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ABSTRACT 

We use neural data collected from an experimental asset market to test the underlying 

mechanisms that generate peer effects. Despite the fact that subjects are randomly assigned to 

pairs and endowed with the same information set, we find substantial evidence of peer effects in 

investment decisions. We then use the neural data to construct empirical tests that can separately 

identify a social learning mechanism and a relative wealth concern mechanism. We observe 

neural activity that indicates both mechanisms contribute to peer effects. The neural activity that 

we use in the empirical tests is measured at the time when subjects receive information about a 

peer’s investment decision. Our results therefore demonstrate how neural data generated in the 

absence of choice can be used to distinguish between competing theories of financial decision-

making. 
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Most models of trading in financial markets typically do not allow investors to socially interact 

with each other. Indeed, the primary mechanism in most models through which one investor can 

affect the beliefs and decisions of another investor is through the market price. In reality, 

however, individuals observe each others’ behavior directly or learn about each others’ decisions 

and beliefs through conversation (Hirshleifer and Teoh (2009)). Over the last fifteen years, 

empiricists have shown that these social interactions can have a significant impact on financial 

decision-making in a wide variety of contexts. For example, peers can affect stock market 

participation (Hong et al. (2004); Brown et al. (2008)), retirement saving decisions (Duflo and 

Saez (2003); Beshears et al. (2014)), mutual fund manager stock selection (Hong et al. (2005); 

Pool et al. (2014)), and individual investor trading decisions (Ivković and Weisbenner (2007); 

Bursztyn et al. (2014)). 

Despite the growing body of evidence that documents peer effects in financial decision-

making, our understanding of the mechanism that generates peer effects is still limited. Broadly 

speaking, there are two competing channels through which peers can affect decisions. First, an 

agent can learn about the underlying fundamentals of a financial asset from a peer’s decision (the 

information channel). Second, a peer’s decision may directly enter another agent’s utility function 

because of relative wealth concerns or a direct preference for conformity (the preference 

channel).  Distinguishing between these two channels can be challenging because in many 

environments, an information-based mechanism will make similar predictions to a preference-

based mechanism1. However, separating the two mechanisms is important because it can provide 

useful guidance for theorists as they build newer models of financial markets with social 

interactions, a new subfield that Hirshleifer (2014) calls “social finance”. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For example, suppose an investor observes his neighbor experience a large positive return in the stock 
market, and subsequently increases his investment in the stock market (Kaustia and Knüpfer (2012)). This 
can occur through a social information channel if the investor learns about underlying fundamentals from 
his neighbor. However, it could also occur through a preference channel if the investor increases his 
investment in order to “Keep up with the Joneses.”  
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 In this paper, we take up the challenge of identifying the underlying mechanism of peer 

effects using a newly available source of data: neural activity measured with functional magnetic 

resonance imaging (fMRI) in a controlled experimental setting. While almost all empirical studies 

of peer effects in finance have used data from the field, we use a laboratory experiment with 

randomly assigned peers; this setting gives us complete control over the information that is 

provided to subjects, and even more importantly, over the information that is transmitted between 

subjects. We can therefore rule out, by construction, the well-known endogeneity problem where 

similar behavior among two agents may be driven by common preferences or exposure to 

common information (Manski (1993)). We then use the neural data to construct novel tests of the 

competing mechanisms that generate peer effects. These tests rely on neural data collected in the 

absence of choice2, and hence showcase the marginal value of the neural data in testing between 

competing theories of financial decisions. 

 In our experiment, subjects are presented with a dynamic investment problem where they 

are asked, in each of two hundred periods, to allocate a fraction of their wealth between a risk-

free asset and a risky asset. Among the various studies of peer effects in finance, our setting is 

most closely related to the study conducted by Ivković and Weisbenner (2007), who examine 

time-series variation in stock purchases among individual investors within the same 

neighborhood. These authors find that an individual investor is more likely to purchase a stock 

from industry I if his neighbor also purchased a stock from industry I in the same quarter. The 

authors propose that neighbors directly communicate with each other, and this communication 

has a causal effect on subsequent investment decisions. While it is difficult to test this conjecture 

using field data, our neuroimaging experiment enables us to perfectly observe two key variables: 

(i) the information transmitted between peers and (ii) the neural activity that is generated upon 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 By “absence of choice” we mean that the neural data used in our tests is collected at a particular point in 
the experiment when subjects are not actively deliberating about a decision, but instead are simply 
receiving information.  
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receipt of this information transmission. Together, these two complementary pieces of data allow 

us to construct tests of the underlying peer effects mechanism. 

 We describe the details of the neural predictions that are generated from each competing 

mechanism later in the paper, but we summarize the main idea here. All of our neural tests rely on 

the theory of prediction error, which is a signal that measures the change in expected net present 

value of lifetime utility generated by new information. Critically, a large body of evidence from 

cognitive neuroscience has shown that prediction errors can be measured in a specific area of the 

brain called the ventral Striatum (vSt)3. For economists, the potential value of this measurement 

technique should be clear as it implies that we can infer which factors – in addition to the 

standard consumption factor – affect a subject’s utility4. To begin the analysis, we develop 

precise predictions about neural activity that is generated under each of the two peer effects 

mechanisms.  

 First, we consider a social learning mechanism where a subject learns about a risky 

asset’s value from his peer’s decision. In our experiment, this decision is simply the fraction of 

wealth allocated to the risky asset in each period. When a subject observes his peer increase his 

allocation to the risky asset, the social learning mechanism predicts that the subject should update 

upwards his valuation of the asset. This new information implies a better investment opportunity 

set than previously expected, and will therefore increase a subject’s net expected utility. This will, 

in turn, produce a positive prediction error in the vSt. Conversely, when a subject observes his 

peer decrease his allocation to the risky asset, a subject will interpret this information as bad news 

about future investment opportunities, and this will generate a negative prediction error in the vSt. 

 Second, we examine a relative wealth mechanism where a subject has utility over the 

difference between his final portfolio value and his peer’s final portfolio value. Because all 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 See, for example, Schultz et al. (1997), Pessiglione et al. (2006), and Caplin et al. (2010).  
4 Indeed, a series of recent papers in neuroeconomics has highlighted the vast potential that this technique 
holds for answering fundamental questions about choice theory and belief updating (Caplin and Dean 
(2008); Caplin et al. (2010); Rutledge et al. (2010)).  
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subjects invest each period in the same risky asset, the revelation of a peer’s investment allocation 

carries information about a subject’s per-period change in his relative portfolio value. Under the 

relative wealth mechanism, these per-period changes in relative portfolio value will impact net 

expected utility, and hence should generate prediction errors. Specifically, we expect to see a 

positive prediction error when a subject invests more than his peer and the market experiences a 

positive return. Conversely, we expect to see a negative prediction error when a subject invests 

less than his peer and the market experiences a positive return.   

 Empirically testing for relative wealth concerns can be difficult because in many 

environments, changes in absolute wealth are correlated with changes in relative wealth. 

However, a key feature of the current experimental design is that information about the market 

return is revealed before information about the peer decision is revealed. As we explain further in 

the main text, this staggered information arrival allows us to construct neural tests that can 

separately identify whether a change in utility is driven by absolute changes in wealth or relative 

changes in wealth.    

 Overall, our results are consistent with previous field studies that have documented peer 

effects in financial decision-making. Behaviorally, we find that risky asset allocations are 

causally affected by peer decisions, and part of the remaining variation in risky asset allocations 

can be explained by the conditional Sharpe ratio. In the neural data, we find two main results. 

First, at the time when a market return is revealed, activity in the vSt positively correlates with 

absolute changes in wealth that are generated by market returns. Second, at the time when a peer 

decision is revealed, vSt activity correlates with both the prediction errors that are generated 

under the social learning mechanism and the relative wealth concern mechanism. We interpret the 

neural data as evidence in favor of both a social learning mechanism and a relative wealth 

mechanism. It is worth emphasizing that the neural data used to test these two channels is 

generated at a specific point in the experiment when a subject is not making a decision, but is 

instead receiving information about a peer’s decision. Our tests therefore demonstrate, for the 
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first time, how neural data generated in the absence of choice can be used to test competing 

theories of financial decision-making5.    

 The results from our study mainly contribute to two literatures: one on peer effects and 

one on the growing field of neurofinance. First, as recent empirical work on peer effects has 

achieved growing success in constructing clean identification strategies, the natural next step is to 

ask, what drives these peer effects? There has been little work on this question, with the exception 

of a recent paper that uses a field study in Brazil (Burszstyn et al. (2014)). These authors use a 

clever experimental design to separate an investor’s revealed preference for a risky asset from the 

ownership of the risky asset. It is then possible to infer whether investors are purchasing an asset 

due to social learning (information) or social utility (preferences). Burszstyn et al. (2014) find that 

both mechanisms explain a portion of the observed peer effects, which is consistent with the 

results from our neural tests. However, while their paper relies upon a single binary investment 

decision, we use a dynamic investment task where subjects allocate a continuous fraction of their 

wealth to a risky asset. Moreover, our setting differs in that we provide subjects with the 

outcomes of the risky asset return, and critically, this enables us to directly test the relative wealth 

mechanism using neural data.  

 Second, we contribute to the young but growing literature on neurofinance, which uses 

tools from cognitive neuroscience to help understand the neural mechanisms that give rise to 

financial decisions. Many of the early contributions to this field provide important evidence 

showing the neural and physiological correlates of financial risk-taking (Lo and Repin (2002); 

Kuhnen and Knutson (2005); Preuschoff et al. (2006)). Building on this earlier work, subsequent 

studies have demonstrated how exogenous emotional cues or emotional regulation strategies can 

causally impact financial risk-taking (Knutson et al. (2008); Sokol-Hessner et al. (2009)).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 Recent work has examined how neural data collected in the absence of choice can help predict choice in 
other settings such as consumer purchasing decisions (Levy et al. (2011); Smith et al. (2014)). 
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While recent work in neurofinance is starting to investigate a wider array of topics,6 the 

main contribution of our paper to this area is to show how neural data, in the absence of choice, 

can be used to test between competing theories of financial decision-making. As such, our paper 

is related to two recent studies that use neural data to test theories of investor behavior. One uses 

neural activity generated from selling stocks to test the “realization utility” theory of trading 

(Frydman et al. (2014a)); the other uses vSt activity generated upon viewing stock returns to test 

whether regret theory can explain stock purchasing behavior (Frydman et al. (2014b)).  

 The rest of this paper is organized as follows. Section I presents the experimental design 

and the neural predictions from the two peer effects mechanisms. Section II provides a primer on 

fMRI methods for economists. Section III describes the behavioral and neural results. Section IV 

discusses the results and concludes.  

     

 

I. Experimental Design and Predictions 

 

In this section, we first describe the experimental stock market that was used to generate 

both the behavioral and neural data. We then outline the neural predictions that are generated 

under the potential mechanisms that can give rise to peer effects.  

 

A. Design 

The design and data are taken from the experiment conducted in Lohrenz et al. (2013) 

and we now describe their experimental setting in detail. 

48 subjects were endowed with $100 of experimental cash and given the opportunity to 

invest this wealth in two separate assets over the course of two hundred trials. One asset was risk-

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Other recent work in neurofinance examines how investors learn from financial information (Bossaerts 
and Payzan-Le Nestour (2014); Kuhnen (2014)) and the formation of experimental asset price bubbles (De 
Martino et al. (2013); Smith et al. (2014)). 
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free and paid a zero interest rate, and the other asset was risky and generated a random return Rt 

in each period t=1,2,…,200. The sequence of risky asset returns {Rt} is taken from historical 

markets, and subjects are not told anything about the process {Rt}, except that it is taken from real 

historical markets. As such, subjects are faced with a large amount of parameter uncertainty upon 

entering the experiment. At the beginning of each period t, subject i allocates a fraction of his 

wealth, xi,t, to the risky asset. The remaining fraction of wealth, (1 - xi,t), is invested in the risk-

free asset that earns a zero interest rate.  

A sequence {Rt} of length twenty is referred to as a “market”, and each subject 

participates in ten separate markets throughout the course of the experiment. Subjects are 

instructed that each market is mutually independent of the other nine markets and are given a 

short break in between each market; at the beginning of a new market, a subject’s wealth is 

carried over from the end of the previous market. Upon entering the experiment, half of the 48 

subjects are randomly assigned to a social treatment, and the remaining 24 subjects are assigned 

to a control condition. Subjects within the social treatment are then randomly assigned into 

twelve pairs. 

 Each of the two hundred trials consists of three different screens (Figure 1). First, a 

subject sees an “allocation” screen at which time he is instructed to enter his investment 

allocation xi,t. Second, a “market” screen displays both the realized return of the risky asset and 

the subject’s updated portfolio value as a function of his investment allocation. Finally, if the 

subject is in the social treatment, a “peer decision” screen reveals the investment allocation of 

subject i’s peer. If instead the subject is the control condition, the “peer decision” screen reveals a 

randomly drawn investment allocation that is uniformly drawn from [0,1]. Subjects in the control 

condition are explicitly told that the investment allocation they observe is indeed uniformly 

drawn from [0, 1]. At the end of the experiment, a subject’s final portfolio was converted from 

experimental currency to actual US dollars using a 5:1 exchange rate. In addition to the earnings 

from the experiment, subjects were paid a fixed “show-up” fee of $20.  
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B. Behavioral Predictions 

 As described in the introduction, identifying peer effects is difficult because of the 

researcher’s inability to perfectly observe communication between two agents. Hence, similar 

behavior among two peers may stem from common information shocks or common preferences 

(e.g., investors in a given city may read the same local newspaper or have similar levels of risk 

aversion). If instead, a researcher is given full control over the information structure that is made 

available to all agents, then it becomes straightforward to test for peer effects. While this 

condition is unlikely to be satisfied in the field, we can easily construct this type of environment 

in a controlled laboratory setting.  

In order to test for the presence of peer effects, it is useful to provide a precise description 

of what constitutes a peer effect in the current experimental setting.  We say that a peer effect 

arises in the social condition when xi,t is dependent on the history of peer investment allocations 

{xj,u}u=1,…,t-1 controlling for any function of past returns {Ru}u=1,…,t-1. For simplicity, the empirical 

tests we construct will invoke a stronger definition where a peer effect requires xi,t to be 

dependent on the most recent peer investment allocation, xj,t-1. The reason we must control for any 

function of past returns is because investment decisions may be correlated within pairs because 

both agents are exposed to identical information sets (i.e., the history of past returns.) 

While we cannot explicitly control for every function of past returns, we can exploit the 

fact that, within each market, subject k in the control condition sees the same sequence of returns 

as subject i and j in the social treatment (where i and j belong to the same pair).  Therefore, in the 

absence of peer effects we expect that on average, corr(xi,t , xj,t-1) = corr(xi,t , xk,t-1).  In other 

words, there should no difference between the within-pair and across-pair correlations in 

investment decisions. In contrast, if there is a causal effect of j’s investment allocation in period t-

1 on i’s investment allocation in period t, we should detect a difference between the within-pair 

and across-pair correlations. This leads to our first prediction: 
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Prediction 1 (Behavioral): Let i and j be randomly assigned peers in the social treatment, and let k 

be any subject in the control condition. If there are no peer effects, then the within-pair 

correlation should on average, equal the across pair correlation: corr(xi,t , xj,t-1) = corr(xi,t , xk,t-1). 

In contrast, if there are peer effects, then on average, corr(xi,t , xj,t-1) ≠ corr(xi,t , xk,t-1). 

 

C. Neural Predictions 

While Prediction 1 is concerned with identifying the presence of peer effects, in this 

section we develop predictions regarding the different mechanisms that can give rise to peer 

effects. In particular, we exploit the availability of neural data at the peer decision screen, in order 

to generate testable predictions of competing theories.  

Broadly speaking, there are two main channels through which peer effects can arise. 

First, peer decisions may be correlated if i learns about the underlying return distribution from j’s 

decision. This is often referred to as observational learning (Bikhchandani et al. (1992)) and acts 

through an information channel. Second, peer effects may arise if i’s utility depends directly on 

j’s decision. In what follows, we focus on a specific mechanism within the class of social utility 

mechanisms where i has utility over relative wealth compared to j. 

We focus our predictions on neural activity that is generated at the moment when the peer 

decision screen appears. Recall that when this screen appears, a subject observes his peer’s 

investment allocation but is not required to make any active decisions. Hence, this screen is 

exclusively involved with information processing (as opposed to decision deliberation), and this 

is useful for two reasons. First, because we are using neural data that is generated in the absence 

of choice, it provides an explicit example of how the neural data is useful above and beyond 

traditional choice data. Second, we can rely on a large literature in decision neuroscience that can 

generate predictions about neural activity when new information -- in this case, a peer’s 
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investment decision -- is revealed. Specifically, we focus on the concept of a prediction error, 

which we briefly review now. 

A prediction error is a signal that the brain computes in response to new information. 

This signal can be thought of as measuring the change in the expected net present value of utility 

generated by the news, taking into account all sources of utility. While this terminology may be 

unfamiliar to most financial economists, the general concept of a prediction error should be 

familiar as it is closely related to basic properties of asset pricing. To see this, consider a simple 

model where an asset’s price is equal to the sum of its discounted expected cash flows. Prices 

should then fluctuate only when unexpected news is revealed about future cash flows, and this 

price fluctuation should occur at the moment when the unexpected news is revealed. Furthermore, 

the sign and size of the price change should reflect whether cash flows are expected to increase or 

decrease, and by how much. Similarly, a prediction error signal embodies the same two core 

properties that a price change exhibits in an efficient market: (i) it is different from zero only at 

the time when unexpected news is revealed and (ii) it carries information about the signed change 

in expected utility generated from the unexpected news.  

Critically, a large body of evidence in decision neuroscience shows that the prediction 

error signal can be accurately measured in a specific area of the brain, the vSt (Schultz et al. 

(1997); Pessiglione et al. (2006); Hare et al. (2008); Lin et al. (2012)). This is useful because it 

allows us to empirically measure the prediction error signal generated in response to news, and 

therefore, we can infer which factors cause a change in discounted expected utility. For each 

competing mechanism of peer effects, we can then derive the theoretical prediction about the 

change in expected discounted utility generated by unexpected news, and then test whether vSt 

activity significantly correlates with these changes. We now develop these theoretical predictions, 

which are difficult to test with only behavioral data, but can be directly tested with neural activity 

in the vSt.  
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First, we outline the predictions regarding neural activity that are generated under the 

social learning mechanism. While all subjects are given the same information regarding the 

markets at the start of the experiment, we cannot rule out a priori the possibility that i may 

perceive his peer, j, to possess superior information processing ability. Hence, it is possible that 

even though i and j have identical information sets (i.e., the history of past returns), i may believe 

that j’s decision carries information about the underlying distribution of returns. In this case, we 

expect i to update upwards (downwards) his belief about the value of the risky asset after 

observing j increase (decrease) the fraction of his wealth allocated to the risky asset. All things 

equal, when subject i updates his beliefs upward about the value of the asset, this news should 

increase his discounted expected utility as it implies that the risky asset is a better investment 

opportunity than previously expected. Therefore, the change in j’s risky asset allocation, (xj,t  - xj,t-

1), is a prediction error, and we expect to see this quantity correlate with vSt activity at the 

moment when the peer decision screen is revealed7. This leads to our second prediction: 

 

Prediction 2 (Neural): If peer effects are driven by a social learning mechanism, then the vSt 

should compute a prediction error signal at the revelation of the peer decision screen. This 

prediction error signal is defined by: (xj,t  - xj,t-1) - (xi,t  - xi,t-1) 

 

We now turn to our final prediction, one that characterizes the neural activity that should 

be observed if peer effects are generated through a preference channel. We test a specific theory 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 Before we state the precise definition of this neural prediction, a small adjustment is needed because the 
market return in each trial is revealed before the peer decision is revealed. To understand why this 
adjustment is necessary, consider the peer decision revealed in trial t. When subject i observes xj,t, he is 
observing how j changed his investment allocation as a function of the market return on trial t-1. However, 
subject i has also updated his beliefs about the risky asset as a function of the market return on trial t-1, and 
this should be captured by the change in his investment allocation (xi,t  - xi,t-1). Therefore, to control for the 
updating that subject i does through private learning, we subtract this quantity from the change in j’s risky 
asset allocation. The prediction error attributed to social learning by subject i on trial t is therefore equal to: 
(xj,t  - xj,t-1) - (xi,t  - xi,t-1). We note that this specification assumes that subject i is naïve in the sense that he 
believes his peer will change an investment allocation only as a function of market returns, and hence not 
as a function of i’s decision (Eyster and Rabin (2010)). 
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within the class of social preferences, one based on the “keeping up with the Jones’” preferences, 

where subjects have utility over relative wealth (Abel (1990); Gali (1994)). Note that there is no 

incentive in our experimental design that induces such a concern for relative wealth, and as such, 

our test of this mechanism relies on “homegrown” preferences over relative wealth.  

 To fix ideas, we assume that in addition to standard sources of utility, subjects also derive 

utility from the difference between their peer’s final portfolio value and their own final portfolio 

value8. This implies that the change in j’s portfolio value on each trial contains news about i’s 

expected discounted utility. Therefore, the revelation of the peer decision (along with the risky 

asset return) should generate a prediction error for subject i. Recall that subjects are not explicitly 

shown their peer’s portfolio value on each peer decision screen, and so it may be difficult for 

them to compute the actual dollar value change in their peer’s portfolio each period. However, 

subjects are shown the fraction of wealth their peer allocated to the risky asset, xj,t , and the risky 

asset return Rt on each trial. It is then reasonable to expect that subjects can compute both the 

percentage change in their peer’s portfolio value, and the percentage change in their own 

portfolio value on each trial.  

 We therefore proxy the dollar change in portfolio values with the percentage change in 

portfolio values. The prediction error that is generated under the relative consumption mechanism 

should then be equal to the difference between the percentage change in i’s portfolio value and 

the percentage change in j’s portfolio value. That is, neural activity in subject i’s vSt at the peer 

decision screen should negatively correlate with the quantity, Rt  × (xj,t  - xi,t ). This leads to our 

third and final prediction:  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 For example, a subject could have utility of the form u(m, y) = m + g(m-y), where m is a subject’s own 
wealth, y is the amount of peer wealth, an g is an increasing function.  
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Prediction 3 (Neural): If peer effects are driven by a relative consumption mechanism, then the 

vSt should compute a prediction error signal at the revelation of the peer decision screen. This 

prediction error signal is defined by: -Rt  × (xj,t  - xi,t ).  

 

 

II. fMRI Data Collection and Analysis  

 

In this section, we describe how the fMRI measures of neural activity were collected and 

analyzed. Our goal in this section, which is taken primarily from Frydman et al. (2014a), is to 

provide a brief primer on the basics of fMRI data analysis, so that the underlying econometrics 

are approachable to those not already familiar with the fMRI literature. For a more detailed 

discussion, see Huettel, Song, and McCarthy (2004), Ashby (2011), and Poldrack, Mumford, and 

Nichols (2011).  

 

A. fMRI Data Collection and Measurement 

We collected measures of neural activity over the entire brain using BOLD-fMRI, which 

stands for blood-oxygenated level dependent functional magnetic resonance imaging. BOLD-

fMRI measures changes in local magnetic fields that result from the local inflows of oxygenated 

hemoglobin and outflows of de-oxygenated hemoglobin that occur when neurons fire. In 

particular, fMRI provides measures of the BOLD response in small “neighborhoods” of brain 

tissue called voxels, and is thought to measure the sum of the total amount of neuronal firing into 

that voxel and the total amount of neuronal firing within the voxel. 

One important complication is that the hemoglobin responses measured by BOLD-fMRI 

are slower than the associated neuronal responses. Specifically, although the bulk of the neuronal 

response takes place quickly, BOLD measurements are affected for up to 24 seconds thereafter. 

Figure 2A provides a more detailed illustration of the nature of the BOLD response. The top 
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panel depicts the path of the BOLD signal in response to one (arbitrary) unit of neural activity of 

infinitesimal duration at time zero. The function plotted here is called the canonical hemodynamic 

response function (HRF). It is denoted by h(τ), where τ is the amount of time elapsed since the 

neural activity impulse, and has been shown to approximate well the pattern of BOLD responses 

for most subjects, brain areas, and tasks. 

Fortunately, there is a standard way of dealing with the complication described in the 

previous paragraph. In particular, the BOLD response has been shown to combine linearly across 

multiple sources of neural activity (Boynton et al. (1996)). This property, along with knowledge 

of the specific functional form of the HRF, allows us to construct a mapping from predicted 

neural activity to predicted BOLD responses. Specifically, if the predicted level of neural activity 

at any particular time is given by 𝑎(𝑡), then the level of BOLD activity at any instant 𝑡 is well 

approximated by  

 

b(t)= h(u)a(t −u)du,
0

∞

∫ 	
  	
  
(1) 

	
    

which is the convolution between the HRF and the neural inputs. This integral has a 

straightforward interpretation: it is a lagged sum of all the BOLD responses triggered by previous 

neural activity. The properties of the BOLD response are illustrated in Fig. 2B, which depicts a 

hypothetical path of neural activity (solid line), together with the associated BOLD response 

(dashed line). 

 During our experiment, we acquire two types of MRI data in a 3.0 Siemens Tesla Trio 

MRI. First, we acquire BOLD-fMRI data while the subjects perform the experimental task. We 

use a voxel size of 3.4 mm x 3.4 mm x 4 mm, and collect these data for the entire brain every 2 

seconds. We also acquire high-resolution anatomical scans that we use mainly for realigning the 

brains across subjects and for localizing the brain activity identified by our analyses. 
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B. fMRI Main Data Analyses 

The key goals of our analysis are to test if the region of the vSt that has been repeatedly 

shown to encode prediction errors at the time of utility-relevant news exhibits activity consistent 

with Predictions 2 and 3. To do this, we run statistical tests to see if there are areas within this 

region of the brain, given by collections of spatially contiguous voxels called clusters, where the 

BOLD response reflects neural activity that implements the computations of interest (prediction 

errors generated by social learning or relative wealth mechanisms). This is complicated by the 

fact that, since every voxel contains thousands of neurons, the BOLD responses in a voxel can be 

driven by multiple signals. Fortunately, the linear properties of the BOLD signal allow the neural 

signals of interest to be identified using standard linear regression methods. 

 The general statistical procedure is straightforward, and will be familiar to most 

economists. The analysis begins by specifying two types of variables that might affect the BOLD 

response: target computations and additional controls. The target computations reflect the signals 

we are looking for (e.g., a prediction error at the revelation of a peer decision). They are specified 

by a time series 𝑠!(𝑡) describing each signal of interest. For each of these signals, let 𝑆!(𝑡) denote 

the time series that results from convolving the signal 𝑠!(𝑡) with the HRF, as described above. 

The additional controls, denoted by 𝑐!(𝑡), are other variables that might affect the BOLD time 

series (e.g., residual head movement or time trends). These are introduced to further clean up the 

noise in the BOLD signal, but are not explicitly used in any of our tests. The control variables are 

not convolved with the HRF because, while they affect the measured BOLD responses, they do 

not reflect neural activity which triggers a hemodynamic response. 

 The linearity of the BOLD signal implies that the level of BOLD activity 𝑏!(𝑡) in any 

voxel 𝑣 at time 𝑡 should be given by 
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bv (t) = constant + βi
vSi (t)+ α j

vc j (t)+j∑i∑  ε(t) ,	
  

	
  

 

(2) 

	
    

where 𝜀(𝑡) denotes AR(1) noise. This model is estimated independently in each of the voxels that 

fall within vSt. Our hypotheses can then be restated as tests about the coefficients of this 

regression model: signal 𝑖 is said to be associated with activity in voxel 𝑣 only if 𝛽!! is 

significantly different from zero. 

 Two additional considerations apply to most fMRI studies, including this one. First, we 

are interested in testing hypotheses about the distribution of the signal coefficients in the 

population of subjects, not hypotheses about individual subject coefficients. This would normally 

require estimating a mixed effects version of the linear model specified above, which, given the 

size of a typical fMRI dataset, would be computationally intensive. Fortunately, there is a 

shortcut that provides a good approximation to the full mixed effects analysis (Penny et al. 

(2006)). It involves estimating the parameters separately for each individual subject, averaging 

them across subjects, and then performing t-tests. This is the approach we follow here. 

 Second, we conduct our tests in an area of the vSt that, in prior work, has been linked to 

the computation of prediction errors. Specifically, we construct two 8 mm radius spheres (a total 

of 56 voxels) around the coordinates (MNI-space, [𝑥 = −10, 𝑦 = 12, 𝑧 = −8], [𝑥 = 10, 𝑦 = 12, 

𝑧 = −8]) that were found to exhibit peak correlation with prediction errors in Pessiglione et al. 

(2006). Because our hypothesis tests are therefore carried out in each of the 56 voxels in the 

relevant vSt region of interest, there is a concern about false-positives. To address this problem, 

we correct for multiple comparisons within the relevant region of interest, a procedure known in 

the fMRI literature as a small volume correction (SVC). We report results as significant if they 

pass SVC correction at a level of p<0.059.  

   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Specifically, we report results as significant if voxels pass SVC with a family-wise error rate of less than 
0.05 and if they pass p<0.005 uncorrected with a 10-voxel extent threshold. 
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III. Results 

 

A. Test of Behavioral Prediction 1 

 We begin our test of Prediction 1 by computing, for each subject i in the social treatment, 

the correlation between his risky asset allocation in period t, xi,t , and his peer’s risky asset 

allocation in period t-1, xj,t-1. We find that the average value of corr(xi,t , xj,t-1) across all twenty-

four subjects in the social treatment is 0.137 (standard error: 0.026). Next, we compute the 

correlations generated by the risky asset allocations of subject i in the social treatment and 

subject k in the control condition. Specifically, we fix subject i in the social treatment, and then 

compute corr(xi,t , xk,t-1), for each of the k=1,…,24 subjects in the control condition. We then 

average these twenty-four correlations, and take this to be our across-pair correlation measure for 

subject i. Finally, we take the average of this across all twenty-four subjects in the social 

treatment, which equals 0.063 (standard error: 0.013).  

We can reject the null hypothesis that the within-pair and across-pair correlations are 

equal with a t-statistic of 2.93. Figure 3 shows that for sixteen of the twenty-four subjects in the 

social treatment, the within-pair correlation is greater than the across-pair correlation10. Because 

the experimental design ensures that subjects in the control condition and social treatment have 

identical information sets (i.e, they observe the same history of returns) the result that the within 

pair correlation is significantly greater than the across-pair correlation provides evidence that peer 

decisions causally affect investment allocations. 

To gain further insight into other factors that explain the time series variation in risky 

asset allocations, we can impose additional structure on the model that subjects use to form their 

allocations. Because subjects are not told anything about the actual data generating process that 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 We also note that the average across-pair correlation is significantly greater than zero (t-statistic of 4.54). 
This suggests that subjects exhibit correlated behavior, in part, due to exposure to common information.  
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governs the risky asset returns, they are faced with a learning problem. In such a setting, a natural 

hypothesis is that a subject computes the conditional Sharpe ratio after observing market returns 

and then uses this statistic to guide the investment decision.  

To test this hypothesis, we estimate an OLS regression of subject i’s current investment 

allocation on the conditional Sharpe ratio, his peer’s previous investment allocation, and subject 

i’s previous investment allocation: 

𝑥!,! = 𝛼 + 𝛾! + 𝛽!𝑥!,!!! + 𝛽!𝑠ℎ𝑎𝑟𝑝𝑒_𝑟𝑎𝑡𝑖𝑜! + 𝛽!𝑥!,!!! + 𝜀!,!                    (3) 

We estimate the model separately for the social treatment and for the control condition and 

results are displayed in Table 1. The first column of Table 1 confirms the previous univariate 

correlation results, as j’s previous investment allocation is a significant predictor of i’s current 

investment allocation. Furthermore, column 1 (using data only from social treatment) and column 

2 (using data only from control condition) both show that the conditional Sharpe ratio is a 

significant predictor of risky asset allocations. Therefore, in the social treatment, variation in 

risky asset allocations can be decomposed into a social component (the peer investment decision) 

and a non-social component (the conditional Sharpe ratio)11. Interestingly, when pooling data 

across control and treatment (column 3), the interaction between the treatment and the conditional 

Sharpe ratio has a negative coefficient (significant at the 10% level), suggesting that when peer 

decisions are observable, subjects rely less on past market data.  

While the regression results presented above are consistent with peer effects, one 

alternative theory that can potentially explain part of the observed behavior is anchoring (Tversky 

and Kahneman (1974)). Anchoring occurs when individuals rely on arbitrary initial values or 

starting points when computing decisions in complex environments. Our subjects may perceive 

the experiment as a complex environment, and peer decisions can provide anchors for subjects in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 The fact that the conditional Sharpe ratio is a significant predictor of investment decisions is consistent 
with the positive across-pair correlations we document in Figure 3. In other words, the conditional Sharpe 
ratio may be the channel through which two subjects exhibit correlated decisions, despite their inability to 
observe each other’s decisions.   
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the social treatment when they are choosing their risky asset allocations. In this case, we would 

expect to see the observed positive correlation between j’s allocation on trial t-1 and i’s allocation 

on trial t.  

 However, we can rule out this alternative theory using the control condition data in Table 

1. Recall that in the control condition, subjects do not have access to a peer’s decision on each 

trial, but instead see a randomly drawn number over the interval [0,1] on the peer decision screen. 

Hence, if peer effects are driven by anchoring, we should still observe a correlation between the 

uniformly drawn number (the anchor) and the risky asset allocation. Instead, we find that the 

coefficient on the peer investment is not significantly different from zero in the control condition, 

and furthermore, the coefficient on the interaction between the social condition and the peer 

investment (column 3) is significantly positive. Together, these results cast doubt on the 

anchoring hypothesis.  

 

B. Neural Response to Market Returns 

 Before turning to the results on neural predictions 2 and 3, we first describe a preliminary 

result on neural activity at the time market returns are revealed. This preliminary result will act to 

validate the methodology we use in the next section to test key neural predictions 2 and 3. Recall 

that in each trial, a subject observes the market return before observing his peer’s investment 

allocation (Figure 1). If a subject observes a positive (negative) market return, then conditional on 

investing in the risky asset, he will experience an increase (decrease) in wealth. This change in 

wealth carries news about future consumption, and hence a positive (negative) market return 

should generate a positive (negative) prediction error in the vSt. Therefore, when the market 

return is revealed to a subject, we expect vSt activity to positively correlate with the subject’s 

change in wealth, given by 𝑅!𝑥!,!. 

 To check whether vSt activity is consistent with this prediction, we estimate a general 

linear model (GLM) of BOLD activity in every subject and voxel.  
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bv (t) =α +β1
vIPD(t)×Rt (x j,t − xi,t )+β2

vIPD(t)×[(x j,t − x j,t−1)− (xi,t − xi,t−1)]

+β3
vIMKT (t)× (Rt xi,t )+β4

vcontrols+ε(t) 	
  	
  	
  	
  	
  
       (4) 

This is the same model that we will use to perform tests of predictions 2 and 3, so it is useful to 

understand its components in detail. 𝑏!(𝑡) denotes the BOLD signal at time 𝑡 in voxel 𝑣.  𝐼!"  is 

an indicator function that equals one if, at time 𝑡, the peer decision screen is revealed; 𝐼!"#  is an 

indicator function that equals one if, at time 𝑡, the market screen is revealed; the first nonconstant 

regressor, 𝐼!" 𝑡   ×  𝑅! 𝑥!,!  –   𝑥!,! , represents the relative change in wealth that is revealed at the 

peer decision screen; the second nonconstant regressor, 

𝐼!" 𝑡   ×  [ 𝑥!,!  –   𝑥!,!!! − 𝑥!,!  –   𝑥!,!!! ], represents the social learning signal described in 

section I.C. The third nonconstant regressor, 𝐼!"# 𝑡   ×  (𝑅!𝑥!,!), represents the absolute change 

in wealth that the subject experiences during the “market screen” at time t. The “controls” vector 

includes the following variables: 1) an indicator function denoting the onset of an allocation 

screen, 2) an indicator function denoting the onset of a market screen, 3) an indicator function 

denoting the onset of a market screen interacted with the risky asset return, 4) an indicator 

function denoting the onset of a peer decision screen, 5) an indicator function denoting the onset 

of a new market and 6) 12 movement regressors that control for subject head movement inside 

the scanner. 

Controls (1) - (5) are convolved with the HRF, whereas control (6) is not. We need to 

include these controls because the BOLD signal is affected for up to 24 seconds after the initial 

neural impulse generated by the onset of any single event. Therefore, even though we are 

concerned only with the neural activity generated at the moment when a peer decision or market 

return is revealed, the observed BOLD signal at this time is still affected by the onset of several 

preceding screens.  

The next step in testing whether vSt activity correlates with changes in wealth is to 

perform inference about the extent to which the signal of interest is encoded in a given voxel. We 
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do this by carrying out a one-sided t-test against zero of the average of the individually estimated 

coefficients. In other words, we compute the average 𝛽!!  across subjects and perform hypothesis 

tests under the null that the coefficient is zero; finally, we correct for multiple comparisons within 

the pre-specified vSt region of interest.  

Figure 4 shows the results of this hypothesis. Within the pre-specified 56-voxel vSt target 

region (those voxels colored in yellow and orange) associated with the computation of prediction 

errors in previous studies, we find a cluster of 15 voxels (those voxels colored in orange and red) 

where 𝛽!!, averaged across subjects, is significantly positive (p<0.05 SVC).  

 

C. Test of Neural Predictions 2 and 3 

  We now turn to Predictions 2 and 3, which investigate the extent to which neural activity 

in the vSt reflects prediction errors that are generated under the two different peer effects 

mechanisms outlined in section I.C. These are the key predictions of the paper, because they 

allow us to test between competing mechanisms of peer effects that are difficult to test using only 

trading data.    We proceed in testing Predictions 2 and 3 by performing hypothesis tests about the 

estimated coefficients from equation (4). Figure 5A shows that within the pre-specified 56-voxel 

vSt target region (those voxels colored in yellow and orange) associated with the computation of 

prediction errors in previous studies, we find a cluster of 9 voxels where 𝛽!!, averaged across 

subjects, is significantly positive (p<0.05 SVC). This indicates that at the time when a peer 

decision screen is revealed, activity in the vSt positively correlates with the theoretical prediction 

error that is generated under the social learning mechanism; hence the vSt activity that we 

observe is consistent with Prediction 2.  

 Our test of Prediction 3, which investigates the relative wealth mechanism, proceeds in a 

very similar manner. Figure 5B shows that within the pre-specified 56-voxel vSt target region 

(again, those voxels colored in yellow and orange), we find a cluster of 19 voxels where 𝛽!!, 

averaged across subjects, is significantly negative (p<0.05 SVC). This indicates that at the time 
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when a peer decision screen is revealed, activity in subject i’s vSt significantly correlates with the 

change in his relative wealth.  

 One concern with the previous result is that changes in relative wealth can be highly 

correlated with changes in absolute wealth, especially if a peer invests only a small amount of 

wealth in the risky asset. Therefore, a prediction error that is consistent with a relative wealth 

mechanism may instead be driven by a change in absolute wealth. However, there is a key aspect 

of the experimental design that allows us to rule out this interpretation. Recall that a prediction 

error is generated only in response to unexpected information, and therefore, it will be equal to 

zero in response to information that has already been revealed in the past. In our setting, a subject 

observes the market return before observing his peer’s decision (Figure 1); it follows that any 

change in expected discounted utility that is driven by a change in absolute wealth must be 

reflected in the prediction error at the time the market return is revealed. This is precisely the 

signal that is displayed in Figure 4. Therefore, the prediction error generated at the peer decision 

screen cannot be driven by changes in absolute wealth, because this information was previously 

revealed.  

Taken together, the results from this section provide support in favor of both Prediction 2 

and Prediction 3. It is important to point out that each mechanism explains a unique portion of the 

variation in vSt activity at the peer decision screen: the two key variables that parameterize the 

prediction errors of each mechanism are entered into the same general linear model, and are 

allowed to compete for explained variance. Therefore, our data suggest that peer effects are 

simultaneously driven through a preference channel and an information channel. 

 

D. Neural Test of a Preference for Conformity   

 While the neural data is consistent with a specific type of relative wealth concern 

mechanism, there are other preference-based theories that can potentially generate peer effects in 

our setting. Here we examine one alternative explanation based on a direct preference for 
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conformity (Asch (1951)). If subject i in our experiment is influenced by subject j because of a 

direct preference for conformity, then on each trial, i should derive utility from observing that j 

made a similar investment allocation. In other words, at the time a peer decision is revealed, a 

direct taste for conformity should generate utility that is decreasing in the distance between 

subject i’s allocation and subject j’s allocation. As such, when the peer decision is revealed, the 

vSt of subject i should compute a prediction error that negatively correlates with |xi,t – xj,t|. We 

can test this prediction by estimating a GLM very similar to the model in equation (4). In fact, the 

only change we make is to substitute the first nonconstant regressor with the hypothesized 

prediction error signal that is generated under the conformity theory, |xi,t – xj,t|. Specifically, the 

model we estimate is:  

bv (t) =α +β1
vIPD(t)× | x j,t − xi,t |+β2

vIPD(t)×[(x j,t − x j,t−1)− (xi,t − xi,t−1)]

+β3
vIMKT (t)× (Rt xi,t )+β4

vcontrols+ε(t) 	
  	
  	
  	
  	
  
       (5) 

where the vector of controls is exactly the same as specified in equation (4) and described in 

section III.B. Contrary to the conformity hypothesis, we do not find any activity in our pre-

specified vSt region that is significantly associated with the distance between peer investment 

allocations at our omnibus threshold of p<0.05 SVC. In summary, this null result casts some 

doubt on the ability of the conformity hypothesis to explain the observed peer effects. 

 

 

IV. Discussion  

 

 In this paper we show how neural data can be used to test the mechanisms that underly 

peer effects. In nearly all settings in which peer effects have previously been studied in finance, it 

is extremely difficult to distinguish between different mechanisms because of the researcher’s 

lack of control over information (Manski (1993)) and the endogeneity associated with selective 

communication (Han and Hirshleifer (2013)). In contrast, a large degree of experimental control 
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combined with neural data enable us to perform tests of the competing mechanisms. Overall, we 

find strong evidence of peer effects in the trading data, and the neural data suggest that both a 

social learning mechanism and a relative wealth mechanism contribute to the observed behavior. 

This evidence is important because it can guide the development of newer models of financial 

markets that have begun to incorporate social interactions among investors (Hirshleifer (2014); 

Shiller (2014)). 

While there has been very little work on examining the mechanisms underlying peer 

effects in finance, we are not the first to tackle this question directly. A recent paper by Bursztyn 

et al. (2014) uses a field experiment in Brazil to distinguish between a preference-based and a 

belief-based explanation for peer effects. The authors find that both channels contribute to peer 

effects, and they show that less financially sophisticated investors tend to use the social learning 

mechanism more. Our results complement those of Bursztyn et al. (2014) as we use a completely 

different methodology, and also find that both channels are at work in generating peer effects. 

Moreover, while these authors abstract away from the outcome phase of the investment problem, 

we provide subjects with the necessary information to assess the change in their peer’s portfolio 

value, which is an important ingredient in the relative wealth mechanism.  

It is also important to note that we do not provide a general test of the preference-based 

explanation for peer effects, as is done in Bursztyn et al. (2014). Instead we focus only on one 

specific theory, namely a relative wealth mechanism where agents have utility over the difference 

between their final wealth and their peer’s final wealth (Abel (1990); Gali (1994); Hong et al. 

(2014)). As described in the previous section, there are other preference-based explanations that 

can generate peer effects, such as a direct preference for conformity12. Although we provide some 

evidence against the conformity theory, these results are based on a failure to reject the null 

hypothesis, and thus should be interpreted with caution.   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Recent work also shows that preferences themselves can be causally affected by peers (Ahern et al. 
(2014)). However, we refrain from investigating this aspect of peer effects because it is unlikely that 
preferences can change significantly over the course of a one-hour experiment.  
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Finally, because our experimental design does not induce subjects to have utility over 

their peer’s wealth, we are testing an exogenous relative wealth mechanism, instead of an 

endogenous one that may arise due to scarce resources in the economy (DeMarzo et al. (2008)). 

This provides a relatively conservative test of the theory as we rely on “hard-wired” preferences 

over relative wealth, which can be challenging to directly test without access to neural data 

(Fliessbach et al. (2007)).   
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Table 1. Effects of Peer Investment and Sharpe Ratio on Risky Asset Allocation. Dependent 
variable is subject i’s investment on trial t. Peer Previous Investment is subject j’s investment on 
trial t-1. Conditonal Sharpe is the conditional Sharpe ratio using data from periods {1,2,…,(t-1)}, 
Previous Investment is subject i’s investment on trial t-1. Social is a dummy that takes on the 
value 1 if the subject is in the social treatment. Standard errors are clustered by subject and t-
statistics are in parentheses below estimated coefficients.  *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% level respectively. 
 
 
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

(1) (2) (3)
Social Treatment Control Condition Pooled 

Peer Previous Investment 0.053 0.015 0.144
(2.50)** (1.23) (1.24)

Conditional Sharpe 0.003 0.008 0.008
(2.26)** (3.80)*** (4.06)***

Previous Investment 0.597 0.424 0.508
(9.08)*** (9.72)*** (11.22)***

Social*Peer Previous Investment 0.063
(2.36)**

Social*Conditional Sharpe -0.004
(-1.84)*

Constant 0.133 0.194 0.161
(5.85)*** (11.36)*** (9.85)***

Observations 4320 4320 8640
R2 0.461 0.296 0.375
Subj. Fixed Effects Y Y Y
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Figure 1. Schematic of the three screens displayed in a typical trial in the fMRI experiment. 
In each of the two hundred trials in the experiment, subjects saw a series of three screens, nearly 
identical to those shown below. In the first screen, subjects were asked to enter a fraction of their 
wealth to allocate to the risky asset. Subjects entered this fraction using a handheld device while 
inside the fMRI scanner, and were allowed to invest in increments of 0.1.  On the second screen, 
subjects saw the realized return of the risky asset, and their updated portfolio value as a function 
of the current period’s risky asset allocation. Finally on the third screen, if the subject was in the 
social treatment, he saw his peer’s risky asset allocation for that trial. If the subject was in the 
control condition, he saw a randomly generated number that was uniformly distributed over [0, 
1]. 
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Figure 2. BOLD measurements of neural activity. (A) Because fMRI measures the blood 
oxygen level dependent (BOLD) response, and not neural activity itself, we need a mapping from 
neural activity to the BOLD response in order to make inferences about changes in neural 
activity. This mapping is known as the canonical hemodynamic response function, and is shown 
here as a function of one arbitrary unit of instantaneous neural activity at time 0. (B) This figure 
shows the BOLD response (the dashed line) that results from three sequential sources of neural 
activity (the solid line). The BOLD response combines linearly across multiple sources of neural 
activity.   
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Figure 3. Subject-specific correlations between investment allocation and previous peer 
investment allocation.	
  	
  For each of the i=1,…,24 subjects in the social treatment, we compute 
two correlation measures. First we compute 𝑊𝑃 𝑖 = 𝑐𝑜𝑟𝑟(𝑥!,! , 𝑥!,!!!) which represents the 
within pair correlation between subject i’s investment allocation in period t and his peer’s 
investment allocation in period t-1. This within pair correlation is colored in blue. Next, we 
compute a similar correlation, but instead of using i’s peer, we use subject k from the control 
condition. We compute this correlation for each subject k in the control condition, and then take 
the average. This leads to the across pair correlation: 𝐴𝑃 𝑖 = !

!"
𝑐𝑜𝑟𝑟(𝑥!,!!"

!!! , 𝑥!,!!!), which 
is colored in red. The figure shows that for all but two subjects, the within pair correlation is 
higher than the across pair correlation.  
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Figure 4. vSt reflects prediction errors generated from changes in wealth. The figure presents 
estimation results from equation (4): 
  

bv (t) =α +β1
vIPD(t)×Rt (x j,t − xi,t )+β2

vIPD(t)×[(x j,t − x j,t−1)− (xi,t − xi,t−1)]

+β3
vIMKT (t)× (Rt xi,t )+β4

vcontrols+ε(t)
 

Yellow and orange voxels are those that are in our pre-specified region of interest in the vSt. Red 
and orange voxels are those that exhibit activity at the time of a market screen onset that 
significantly correlate with the change in a subject’s wealth that is generated from the realized 
market return. In other words, the voxels in red and orange are those for which we can reject the 
null hypothesis that 𝛽! = 0.  All statistics are small volume corrected at p<0.05 using FWE. The 
𝑦 = 16 coordinate indicates the two-dimensional plane shown in the brain maps.   
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Figure 5. vSt reflects prediction errors generated under multiple peer effect mechanisms. 
The figure presents estimation results from equation (4): 
  

bv (t) =α +β1
vIPD(t)×Rt (x j,t − xi,t )+β2

vIPD(t)×[(x j,t − x j,t−1)− (xi,t − xi,t−1)]

+β3
vIMKT (t)× (Rt xi,t )+β4

vcontrols+ε(t)
 

Yellow and orange voxels are those that are in our pre-specified region of interest in the vSt. (A) 
Red and orange voxels are those that exhibit activity at the time of peer decision screen onset that 
significantly correlate with the social learning prediction error. These are voxels for which we can 
reject the null hypothesis that 𝛽! = 0. (B) Red and orange voxels are those that exhibit activity at 
the time of peer decision screen onset that significantly correlate with the relative wealth 
prediction error. These are voxels for which we can reject the null hypothesis that 𝛽! = 0. All 
statistics are small volume corrected at p<0.05 using FWE. The 𝑦 = 16 coordinate indicates the 
two-dimensional plane shown in the brain maps.   
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