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1 Introduction

The forward premium puzzle and the carry-trade anomaly are two major stylized facts in

international economics. In this paper, we introduce a decomposition that allows us to show

analytically how the two anomalies relate to each other and to estimate the joint restrictions

they place on models of currency risk premia and exchange rate determination.

The forward premium puzzle is usually documented using a bilateral regression of currency

returns on forward premia (Fama, 1984):

rxi,t+1 = αi + βfpp
i (fit − sit) + εi,t+1, (1)

where fit is the log one-period forward rate of currency i, sit is the log spot rate, and rxi,t+1 =

fit − si,t+1 is the log excess return on currency i between time t and t+1. Although estimates

of βfpp
i tend to be noisy, we tend to find βfpp

i > 0 for most currencies. A pooled specification

that constrains all βfpp
i to be identical across currencies yields point estimates significantly

larger than zero and often larger than one.1 This fact, the forward premium puzzle (FPP),

has drawn a lot of interest from theorists because it seems to suggest profitable trades in

currency markets: currencies that have unusually high interest rates also tend to appreciate. 2

The FPP is usually interpreted to (i) motivate the carry trade, a trading strategy that is long

high-interest-rate currencies and short low-interest-rate currencies; (ii) show that bilateral

currency risk premia are highly elastic with respect to time-series variation in forward premia;

and (iii) show that these elasticities tend to be larger than one, such that risk premia must

play a role in determining expected changes in bilateral exchange rates. In this paper, we

show that this interpretation is misleading on all three counts.

We generalize the regression-based approach in (1) to study the covariance of expected cur-

rency returns (“risk premia”) with forward premia without conditioning on a specific currency

pair i. We decompose the unconditional covariance into a cross-currency, a between-time-and-

currency, and a cross-time component. Each of the three components can be written either

as the expected return to a trading strategy or as a function of a slope coefficient from a

regression that relates variation in currency returns to variation in forward premia in the

corresponding dimension.

Our decomposition shows that the expected return on the carry trade is the sum of the

1The same relationship is often estimated using the change in the spot exchange rate as the dependent
variable, in which case, the coefficient estimate is 1 − βfpp

i . An equivalent way of stating the FPP is thus that
1 − βfpp

i < 1.
2Throughout the paper, we follow the convention in the literature and refer to conditional expected returns

as “risk premia.” However, this terminology need not be taken literally. Our analysis is silent on whether
currency returns are driven by risk premia, institutional frictions, or other limits to arbitrage. See Burnside
et al. (2011) and Lustig et al. (2011) for a discussion.
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cross-currency and the between-time-and-currency component of the unconditional covariance,

whereas the FPP consists of the sum of the between-time-and-currency and the cross-time

components.

We estimate the elasticity of risk premia with respect to forward premia in each of the

three dimensions. Our results show that most of the systematic variation in currency returns

is in the cross-section (the cross-currency variation in αi in (1)) rather than the time series.

Currencies that have persistently higher forward premia pay significantly higher expected

returns than currencies with persistently lower forward premia. Some of our specifications

also show statistically significant variation in the cross-time dimension: expected returns on

the US dollar appear to fluctuate with its average forward premium against all other currencies

in the sample. This cross-time variation is particular to the US dollar and, potentially, a small

number of other currencies. It explains the vast majority of the variation that generates the

FPP. By contrast, we cannot reject the null that currency risk premia are inelastic with respect

to variation in forward premia in the between-time-and-currency dimension.

These results imply that the traditional interpretation of the FPP is misleading: (i) the

carry trade and the FPP are not significantly related in the data and may thus require distinct

theoretical explanations. Explaining the carry trade primarily requires explaining persistent

differences in interest rates across currencies that are partially, but not fully, reversed by

predictable movements in exchange rates. (High-interest-rate currencies depreciate, but not

enough to reverse the higher returns resulting from the interest rate differential.) By contrast,

explaining the FPP may require explaining time-series variation in the risk premium of the US

dollar against all other currencies. The US dollar may be one of a small number of currencies

that pays higher expected returns when its interest rate is high relative to its own currency-

specific average and to the world average interest rate at the time. However, this relationship

is only marginally statistically significant in the data.

Counter to the traditional interpretation of the FPP (ii) we cannot reject the hypothesis

that currency risk premia are inelastic with respect to variation of forward premia in the

between-time-and-currency dimension. Once we control for the cross-time variation of the

average forward premium of all currencies against the US dollar, we find little additional

evidence of a covariance of risk premia with forward premia in the time-series dimension.

In addition, none of the three elasticities we estimate is significantly larger than one such

that (iii) we cannot reject the hypothesis that risk premia and expected changes in exchange

rates are uncorrelated in the data.

Part of the reason for our failure to find evidence of a covariance of risk premia with

forward premia in the between-time-and-currency dimension is that the FPP itself is greatly

diminished once we stop conditioning on a specific currency pair i.
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We show that, when using data for more than one currency, an unbiased estimate of the

elasticity of risk premia with respect to forward premia requires using out-of-sample regres-

sions, such that the right-hand-side variables that predict returns between t and t + 1 are

known at time t. Because each of our regressions maps into a trading strategy, this result

appears only natural: when we estimate the expected returns on a given trading strategy, we

typically require that all information used in the formation of the portfolio is available ex ante.

For example, an investor who plans to go long a currency when its forward premium is higher

than its unconditional mean needs to estimate this unconditional mean using data available

at t. Similarly, when we estimate the elasticity of behavior (demanding a risk premium) with

respect to some right-hand-side variable, this variable needs to be measurable at time t.

By contrast, measures that do not correct for the fact that the sample mean of each

currency’s forward premium is unknown ex-ante may not produce unbiased estimates of the

true elasticity of risk premia with respect to forward premia. In particular, the pooled version

of (1) that constrains all βfpp
i to be equal across currencies produces an upwardly biased

measure of the elasticity of risk-premia with respect to forward premia in the time-series

dimension. In other words, skimming across a table that lists βfpp
i for each currency and

mentally averaging across these estimates is not innocuous and makes the FPP appear more

severe than it actually is. For example, in our standard specification, the weighted average of

βfpp
i is 1.81 (s.e.=0.53), whereas our unbiased point estimate for the elasticity of risk premia

with respect to forward premia in the time-series dimension is only half that number (0.86,

s.e.=0.34).

We view our results as both good and bad news. The good news is that currency risk premia

may be much simpler objects than previously thought. First, the majority of the violations

of uncovered interest parity is static (or highly persistent) across currencies. Second, we find

no statistically reliable evidence supporting the idea that currency risk premia respond to

deviations of forward premia from their time- and currency-specific mean. Third, we can

never reject the hypothesis that the elasticity of risk premia with respect to forward premia

in any of the three dimensions is larger than one. As a result, currency risk premia need not

be correlated with expected changes in exchange rates, neither for the US dollar nor for any

of the other currencies in our sample.

The bad news is that the persistent differences in interest rates that drive the carry trade

are not well understood. Most existing models of currency risk premia focus on two symmetric

countries and are thus calibrated to explain the relatively small and statistically insignificant

between-time-and-currency dimension of the covariance of risk premia with forward premia. 3

3It may be worthwhile revisiting the predictions of these models in the light of our findings. Examples
include Farhi and Gabaix (2008), Verdelhan (2010), Burnside et al. (2009), Heyerdahl-Larsen (2012), Yu
(2011), Bacchetta et al. (2010), and Ilut (2012).
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We make three caveats to our interpretation. First, our methodology does not allow us

to distinguish between permanent and highly persistent differences in expected returns across

currencies. Second, the fact that we do not find statistically reliable evidence of a non-zero

elasticity of risk premia with respect to forward premia in the between-time-and-currency

dimension does not mean that it does not exist. Third, there may be non-linearities in the

functional form linking risk premia to forward premia or other variables that predict currency

returns.4 Our purpose is simply to use linear regressions to place restrictions on affine models

linking currency returns to forward premia.

Papers that offer explicit models of either permanent or highly persistent asymmetries in

currency risk premia include Hassan (2013), Martin (2012), and Govillot, Rey, and Gourinchas

(2010) who focus on differences in country size, Maggiori (2013) and Caballero, Farhi, and

Gourinchas (2008) who focus on differences in financial development, Ready, Roussanov, and

Ward (2013) who focus on production specialization, and Mark and Berg (2013) who focus on

asymmetries in the conduct of monetary policy. Another strand of the literature has connected

persistent currency risk premia with shocks that are themselves persistent, as in Engel and

West (2005) and Colacito and Croce (2011).

Our work builds heavily on a series of papers that apply factor analysis to study the cross

section of multilateral currency returns. Most closely related are Menkhoff, Sarno, Schmeling,

and Schrimpf (2012) and Lustig, Roussanov, and Verdelhan (2010, 2011) who identify a risk

factor that explains the cross section of currency returns and a “dollar factor” that explains

the time-series variation in the returns on the US dollar.5 Our contribution is to recast these

findings in terms of regression coefficients, relate them to established puzzles in the literature,

and translate them into restrictions on linear models of currency risk premia.

Many authors have described and theorized about the carry trade and the FPP. 6 We

contribute to this literature in three ways. First, we show that the carry trade and the

FPP are distinct, quantitatively unrelated, anomalies in the data. Second, we generalize the

empirical approach that has framed the debate on the FPP to a multi-currency framework.

Third, we use this framework to derive restrictions on linear models of multilateral currency

risk premia.

The remainder of this paper is structured as follows: Section 2 describes the data. Section

4See fore example Jordà and Taylor (2012).
5Also see Koijen et al. (2013) who decompose carry trades in different asset classes into static and dynamic

components.
6See, for example, Hansen and Hodrick (1980), Bilson (1981), Meese and Rogoff (1983), Fama (1984),

Backus et al. (1993), Evans and Lewis (1995), Bekaert (1996), Bansal (1997), Bansal and Dahlquist (2000),
Backus et al. (2001), Chinn (2006) Evans and Lyons (2006), Graveline (2006), Burnside et al. (2006), Lustig and
Verdelhan (2007), Brunnermeier et al. (2009), Alvarez et al. (2008), Jurek (2009), Bansal and Shaliastovich
(2010), Burnside et al. (2011), and , Sarno et al. (2012). Hodrick (2014), Froot and Thaler (1990), Engel
(1996), Lewis (2011), and Engel (2013) provide surveys.
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3 establishes the FPP and the carry trade as separate anomalies. Section 4 discusses the

restrictions that our empirical results impose on linear models of currency risk premia. Section

5 discusses implications for models of exchange rate determination. Section 6 concludes.

2 Data

Throughout the main text, we use monthly observations of US dollar-based spot and forward

exchange rates at the 1-, 6- and 12-month horizon. All rates are from Thomson Reuters

Financial Datastream. The data range from October 1983 to June 2010. For robustness

checks, we also use all UK pound-based data from the same source as well as forward premia

calculated using covered interest parity from interbank interest rate data, which are available

for longer time horizons for some currencies. Our dataset nests the data used in recent studies

on the cross section of currency returns, including Lustig et al. (2011) and Burnside et al.

(2011). In additional robustness checks, we replicate our findings using only the subset of

data used in these studies.

Many of the decompositions we perform require balanced samples. However, currencies

enter and exit the sample frequently, the most important example of which is the euro and

the currencies it replaced. We deal with this issue in two ways. In our baseline sample (“1

Rebalance”), we use the largest fully balanced sample we can construct from our data by

selecting the 15 currencies with the longest coverage (the currencies of Australia, Canada,

Denmark, Hong Kong, Japan, Kuwait, Malaysia, New Zealand, Norway, Saudi Arabia, Sin-

gapore, South Africa, Sweden, Switzerland, and the UK from December 1990 to June 2010).

In addition, we construct three alternative samples that allow for entry of currencies at 3, 6,

and 12 dates during the sample period, where we chose the entry dates to maximize coverage.

The “3 Rebalance” sample allows entry in December of 1989, 1997, and 2004 and covers 30

currencies. The “6 Rebalance” sample allows entry in December of 1989, 1993, 1997, 2001,

2004, and 2007 and covers 36 currencies. Our largest sample, “12 Rebalance,” allows entry

in June 1986, and in June of every second year thereafter through June 2008, and covers

39 currencies. In between each of these dates, all samples are balanced except for a small

number of observations removed by our data-cleaning procedure (see Appendix A for details).

Currencies enter each of the samples if their forward and spot exchange rate data are available

for at least four years prior to the rebalancing date (the reason for this prior data requirement

will become apparent below).7

Throughout the main text, we take the perspective of a US investor and calculate all

7The only exception we make to this rule is for the first set of currencies entering the 12 Rebalance sample,
which become available in October 1983.
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returns in US dollars. In section 4.5, we discuss how our results change when we use different

base currencies.

Appendix A lists the coverage of individual currencies and describes our data-selection

and -cleaning process in detail.

3 FPP & Carry Trade as Separate Anomalies

Consider a version of the carry trade in which, at the beginning of each month, t = 1, ...T ,

we form a portfolio of all available foreign currencies, i = 1, ..N , weighted by the difference

of their forward premia (fpit ≡ fit − sit) to the average forward premium of all currencies

at the time (fpt ≡
∑

i
1
N

fpit). This portfolio is long currencies that have a higher forward

premium than the average of all currencies at time t and short currencies that have a lower

than average forward premium. We can write the expected return on this portfolio as

E [rxi,t+1 (fpit − fpt)] , (2)

where

E [∙] ≡
T∑

t=1

N∑

i=1

1

NT

∫
(∙) dFit (rxit+1, fpit, fpjt, ...) (3)

is the unconditional expectations operator defined over a finite number of currencies and time

periods, and Fit (rxit+1, fpit, fpjt, ...) is some joint cumulative distribution function of the

returns on currency i at time t and the vector of forward premia of all currencies around the

world.8

We use linear portfolio weights (fpit − fpt), because they allow us to relate portfolio

returns directly to coefficients in linear regressions. Our results would be similar if we sorted

currencies into bins and then analyzed the returns on a long-short strategy as in Lustig et al.

(2011).9 As with this alternative formulation, the return on the carry trade portfolio is neutral

with respect to the dollar, that is, it is independent of the bilateral exchange rate of the US

dollar against any other currencies.10

Table 1 shows the annualized mean return on the carry trade portfolio in our 1 Rebalance

sample. Consistent with earlier research, we find the carry trade is highly profitable and yields

a mean annualized net return of 4.95% with a Sharpe ratio of 0.54. However, the table also

shows that currencies which the carry trade is long (i.e., currencies with high interest rates)

8See Appendix B.1 for some properties of this expectations operator.
9See Appendix Table 1 for a detailed comparison between linear weights (2), the long-short strategy of

Lustig et al. (2011), and the equally weighted strategy in Burnside et al. (2011).
10See Appendix B.2 for a formal proof of this statement.
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on average depreciate relative to currencies with low interest rates. Our carry trade portfolio

loses 2.15 percentage points of annualized returns due to this depreciation.

[Table 1 about here]

As we show below, this pattern holds across a wide range of plausible variations: currencies

with high interest rates thus tend to depreciate. An obvious question is then why the FPP

appears to suggest the opposite. The answer is in the currency-specific intercepts in (1),

αi. We tend to find that βfpp
i > 1 in regressions in which currency fixed effects absorb the

currency-specific mean forward premium (fpi ≡
T∑

t=1

1
T
fpit). If we wanted to trade on the

correlation in the data that drives the FPP, we would thus have to buy currencies that have a

higher forward premium than they usually do (Cochrane, 2001; Bekaert and Hodrick, 2008).

Such a strategy, we call it the “forward premium trade”, weights each currency with the

deviation of its current forward premium from its currency-specific average. We can write the

expected return on the forward premium trade as E [rxi,t+1 (fpit − fpi)] .

[Figure 1 about here.]

The carry trade (2) thus exploits a correlation between currency returns and forward

premia conditional on time fixed effects, whereas the FPP describes a correlation conditional

on currency fixed effects. Figure 1 illustrates the difference between the carry trade and the

forward premium trade for the case in which a US investor considers investing in two foreign

currencies. The left panel plots the forward premium of the New Zealand dollar and the

Japanese yen over time. Throughout the sample period, the forward premium of the former

is always higher than the forward premium of the latter, reflecting the fact that New Zealand

has consistently higher interest rates than Japan. The carry trade is always long New Zealand

dollars and always short Japanese yen. By contrast, the forward premium trade evaluates the

forward premium of each currency in isolation and goes long if the forward premium is higher

than its sample mean. As a result, the forward premium trade is not “dollar neutral” in the

sense that it may be long or short both foreign currencies at any given point in time.

It is immediately apparent that implementing the forward premium trade may be more

difficult in practice than implementing the carry trade, because it requires an estimate of the

mean forward premium of each country (fpi), which is not known at time t. In what follows, we

denote the expectation of the country-specific and the unconditional mean forward premium

as

f̂pi ≡ Ei [fpi] , f̂p ≡ E [fp] ,

where Ei [∙] =
T∑

t=1

1
T

∫
(∙) dFit (rxit+1, fpit, fpjt, ...), and we continue the convention of denoting

8



sample means by omitting the corresponding subscripts,

xi ≡ 1
T

∑T
t=1 xit xt ≡ 1

N

∑N
i=1 xit x ≡ 1

NT

∑T
t=1

∑N
i=1 xit, x = fp, rx . (4)

The ex-ante implementable version of the forward premium trade (which we show below is

the version that is relevant for estimating covariances of risk premia and forward premia) has

an expected return of

E
[
rxi,t+1

(
fpit − f̂pi

)]
, (5)

where f̂pi 6= fpi and f̂p 6= fp in a finite sample (T < ∞).

How do the carry trade and the forward premium trade relate to each other? The expected

returns on both portfolios load on different components of the unconditional (population) co-

variance between currency returns and forward premia. To show this result, we can decompose

the unconditional covariance into the sum of the expected returns on three trading strategies

plus a constant term. Re-writing the covariance in expectation form, adding and subtracting

fpt, f̂pi, and f̂p and re-arranging yields

cov (rxi,t+1, fpit) = E [(rxi,t+1 − rx) (fpit − fp)]

= E
[
rxi,t+1

(
f̂pi − f̂p

)]

︸ ︷︷ ︸
Static Trade

+ E
[
rxi,t+1

(
fpit − fpt −

(
f̂pi − f̂p

))]

︸ ︷︷ ︸
Dynamic Trade

+ E
[
rxi,t+1

(
fpt − f̂p

)]

︸ ︷︷ ︸
Dollar Trade

+E [rxi,t+1( f̂p − fp )]
︸ ︷︷ ︸

Constant

,

(6)

where rx again refers to the sample mean currency return across currencies and time periods.

The “Static Trade” trades on the cross-currency variation in forward premia. It is long

currencies that have an unconditionally high forward premium and short currencies that have

an unconditionally low forward premium. We may think of it as a version of the carry trade in

which we never update our portfolio. We weight currencies once, based on our expectation of

the currencies’ future mean level of interest rates, and never change the portfolio thereafter.

The “Dynamic Trade” trades on the between-time-and-currency variation in forward premia.

It is long currencies that have high forward premia relative to the time average forward

premium of all currencies and relative to their currency-specific mean forward premium. We

may think of the expected return on the Dynamic Trade as the incremental benefit of re-

weighing the carry trade portfolio every period. Finally, the “Dollar Trade” trades on the

cross-time variation in the average forward premium of all currencies against the US dollar.

It goes long all foreign currencies when the average forward premium of all currencies against

the US dollar is high relative to its unconditional mean and goes short all foreign currencies

9



when it is low.11

Upon inspection, the carry trade (2) is simply the sum of the Static and Dynamic trades,

E [rxi,t+1 (fpit − fpt)]︸ ︷︷ ︸
Carry Trade

= E
[
rxi,t+1

(
f̂pi − f̂p

)]

︸ ︷︷ ︸
Static Trade

+ E
[
rxi,t+1

(
fpit − fpt −

(
f̂pi − f̂p

))]

︸ ︷︷ ︸
Dynamic Trade

,

whereas the forward premium trade (5) is the sum of the Dynamic and the Dollar Trades:

E
[
rxi,t+1

(
fpit − f̂pi

)]

︸ ︷︷ ︸
FP Trade

= E
[
rxi,t+1

(
fpit − fpt −

(
f̂pi − f̂p

))]

︸ ︷︷ ︸
Dynamic Trade

+ E
[
rxi,t+1

(
fpt − f̂p

)]

︸ ︷︷ ︸
Dollar Trade

.

The common element between the Carry Trade and the forward premium trade is the Dynamic

Trade, that is, the between-time-and-currency part of the unconditional covariance between

currency returns and forward premia. By contrast, the cross-currency component is unique to

the carry trade and the cross-time component is unique to the forward premium trade. The

question of whether the two anomalies, the carry trade and the forward premium trade, are

related in the data thus reduces to estimating the relative contribution of the Dynamic Trade.

[Table 2 about here]

Table 2 lists the mean returns and Sharpe ratios of the three strategies, as well as the mean

returns and Sharpe ratios of the carry trade and the forward premium trade. All returns are

again annualized and normalized by dividing with fp to facilitate comparison. Columns 1-4

on the top left give the results for our 1 Rebalance sample, where we use all available data

prior to December 1994 to estimate f̂pi and f̂p. Column 1 shows the results for one-month

forwards, without taking into account bid-ask spreads. The mean annualized return on the

static trade is 3.46% with a Sharpe ratio of .39. It thus contributes 70% of carry trade returns.

By contrast, the Dynamic Trade contributes 30%, with an annualized return of 1.50% and a

Sharpe ratio of .24.

Although the forward premium trade is not commonly known as a trading strategy in

foreign exchange markets, it yields similar returns to the carry trade, with a mean annualized

return of 4.04% and a Sharpe ratio of .27. The Dollar Trade contributes 63% to this overall

return and has a Sharpe ratio of .25, with the Dynamic Trade contributing the remaining

37%.

Columns 2-4 replicate the same decomposition but take into account bid-ask spreads in

forward and spot exchange markets.12 Column 2 again uses one-month forward contracts,

11The Dollar Trade was first described by Lustig et al. (2010). We follow their naming convention here.
12We calculate returns net of transaction costs as rxnet

i,t+1 = I[wit ≥ 0](f bid
it −sask

i,t+1)+(1−I[wit ≥ 0])(fask
it −

10



column 3 uses 6-month contracts, and column 4 uses 12-month contracts. Once we take into

account bid-ask spreads, the mean returns on all trading strategies fall.13 In the case of the

Dynamic Trade, the mean return in column 2 actually turns negative. However, the same

basic pattern persists across all columns: the Static Trade accounts for 70%-121% of the

mean returns on the carry trade, and the Dollar Trade accounts for 63%-124% of the mean

returns on the forward premium trade.14 15

The only potentially sensitive assumption we make in performing this decomposition is

that investors use data prior to 1995 to estimate f̂pi and f̂p. To show that our results do

not depend on this particular cutoff date (and the resulting selection of currencies in our 1

Rebalance sample), the remaining panels and columns repeat the same exercise using the 3,

6, and 12 Rebalance samples. In each case, we use all available data before each cutoff date to

update the estimates of f̂pi and f̂p. In the 3 Rebalance sample, investors thus update their

expectation at three dates, and so forth.

The results remain broadly the same across the different samples, where the Static Trade

on average contributes 85.7% of the mean returns to the carry trade, and the Dollar Trade on

average contributes 81.3% of the mean returns on the forward premium trade. In addition,

the Sharpe ratio on the Dynamic Trade appears economically small or even negative in all

calculations that take into account the bid-ask spread (they range from -0.14 to 0.19). Whereas

the carry trade delivers an economically significant Sharpe ratio in all samples (ranging from

0.12 to 0.44 net of transaction costs), the forward premium trade tends to deliver somewhat

lower Sharpe ratios (ranging from 0.00 to 0.27), particularly in the samples that allow more

rebalances. Appendix Table 3 shows that these patterns also hold when we exclude pegged

exchange rates, use an extended sample of interest rate data, or use a wide of alternative

samples of exchange rate data used in other studies.

Our main conclusion from Table 2 is that the Dynamic Trade, the common element between

sbid
i,t+1), where wit is the portfolio weight of currency i at time t, and I is an indicator function that is one if

wit ≥ 0 and zero otherwise.
13Transaction costs in currency markets are thus of the same order of magnitude as the mean returns on the

Dynamic Trade. See Burnside et al. (2006) for a discussion. However, bid-ask spreads reported on Datastream
may be larger than the effective inter-dealer market spreads; see Lyons (2001) and Gilmore and Hayashi (2008).

14The mean returns on the three underlying trades no longer add up to the mean returns on the carry trade
and the forward premium trade when we take into account bid-ask spreads. We thus calculate the percentage
contribution of Static (Dollar) Trade by dividing its mean return with the maximum of zero and the sum of
the mean returns on the Static (Dollar) and Dynamic Trades.

15In a similar comparison, Lustig et al. (2011) attribute a somewhat smaller share of the static (uncondi-
tional) component in carry trade returns (53% in their standard specification). The reason for this apparent
discrepancy is that in their exercise, they allow the carry trade to use up to 36 currencies, whereas the uncon-
ditional carry trade uses only 18 currencies. By contrast, our decomposition requires that we restrict all five
trading strategies to use the same set of currencies. These differences in implementation arise because their
decomposition views portfolios as the primitive (regardless of the number of their constituents), whereas our
decomposition focuses on currencies i, 1, ..N as the object of interest. See Appendix Table 2 for a detailed
comparison between the two approaches.
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the carry trade and the forward premium trade, contributes an economically small share to

the expected returns on the two strategies. The majority of the returns on the carry trade

are driven by static differences in expected returns across currencies and the majority of the

returns on the forward premium trade are driven by time-series variation in the expected

returns on the US dollar relative to all other currencies in the sample.

4 Restrictions on Models of Currency Risk Premia

Currency risk premia may vary across currencies, between-time-and-currency, and across time.

Each of these dimensions corresponds to one of the three basic trading strategies outlined

above. To test whether the variation of risk premia in each of these dimensions is statistically

significant, it is useful to rewrite (6) in terms of regression coefficients. Manipulating the

expected return on the static trade (the first term on the right-hand side of (6)) yields

E
[
rxi,t+1

(
f̂pi − f̂p

)]
= E

[
(rxi,t+1 − rxt+1)

(
f̂pi − f̂p

)]
+ E

[
rxt+1

(
f̂pi − f̂p

)]

︸ ︷︷ ︸
=0

= cov
(
rxi,t+1 − rxt+1, f̂pi − f̂p

)
= βstatvar

(
f̂pi − f̂p

)
.

We get the first equality from adding and subtracting rxt+1 to the first term in the expectations

operator. The second equality follows from the fact that
(
f̂pi − f̂p

)
is zero in unconditional

expectation and does not vary across t. The third equality follows from rewriting the covari-

ance as an OLS regression coefficient where βstat = cov
(
rxi,t+1 − rxt+1, f̂pi − f̂p

)
/var

(
f̂pi − f̂p

)

is the slope coefficient from the pooled regression

rxi,t+1 − rxt+1 = βstat
(
f̂pi − f̂p

)
+ εstat

i,t+1. (7)

Appendix C.1 shows that similarly rewriting the second and third terms in (6) yields

cov (rxi,t+1, fpit)

=

βstatvar
(
f̂pi − f̂p

)

︸ ︷︷ ︸
Static Trade

+ βdynvar
(
fpi,t − fpt −

(
f̂pi − f̂p

))
+ αdyn

︸ ︷︷ ︸
Dynamic Trade

+ βdolvar
(
fpt − f̂p

)
+ αdol

︸ ︷︷ ︸
Dollar Trade

− αdol,

(8)

where βdyn and βdol are again slope coefficients from pooled regressions of currency returns

on the variation in forward premia in the relevant dimension:

rxi,t+1 − rxt+1 − (rxi − rx) = βdyn
[
(fpit − fpt) −

(
f̂pi − f̂p

)]
+ εdyn

i,t+1, (9)
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rxi,t+1 − rx = γ + βdol
(
fpt − f̂p

)
+ εdol

i,t+1, (10)

rxt+1 is the mean return across all currencies at time t + 1, and γ = βdol
(
f̂p − fp

)
.

The two constants, αdyn = E
[
rxi

(
fpi − fp − (f̂pi − f̂p)

)]
and αdol = E

[
rxi(fpt − f̂p)

]
,

measure the covariance of currency returns with expectational errors (the deviation of the

sample means fpi and fp from their expected values). Both terms may be non-zero if T < ∞,

because sample and population means do not coincide in a finite sample, f̂pi 6= fpi and

f̂p 6= fp. By contrast, the three slope coefficients determine the systematic part of the mean

returns calculated in Table 2. Apart from enabling us to test the statistical significance of the

systematic returns on each of our three trading strategies, the three coefficients also have a

clear economic interpretation.

Definition 1 The risk premium on currency i at time t is the expected log return on the

currency given that all currencies’ forward premia at time t, {fpit}
N
i=1, are known:

πit ≡ Eit [rxi,t+1] ,

where

Eit [∙] =

∫
(∙) dFit (rxit+1, fpit, fpjt, ...|fpit, fpjt, ...) .

Collapsing (7) and (10) into a single cross section and single time series, respectively, adding

the right- and left- hand sides of the two resulting equations to (9), and taking conditional

expectations yields a generic affine model of currency risk premia:

πit − π = γ + βstat
(
f̂pi − f̂p

)
+ βdyn

[
(fpit − fpt) −

(
f̂pi − f̂p

)]
+ βdol

(
fpt − f̂p

)
. (11)

Proposition 1 The slope coefficients βstat, βdyn, and βdol measure the elasticity of currency

risk premia with respect to forward premia in the cross-currency, between-time-and-currency,

and the cross-time dimension, respectively:

βstat =
cov(πi,f̂pi)
var(f̂pi)

, βdyn =
cov(πit,(fpit−fpt)−(f̂pi−f̂p))

var((fpit−fpt)−(f̂pi−f̂p))
, βdol = cov(πit,fpt)

var(fpt)
.

Proof. By the properties of linear regression, we can write βstat as

βstat = E
[
(rxi,t+1 − rxt+1)

(
f̂pi − f̂p

)]
var

(
f̂pi

)−1
= E

[
Eit

{
(rxi,t+1 − rxt+1)

(
f̂pi − f̂p

)}]
var

(
f̂pi

)−1

= E
[
Eit {(rxi,t+1 − rxt+1)}

(
f̂pi − f̂p

)]
var

(
f̂pi

)−1
= cov

(
πit, f̂pi

)
var

(
f̂pi

)−1
.

The second equality applies the law of iterated expectations. The third equality uses the fact
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that the population means f̂pi and f̂p are known at time t. The proofs for βdyn and βdol are

analogous.

The crucial feature of the coefficients βstat, βdyn, and βdol is that they link behavior at time

t (demanding a risk premium between t and some future time period) to information investors

can condition on at time t. In this sense, the three elasticities are behavioral parameters in any

model of currency risk premia, regardless of whether we think of (11) as a generic affine model

of currency risk premia or as a first-order approximation to a non-linear model of currency

risk premia.

Which of these elasticities is statistically distinguishable from zero? Columns 1-4 of Table 3

estimate the specifications (7), (9), and (10) using our 1 Rebalance sample. As in Section 3,

we use all available data prior to December 1994 to estimate f̂pi and f̂p. The standard errors

for βstat and βdol are clustered by currency and time, respectively, whereas the standard errors

for βdyn are Newey-West with 12, 18, and 24 lags for the 1-, 6-, and 12-month horizons,

respectively. Where appropriate, we use the Murphy and Topel (1985) procedure to adjust

all standard errors for the estimated regressors f̂pi and f̂p (see Appendix C.2 for details). An

asterisk indicates we can reject the null hypothesis that the coefficient is equal to zero at the

5% level.

The specifications in column 1 use monthly forward contracts and show a highly statis-

tically significant estimate for βstat of 0.47 (s.e.=0.08). The estimate of βdyn is about the

same size 0.44 (s.e.=0.25) but statistically indistinguishable from zero, as is the much larger

estimate for βdol (3.11, s.e.=1.60).

[Table 3 about here.]

The same column also reports estimates of the slope coefficients of equivalent specifications

for the returns on the carry trade (βct) and the forward premium trade (βfpp), where in each

case, we regress currency returns in the relevant dimension on the portfolio weights used to

implement the trading strategy:

rxi,t+1 − rxt+1 = βct (fpit − fpt) + εct
i,t+1, (12)

rxi,t+1 − rxi = βfpp
(
fpit − f̂pi

)
+ εfpp

i,t+1. (13)

As expected, the coefficients in both regressions are positive and statistically significant. The

coefficient in the carry trade regression is 0.68 (s.e.=0.27), whereas the one in the forward

premium trade regression is 0.86 (s.e.=0.34). In both regressions, we use Newey-West standard

errors with the appropriate number of lags, following the convention outlined above. In

addition, we also adjust standard errors for βfpp for estimated regressors f̂pi as above.
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As with the portfolio-based decomposition in Table 2, the coefficients βct and βfpp are

linear functions of βstat, βdyn and βdol, βdyn respectively.16 Column 1 of Table 3 thus also

reports the partial R2 of the static trade in the carry trade regression (62%) and the partial

R2 of the dollar trade in the forward premium trade regression (90%).17

The remaining columns report variations of the same estimates, showing that our results

are robust to adjusting for transaction costs, using forward contracts of longer maturity,

including different countries in the sample, and using different time horizons for estimating

f̂pi and f̂p. The structure of the table is identical to Table 2. Columns 2-4 use returns

adjusted for the bid-ask spread and forward contracts at the 1-, 6-, and 12-month horizon. The

remaining columns and panels repeat the same estimations using our 3, 6, and 12 Rebalance

samples, where in each case, we again use all available data before each cutoff date to update

the estimates of f̂pi and f̂p.

The pattern that emerges from the range of variations in Table 3 is similar to the results

in column 1. In all samples, the coefficient on the static trade is a precisely estimated number

between zero and one (point estimates range from 0.15 to 0.6), and this coefficient usually

explains about two thirds of the systematic variation driving the identification of βct. We thus

always reject the null that currency risk premia do not vary with unconditional differences in

forward premia across currencies. The coefficient on the dollar trade is imprecisely estimated

and statistically distinguishable from zero in one out of 16 specifications. Point estimates

range from -0.23 to 3.72. We thus rarely reject the null that no covariance exists between risk

premia and forward premia in the cross-time dimension. However, the dollar trade always

explains more than half, often more than 90%, of the variation driving the identification of

βfpp. By contrast, the Dynamic Trade often explains less than 10% of the variation identifying

βfpp. Finally, we reject the null that βdyn = 0 in only one of our 16 specifications. Appendix

Table 4 shows that these conclusions also hold across a wide range of alternative samples used

in other studies.

As an additional robustness check, we use our 12 Rebalance sample to block-bootstrap

standard errors. In this procedure, we treat each of the 12 two-year periods in between re-

balancing dates as one block and draw 100,000 random samples with replacement from this

set of histories. Table 4 shows that this procedure produces somewhat wider standard errors

for some of our estimates. However, the basic pattern is identical to the one in Table 3: βstat

and βct are statistically significant in three out of four specifications, whereas the remaining

parameters are not.

16See Appendix C.5 for the analytical expressions.
17We calculate the partial R2 as ESSd

ESSd+ESSdyn , d ∈ {stat, dol}, where ESSdyn refers to the explained sum
of squares in specification (9) and ESSstat, ESSdol refer to the explained sum of squares in specifications (7)
and (10), respectively.
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[Table 4 about here.]

These results have two surprising implications. First, the fact that we cannot reject the

hypothesis that currency risk premia do not vary in the between-time-and-currency dimension

means the FPP and the carry trade are not significantly related phenomena in the data.

The FPP does not appear to “drive” or “motivate” the carry trade, contrary to what most

textbooks and many papers on the subject suggest. Models that are designed to fit the FPP

thus do not automatically explain the carry trade and vice versa. The two phenomena may

thus require separate theoretical explanations.

Second, throughout the table, the evidence that currency risk premia co-vary with forward

premia over time is quite weak. Whereas both the Dynamic and the Dollar trade appear

to yield positive expected returns in Table 2, the systematic part of the returns on these

strategies are not statistically distinguishable from zero in most specifications. (Recall that

in (8), the terms αdyn and αdol result from expectational errors, such that risk premia on both

the Dynamic and the Dollar trade are positive if and only if βdyn and βdol, respectively, are

strictly greater than zero.) By contrast, the most robust feature of the data appears to be

the feature that has received the least attention in the literature – a significantly positive risk

premium on the Static Trade, that is, a significant covariance between currency risk premia

and unconditional differences in forward premia across countries.

4.1 In-sample Estimates Are Biased

The estimation in the previous section is based on “out-of-sample” regressions in the sense

that f̂pi, f̂p are estimated in the pre-period. This approach came naturally, because we used

these regressions to analyze the statistical properties of the portfolios from Section 3, where

investors also needed to estimate f̂pi, f̂p to be able to form their portfolios. The following

proposition shows that this correspondence between portfolio formation and out-of-sample

regressions is not an accident: in-sample regressions that use currency fixed effects such that

f̂pi = fpi and f̂p = fp in (7), (9), and (13) yield biased estimates of the elasticity of risk

premia with respect to forward premia in a finite sample. In the discussion below, we denote

the slope coefficients from the in-sample regressions corresponding to (7), (9), and (13) as

βstat
in−sample, βdyn

in−sample, and βfpp
in−sample, respectively.

Proposition 2 If T < ∞, the slope coefficients βdyn
in−sample and βfpp

in−sample are upwardly biased

measures of the elasticity of risk premia with respect to forward premia in the between-time-
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and-currency and the time-series dimensions:

βdyn = βdyn
in−sample



1 +
var

(
fpi − f̂pi

)

var (fpit − fpt − (fpi − fp))





−1

< βdyn
in−sample, (14)

and

βfpp = βfpp
in−sample



1 +
var

(
fpi − f̂pi

)

var (fpit − fpi)





−1

< βfpp
in−sample. (15)

In addition, the slope coefficient βstat
in−sample may be an upwardly or downwardly biased measure

of the elasticity of risk premia with respect to forward premia in the cross-currency dimension,

βstat = βstat
in−sample

var (fpi)

var
(
f̂pi

) +
E
[
(rxi − rx)

(
f̂pi − f̂p − (fpi − fp)

)]

var (fp̂i)
. (16)

Proof. See Appendix C.3.

In-sample estimates βdyn
in−sample and βfpp

in−sample thus over-estimate the true elasticity of risk-

premia with respect to forward premia in proportion to the variance of the deviation of the

sample mean fpi from its population equivalent f̂pi. For any finite sample, this variance is

positive, and so the resulting bias of the in-sample estimates is larger than one. The reason for

the bias is that when we run (7), (9), and (13) using currency fixed effects, we use information

about sample means, fpi and fp, that is available to the econometrician ex post, but that is

unknown to investors ex ante. Although some part of the variation in the data must be due to

errors, fpi − f̂pi, the in-sample versions of (7) and (9) assign all of the variation to behavior,

resulting in an upwardly biased measure of the true elasticity of risk premia with respect to

forward premia.

By contrast, no distinction exists between in-sample and out-of-sample coefficients in the

cross-time dimension. In that dimension, the fact that investors need to estimatefp ex ante

has no bearing on the estimate of the covariance of risk premia with forward premia, because

cov (πit, fpt) = cov(πit, fpt− f̂p) = cov(πit, fpt−fp), such that βdol = βdol
in−sample. This is why

equation (10) has a constant
(
γ = βdol

(
f̂p − fp

))
that absorbs any errors in predicting fp.

[Table 5 about here]

Table 5 compares estimates of the biased in-sample measures βstat
in−sample, βdyn

in−sample, and

βfpp
in−sample with their unbiased counterparts from columns 1 and 5 in Table 3. All specifications

use one-month forwards and exclude bid-ask spreads. The table shows that the bias in the

in-sample measures is considerable. For example, in our 1 Rebalance sample, the estimate of
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βdyn
in−sample is 1.13 (s.e.=0.45) and highly statistically significant, whereas our estimate of βdyn

is 60% smaller and statistically insignificant (0.44, s.e.=0.25). Similarly, βfpp
in−sample is 1.81

(s.e.=0.53), whereas βfpp is less than half the size and smaller than one (0.86, s.e.=0.34).

In-sample regressions thus return inflated estimates of the elasticity of risk premia with

respect to forward premia in the between-time-and-currency and time-series dimensions. This

finding is particularly important because it qualifies the interpretation of the FPP. Many

papers on international currency returns feature a table showing a list of estimates of βfpp
i

from Fama’s bilateral regression (1). Table 6 replicates this list for our 1, 3, 6, and 12

Rebalance samples.

[Table 6 about here]

The coefficients βfpp
i exhibit wide variation. Some are significantly positive, others are

significantly negative, but most are statistically indistinguishable from zero. Because (1)

includes a currency-specific intercept that absorbs any expectational errors fpi − f̂pi, in-

sample and out-of-sample estimates of βfpp
i are identical, such that we can rewrite (1) as

rxi,t+1 − rxi = αi + βfpp
i

(
fpit − f̂pi

)
+ εfpp

i,t+1, (17)

where αi = βfpp
i

(
f̂pi − fpi

)
. Consequently, we may interpret the coefficients βfpp

i as unbiased

estimates of the currency-specific elasticity of risk premia with respect to forward premia

corresponding to the model:

πit − π = βstat
(
f̂pi − f̂p

)
+
∑

i

Di

(
αi + βfpp

i

(
fpit − f̂pi

))
. (18)

However, this interpretation seems somewhat unappealing due to its sheer complexity. For

example, such a model would have to explain why the elasticities of Kuwait and South Africa

have opposing signs and why Canada has a significantly larger elasticity than Japan, but

about the same elasticity as Denmark.

Instead, this table is usually taken as evidence that the average country’s elasticity of

currency risk premia with respect to forward premia is positive and statistically significant

because most currencies have a βfpp
i > 1 such that the pooled version of the regression

(a convex combination of the βfpp
i ) typically yields a positive and statistically significant

coefficient. However, in Appendix C.4, we show

∑

i

1

N

vari (fpit)∑
i

1
N

vari (fpit)
βfpp

i = βfpp
in−sample > βfpp. (19)
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The weighted average of βfpp
i thus yields an upwardly biased estimate of the elasticity of risk

premia with respect to forward premia in the time-series dimension. Because the αi in (17)

vary across countries, the distinction between in-sample and out-of-sample regressions is no

longer innocuous once we constrain all βfpp
i to be identical in (18). Mentally averaging across

currency-specific estimates in Table 6 thus results in the same upwardly biased estimate of

the elasticity of risk premia with respect to forward premia as the in-sample version of (13).

In this sense, tables like our Table 6 make the FPP look a lot worse than it actually is.

Rather than averaging across the estimates in Table 6, the correct procedure for estimating

the constrained model uses out-of-sample regressions (7) and (13). Collapsing (7) into a single

cross section, adding (13) and taking conditional expectations, yields

πit − π = βstat
(
f̂pi − f̂p

)
+ βfpp

(
fpit − f̂pi

)
, (20)

where βfpp = ωβdyn + (1 − ω) βdol < βfpp
in−sample (see equation (19) and Appendix C.5 for a

formal proof).

4.2 Alternative Corrections of In-sample Estimates

A difficulty in directly estimating (7), (9), and (13) is that all three specifications require

explicit estimates of f̂pi and f̂p as inputs. Although we have performed a number of variations

in estimating these inputs by allowing a varying number of re-balances during the sample and

by bootstrapping across periods, we may still worry that these estimates of population means

are noisy. An alternative approach is to instead depart from in-sample estimates and to correct

these estimates to make them unbiased in a finite sample.

In particular, the bias in (14) and (15) is simply a function of the variance of the forecast

error var
(
fpi − f̂pi

)
. Figure 2 plots estimates of βdyn and βfpp in our 1 Rebalance sample

as a function of this variance. To the left of the two graphs, when var
(
fpi − f̂pi

)
= 0, we

get the in-sample estimates from column 1 of Table 5 (marked with a square). The larger

the variance of the error relative to the variance of the right-hand-side variable in the in-

sample regression, the larger the resulting bias in the two coefficients. A diamond marks our

out-of-sample estimates from column 1 of Table 3.

An alternative way of calculating these two numbers would have been to simply estimate

the variance var
(
fpi − f̂pi

)
by comparing our pre-1995 estimates of f̂pi directly to the sample

means fpi. The horizontal axis shows that the estimated var
(
fpi − f̂pi

)
is about twice the

size of the estimated var (fpit − fpi − (fpt − fp)) (left panel) and about the same size as

the estimated var (fpit − fpi). The variance of the forecast error is thus large relative to the

time-series variation in forward premia, resulting in a large bias in the in-sample estimates.
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[Figure 2 about here]

The remaining estimates in the figure show two alternative adjustments of the in-sample

estimates that use the entire sample to estimate a process for the evolution of forward premia

over time and use this process to calculate a structural estimate of var
(
fpi − f̂pi

)
. The

circles in the two graphs mark the point estimates we obtain from estimating the AR(1),

fpit = ρifpi,t−1 + εf
it, (21)

over the full sample and then calculating the implied variance of the forecast error in a sam-

ple with length T = 186, months under the assumption that the estimated autocorrelation

coefficients ρi and standard deviations of εf
it characterize the true process governing the evo-

lution of fpit and are known to investors. In both cases, this calculation results in a slightly

smaller adjustment, returning an estimate of 0.56 (s.e.=0.32) for βdyn and an estimate of 1.18

(s.e.=0.42) for βfpp. However, the standard errors on both estimates are now also considerably

wider. When we repeat our calculation while imposing the same autocorrelation coefficient

ρ for all currencies in (2), we obtain tighter standard errors but also a larger adjustment to

both coefficients (marked with a triangle).

Regardless of the method we choose for correcting the in-sample bias of our estimates,

our conclusions from Table 3 continue to hold: βdyn is never statistically distinguishable from

zero, whereas βfpp is statistically significant in some specifications.

4.3 Model Selection

The generic affine model of currency risk premia (11) has three parameters. A theorist wishing

to focus her energy on the most salient features of the data may want to begin with the null

hypothesis that each of these parameters is equal to zero and include them if and only if they

significantly improve the model’s fit to the data. Based on the results from Table 3, she might

thus start with the simplest model the data do not clearly reject {βstat > 0, βdyn = 0, βdol = 0}.

This model explains returns on the carry trade as the result of static, unconditional, differences

in risk premia across currencies.

Although this model explains most of the significant correlations shown in Table 3, dis-

carding the mean returns to the forward premium trade and thus the FPP itself as a statistical

fluke may not be satisfactory. Columns 1-5, 7, and 8 of the 1 Rebalance and 3 Rebalances

samples, show significantly positive returns to the forward premium trade. Although neither

βdyn nor βdol are by themselves usually statistically distinguishable from zero, their convex

combination (βfpp) is statistically significant in these seven specifications. We might thus

want to relax our model by adding an additional parameter that can explain this pattern.
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The three simplest options to extend the model are {βdyn > 0, βdol = 0}, {βdyn = 0, βdol > 0},

and {βdyn = βdol = βfpp > 0}.

Table 7 performs χ2 difference tests, asking which of the three extensions is best able

to explain the mean returns on the forward premium trade observed in the data under the

assumption that the coefficients estimates of βfpp, βdyn, and βdol are normally distributed (see

Appendix C.7 for details). The two columns in the table use the coefficient estimates and

standard errors from columns 1 and 5 of the 1 Rebalance and the 3 Rebalances samples in

Table 3, respectively. (Because the linear relationship between the three coefficients holds

only in the absence of transaction costs, these specifications are the only two of relevance.) In

both cases, we cannot reject βdyn = 0 or βdyn = βdol, whereas we can reject βdol = 0 at the 5%

level. The two simplest models that can explain all the statistically significant correlations in

Table 3 are thus {βstat > 0, βdyn = 0, βdol > 0} and {βstat > 0, βdyn = βdol = βfpp > 0}.

[Table 7 about here.]

The conclusion from this section is that the data strongly reject models in which βstat = 0

and, to the extent that the FPP is a robust fact in the data, also reject models in which βdol =

0. A parsimonious affine model of currency risk premia thus need only allow for variation in

currency risk premia in the cross-currency and cross-time dimensions. Any assumptions about

βdyn do not significantly affect the model’s ability to fit the data.

4.4 Dynamics of Bilateral Currency Risk Premia

Given the large literature that analyzes the dynamics of bilateral currency risk-premia us-

ing currency by currency regressions (1), a natural question is whether our three-parameter

model is too restrictive by imposing the same between-time-and-currency dynamics for all

foreign currencies. In this section, we relax this assumption by generalizing (9) to allow for

heterogeneous elasticities of risk premia with respect to forward premia across currencies:

rxi,t+1 − rxt+1 − (rxi − rx) = αdyn
i +

∑

i

Diβ
dyn
i

[
(fpit − fpt) −

(
f̂pi − f̂p

)]
+ εdyn

i,t+1, (22)

where Di is a currency fixed effect:

αdyn
i = βdyn

i

(
f̂pi − f̂p − (fpi − fp)

)
.

Again collapsing (7) and (10) into a single cross section and single time series, respectively,

adding the right- and left- hand sides of the two resulting equations to (22), and taking
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conditional expectations yields

πit − π = γ + βstat
(
f̂pi − f̂p

)
+
∑

i

Diβ
dyn
i

[
(fpit − fpt) −

(
f̂pi − f̂p

)]
+ βdol

(
fpt − f̂p

)
.

(23)

This is our most flexible affine model, nesting the models (11) and (20). Following the same

steps as the proof of proposition 1 we can again show that currency-specific coefficients βdyn
i

are unbiased measures of the elasticity of the risk premium on currency i with respect to

deviations of currency i’s forward premium from its currency- and time-specific mean. In

addition, Appendix C.6 shows we can re-write the decomposition in (8) as

cov (rxi,t+1, fpit)

=

βstatvar
(
f̂pi − f̂p

)

︸ ︷︷ ︸
Static Trade

+
1

N

∑

i

βdyn
i vari (fpi,t − fpt) + αdyn

︸ ︷︷ ︸
Dynamic Trade

+ βdolvar
(
fpt − f̂p

)
+ αdol

︸ ︷︷ ︸
Dollar Trade

− αdol.

(24)

Corollary 1 Allowing for heterogeneous elasticities of risk premia with respect to forward

premia across currencies does not change the model’s ability to match the expected returns to

the carry trade and the forward premium trade as defined in (2) and (5).

Proof. From comparing equations (8) and (24), it follows immediately that

βdynvar
(
fpi,t − fpt −

(
f̂pi − f̂p

))
=

1

N

∑

i

βdyn
i vari (fpi,t − fpt) , (25)

such that models (11) and (23) predict identical expected returns on the static, dynamic,

dollar, carry, and forward premium trade.

The purpose of allowing for heterogeneous elasticities across countries is thus not to im-

prove the model’s ability to account for the two anomalies, but rather to detect whether

specific currencies appear to behave significantly different than others. Table 8 shows the

coefficients from this regression for our 1, 3, 6, and 12 Rebalance samples. To save space,

we show only the coefficients using one-month forwards, without taking into account bid-ask

spreads. An asterisk again denotes significance at the 5% level, where standard errors are

Newey-West, correcting for heteroskedasticity and auto-correlation at the 12-month horizon.

The table shows that we cannot reject the null that βdyn
i = 0 for most currencies. In

fact, looking across columns, we do not appear to robustly reject this null for any currency,

with the possible exception of the Indian rupee, the Austrian schilling, and the Belgian franc.

Although we remain open to the possibility that risk premia of these, and potentially a few
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other, currencies may co-move with deviations of forward premia from their time- and currency

specific mean, the evidence does not appear overwhelming.

In particular, comparing these results with the results of Table 6 shows substantially fewer

significant coefficients. Including βdol in the model (23) thus accounts for most of the variation

in currency risk premia that drives the FPP, consistent with our results in Section 4.3.

[Table 8 about here.]

4.5 Is the Dollar Special?

Throughout the paper, we account for returns in terms of US dollars. Although this convention

is standard practice in the literature, it is also somewhat arbitrary. How would our results

change if we had chosen a different base currency? Given a large enough sample of currencies,

our estimates of the returns on the Dynamic and the Static trades as well as our estimates of

βstat and βdyn would not change at all, as both strategies are neutral with respect to the base

currency (i.e., their returns are not affected by the returns on the base currency). However,

our estimates βdol might be different, because the Dollar Trade is not neutral with respect to

the returns on the dollar.18

In what follows, we generalize our analysis to allow for an arbitrary choice of base currency.

To this end, denote the elasticity of risk premia with respect to forward premia in the cross-

time dimension from the perspective of an investor using currency j as base currency as βj ,

j = 1, ...N .

Proposition 3 In a large sample of convertible currencies, the elasticity of the risk premium

on any base currency j with respect to the average forward premium on all other foreign

currencies equals the elasticity of currency j’s risk premium against the US dollar with respect

to deviations of its forward premium against the US dollar from its time- and currency-specific

mean,

βj = βdyn
j .

Proof. See Appendix C.8

Given a large sample of currencies, the coefficients in Table 8 are thus identical to the

coefficients we would estimate on the “Base Currency Trade” (i.e., the equivalent of the

Dollar Trade but using currency j as the base currency) of the other currencies in the sample.

For example, had we chosen to account for all returns in terms of Japanese yen, our estimates

of βstat and βdyn would (in a large sample of currencies) be identical to those in Table 3, but

our estimate of βyen would be equal to βdyn
Japan = 0.55 in column 1 of Table 8.

18See Appendix D for a formal proof of these statements.
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From (25), it is apparent that βdyn is a linear combination of the βdyn
i multiplied with a vari-

ance ratio that is smaller than one.19 Thus, the null hypothesis that βdol=
var(fpi,t−fpt−(fpi−fp))

var(fpi,t−fpt−(f̂pi−f̂p))
βdyn

is a formal test of whether the elasticity of the risk premium on the US dollar is significantly

different from elasticity of the average currency in the sample. Table 9 shows we cannot reject

this hypothesis in any of our samples. However, given that we can reject the hypothesis that

βdol = 0 but cannot reject the hypothesis that βdyn = 0 in Table 7, our overall results are at

least consistent with the notion that the risk-premium on the US dollar might have dynamics

that are systematically different from those of other countries.20 Indeed, Table 8 suggests that

this property may be shared with a small number of other currencies, including the Indian

rupee.

[Table 9 about here.]

5 Implications for Models of

Exchange Rate Determination

Part of the enduring legacy of the analysis of bilateral currency risk premia has been a debate

about whether time variation in currency risk premia might be partially responsible for the

observed volatility of exchange rates, which is one implication of the βfpp
i > 1 in (1).

Following the argument in Fama (1984), we can write21

βstat =
cov
(
πi, f̂pi

)

var
(
f̂pi

) =
cov (πi, πi + EitΔsi)

var (πi + EitΔsi)
=

var (πi) + cov (πi, EitΔsi)

var (πi) + var (EitΔsi) + 2cov (πi, EitΔsi)
.

(26)

The fraction on the right-hand side can be larger than one only if a negative covariance exists

between risk premia and expected depreciations in the cross-currency dimension. However, as

long as βstat is between zero and one Fama’s analysis has no implications for the covariance

between currency risk premia and expected changes in exchange rates. Any number between

zero and one may simply result from the fact that both risk premia and expected changes in

exchange rates vary in the cross-currency dimension. (var(πi) > 0, var (EitΔsi) > 0).

Similarly, estimates between zero and one for βdyn and βdol have no implications for the

covariance of currency risk premia and expected changes in exchange rates in the relevant

19To see this, divide on both sides of the above equation by var (fpi,t − fpt − (fpi − fp)) and note that∑
i vari (fpi,t − fpt) /N = var (fpi,t − fpt − (fpi − fp)).
20For other evidence on the special role of the US dollar, see, for example, Gourinchas and Rey (2007),

Lustig et al. (2010), and Maggiori (2013).
21See Appendix E for details.
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dimension. Figure 3 summarizes the implications of our estimates in Table 3 for the covariance

of currency risk premia with expected appreciations. The figure shows all point estimates

and standard errors from the table and highlights the median estimate for each of the three

coefficients.

None of our point estimates for βstat and βdyn are larger than one. In fact, we can reject

the hypothesis that either of the two coefficients is larger than one in all but one specification.

The data thus provide no evidence that risk premia and expected appreciations are correlated

in the cross-currency and the between-time-and-currency dimensions.

In fact, the only potential evidence in favor of a positive covariance between currency risk

premia and expected appreciations comes from the cross-time dimension. There, a number of

point estimates are above one. However, the standard errors in this estimation are so large

that we reject the hypothesis that βdol > 0 in only one specification and never reject the

hypothesis that βdol < 1. Our multilateral regressions of currency returns on forward premia

thus offer little evidence of a non-zero covariance of currency risk premia with expected changes

in exchange rates.

[Figure 3 about here.]

6 Conclusion

In this paper, we generalize the regression-based approach that identified the forward premium

puzzle to analyze the covariance of currency risk premia with forward premia in a multi-

currency world. The first main insight from our multilateral analysis is that the carry trade

and the forward premium puzzle are two distinct anomalies that are not significantly related in

the data. The carry trade results mainly from permanent differences in forward premia across

currencies that are partially, but not fully, reversed by predictable movements in exchange

rates. By contrast, the forward premium puzzle appears to mainly arise from time-series

variation in the risk premium of the US dollar against all other currencies. The between-time-

and-currency variation in risk premia is not statistically distinguishable from zero and thus

does not contribute significantly to either of the two anomalies.

The second main insight from our analysis is that the vast majority of the theoretical

literature on the forward premium puzzle that features two, symmetric currencies focuses on

a relatively small, mostly statistically insignificant part of the covariance between risk premia

and forward premia. Moreover, we cannot reject the hypothesis that the covariance between

currency risk premia and expected changes in exchange rates is zero in any of the samples we

analyze.
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Figure 1: Carry Trade vs. Forward Premium Trade
Forward premia of the New Zealand dollar and Japanese yen against the US dollar 1995-2010.
Left panel: Carry Trade uses fpit − fpt as portfolio weights, always long the New Zealand
dollar, always short the Japanese yen; Right panel: Forward Premium Trade uses fpit−fpi as
portfolio weights, goes long when a currency’s forward premium exceeds its currency-specific
mean. The plot cumulates monthly forward premia to the annual frequency according to
fpi,t =

∑12
m=1 fpi,t+m.
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Figure 2: Alternative Corrections of In-sample Estimates
Estimates of βdyn and βdol as a function of the estimate of βdyn

in−sample and βdol
in−sample from col-

umn 1 of Table 5 and the variance of the forecast error var(fpi−f̂pi) as given in equations (14)
and (15). Rhomboids mark the estimates from our standard specification in column 1 of Table
3. Circles mark the point estimates we obtain from estimating the AR(1), fpit = ρifpi,t−1+εf

it,
over the full sample and then calculating the implied variance of the forecast error in a sample
with length T = 186, months under the assumption that the estimated autocorrelation coef-
ficients ρi and standard deviations of εf

it characterize the true process governing the evolution
of fpit . Triangles mark results of the same calculation while imposing the same autocorre-
lation coefficient for all currencies. Discrepancies between the actual estimate and the one
implied by the function are due to small departures from a fully balanced sample due to our
data-cleaning algorithm.
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Figure 3: Summary of Estimates of the Elasticity of Risk Premia with Respect to
Forward Premia across Samples and Horizons
The figure plots all coefficient estimates and respective standard errors from Table 3. Small
squares show point estimates, and large squares identify the median estimate for each elasticity
across samples/horizons. The shaded lines give the standard errors corresponding to each
specification. The right-hand-side axis summarizes the implications of the estimates for linear
models of currency risk premia.
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Table 1: Mean Annualized Return to the Carry Trade

E [rxi,t+1 (fpit − fpt)] 4.95
Forward Premium 7.11
Appreciation -2.15

Sharpe Ratio 0.54

Note: Annualized returns to the
carry trade calculated by standard-
izing the expression in (2) with
the unconditional mean forward pre-
mium in the sample, fp. One-
month forward and spot exchange
rates from the 1 Rebalance sample
ranging from12/1994 to 6/2010.
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Table 2: Mean Returns on Five Trading Strategies

(1) (2) (3) (4) (5) (6) (7) (8)
Sample 1 Rebalance 3 Rebalance
Horizon (months) 1 1 6 12 1 1 6 12

Static Trade
E[rxi,t+1(f̂pi − f̂p)] 3.46 1.36 3.58 3.82 3.09 0.33 2.55 2.53
Sharpe Ratio 0.39 0.15 0.32 0.32 0.37 0.04 0.24 0.22

Dynamic Trade
E[rxi,t+1(fpi,t − fpt − (f̂pi − f̂p))] 1.50 -0.24 0.33 1.20 1.42 -0.85 -0.12 0.45
Sharpe Ratio 0.24 -0.04 0.05 0.19 0.20 -0.12 -0.02 0.07

Dollar Trade
E[rxi,t+1(fpt − f̂p)] 2.55 1.24 2.52 3.18 1.90 0.26 2.20 2.36
Sharpe Ratio 0.25 0.12 0.26 0.27 0.15 0.02 0.17 0.18

Carry Trade
E[rxi,t+1(fpi,t − fpt)] 4.95 2.81 4.25 5.24 4.50 1.99 2.95 3.35
Sharpe Ratio 0.54 0.31 0.34 0.44 0.54 0.23 0.26 0.29

% Static Trade 70% 121% 92% 76% 69% . 105% 85%

Forward Premium Trade
E[rxi,t+1(fpi,t − f̂pi)] 4.04 1.77 3.03 4.51 3.31 0.28 2.26 2.94
Sharpe Ratio 0.27 0.12 0.20 0.27 0.18 0.02 0.12 0.16

% Dollar Trade 63% 124% 88% 73% 57% . 106% 84%

Sample 6 Rebalance 12 Rebalance

Static Trade
E[rxi,t+1(f̂pi − f̂p)] 2.42 -0.38 1.96 1.96 3.81 0.22 2.92 2.87
Sharpe Ratio 0.29 -0.05 0.20 0.21 0.46 0.03 0.30 0.29

Dynamic Trade
E[rxi,t+1(fpi,t − fpt − (f̂pi − f̂p))] 1.85 -0.48 0.34 -0.08 1.65 -0.89 0.41 0.19
Sharpe Ratio 0.26 -0.05 0.04 -0.00 0.26 -0.14 0.06 0.01

Dollar Trade
E[rxi,t+1(fpt − f̂p)] 2.09 0.23 2.39 3.64 1.88 -0.18 1.15 2.13
Sharpe Ratio 0.16 0.02 0.18 0.19 0.14 -0.01 0.09 0.13

Carry Trade
E[rxi,t+1(fpi,t − fpt)] 4.28 1.66 2.81 2.23 5.45 2.19 3.95 3.45
Sharpe Ratio 0.50 0.19 0.25 0.12 0.69 0.28 0.40 0.22

% Static Trade 57% . 85% 104% 70% . 88% 94%
FP Trade

E[rxi,t+1(fpi,t − f̂pi)] 3.95 0.74 2.92 3.71 3.53 -0.01 1.78 2.44
Sharpe Ratio 0.21 0.04 0.15 0.17 0.20 -0.00 0.10 0.12

% Dollar Trade 53% . 88% 102% 53% . 74% 92%

Bid-Ask Spreads No Yes Yes Yes No Yes Yes Yes

Note: Mean returns and Sharpe ratios on the Static, Dynamic, Dollar, Carry, and Forward Premium Trades
defined in equations (2), (5), and (6) calculated using 1-, 6-, and 12-month currency forward contracts
against the US dollar. All returns are annualized and divided by fp estimated in the 1 Rebalance sample
post 12/1994 to facilitate comparison. The table also reports the percentage contribution of Static (Dollar)
Trade to the mean returns on the Carry (Forward Premium) Trade, calculated by dividing its mean return
by the maximum of zero and the sum of the mean returns on the Static (Dollar) and Dynamic Trades. See
Appendix A for details. 34



Table 3: Estimates of the Elasticity of Risk Premia with respect to Forward Premia

(1) (2) (3) (4) (5) (6) (7) (8)
Sample 1 Rebalance 3 Rebalance
Horizon (months) 1 1 6 12 1 1 6 12

Static T: βstat 0.47* 0.37* 0.56* 0.60* 0.26* 0.18* 0.26* 0.25*
(0.08) (0.09) (0.10) (0.10) (0.05) (0.05) (0.04) (0.06)

Dynamic T: βdyn 0.44 0.41 0.36 0.53* 0.28 0.24 0.21 0.26
(0.25) (0.25) (0.32) (0.26) (0.15) (0.15) (0.15) (0.15)

Dollar T: βdol 3.11 3.09 3.21 3.72 0.91 0.83 1.44 1.78
(1.60) (1.58) (1.96) (2.16) (1.18) (1.18) (1.22) (1.20)

Carry Trade: βct 0.68* 0.55* 0.62* 0.71* 0.57* 0.45* 0.42* 0.43*
(0.27) (0.26) (0.29) (0.26) (0.19) (0.18) (0.21) (0.19)

% ESS Static T 62 54 79 66 56 44 72 62

Forward Premium T: βfpp 0.86* 0.83* 0.85* 1.09* 0.41* 0.37 0.48* 0.60*
(0.34) (0.34) (0.42) (0.40) (0.20) (0.20) (0.21) (0.21)

% ESS Dollar T 90 91 94 91 75 76 93 93

N 2706 2706 2631 2541 4494 4494 4374 4230

Sample 6 Rebalance 12 Rebalance

Static T: βstat 0.23* 0.15* 0.25* 0.24* 0.34* 0.23* 0.31* 0.30*
(0.05) (0.05) (0.04) (0.05) (0.08) (0.09) (0.08) (0.08)

Dynamic T: βdyn 0.19 0.16 0.10 -0.02 0.16 0.13 0.06 -0.01
(0.14) (0.14) (0.12) (0.06) (0.11) (0.12) (0.09) (0.05)

Dollar T: βdol 0.87 0.75 1.83 1.56* 1.71 1.61 0.02 -0.23
(2.59) (2.60) (2.14) (0.70) (2.26) (2.27) (2.04) (1.35)

Carry Trade: βct 0.56* 0.45* 0.45* 0.11 0.67* 0.52* 0.57* 0.22
(0.18) (0.17) (0.19) (0.14) (0.16) (0.16) (0.16) (0.17)

% ESS Static T 70 58 92 99 90 86 99 100

Forward Premium T: βfpp 0.24 0.20 0.22 0.08 0.30 0.26 0.05 -0.03
(0.19) (0.19) (0.17) (0.08) (0.16) (0.16) (0.14) (0.05)

% ESS Dollar T 62 64 96 100 92 94 1 95

N 4842 4842 4712 4556 6019 6019 5874 5626

Bid-Ask Spreads No Yes Yes Yes No Yes Yes Yes

Note: Estimates of the elasticity of currency risk premia with respect to forward premia in the
cross-currency (βstat), between-time-and-currency (βdyn), and cross-time dimension (βdol) using
specifications (7), (9), and (10), respectively. The table also shows the slope coefficients from
specifications (12) and (13) and the partial R2, calculated as ESSd

ESSd+ESSdyn , d ∈ {stat, dyn}, where
ESSdyn refers to the explained sum of squares in specification (9) and ESSstat, ESSdyn refer to
the explained sum of squares in specifications (7) and (10), respectively. Standard errors are in
parentheses. An asterisk denotes statistical significance at the 5% level. Standard errors for βstat

and βdol are clustered by currency and time, respectively, whereas the standard errors for βdyn,
βct, and βfpp are Newey-West with 12, 18, and 24 lags for the 1-, 6-, and 12-month horizons,
respectively. Where appropriate, we use the Murphy and Topel (1985) procedure to adjust all
standard errors for the estimated regressors f̂pi and f̂p (see Appendix C.2 for details).
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Table 4: Bootstrapped Standard Errors for 12 Rebalance Sample

(1) (2) (3) (4)
Horizon (months) 1 1 6 12

Static T: βstat 0.34* 0.23 0.31* 0.30*
(0.15) (0.15) (0.12) (0.11)

Dynamic T: βdyn 0.16 0.13 0.06 -0.01
(0.11) (0.12) (0.14) (0.11)

Dollar T: βdol 1.71 1.61 0.02 -0.23
(2.36) (2.40) (2.88) (1.76)

Carry Trade: βct 0.67* 0.52* 0.57* 0.22
(0.24) (0.25) (0.23) (0.26)

Forward Premium T: βfpp 0.30 0.26 0.05 -0.03
(0.27) (0.28) (0.37) (0.24)

Bid-Ask Spreads No Yes Yes Yes

Note: This tables uses our 12 Rebalance sample to block-
bootstrap standard errors corresponding to columns 5-8 of
Table 3. In this procedure, we treat each of the 12 two-
year periods in between re-balancing dates as one block and
draw 100,000 random samples with replacement from this
set of histories. An asterisk denotes statistical significance
at the 5% level.
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Table 5: Slope Coefficients from In-sample vs. Out-of-sample Regressions

Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance
βstat

in−sample βstat βstat
in−sample βstat βstat

in−sample βstat βstat
in−sample βstat

Static Trade 0.53* 0.47* 0.43* 0.26* 0.50* 0.23* 0.65* 0.34*
(0.13) (0.08) (0.09) (0.05) (0.11) (0.05) (0.12) (0.08)

βdyn
in−sample βdyn βdyn

in−sample βdyn βdyn
in−sample βdyn βdyn

in−sample βdyn

Dynamic Trade 1.13* 0.44 0.83* 0.28 0.71* 0.19 0.74* 0.16
(0.45) (0.25) (0.32) (0.15) (0.34) (0.14) (0.33) (0.11)

βfpp
in−sample βfpp βfpp

in−sample βfpp βfpp
in−sample βfpp βfpp

in−sample βfpp

F.P. Trade 1.81* 0.86* 0.89* 0.41* 0.77 0.24 1.04* 0.30
(0.53) (0.34) (0.32) (0.20) (0.41) (0.19) (0.37) (0.16)

Note: This table compares estimates of the biased in-sample measures βstat
in−sample, βdyn

in−sample,

and βfpp
in−sample (the slope coefficients from the in-sample regressions with currency fixed effects

corresponding to (7), (9), and (13)) with estimates of the unbiased measures of the elasticity of
risk premia with respect to forward premia from columns 1 and 5 in Table 3. All specifications
use one-month forwards and exclude bid-ask spreads. An asterisk denotes statistical significance
at the 5% level.
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Table 6: Traditional Bilateral Forward Premium Puzzle Regressions

(1) (2) (3) (4)
Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

Australia 3.25 2.15 2.06 1.86
Austria 6.27* 0.09
Belgium 3.03 3.99
Canada 4.36* 2.31* 4.47* 4.73*
Czech Rep. -3.60 -5.50 5.28*
Denmark 4.43* 1.13 0.96 1.45
ECU 1.49 -4.10*
Euro 3.63 4.38
France 0.73 0.34
Germany 1.90 3.33
Hong Kong 1.05* 1.03* 1.06* 1.14*
Hungary 2.34 8.04 7.40*
Iceland 0.42
India 2.68* 3.63* 2.83*
Indonesia 3.97*
Ireland 4.26 1.86*
Italy -2.09 -2.59
Japan 2.55* 2.88* 3.32 2.03
Korea -2.45 -2.52
Kuwait -1.94* -2.08* -2.00* -1.78*
Malaysia -1.96* -1.72 -2.61 -1.10
Mexico -0.73 -0.37 2.01
Netherlands 2.00 1.84
New Zealand 1.10 1.26 -2.06 -1.58
Norway 1.89 -0.12 -1.07 -0.88
Philippines 0.85 3.51 2.77
Poland -5.99* -5.80 3.40
Saudi Arabia 1.36* 1.46* 1.47* 1.58*
Sweden 3.37* 0.02 -0.75 -1.25
Singapore 0.74 1.31 1.13 2.66*
Slovak Rep. 11.47*
Spain 5.42* -3.42
Switzerland 3.59* 2.37* 3.57 4.58*
Taiwan -0.05 -0.05 0.55
Thailand 0.96 1.07 2.26*
Turkey -0.99 -0.82
UAE 1.15* 1.15* 1.19*
United Kingdom 2.66 0.63 0.88 0.06
South Africa 2.43* 2.44 2.65* 1.33

βfpp
in−sample 1.81* 0.89* 0.77 1.04*

βfpp 0.86* 0.41* 0.24 0.30

Note: Estimates of the currency-specific elasticity of risk premia with forward premia βfpp
i

using the specification rxi,t+1 = αi + βfpp
i fpit + εit. An asterisk denotes statistical signifi-

cance at the 5% level, standard errors (not shown) are Newey-West using 12 lags. 1-month
forward contracts used throughout.
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Table 7: χ2 Difference Tests

(1) (2)
Sample 1 Rebalance 3 Rebalance
Null Hypothesis p-values

βdyn = 0 0.14 0.30

βdol = 0 0.02* 0.04*

βdol = βdyn 0.10 0.15

Note: χ2 difference tests of the ability of restricted
linear models of currency risk premia to explain
the returns on the forward premium trade docu-
mented in columns 1 and 5 of the 1 Rebalance
and 3 Rebalance samples in Table 2, under the as-
sumption that the coefficients estimates in column
1 of Table 3 of βfpp, βdyn, and βdol are normally
distributed.
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Table 8: Currency-specific Elasticities of Risk Premia with Respect to Forward Premia

(1) (2) (3) (4)
Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

Australia 1.03 0.23 -0.26 -0.33
Austria 4.29* 4.40*
Belgium 2.95* 3.79*
Canada 1.20 1.45 1.31 2.84
Czech Rep. -0.76 2.68 7.30*
Denmark 1.91 0.69 0.56 0.33
ECU -0.50 -1.25*
Euro 4.29 2.04
France 0.82 0.15
Germany 2.16 3.64
Hong Kong 1.66 1.12 0.20 0.62
Hungary 6.06* 8.69 6.27*
Iceland -5.93*
India 3.66* 3.44* 3.59*
Indonesia 2.67*
Ireland 1.24 1.18*
Italy -1.43 -0.27
Japan 0.55 0.80 -0.72 -0.27
Korea -1.76 -1.05
Kuwait 1.33 1.59 0.44 0.96
Malaysia -1.64 -2.44 -2.17 -2.46*
Mexico 0.91 0.76 1.96
Netherlands 2.50 3.88
New Zealand -0.84 -0.19 -1.77 -2.09
Norway 0.55 -0.69 -0.84 -0.95
Philippines 1.03 0.25 1.00
Poland -3.08 -1.61 5.43*
Saudi Arabia 2.72 2.40 1.40 3.43*
Sweden 3.08* -0.09 0.16 0.18
Singapore 1.25 0.09 0.27 0.11
Slovak Rep. 21.76*
Spain 1.61 -2.22*
Switzerland 1.59 2.90 3.03 4.50
Taiwan 0.70 1.00 0.07
Thailand 1.55 1.63 1.75
Turkey -0.27 2.18
UAE 1.21 3.77* 3.21*
United Kingdom 2.86 2.52* 2.83* -0.58
South Africa 2.34* 2.27* 2.95* 0.92

Note: Currency-specific covariance of risk premia with forward premia βdyn
i are

estimated by running equation (22). When we allow multiple entry of currencies
(columns 2-3), αi are specific to each balanced sub-period. An asterisk denotes
statistical significance at the 5% level. Standard errors (not shown) are Newey-West
using 12 lags. 1-month forward contracts used throughout.40



Table 9: Is the US Dollar Special?

(1) (2) (3) (4)
Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

βdol 3.11 0.91 0.87 1.71
(1.60) (1.18) (2.59) (2.26)∑

i ωiβ
dyn
i 1.13* 0.83* 0.71* 0.74*

(0.45) (0.32) (0.34) (0.33)

p-val(βdol =
∑

i ωiβ
dyn
i ) 0.17 0.96 0.95 0.65

Note: This table compares point estimates of βdol from columns 1 and 5 of Table 3
with the weighted average of estimates of βdyn

i from columns 1-4 of Table 8, where ωi =
vari(fpit−fpt)

var(fpit−fpt−(fpi−fp))
. To obtain the p-value of the test βdol =

∑
i ωiβ

dyn
i , we run a bivariate

panel regression of rxit − rxi on both fpt − fp and fpit − fpt − (fpi − fp)), and test if the
two resulting coefficients are equal. The standard errors in that regression are clustered by
time. There is a small discrepancy between βdol estimated from the multivariate regression
and the one presented in the first row of this table due to few data exclusions resulting
from the data-filtering procedure. See Appendix A for details.
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Online Appendix

A Appendix to Section 2

We use two different types of data: foreign exchange data, which comprises spot and forward

rates for maturities of 1, 6, and 12 months, and interbank interest rate data, for maturities of

1 and 12 months. All data are monthly, retrieved at the last trading day of the month.

We use an algorithm to clean the foreign exchange data based on departures from Covered

Interest Parity (CIP) and discrepancies between different sources of data. The algorithm is

described below.

A.1 Interest Rate Data

We use two different sources for interbank interest rate data. The first is sourced from Global

Financial Data (GFD). This source comprises interbank rates (mostly local LIBOR rates) for

maturities 1 and 12 months. The second source is Datatastream (DS) Eurocurrency rates for

the 1- and 12-month maturity, which comprise a smaller cross section of currencies. Generally,

these series are virtually equal to each other.

• GFD Interbank rates: mnemonics for these series are IBccg1D and IBccg12D for 1- and

12-month maturities, respectively. ccg is the country code for each country in GFD,

which are not the official ISO currency codes.

• DS Interbank Eurocurrency rates: mnemonics for 1 and 12 months are EC iso1M and

ECiso1Y, respectively. As mentioned above, DS uses ISO codes. Check in the FX Data

subsection for details.

In both cases, we did not use the series for 2, 3, and 6 months because their coverage

tends to be less extensive, both in the cross-section and time-series dimension. See the data

provider’s websites for details on respective detailed methodology.

A.2 Spot and Forward Rates

We use data on dollar-based spot and forward exchange rates from Datastream (DS) to con-

struct currency returns. Datastream contains four sources of these data: World Markets

PLC/Reuters (WM/R), Thomson/Reuters (T/R), HSBC, and Barclays Bank PLC (BB).

The most comprehensive in terms of currencies is WM/R. However, this series only begins
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in December 1996. T/R goes back to May 1990. Both HSBC and BB are not available for

recent years but have data back to October 1983 (BB) and October 1986 (HSBC) for some

currencies. All providers also offer spot exchange rates corresponding to their forward rates.

The mnemonics for these series are: dsisoSP for spot and dsiso1F, -3F, -6F, and -1Y or -YF

for 1-, 3-, 6-, and 12-month-maturity forwards. ds corresponds to the dataset mnemonic:

TD for Thomson/Reuters, BB for Barclays Bank, and MB for HSBC. WM/R has a different

structure for spot and forward rates. The mnemonics for spot rates do not have a clear pat-

tern other than some abbreviation of the currency name and the dollar sign in the end (e.g.,

AUSTDO$ for the Australian Dollar quote). The forward rates follow the pattern given above

for the other sources with mnemonic US. Datastream uses the iso codes as country codes. To

check ISO codes specified by the International Organization for Standardization (ISO), go to

http://www.oanda.com/help/currency-iso-code-country.

The general rules for mnemonics (e.g., departures from ISO codes) have some exceptions.

In addition to mid rates, bid and offer quotes are also available. To distinguish between these

three, DS codes have a suffix -Ex where x is B, R, or O, respectively, for bid, mid, and offer

quotes. See the data provider’s website for details on respective detailed methodology.

In addition to dollar-based data, we complement our spot and forward data with pound-

based data from another provider also available through DS listed as BMI. These data include

one-month forward and spot rates for 14 European currencies, the US dollar, and Japanese

yen from January 1976 onward. These are same as those in Burnside et al. (2006).

In time periods in which they overlap, the data from the different providers are very similar.

We assemble a comprehensive panel of dollar-based forward premia and currency returns in

three steps. First, we use forward and spot rates from the same source to construct a panel

of forward premia and currency returns from each provider. (The data providers vary on the

fixing time. Using a forward rate from one source with a spot from another could therefore

lead to inaccuracies.) Second, we combine the panels in the following order: When available

we use WM/R data, which appears to be the most recent and most accurate source. We fill in

missing observations using the Thomson/Reuters, HSBC and Barclays Bank datasets in that

order. In a final step, we check the consistency of the data using the following algorithm.

For observations for which we have information on a single dollar-based forward premium,

we compare the forward premia to differentials in the interbank rates at the one-month horizon.

If the interest rate differential in the Global Financial Data (GFD) data is within 20bps

of the interest differential sourced from DS, we exclude the observation if the one-month

forward premium deviates from the one-month GFD interest differential by more than 50bps

(a dramatic violation of covered interest parity). By this criterion, we exclude Italy 1/1985

and 2/1985; Switzerland 2/1985; Germany 2/1985; United Kingdom 3/1985; Belgium 7/1990;

43



and Indonesia 12/1997, 3/1998, 5/1998-7/1998, 2/2001-11/2002.

For observations for which we have information on a single forward premium, a forward

premium from the pound-based data and information on interest rate differentials from one

source, we again check if the one-month forward premium deviates from the interest differential

by more than 50bps. If it does, we check the forward premium from the pound-based dataset.

If the pound-based forward premium deviates from the interest differential by less than 50bps,

we exclude this observation. By this criterion, we exclude Austria 1/1990-2/1990; Spain

9/1987, 5/1988; Ireland 11/1986, 11/1987, 1/1989, 1/1991, 9/1992-11/1992, 1/1993; Belgium

2/1985; and Norway 2/1985.

For observations for which we have information on the forward premium from multiple

dollar-based sources and information on interest differentials from one source, we again check

if the 1-month forward premium deviates from the interest differential by more than 50bps. If

it does we check the forward premium from the alternative sources. If the forward premia from

one other source deviates from the interest differential by less than 50bps we substitute this

observation. By this criterion we replace Norway 5/1988, Sweden 5/1988, Malaysia 12/1993,

and Belgium 10/1987 and 5/1988 with data from BB; and Iceland 2/2009 and Thailand

12/2006, 11/2008 with data from TD.

For observations for which we have information on the forward premium from multiple

dollar-based sources and information on interest differentials from both GFD and DS, we

check if the interest rate differential in the GFD data is within 20bps of the interest differential

sourced from DS. If so, we check if the one-month forward premium deviates from one of

the interest differentials by more than 50bps. If it does, we check the forward premium

from the alternative sources. If the forward premium from one other source deviates from

the interest differential by less than 50bps we substitute this observation. By this criterion,

we replace Switzerland 1/1989, Germany 5/1988, France 1/1989, Italy 5/1988, Netherlands

5/1988, United Kingdom 1/1989 with data from BB; and Singapore 10/1997 and Thailand

10/2003 with data from TD.

Following Lustig et al. (2011), we drop South Africa 8/1985 and Turkey before 11/2001

due to large covered interest parity departures we could not verify. Finally, we drop Malaysia

8/1998-6/2005 and Indonesia 1/2003-5/2007 because forward rates are zero.

Our “1 Rebalance,” “3 Rebalance,” “6 Rebalance,” and “12 Rebalance” samples are built

with the dollar-based data after applying the above algorithm and exclusions.

In addition, we look at four alternative samples: “1 Rebalance (no fixed),” “LRV,” “4

Rebalances (CIP),” and “BER.” “1 Rebalance (no fixed)” is the same as “1 Rebalance,”

excluding Saudi Arabia riyal and Hong Kong dollar. “LRV” is the same as “1 Rebalance” but

instead of using our data cleaning algorithm, we use the notes provided in p.8 of Lustig et al.
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(2011) to approximate as best as we can the dataset used there. “4 Rebalance (CIP)” is a

sample with four rebalances at 6/1983, 12/1989, 12/1997, and 12/2004 where we extended our

dollar-based data with both pound-based data and interest rate differentials. Finally, “BER”

uses the same pound-based data as Burnside et al. (2006) with the same rebalacing periods

as “4 Rebalance (CIP).”

B Appendix to Section 3

B.1 Detailed proofs in Section 3

Lemma 1 The following identities hold for all xit, yit = fpit, rxi,t+1

E [xtyit] = E [xtyt] ,

E [xyit] = E [xyi] = E [xyt] = E [xy] ,

and

E [xiyit] = E [xiyi] .

Proof. Using the expectations operator (3) and the definition (4) we can write

E [xtyit] =
T∑

t=1

N∑

i=1

1

NT

∫
(xt (yit − yt) + xtyt) dFit (rxit+1, fpit, fpjt, ...) .

Now note that (yit − yt) does not vary across t, such that

T∑

t=1

N∑

i=1

1

NT

∫
(xt (yit − yt)) dFit (rxit+1, fpit, fpjt, ...) = 0,

and thus E [xtyit] = E [xtyt] . The proof for the remaining identities follows analogously.

B.2 The Carry Trade is neutral with respect to the US dollar

To see this formally, note that the return on an equally weighted portfolio of all foreign

currencies relative to the US dollar is rxt+1 =
∑

i
1
N

rxi,t+1. In addition, we have that

E [rxt+1 (fpit − fpt)] = 0,

such that

E [(rxi,t+1 − rxt+1) (fpit − fpt)] = E [rxi,t+1 (fpit − fpt)] . (27)
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The returns to the carry trade are thus uncorrelated with the returns on the US dollar.

C Appendix to Section 4

C.1 Detailed derivation of (8)

Re-writing the second term on the right-hand side of (6) yields

E
[
rxi,t+1

(
fpit − fpt −

(
f̂pi − f̂p

))]
= E

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
f̂pi − f̂p

))]

+E
[
(rxt+1 + (rxi − rx))

(
fpit − fpt −

(
f̂pi − f̂p

))]

= cov
(
rxi,t+1 − rxt+1 − (rxi − rx) , fpit − fpt −

(
f̂pi − f̂p

))

+E
[
rxi

(
fpit − fpt −

(
f̂pi − f̂p

))]

= βdynvar
(
(fpi,t − fpt) −

(
f̂pi − f̂p

))
+

E
[
rxi

(
fpit − fpt − (fpi − fp) + (fpi − fp) −

(
f̂pi − f̂p

))]
.

We again get the first equality from adding and subtracting rxt+1 + (rxi − rx). The second

equality again follows from the fact that
(
fpit − fpt −

(
f̂pi − f̂p

))
is zero in expectation and

does not vary across t. The third equality then follows from re-writing the covariance as an

OLS regression coefficient where

βdyn = cov
(
rxi,t+1 − rxt+1 − (rxi − rx) , fpit − fpt −

(
f̂pi − f̂p

))
/var

(
(fpi,t − fpt) −

(
f̂pi − f̂p

))

is the slope coefficient from regression (9).

Similarly, we can rewrite the third term on the right-hand side of (6) as

E
[
rxi,t+1

(
fpt − f̂p

)]
= E

[
(rxit − rxi)

(
fpt − f̂p

)]
+ E

[
rxi

(
fpt − f̂p

)]

= cov
(
rxit − rxi, fpt − f̂p

)
+ E

[
rxi

(
fpt − f̂p

)]

= βdolvar
(
fpt − f̂p

)
+ αdol,

where βdol is again the slope coefficient of the regression (10).

C.2 Choice of Standard Errors

Standard errors for estimates of βstat clustered by country because the panel is composed of

repeated values in the time-series dimension. Similarly, standard errors for estimates of βdol

are clustered by time.
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Standard errors for estimates of βdyn are corrected for both heteroskedasticity and serial

correlation using a Newey-West adjustment (Bartlett kernel) with a 12-month lag. Such an

adjustment is typically smaller than that implied by robust estimation of the standard errors.

For horizons larger than one month, we must additionally take into account the fact that

returns overlap. Therefore, for 6- and 12-month horizons, the standard errors of estimates of

βdyn are clustered by time and additionally corrected for serial correlation at 12- and 24-month

lags. Throughout we calculate standard errors for βdyn
i , βfpp

i , and βfpp in the same way as

those for βdyn.

Finally, an additional adjustment to the standard errors for estimates of βstat, βdyn, and

βfpp is made following Murphy and Topel (1985) to account for the fact that we estimate the

average forward premium in a pre-sample.

We also computed an adjustment based on GMM. This method generated very large

standard errors, a feature that is documented in the literature (e.g., Hayashi (2000) states

that GMM generally leads to imprecise estimates of the variance of an estimator if the time-

series span is not long, which is indeed the case in our application). An additional problem in

using GMM to estimate jointly both the static and dynamic regressors standard errors is that

one cannot use different corrections for each of the regressions, which we argue is important

to do. In the end, average forward premia are very precisely estimated given a sample, and

thus pre-estimating the average forward premia should not lead to large corrections in the

standard errors of the different regression coefficients presented in Table 3. The Murphy

Topel two-step correction confirms this and does not lead to large adjustments in any of the

standard errors. However, if one is concerned about robustness in the estimation of average

forward premia due to sample variance, the Murphy Topel procedure indeed will not address

how large the corrections would be. For that purpose, we bootstrap standard errors across

blocks of rebalances in Table 4. We choose the 12 Rebalance sample as our population and

run our regressions on boostrapped draws with replacement from those original 12 blocks of

data. Standard errors presented are for 100,000 draws.

C.3 Detailed proof of Proposition 2

By the properties of an OLS estimate of (9),

βdyn =
E
[
Eit (rxi,t+1 − rxt+1 − (rxi − rx))

{
fpit − fpt −

(
f̂pi − f̂p

)}]

var
(
fpit − fpt −

(
f̂pi − f̂p

)) .
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Taking iterated expectations, adding and subtracting (fpi − fp) in the curly brackets, and
multiplying and dividing with var (fpit − fpt − (fpi − fp)) yields

βdyn =



βdyn
in−sample +

E
(
(rxi,t+1 − rxt+1 − (rxi − rx))

[
(fpi − fp) −

(
f̂pi − f̂p

)])

var (fpit − fpt − (fpi − fp))



 var (fpit − fpt − (fpi − fp))

var
(
fpit − fpt −

(
f̂pi − f̂p

)) ,

where βdyn
in−sample =

E((rxi,t+1−rxt+1−(rxi−rx))[fpit−fpt−(fpi−fp)])

var(fpit−fpt−(fpi−fp))
is the in-sample estimate from the

specification rxi,t+1 − rxt+1 − (rxi − rx) = βdyn
in−sample ((fpit − fpt) − (fpi − fp)) + εi,t+1. Now

note that the second term in the round brackets is equal to zero and write

βdyn = βdyn
in−sample

var (fpit − fpt − (fpi − fp))

var
(
fpit − fpt −

(
f̂pi − fp̂

)) .

Finally, replace

var
(
fpit − fpt −

(
f̂pi − f̂p

))
= var

(
fpit − fpt − (fpi − fp) + (fpi − fp) −

(
f̂pi − f̂p

))

= var (fpit − fpt − (fpi − fp)) + var
(
fpi − f̂pi

)

and cancel terms to get (14).

By the properties of an OLS estimate of (13),

βfpp = E
[
Eit (rxi,t+1 − rxt+1 − (rxi − rx))

{
fpit − f̂pi

}]
var

(
fpit − f̂pi

)−1

.

Taking iterated expectations, adding and subtracting fpi in the curly brackets, and multiply-
ing and dividing with var (fpit − fpi) yields

βfpp =



βfpp
in−sample +

E
(
(rxi,t+1 − rxt+1 − (rxi − rx))

[
fpi − f̂pi

])

var (fpit − fpi)



 var (fpit − fpi)

var
(
fpit − f̂pi

) ,

where βfpp
in−sample = E ((rxi,t+1 − rxt+1 − (rxi − rx)) [fpit − fpi]) var (fpit − fpi)

−1 is the in-

sample estimate from rxi,t+1 − rxi = βfpp
in−sample (fpit − fpi) + εfpp

i,t+1. The second term in the

round brackets is equal to zero and so

βfpp = βfpp
in−sample

var (fpit − fpi)

var
(
fpit − f̂pi

) ,

which leads to equation (15). Take the definition of βstat from equation (7),
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βstat = E
[
Eit ((rxi − rx))

{
fp̂i − f̂p

}]
var

(
f̂pi − f̂p

)−1

Taking iterated expectations, adding and subtracting (fpi − fp) in the curly brackets, and

multiplying and dividing with var (fpi − fp) yields:

βstat =



βstat
in−sample +

E
(
(rxi − rx)

[(
f̂pi − f̂p

)
− (fpi − fp)

])

var (fpi − fp)



 var (fpi − fp)

var
(
f̂pi − f̂p

) ,

where βstat
in−sample = E [(rxi − rx) {fpi − fp}] var (fpi − fp)−1. Because fp and f̂p are con-

stants, one can disregard them when measuring var (.). Doing so, leads to equation (16):

βstat = βstat
in−sample

var (fpi)

var
(
f̂pi

) +
E
(
(rxi − rx)

[(
f̂pi − f̂p

)
− (fpi − fp)

])

var
(
f̂pi

)

C.4 Derivation of (19)

When proving equation (15), we defined βfpp
in−sample as cov(rxit−rxi,fpit−fpi)

var(fpit−fpi)
. Equation (1) intro-

duced βi, where βi can be written as βi = covi (rxi,t+1 − rxi, fpi,t) [var (fpi,t)]
−1, because a

currency-specific constant is in the regression.

Using the definition of βfpp
in−sample,

βfpp
in−sample = cov (rxit − rxi, fpit − fpi) [var (fpit − fpi)]

−1 .

One can rewrite the above cov (.) into an expectation E [(rxit − rxi) (fpit − fpi)]. Using

the law of iterated expectations and our definition of E [.],

βfpp
in−sample = E [Ei [(rxit − rxi) (fpit − fpi)]] [var (fpit − fpi)]

−1

=
∑

i

1

N
Ei [(rxit − rxi) (fpit − fpi)] [var (fpit − fpi)]

−1

After dividing and multiplying each term inside the summation by the currency-level

variance of forward premium, vari (fpit), one gets

βfpp
in−sample =

∑

i

1

N
Ei [(rxit − rxi) (fpit − fpi)]

vari (fpit)

vari (fpit)
[var (fpit − fpi)]

−1 .
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Replace into the above equation the definition of βi:

βfpp
in−sample =

1
N

∑
i vari (fpit) βi

var (fpit − fpi)
.

Finally, note that var (fpit − fpi) = E
[
(fpit − fpi)

2] = E
[
Ei

[
(fpit − fpi)

2]] = 1
N

∑
i vari (fpi,t),

which leads to equation (19).

C.5 Details on the coefficients βct and βfpp

Equation (13) defines βfpp =
E[(rxi,t+1−rxi)(fpit−f̂pi)]

var(fpit−f̂pi)
. Multiply through by var

(
fpit − f̂pi

)
,

add and subtract
(
fpt − f̂p

)
from the term that multiplies (rxi,t+1 − rxi) inside the expec-

tation, and reorganize to get

βfppvar
(
fpit − f̂pi

)
= E

[
(rxi,t+1 − rxi)

(
fpit − f̂pi −

(
fpt − f̂p

))]
+E

[
(rxi,t+1 − rxi)

(
fpt − f̂p

)]
.

Adding and subtracting rxt+1 − rx to the returns term in the first expectation above,

βfppvar
(
fpit − f̂pi

)
= E

[
(rxi,t+1 − rxi − (rxt+1 − rx))

(
fpit − f̂pi −

(
fpt − f̂p

))]
+

+E
[
(rxt+1 − rx)

(
fpit − f̂pi −

(
fpt − f̂p

))]
+ E

[
(rxi,t+1 − rxi)

(
fpt − f̂p

)]
.

Note that the first term equals βdynvar
(
fpit − f̂pi −

(
fpt − f̂p

))
, as defined in equation

(9). Gathering terms yields

βfppvar
(
fpit − f̂pi

)
= βdynvar

(
fpit − f̂pi −

(
fpt − f̂p

))
+

E
[
(rxt+1 − rx)

(
fpit − f̂pi

)]
+ E

[
(rxi,t+1 − rxi − (rxt+1 − rx))

(
fpt − f̂p

)]
.

The last term is equal to zero since
(
fpt − f̂p

)
do not vary across i, and

∑
i (rxi,t+1 − rxi) /N =

rxt+1 − rx. Additionally, the second term simplifies to E
[
(rxt+1 − rx)

(
fpt − f̂p

)]
, because

(rxt+1 − rx) do not vary across i. Using the definition of βdol from equation (10),

βfppvar
(
fpit − f̂pi

)
= βdynvar

(
fpit − f̂pi −

(
fpt − f̂p

))
+ βdolvar

(
fpt − f̂p

)
.
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Finally, because

var
(
fpit − f̂pi

)
= var

(
fpit − fpt + f̂p − fp̂i + fpt − f̂p

)

= var
(
fpit − fpt + f̂p − f̂pi

)
+ var (fpt − fp̂)

+2cov
(
fpit − fpt + f̂p − f̂pi, fpt − f̂p

)

︸ ︷︷ ︸
=0

,

one arrives at

βfpp =
var

(
fpit − f̂pi −

(
fpt − f̂p

))

var
(
fpit − fpt + f̂p − f̂pi

)
+ var

(
fpt − f̂p

)βdyn

+
var

(
fpt − f̂p

)

var
(
fpit − fpt + f̂p − f̂pi

)
+ var

(
fpt − f̂p

)βdol.

Take the definition of βct as in equation (12):

βct = E [(rxi,t+1 − rxt+1) (fpit − fpt)] [var (fpit − fpt)]
−1 .

Take the expectation term, and add and subtract (rxi − rx):

E [(rxi,t+1 − rxt+1) (fpit − fpt)] = E [(rxi,t+1 − rxt+1 − (rxi − rx)) (fpit − fpt) + (rxi − rx) (fpit − fpt)].

Note that E [(rxi − rx) (fpit − fpt)] = βstat
in−samplevar (fpi − fp) as defined in C.3. More-

over, by (16), we have that βstat
in−samplevar (fpi − fp) = βstatvar

(
fp̂i − f̂p

)
, which means

E [(rxi,t+1 − rxt+1) (fpit − fpt)] = E [(rxi,t+1 − rxt+1 − (rxi − rx)) (fpit − fpt)]+βstatvar
(
f̂pi − f̂p

)
.

Add and subtract
(
f̂pi − f̂p

)
from the forward premia to get

E [(rxi,t+1 − rxt+1) (fpit − fpt)] = E
[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
f̂pi − f̂p

)
+
(
f̂pi − f̂p

))]

+βstatvar
(
f̂pi − f̂p

)
.

From equation (9) we know that βdyn is such that

E
[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
f̂pi − f̂p

))]
= βdynvar

(
fpit − fpt −

(
f̂pi − f̂p

))
,
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which means

E [(rxi,t+1 − rxt+1) (fpit − fpt)] = E
[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fp̂i − f̂p

)]

+βdynvar
(
fpit − fpt −

(
f̂pi − f̂p

))
+ βstatvar

(
f̂pi − f̂p

)
.

Let αdyn = E
[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
f̂pi − f̂p

)]
, and collect terms to get

βct =
αdyn

var (fpit − fpt)
+ βdyn

var
(
fpit − fpt −

(
f̂pi − f̂p

))

var (fpit − fpt)
+ βstat

var
(
fp̂i − f̂p

)

var (fpit − fpt)
.

C.6 Derivation of (24)

In Section C.1, we derived equation (8):

cov (rxi,t+1, fpit)

=

βstatvar
(
f̂pi − f̂p

)

︸ ︷︷ ︸
Static Trade

+ βdynvar
(
fpi,t − fpt −

(
f̂pi − f̂p

))
+ αdyn

︸ ︷︷ ︸
Dynamic Trade

+ βdolvar
(
fpt − f̂p

)
+ αdol

︸ ︷︷ ︸
Dollar Trade

− αdol.

(28)

Use βdynvar
(
fpi,t − fpt −

(
f̂pi − f̂p

))
= βdyn

in−samplevar (fpi,t − fpt − (fpi − fp))(equation

(14)), together with the definition of βdyn
in−sample,

βdyn
in−samplevar (fpi,t − fpt − (fpi − fp)) = E [(rxit − rxt+1 − (rxi − rx)) (fpit − fpt − (fpi − fp))] .

Using law of iterated expectations and our definition of E [.],

βdynvar
(
fpi,t − fpt −

(
f̂pi − f̂p

))
=

1

N

∑

i

Ei [(rxit − rxt+1 − (rxi − rx)) (fpit − fpt − (fpi − fp))]

=
1

N

∑

i

vari (fpit − fpt − (fpi − fp)) βdyn
i

=
1

N

∑

i

vari (fpit − fpt) βdyn
i .

Replacing into equation (8) leads to (24).
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C.7 Details on χ2 difference tests

This section gives analytical details for the construction of the χ2 difference test statistics

used to calculate the p-values in Table 7. For the hypothesis that βdyn = 0, we calculate

Xr =

(∑
it rxit(fpit−f̂pi)

NT
− αdyn − αdol) − βdol

∑
it[(fpt−f̂p)−(fp−f̂p)]

2

NT

)2

V ar

(

βdol
∑

it[(fpt−f̂p)−(fp−f̂p)]
2

NT

) .

Similarly, for βdol = 0,

Xr =

(∑
it rxit(fpit−f̂pi)

NT
− αdyn − αdol − βdyn

∑
it[(fpit−fpt)−(f̂pi−f̂p)]

2

NT

)2

V ar

(

βdyn
∑

it[(fpit−fpt)−(f̂pi−f̂p)]
2

NT

) ,

and for βdol = βdyn,

Xu =

(∑
it rxit(fpit−f̂pi)

NT − αdyn − E
(
rx
(
fp − f̂p

))
− βdyn

r

∑
it[(fpit−fpt)−(f̂pi−f̂p)]2

NT − βdol
r

∑
it[(fpt−f̂p)−(fp−f̂p)]2

NT

)2

V ar

(

βdyn
r

∑
it[(fpit−fpt)−(f̂pi−f̂p)]2

NT + βdol
r

∑
it[(fpt−f̂p)−(fp−f̂p)]2

NT

) ,

where in each case,

Xr − Xu ∼ χ1.

C.8 Proof of Proposition 3

First, we generalize our notation to account for returns in units of different currencies. Denote

by fpj
i,t the forward premium of currency i against currency j at time t, where for the US

dollar, we maintain fpdol
i,t = fpi,t. By convertibility, we have

fpj
i,t = fpi,t − fpj,t, Δsj

i,t+1 = Δsi,t+1 − Δsj,t+1, and thus rxj
i,t+1 = rxi,t+1 − rxj,t+1,

where we again use the convention that Δsj
i,t+1 and rxj

i,t+1 refer to values in terms of currency

j. If the number of currencies is large, we can also write fpj
t = fpt − fpj,t and consequently,

f̂p
j
= f̂p − f̂pj .
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Using these identities, we can show that

E
[(

rxj
t+1 − rxj

) (
fpj

t − f̂p
j
)]

= Ej

[(
rxj

t+1 − rxj
) (

fpj
t − f̂p

j
)]

= Ej

[
(rxj,t+1 − rxj − (rxt+1 − rx))

(
fpj,t − f̂pj −

(
fpt − f̂p

))]
.

By definition, the left-hand side of this equation is equal to cov
(
fpj

t − f̂p
j
, rxj

t+1 − rxj
)

=

βjvar
(
fpj

t

)
. Similarly, the right-hand side can be replaced with covj (fpj,t − fpt, rxj,t+1 − rxt+1) =

βdyn
j varj (fpj,t − fpt) = βdyn

j var
(
fpj

t

)
, where the last equality again uses the identities above.

It follows that βj = βdyn
j .

D Appendix to Section 4.5

Denote by fpj
i,t the forward premium of currency i against currency j at time t. If j = USD,

we simply write fpi,t as before. For any two currencies, i and j, it must be true by convertibility

(existence of triangular trades) that:

fpj
i,t = fpi,t − fpj,t (29)

rxj
i,t+1 = rxi,t+1 − rxj,t+1.

Taking means over time of the equations in (29) one gets:

fpj
i = fpi − fpj (30)

rxj
i = rxi − rxj

Take the mean over currencies of equation (29) to get

∑
i 6=j fpj

i,t

N
=

∑
i 6=j fpi,t

N
− fpj,t

fpj
t =

∑
i fpi,t

N
− fpj,t

(

1 +
1

N

)

fpj
t = fpt − fpj,t

(
N + 1

N

)

.

If N is large,

fpj
t = fpt − fpj,t (31)

rxj
t+1 = rxt+1 − rxj,t+1,
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where we followed the same steps for excess returns.

Finally, take means over currencies j in equation (30):

∑
i 6=j fpj

i

N
=

∑
i 6=j fpi

N
− fpj

fpj =

∑
i fpi

N
− fpj

(

1 +
1

N

)

fpj = fp − fpj

(

1 +
1

N

)

.

Using large N ,

fpj = fp − fpj (32)

rxj = rx − rxj,

where we used the same steps for excess returns as for forward premia.

Claim 2 Both βstat and βdyn are independent of the base currency.

Proof. By the definition of βstat in equation (7), where the US dollar is the base currency,

βstat = cov
(
rxi − rx, f̂pi − f̂p

) [
var

(
f̂pi − f̂p

)]−1

.

Note that rxj
i − rxj = rxi − rxj − (rx − rxj) = rxi − rx and similarly f̂p

j

i − f̂p
j
= f̂pi − f̂p

by taking the conditional expectations operator defined in equation (3) through equation (30)

and (32). Thus,

βstat = cov
(
rxj

i − rxj , f̂p
j

i − f̂p
j
) [

var
(
f̂p

j

i − f̂p
j
)]−1

for any base currency j other than the US dollar as well.

By the definition of βdyn in equation (9), where the US dollar is the base currency,

βdyn = cov
(
rxi,t+1 − rxt+1 − (rxi − rx) , fpi,t − fpt −

(
f̂pi − f̂p

)) [
var

(
fpi,t − fpt −

(
f̂pi − f̂p

))]−1

.

Note that

rxj
i,t+1 − rxj

t+1 −
(
rxj

i − rxj
)

= (rxi,t+1 − rxj,t+1) − (rxt+1 − rxj,t+1) − (rxi − rxj − (rx − rxj)) =

= rxi,t+1 − rxt+1 − (rxi − rx) ,

and similarly for forward premia by taking the conditional expectations operator defined in
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equation (3) through equations (30), (31), and (32). Thus,

βdyn = cov
(
rxj

i,t+1 − rxj
t+1 −

(
rxj

i − rxj
)

, fpj
i,t − fpj

t −
(
f̂p

j

i − f̂p
j
)) [

var
(
fpj

i,t − fpj
t −

(
f̂p

j

i − f̂p
j
))]−1

for any base currency j other than the US dollar as well.

E Appendix to Section 5

Replace πi = Eit [rxi] = Eit [fpi]−EitΔsi = f̂pi −EitΔsi into the definition of βstat (given in

Proposition 1) to get equation (26).
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Appendix Table 1: Implementing the Carry Trade Using Alternative Weighting Schemes

1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

Expected Return 4.95 6.43 2.73 4.50 4.60 3.11 4.28 4.60 2.97 5.45 5.29 2.88
Sharpe Ratio 0.54 0.66 0.80 0.54 0.53 0.69 0.50 0.55 0.67 0.69 0.66 0.63

max $ short 0 0 -0.60 0 0 -0.42 0 0 -0.23 0 0 -0.17
max $ long 0 0 0.71 0 0 0.75 0 0 0.69 0 0 0.72

Linear weights Yes Yes Yes Yes
HML Yes Yes Yes Yes
Equally weighted Yes Yes Yes Yes

Note: Mean returns and Sharpe ratios achieved by three different implementations of the carry trade
across our four main samples. (1) “Linear weights”: weight each currency by the difference between its
forward premium and the average forward premium across currencies at the time as in equation (2); (2)
“HML”: separate currencies into five portfolios and go long the currencies in the last portfolio (highest
forward premia) and short the currencies on the first portfolio (lowest forward premia) as described in
Lustig et al. (2011); (3) “Equally weighted”: go long all currencies whose forward premium is larger
than zero and short currencies otherwise, normalizing total investment to $1 as described in Burnside
et al. (2011).
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Appendix Table 3: Currency Portfolios Using Alternative Samples

(1) (2) (3) (4) (5) (6)
Sample 1 Rebalance (no fixed) LRV
Horizon (months) 1 1 6 12 1 1

Static Trade
E[rxi,t+1(f̂pi − f̂p)] 3.36 1.38 3.64 3.97 4.10 1.96
Sharpe Ratio 0.44 0.18 0.37 0.38 0.47 0.22

Dynamic Trade
E[rxi,t+1(fpi,t − fpt − (f̂pi − f̂p))] 1.05 -0.62 -0.25 0.50 1.02 -0.76
Sharpe Ratio 0.18 -0.11 -0.04 0.09 0.16 -0.12

Dollar Trade
E[rxi,t+1(fpt − f̂p)] 2.86 1.37 3.01 3.82 2.42 1.09
Sharpe Ratio 0.24 0.12 0.26 0.27 0.24 0.11

Carry Trade
E[rxi,t+1(fpi,t − fpt)] 4.41 2.31 3.70 4.68 5.12 2.93
Sharpe Ratio 0.50 0.26 0.32 0.41 0.55 0.32

% Static Trade 76% 182% 107% 89% 80% 163%

Forward Premium Trade
E[rxi,t+1(fpi,t − f̂pi)] 3.90 1.65 2.97 4.48 3.44 1.10
Sharpe Ratio 0.27 0.11 0.20 0.26 0.23 0.07

% Dollar Trade 73% 183% 109% 88% 70% 330%

Sample 4 Rebalance (CIP) BER

Static Trade
E[rxi,t+1(f̂pi − f̂p)] 4.87 0.19 2.97 5.11 -6.78
Sharpe Ratio 0.53 0.02 0.21 0.49 -0.63

Dynamic Trade
E[rxi,t+1(fpi,t − fpt − (f̂pi − f̂p))] 0.93 -2.34 0.11 1.12 -5.94
Sharpe Ratio 0.12 -0.31 0.01 0.21 -1.09

Dollar Trade
E[rxi,t+1(fpt − f̂p) 4.51 2.55 4.26 6.30 1.54
Sharpe Ratio 0.31 0.17 0.26 0.26 0.06

Carry Trade
E[rxi,t+1(fpi,t − fpt)] 5.80 2.08 3.62 6.23 -2.78
Sharpe Ratio 0.71 0.25 0.24 0.63 -0.28

% Static Trade 84% . 99% 82% .

Forward Premium Trade
E[rxi,t+1(fpi,t − f̂pi)] 5.44 1.57 4.54 7.42 -1.36
Sharpe Ratio 0.27 0.08 0.22 0.30 -0.05

% Dollar Trade 83% 747% 99% 85% .

Bid-Ask Spreads No Yes Yes Yes No Yes

Note: This table replicates all calculations in Table 2 using alternative data samples.
Columns 1-4 of the top panel uses the 1 Rebalance sample but drops currencies that have
a fixed official exchange rate with respect to the US dollar. Columns 5 and 6 of the top
and bottom panels use samples that are as close as possible to the samples used in Lustig
et al. (2011) and Burnside et al. (2006). Columns 1-4 of the bottom panel use an extended
sample using all available US dollar- and UK pound-based forward data as well as forward
rates imputed using interest rate data. See Appendix A for details.60



Appendix Table 4: Estimates of the Elasticity of Risk Premia with respect to Forward Premia
Using Alternative Samples

1 Rebalance (no fixed) LRV
(1) (2) (3) (4) (5) (6)

Horizon (months) 1 1 6 12 1 1

Static CT: βstat 0.52* 0.44* 0.63* 0.66* 0.57* 0.45*
(0.08) (0.08) (0.10) (0.10) (0.09) (0.10)

Dynamic T: βdyn 0.41 0.38 0.28 0.46 0.43 0.40
(0.28) (0.28) (0.36) (0.29) (0.25) (0.25)

Dollar T: βdol 3.12 3.11* 3.28 3.80 3.32* 3.23
(1.61) (1.57) (2.25) (2.24) (1.59) (1.82)

Carry Trade: βct 0.63* 0.50 0.56* 0.65* 0.69* 0.56*
(0.26) (0.26) (0.28) (0.25) (0.27) (0.26)

% ESS Static T 71 68 90 78 73 65

Forward Premium T: βfpp 0.96* 0.92* 0.95 1.22* 0.88* 0.84*
(0.40) (0.40) (0.50) (0.47) (0.35) (0.35)

% ESS Dollar T 94 95 98 95 92 93

N 2334 2334 2269 2191 2616 2616

4 Rebalance (CIP) BER

Static CT: βstat 0.21* 0.13* 0.24* 0.26* 0.19
(0.06) (0.03) (0.06) (0.03) (0.14)

Dynamic T: βdyn 0.18 0.15 0.21 0.38* 0.19
(0.11) (0.11) (0.12) (0.15) (0.11)

Dollar T: βdol 1.83 1.72 2.06 1.31 1.46
(1.19) (1.20) (1.10) (1.32) (1.25)

Carry Trade: βct 0.57* 0.39* 0.35* 0.67* 0.38*
(0.16) (0.17) (0.17) (0.18) (0.18)

% ESS Static T 69 55 73 53 68

Forward Premium T: βfpp 0.42* 0.38* 0.64* 0.74* 0.60*
(0.15) (0.15) (0.18) (0.25) (0.20)

% ESS Dollar T 94 95 96 88 96

N 5533 5533 5179 3997 3997

Bid-Ask Spreads No Yes Yes Yes No Yes

Note: This table replicates all calculations in Table 3 using alternative data sam-
ples. Columns 1-4 of the top panel uses the 1 Rebalance sample but drops curren-
cies that have a fixed official exchange rate with respect to the US dollar. Columns
5 and 6 of the top and bottom panels use samples that are as close as possible
to the samples used in Lustig et al. (2010) and Burnside et al. (2006). Columns
1-4 of the bottom panel use an extended sample using all available US dollar- and
UK pound-based forward data as well as forward rates imputed using interest rate
data. See Appendix A for details.
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