′(n∗

s) > t(n̂s) then holds,

−v(qm)+ v′(qm)qm must be larger in the first-best regime than in the no-toll regime, implying

q∗m < q̂m (recall that qs is a constant). The modified versions of (20) then imply

−v(q∗c)+v′(q∗c )q
∗

c−[t(N−1/q∗c )+(N−1/q∗c )t′(N−1/q∗c )] > −v(q̂c)+v′(q̂c)q̂c−t(N−1/q̂c). (a3)

The RHS of (a3) is decreasing in q∗c and the LHS is decreasing in q̂c, while the RHS is

smaller than the LHS at a common value of q∗c and q̂c. Therefore, satisfaction of the inequality
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requires q∗c < q̂c. Given ns = N − 1/qc − 1/qm, this inequality along with q∗m < q̂m from above

then imply n∗

s < n̂s, contradicting the assumption that n∗

s ≥ n̂s holds and thus establishing

the contrary.
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Table 1

Numerical Example

Untolled First-best regime Cordon tolling

suburban toll 0 0.1482 0

midcity toll 0 0.2940 0.4403

central rent (rc) 1.1526 1.2838 1.2865

midcity rent (rm) 1.0514 1.0800 1.0410

central pop. (nc) 0.3321 0.4120 0.4138

midcity pop. (nm) 0.2764 0.2916 0.2709

suburban pop. (ns) 0.3915 0.2963 0.3152

utility (u) 103.6744 103.6963 103.6946

multiplier (τ ) NA NA -0.0208

20



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

CBD 

center   midcity suburbs 

 midcity 
 bridge 

 suburban 
 bridge 

vacant 
land 

 
 
  Figure 1: City map 

21 
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Figure 2: Land consumption levels in the three regimes 
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Footnotes

∗I am indebted to Se-il Mun for some very helpful suggestions. Any errors or shortcomings,
however, are mine.

1While these papers assume that the city’s jobs are in the center, Fujishima (2011) and Anas
and Hirmatsu (2013) analyze cordon tolling in numerical general equilibrium models with
endogenous, and possibly noncentral, job locations. For a treatment of cordon tolls from a
transportation-engineering perspective, see Ho, Wong, Yang and Loo (2005).

2Alternatively, the midcity toll could be set at zero, with a positive toll on the suburban
bridge. However, the reverse pattern is a more realistic representation of actual cordon tolls,
which are levied close to the CBD.

3Since other parameter values lead to solutions where the nc values under the two regimes
differ only in the fourth or fifth decimal place, it appears that outcomes where nc is smaller
under cordon tolling could emerge, possibly under different functional-form assumptions.

4The results of De Lara et al. (2013) show much larger differences in the utility gains under
the two regimes.

5Note that since Propositions 2 and 3 imply that nm falls in moving from the no-toll regime to
the cordon-toll regime but then rises in moving further to the first-best regime, no comparison
of nm’s magnitudes in the no-toll and first-best regimes follows, confirming the ambiguous
conclusion mentioned earlier.

6In a similar fashion, road width at each distance from the CBD is chosen optimally in the
model of De Lara et al. (2013). This feature of their analysis may account for the relatively
large disparity in utility gains between the first-best and cordon-toll regimes.

7Mathematica was unable to converge to a solution for the cordon-toll problem with capacity
choices.
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