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Abstract

We present a simple framework to illustrate the welfare consequences of a “top up” health insurance
policy that allows patients to pay the incremental price for more expensive treatment options. We
contrast it with common alternative policies that require essentially no incremental payments for
more expensive treatments (as in the United States), or require patients to pay the full costs of
more expensive treatments (as in the United Kingdom). We provide an empirical illustration of this
welfare analysis in the context of treatment choices among breast cancer patients, where lumpectomy
with radiation therapy is a more expensive treatment than mastectomy, with similar average health
benefits. We use variation in distance to the nearest radiation facility to estimate the relative demand
for lumpectomy and mastectomy. Extrapolating the resultant demand curve (grossly) out of sample,
our estimates suggest that the “top-up” policy, which achieves the efficient treatment decision, increases
total welfare by $700-2,500 per patient relative to the current US “full coverage” policy, and by $700-
1,800 per patient relative to the UK “no top up” policy. While we caution against putting much
weight on our specific estimates, the analysis illustrates the potential welfare gains from more efficient
reimbursement policies for medical treatments. We also briefly discuss additional tradeoffs that arise
from the top-up and UK-style policies, which both lead to additional (ex-ante) risk exposure.
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1 Introduction

Medical expenditures in the US are high and increasing. Policy and academic discussions of strategies to
reduce health care spending have largely focused on increasing cost sensitivity either on the demand side
through consumer cost-sharing, or on the provider side by making providers the residual claimant on cost
savings. A natural economic solution which has not received much attention is a “top-up” design in which
health insurance contracts would cover the cost of a baseline treatment, and patients could choose to pay
the incremental cost of more expensive treatments out of pocket.

This type of “top-up” design contrasts with the standard “full coverage” insurance design in the United
States, in which consumers face essentially no incremental cost of choosing a more expensive treatment
(other than perhaps some minimal consumer cost-sharing). Other high-income countries have taken
an alternative approach: individual medical treatments deemed “cost-effective” are fully covered, and
treatments deemed not to be cost effective are not covered at all. In the UK, for example, the National
Institute for Health and Care Excellence (NICE) determines which medical technologies will be covered
by the National Health Service (NHS), using — in recent years — a threshold of around $50,000 per quality-
adjusted year of life saved (McCabe, Claxton and Culyer} 2008). This threshold rule results in the NHS
not covering some medical treatments: for example, in 2010 NICE refused coverage for the drug Avastin
as a treatment for metastatic colorectal cancer on the basis that the drug improved life expectancy by six
weeks (relative to the preexisting standard of care) at a cost of around $115,000 per quality-adjusted year
of life savedE| As a result, patients in the UK who want to choose a treatment like Avastin must pay the
full cost of that treatment. Such UK-style “no top-up” designs have recently been introduced in Australia,
France, and Germany (Chalkidou and Anderson, 2009), and received a great deal of negative publicity in
the US under the name of “death panels” during the debate over the 2010 Affordable Care Act[]

Relative to either the US “full coverage” or the UK “no top up” regimes, a “top-up”’ design in which
individuals internalize treatment costs on the margin achieves the efficient allocation of patients across
treatments. Conceptually, this simple point is not new. It has been made in other contexts, such as
public subsidies for education (Peltzman| 1973), public health insurance subsidies (Cutler and Gruber,
1996)), pricing of employer-provided health insurance plans (Enthoven and Kronick, [1989), and incentives
for patients to see specific providers within health insurance plans (Robinson and MacPherson, [2012).

However, to our knowledge, it has not received much attention in discussions of insurance coverage for

!See http://www.nice.org.uk/media/E58/E7/2010182BevacizumabForColorectalCancerFinalGuidance.pdf and the
discussion in |Chandra, Jena and Skinner| (2011]).

2Such negative publicity not withstanding, [Pollack| (2014) describes some groups of US medical specialists (in particular,
for cardiology and oncology) who are recommending that costs be taken into account when developing medical guidelines;
insurance companies often use medical guidelines to determine reimbursement policies.


http://www.nice.org.uk/media/E58/E7/2010182BevacizumabForColorectalCancerFinalGuidance.pdf

different treatments, with the exception of a recent paper by Baicker, Shephard and Skinner| (2012) who
use a calibrated simulation model to explore this idea. Moreover, quantifying the welfare consequences of
a “top-up” design naturally requires empirical estimates.

In this paper, we present a simple graphical framework to illustrate the welfare consequences of alter-
native insurance designs for reimbursement of different treatment choices, and explore this welfare analysis
empirically in the specific context of treatment choices among breast cancer patients. Most patients di-
agnosed with breast cancer receive surgery as an initial course of treatment. The key treatment choice is
between two types of surgery: mastectomy, which removes the cancerous breast, and lumpectomy, which
removes the tumor while preserving the breast and is generally followed by a course of radiation therapy.
While evidence from randomized clinical trials has suggested no average difference in survival between
mastectomy relative to lumpectomy with radiation (Fisher et al.l 1985), mastectomy tends to be less
expensive ([Polsky et al., 2003)).

Public and private insurance in the US typically covers the costs of both treatments fully (or nearly
fully) so that patients do not internalize the difference in treatment costs. In principle, under comparative
effectiveness regulations — where the goal is stated as covering the lowest-cost option attaining the best
health outcome (Chandra, Jena and Skinner, 2011)) — mastectomy would be covered by insurance whereas
lumpectomy with radiation would not. Because the latter is a more costly treatment with no evidence
of superior average health outcomes, patients choosing it would face the full cost of the treatmentﬁ In
contrast, a top-up policy in this context is analogous to an indemnity insurance policy that pays out if
a patient is diagnosed with breast cancer, at a fixed sum equal to the cost of a mastectomyﬁ While we
focus on the example of a comparative effectiveness regulation which uses a threshold of zero, as long as
the incremental value for society is less than the incremental cost, the same qualitative analysis holds for
a threshold above zero (such as the UK threshold of $50,000 per quality-adjusted year of life saved).

The key empirical object needed to evaluate the welfare consequences of these three insurance designs
is the (relative) demand curve for the more expensive treatment option, which in this case is lumpectomy.
We know of no useful variation in the relative price for lumpectomy. Instead, we estimate the relative
demand curve for lumpectomy using variation across patients in the distance between their residence at

the time of diagnosis and the nearest radiation clinicﬁ A standard course of post-lumpectomy radiation

3Although the comparative effectiveness literature recognizes the potential that health benefits may be heterogeneous,
in principle (if not in practice) that limitation could be solved by randomized clinical trials that are sufficiently powered to
detect such heterogeneity. Such approaches could not however, even in principle, address heterogeneity in preferences over
non-health aspects of treatment. Recent work in social insurance has emphasized the potential importance of heterogeneous
preferences both conceptually (Feldstein |1995) and empirically (Einav, Finkelstein and Schrimpf, [2010]).

40f course, such alternative insurance designs for breast cancer may not be particularly realistic from a political perspec-
tive. We focus on breast cancer because of the empirical traction it offers for estimating demand for alternative treatments.

5The use of distance between patients and providers as variation dates back in the health economics literature at least



therapy requires 25 round-trips to a radiation facility, spread over 5 weeks. Our key economic assumptions
are that travel time can be monetized and that preferences for reduction in travel time are analogous to
preferences for any other equivalent price difference. These assumptions allow us to use the variation in
distance to the radiation facility as if it were variation in the relative price of lumpectomy, thus identifying
the demand curve.

We analyze cancer registry administrative data on the characteristics and treatment choices of over
300,000 breast cancer patients initially diagnosed in California between 1997 and 2009, linked to data on
the location of radiation treatment facilities over the same time period. Building on similar results in the
medical literature (Schroen et al., |2005)), we document that women living further away from radiation
facilities at the time of their breast cancer diagnosis are more likely to choose mastectomies rather than
lumpectomies. Our key econometric assumption is that there are not omitted patient characteristics
correlated with both distance and demand for lumpectomy. We observe a rich set of patient demographic
and clinical characteristics and find that while some of these variables vary with distance, the magnitude
of the relationship between treatment choice and travel time is not very sensitive to their inclusion. Our
baseline estimates imply that a 10 minute increase in one-way travel time (approximately two-thirds of a
standard deviation in our data) reduces the probability of a lumpectomy by about 0.7 to 1.1 percentage
points, relative to a baseline lumpectomy rate of about 58 percent.

We then use the estimated demand curve to illustrate how the welfare effects of alternative insurance
designs can be quantified, albeit highly out of sample relative to our observed variation in “price.” We
estimate, for example, that the efficient “top-up” policy — in which patients pay $10,000 on the margin for
a lumpectomy — increases the lumpectomy rate by 15-25 percentage points relative to the UK-style “no
top-up” regime, and decreases the lumpectomy rate by 35-40 percentage points relative to the US-style
“full coverage” regime. Our estimates suggest total welfare gains from the “top-up” policy of between $700
and $1,800 per patient relative to a “no top-up” UK-style policy and between $700 and $2,500 per patient
relative to a “full coverage” US-style policy.

In the final section of the paper, we briefly consider the additional tradeoffs faced when the welfare
analysis is done from an ex-ante perspective, thus accounting for differential risk exposure across regimes.
Qualitatively, the top-up policy continues to dominate the UK-style no top-up policy, but the relative
ranking of the top-up policy and the US-style full coverage policy is now ambiguous. We present a simple
and highly stylized calibration which shows that, for high enough levels of risk aversion, ex-ante welfare
can be higher under a US-style full coverage policy than under a top-up policy that produces the ex-post

efficient treatment decisions.

to the work of McClellan, McNeil and Newhouse| (1994]).



The paper is organized as follows. Section [2] details our empirical setting — treatments for breast
cancer — and describes our data. Section [3]outlines our conceptual framework, and describes our empirical
strategy. Section [4 presents our main results. Section [5] briefly discusses implications for ex-ante welfare,

and Section [6] concludes.

2 Setting and data

2.1 Treatment choices for breast cancer

Our analysis is focused on the treatment choice made by breast cancer patientsﬁ Most patients diagnosed
with breast cancer have surgery to attempt to remove the cancer from the breast; in our data, 95 percent
of women diagnosed with breast cancer receive surgery as an initial course of treatment. For women
receiving surgery, the key treatment choice is between two alternatives, lumpectomy and mastectomy.
Lumpectomies are breast-conserving surgeries that remove the cancer but not the breast itself, and are
generally followed by a course of radiation therapy. Mastectomies, in contrast, remove the entire cancerous
breast and are generally not followed by a course of radiation therapy. Other forms of treatment such as
chemotherapy are commonly administered either before or after (or both) either type of surgery.

In terms of clinical effectiveness, the key comparative evidence on these treatments comes from the
National Surgical Adjuvant Breast and Bowel Project (NSABP) B06 clinical trial, which enrolled women
with stage I and stage II breast tumors. The initial results of this trial were released in 1985 ([Fisher
et al., [1985), with subsequent follow-up results (with longer-term mortality outcomes) published in 1989
(Fisher et al., [1989), 1995 (Fisher et al., 1995), and 2002 (Fisher et al., 2002)). The results of this clinical
trial suggested there were no detectable differences in survival outcomes across random assignment to
more invasive (total mastectomy) versus less invasive (lumpectomy with or without radiation therapy)
treatments.

In terms of overall financial costs (shared by both patients and insurers), there is a consensus that
lumpectomy with radiation is more expensive than mastectomy. Mastectomy is cheaper primarily because
of the add-on cost of the radiation therapy which accompanies lumpectomies. A common argument is that
the more relevant costs are not those associated with the initial course of treatment, but rather the total,
subsequent “lifetime” costs over the following years. While comparing these longer-run costs of the two
treatments is more difficult due to various selection concerns — for example, co-morbidities that vary with

treatment choice — the evidence on lifetime costs also strongly suggests that mastectomy is cheaper, even

SMany of the clinical details in this section are drawn from the National Cancer Institute’s guide to the treatment of
breast cancer; see http://www.cancer.gov/cancertopics/pdq/treatment/breast/Patient/.


http://www.cancer.gov/cancertopics/pdq/treatment/breast/Patient/

after attempting to correct for potential selection bias. For example, Polsky et al. (2003) compare five-year
total Medicare payments across Medicare patients with breast cancer receiving lumpectomy relative to
mastectomy: the unadjusted difference between mastectomy and lumpectomy was $8,389 (relative to a
baseline of $40,130 for mastectomy), the risk-adjusted difference was $13,775 (relative to a baseline of
$38,623 for mastectomy), and the propensity score-adjusted difference was $14,054 (relative to a baseline
of $38,664). In all three versions of their analysis, the 95-percent confidence intervals can reject cost

differences smaller than $4,500]]

An additional difference in cost between the two treatments, which our empirical exercise will focus
on, is the time cost of traveling to receive post-surgery radiation therapy associated with lumpectomyﬁ
A standard course of radiation therapy requires 25 treatments spread over 5 Weeksﬂ Motivated by this
substantial time commitment required for radiation therapy, several papers in the medical literature have
explored whether women living further away from radiation facilities are more likely to choose to have
mastectomies rather than lumpectomies with radiation. For example, Schroen et al. (2005) use data
from the Virginia cancer registry from 1996-2000 (~20,000 patients) and document that the probability
of patients choosing mastectomy increases with distance from the radiation facility: in their full sample,
43% of women choose mastectomy if they live within 10 miles of a radiation facility, whereas among
women living more than 50 miles from a radiation facility the share is 58%@ Our empirical work will
build on this medical literature by confirming a relationship between distance from radiation facilities and
treatment choice in a much larger sample of over 300,000 patients in California, and using this variation
to estimate a demand curve for lumpectomy. This estimated demand curve will in turn be the key input
into policy counterfactual exercises investigating how patients might respond to changes in the financial

costs of treatments induced by different health insurance contract designs.

"In our illustrative quantitative welfare analyses below, we assume that the higher payments for lumpectomy relative to
mastectomy reflect differences in underlying resource costs (i.e. social marginal cost). To the extent that prices paid are
distorted relative to social marginal costs, our results below would naturally need to be adjusted.

8While our cancer registry data offers an incomplete set of information on cancer treatments, as observed in our data
more than 60 percent of patients choosing lumpectomy receive radiation therapy during their initial course of treatment,
compared to less than 20 percent of mastectomy patients.

9See this US National Cancer Institute Cancer Bulletin from 2010: http://www.cancer.gov/aboutnci/
ncicancerbulletin/archive/2010/022310/page2.

"Nattinger et al.| (2001) and |[Celaya et al.| (2006) document similar patterns in the SEER cancer registry (1991-1992,
~17,000 patients) and the New Hampshire cancer registry data (1998-2000, ~3,000 patients), respectively. |Athas et al.
(2000) investigate this relationship in the New Mexico tumor registry data (1994-1995, ~1,000 patients) and do not find
evidence of a similar relationship, although they do find that the probability of receiving radiation post-lumpectomy falls
with distance from a radiation facility.
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2.2 Data

Our empirical analysis uses two datasets from the state of California: a patient-level cancer registry

dataset, and data on radiation treatment facility locations.

Our patient-level data is drawn from the California Cancer Registry (CCR), a program of the California
Department of Public Health. The CCR was established in 1985, and every cancer diagnosis made in
California from 1988 forward is required by law to be reported to the CCRE Data are collected directly
from cancer patients’ medical records at the time of the cancer diagnosis, rather than by interviewing
patients. Available variables in the CCR research database include demographic covariates such as age,
race, and sex; diagnostic information such as cancer type and stage of disease; and treatment information
on the first course of treatment received by the patient (if any). A key advantage of the CCR research
database relative to other cancer registry databases such as the SEER cancer registry is that the CCR
data include patients’ exact address of residence at the time of diagnosis, which enables our empirical
analysis to rely on a more precise measure of how far patients live from radiation treatment facilities than
would be possible if we only observed county of residence, as is available in the SEER data.

Our data on radiation treatment facility locations comes from the private firm IMV. IMV aims to
identify all hospital and non-hospital sites in the US performing radiation therapy, and queries these
sites with a telephone survey. The sampling frame for the telephone survey is constructed from several
sources, including federal and state nuclear licensing listsE We obtained data on the full sampling frame
of California sites, including exact street address for all institutions, for all available survey years (1996
to 2011)@ Because survey response rates vary across years (ranging from 45 to 87 percent), we use all
institutions in the sampling frame as our set of facilities of interest, regardless of whether the institution
responded to the survey.

We restrict the CCR data to female breast cancer patients diagnosed between 1997 and 2009, which
covers all years after the first IMV survey (1996) and until the last year of the CCR cancer registry

data (2009). Following sample restrictions used in National Cancer Institute analyses of breast cancer

"See http: //www.ccrcal . org/pdf /Reports/Physicians. pdf| for more details on these reporting requirements, which fall
under California Health and Safety Code 103885.

128pecifically, IMV reports that it identifies candidate sites from nuclear licensing lists compiled by the Nuclear Regulatory
Commission, lists from state licensing agencies, the American Hospital Association Guide to the Health Care Field database,
internal IMV lists, previous IMV data collections, and internal IMV internet research. Because many radiation facilities are
based at non-hospital sites, the IMV data are preferable to relying solely on hospital-based datasets such as the American
Hospital Association annual survey data. The IMV data have been used in several previous papers, such as Baker| (2001)),
Baker and Atlas (2004), and [Baker, Atlas and Afendulis (2008).

TSSurveys are conducted approximately every one to two years over this time period. Specifically, IMV’s data collection
periods are 1996 (covering 2/96 to 1/97), 1998 (covering 3/98 to 9/98), 2000 (covering 3/00 to 10/00), 2001 (covering 11/01
to 7/02), 2003 (covering 11/02 to 1/04), 2004 (covering 8/04 to 12/05), 2006/08 (covering 9/06 to 10/08), and 2010/11
(covering 12/09 to 11/11).
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registry data (Gloeckler Ries and Eisner, 2007), we exclude cases identified through autopsy and death
certificate only (<0.5% of observations), and cases where the age at diagnosis was less than 20 (<0.1% of
observations). Given our empirical strategy, we also limit the sample to patients with non-missing data
on treatment (<0.3% of observations) and non-missing data on residence at the time of diagnosis (<0.2%
of observations).

For ease of presentation, because our primary analysis is focused on the choice between lumpectomy
and mastectomy, we also omit from the baseline sample the 5.8 percent of the cases in which the patient
chose neither of these two surgical treatments. Our results are not sensitive to this sample selection, and
the appendix presents analogous results for the full sample (Appendix Table .

Finally, combining these two datasets, for each patient we computed (using Google Maps in summer of
2012) the distance between her residence at the time of diagnosis and the nearest facility offering radiation
treatment as recorded in the IMV sampling frame as of January 1st in the year of diagnosis. Our baseline
analysis uses driving time, while the appendix reports results that are based on driving distance and
spherical distance; our results are not sensitive to the choice of distance measure (see Appendix Figures
and and Appendix Tables and .

To summarize, our baseline sample covers 323,612 breast cancer patients that were diagnosed between
1997 and 2009 and chose either mastectomy or lumpectomy as their initial treatment, with each patient

matched to her nearest radiation facility.

3 Conceptual framework and empirical strategy

Consider a woman ¢ recently diagnosed with breast cancer, facing a binary choice between receiving a
mastectomy (M) or receiving a lumpectomy together with radiation therapy (L). The key input into the
analysis of the welfare effect of alternative reimbursement policies is the relative valuation (or willingness
to pay) for L, given by

Vi = Vi — Vi, M, (1)

and its distribution across cancer patients, which is given by the cumulative distribution function F'(v;).
That is, our main empirical object of interest can be summarized by the demand curve for lumpectomy,
which is illustrated in Figure [1} and is given by F~!(-). Variation in the relative valuation of L across
patients may reflect heterogeneity in relative health benefits, or heterogeneity in relative valuation of

non-health attributes of the two treatments, or both.

Abstracting from income effects, this demand curve F~1(.) is sufficient to evaluate the welfare effects



of alternative policy structures. Note that our discussion of welfare and efficiency here refers to efficiency
of treatment choice, or ex-post efficiency, a point we return to in Section[5] With that in mind, the efficient
policy is to cover both treatments, but to require cancer patients to incur the incremental costs associated
with lumpectomy. We denote this policy by “top-up” in Figure (1, which denotes the incremental (social)
cost of L by ¢, and the incremental price the patient faces for L by p. The top-up policy sets p = ¢. The
resultant allocation, point E in Figure , occurs when F~!(-) = c. Since patients internalize the social
marginal cost of treatment, the allocation is efficient; all patients whose incremental willingness to pay for
lumpectomy (v;) is above the social marginal cost of the lumpectomy (¢) would choose it, and all those
for whom v; < ¢ would not.

The US-style “full coverage” policy is given by point D in Figure[I} cancer patients can choose between
M and L and do not face any of the incremental financial cost associated with L (p = 0). Because
lumpectomy is more expensive than mastectomy, this policy produces inefficient treatment decisions. A
set of cancer patients whose relative valuation for L is lower than c inefficiently choose L because they do
not pay the cost ¢ (paid by the insurer) associated with it. This welfare loss is summarized in Figure
by the triangle CDE.

Finally, we consider a third possible policy (denoted “No top-up” in Figure [1)) in which the insurance
policy covers only the choice of the cheaper treatment M. In this situation, cancer patients may still
choose L, but if they do so will have to pay its entire cost out of pocket. As detailed in the introduction,
the UK uses this type of “no top-up” insurance regime, and other high-income countries have been moving
towards similar frameworks. In our setting, such a “no top-up” policy would cover the patient’s full cost
of mastectomy, but would not reimburse any costs if the patient chooses lumpectomy. This would lead
to a welfare loss that is summarized in Figure [I] by triangle ABFE: a set of cancer patients who prefer
lumpectomy would opt into mastectomy in order to avoid the financial cost, despite the fact that v; > ¢,
thus implying that a choice of L would have been socially efficient. This is analogous to the classic welfare
analyses of requiring individuals who opt out of the public schools to pay the full cost of private schooling
(Peltzman, 1973) or requiring individuals who opt out of public insurance to pay the full cost of private
insurance (Cutler and Gruber] |1996).

In the rest of the paper we explore these tradeoffs quantitatively. Figure [I] makes clear that the key
empirical object for welfare analysis is the demand curve for lumpectomy (relative to mastectomy). The
demand curve is derived from v;, individuals’ incremental willingness to pay for L. Our empirical strategy
is therefore focused on estimating this demand curve.

Estimation of the demand curve requires identifying variation in the relative price of lumpectomy.

Motivated by the medical literature discussed in Section which has documented an empirical rela-



tionship between distance from radiation facilities and breast cancer treatment choices, we use variation
across patients in the distance to the nearest radiation facility in order to estimate the demand curve.
Specifically, we normalize patient i’s utility from mastectomy to zero and assume that her (relative)

utility from lumpectomy is given by

u; = o — Bi(0;d; + p), (2)

where «; and f3; are the (potentially patient-specific) preference parameters, d; is the distance of patient
i to the nearest radiation facility, and p is the incremental price she would need to pay for lumpectomy
(relative to mastectomy). Distance is denominated in miles or travel hours while price is denominated in
dollars, so the parameter ; captures the opportunity cost of time, and thus serves as a simple conversion
factor that allows us to monetize distance/time. The patient would choose lumpectomy if and only if

u; > 0. From the econometrician’s perspective, we obtain

Pr(Lumpectomy) = Pr(u; > 0). (3)

An important assumption in this specification, and one that is crucial for our empirical strategy, is
that 0; can be calibrated using external information so that, conditional on 6;, price and (monetized)
distance have the same effect on individual utility. This assumption allows us to estimate the distribution
of a; and ; in the data using variation in distance only, but then use the estimated distributions to assess
the impact of counterfactual policy designs that change price. Because the out-of-pocket price from either
treatment is effectively zero in our California data, this assumption or the choice of ; does not affect
estimation; it only becomes relevant in the counterfactual exercises. To see this, replace p = 0 in equation
, and define 5] = (;6;, to obtain

u; = a; — Bid;, (4)

which has a familiar form. We assume that o; = 27 + ¢; and that 3; = x;’yf + uf and that ¢; follows a

type I extreme value distribution. These assumptions lend themselves to a standard logit regression when
B _

u; = 0 and to a random-coefficient logit model otherwise.
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4 Results

4.1 Summary statistics and initial evidence

Table [1] presents some summary statistics for the baseline sample. We aggregate the detailed treatment
information in the cancer registry data into indicator variables for whether the patient received a lumpec-
tomy or a mastectomy as their initial course of treatment: 58% of women receive lumpectomy and 42%
receive mastectomy@ A standard course of radiation consists of 25 round trips. Patients would need, on
average, to drive eight miles (11 minutes) each way to the nearest radiation facility. However, there is a
fair amount of variation along this dimension, with many patients living within a few minutes of a facility,
while others would be required to drive more than half an hour each way for each treatment.

An attraction of our data is the availability of a relatively rich set of covariates measuring patient
demographics and clinical characteristics. Specifically, we observe patient age, race, marital status, and
some information on type of insurance coverage. While the data lack individual-level measures of co-
variates such as income or educational attainment, the cancer registry data matches on these and other
characteristics at the census-block level. In terms of clinical covariates measuring cancer severity, we
observe data on the two primary measures of the extent of the disease at the time of diagnosis which are
used by physicians to guide patient treatment decisions: stage and grade. In situ corresponds to an early
stage (sometimes called “pre-cancer”), and local, regional, and remote correspond to increasing extents of
diseaseE Grade is an alternative measure of the extent of disease at the time of diagnosis, with higher
values corresponding to increasing extents of diseasem

Table 2] splits the sample by above and below median travel time from a radiation facility. Women
who live further from a radiation facility are more likely to receive mastectomies and less likely to receive
lumpectomies. However, as in [Schroen et al.| (2005) and other previous work, women closer to and further
from radiation facilities also appear to differ on observable characteristics. In terms of demographic
characteristics, women living closer to radiation facilities tend to be older, less likely to be white, less likely
to be married, and more likely to have Medicaid as a primary payment sourcem In terms of neighborhood
characteristics, women living closer to radiation facilities tend to live in slightly poorer neighborhoods (as
measured by income), but also in areas with slightly higher median home values. In terms of clinical

characteristics, the above- and below-median distance samples appear relatively more balanced on stage

14Only the initial course of treatment is recorded in the cancer registry data. Our coding of lumpectomy and mastectomy
follows |Roetzheim et al.| (2008]).

Y5For more details, see the SEER training website: http://training.seer.cancer.gov/ss2k/staging/review.html.

16For more details, see the SEER instructions for coding grade: http://seer.cancer.gov/tools/grade/,

1"The California cancer registry data also includes information on non-Medicaid payment sources: around 16% of women
are covered by Medicaid, 26% by Medicare, 56% by private payers, and the small remainder (<2%) self-pay or other sources.


http://training.seer.cancer.gov/ss2k/staging/review.html
http://seer.cancer.gov/tools/grade/
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and grade of disease: while several of the differences in grade indicators are statistically significant, no
clear pattern emerges in terms of one group being in “better” health in terms of cancer progression at the
time of diagnosis. Overall, Table [2| provides preliminary support for the idea that distance may affect
treatment choices among breast cancer patients, but also highlights the need to examine the robustness of
this relationship to conditioning on demographic, neighborhood, and clinical characteristics, as distance
to radiation facility is clearly correlated with other patient characteristics which may themselves affect

treatment choice.

To explore how travel distance to a radiation facility affects the treatment choice of breast cancer
patients in our sample, Figure (a) plots the probability of mastectomy and the probability of lumpectomy
by travel time to the nearest radiation facility. The histogram in light gray displays the number of
observations (patients) in each travel time bin in our sample. These raw data on treatment choices
display the expected pattern: women who live further from radiation facilities are more likely to receive
mastectomies and less likely to receive lumpectomies.

Figure (b) investigates whether this relationship between distance and treatment choice can be ex-
plained by the differences in demographic or health characteristics of the patients that we saw in Table
. It presents a series of plots which residualize the y-axis (lumpectomy) for various covariates; to retain
comparability with Figure (a) we do not residualize the x-axis (distance), but our regression specifications
below which condition out these covariates paint a similar picture. The first line (dashed and square de-
noted) presents the de-meaned lumpectomy rates for each travel time bin as a point of comparison. The
other two lines show the residualized lumpectomy estimates after sequentially adding more covariates.
The second line (solid and triangle denoted) conditions out patient characteristics, and the third (dashed
and circle denoted) adds neighborhood-level covariates and clinical characteristics. Consistent with what
we will document in the regression specifications below, Figure (b) suggests that the overall relationship

between treatment choice and travel time is not very sensitive to the inclusion of these covariates.

4.2 Treatment choices by distance

Table [3] quantifies the treatment-distance relationship, estimating different specifications of the logit re-
gression in equation . For ease of interpretation, Table |3| reports our estimate of the average marginal
effect on lumpectomy probability of a ten-minute increase in (one way) travel time, with bootstrapped
standard errors clustered at the county level (50 iterations); recall from Table [I| that this ten-minute
increment is about two-thirds of a standard deviation of travel time in our sample. We also report the

standard deviation of this effect across patients. In the appendix, we report the parameter estimates (and
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their standard errors) that give rise to these average marginal effects (see Appendix Table .

Column (1) of Table |3| reports the simplest specification, where we estimate a logit model of whether
the patient chose lumpectomy on travel time with no controls. Using the notation of Section [3, column
(1) assumes that neither «; nor f3; are affected by any patient-specific variables. Columns (2), (3), and
(4) retain the same (homogenous logit) assumption for 3; but increasingly add covariates that shift «;,
thus affecting the mean utility from lumpectomy. In column (5) we also allow these observables to change
B; by adding interaction terms between these covariates and distance. Finally, column (6) reports results
from a specification that allows random coefficients on distance: it assumes that [3; follows a lognormal
distribution, thus relaxing the assumption of uf = 0 that is assumed in all other specifications.

The effect of distance is statistically significant and is quantitatively reasonably stable across all
specifications, as would be expected given the patterns we documented in Figure The specification
of column (6) leads to the largest effect, but this estimate is quite noisy (as the estimated parameters
that govern the distribution of the random coefficient are imprecisely estimated; see Table . Overall,
we find that having the nearest radiation facility ten minutes further from the patient’s residence makes
her less likely to choose lumpectomy by about 0.7 to 1.1 percentage points (or about 1.2 to 1.9 percent
relative to the mean lumpectomy probability of 58 percent). Observable characteristics do not appear to
have an important effect on this distance estimate, as can be seen from the fact that the heterogeneity in
this estimate does not change much in column (5) relative to the preceding columns.

Taken together, these estimates suggest a reasonably robust relationship between the distance from
womens’ place of residence at the time of their diagnosis with breast cancer to the nearest radiation
treatment facility, and their choice of cancer treatments. In the appendix, we show that these basic
results are robust to a variety of alternative specifications, including alternative (mileage-based rather than
time-based) measures of distance (Appendix Figures and and Appendix Tables and ,
non-linear parameterizations of distance (Appendix Table , and estimation with linear probability
models (Appendix Table . In the next section, we build on these estimates to use this distance
measure as a shifter in the effective relative price women face for breast cancer treatments in order to

investigate how breast cancer patients would respond to various (out of sample) policy counterfactuals.

4.3 Policy counterfactuals: estimating treatment choices and ex-post welfare

Following the conceptual framework depicted in Figure [1} our estimated demand curve for lumpectomy
allows us to perform quantitative exercises of the impact of alternative insurance designs which vary the

price the consumer faces for L. .To see what the exercise is, one can think of each demand specification
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as estimating a distribution of the willingness to pay for lumpectomy. To do so, we can use equation ,

which defines patient i’s willingness to pay for lumpectomy to be

Q;
Vi = — — Qidi, 5
3, (5)

and, as before, denote the estimated demand by the distribution F(v;). A given demand specification
provides estimates for the joint distribution of «; and f;, and d; is observed. We assume throughout this
section that 6; is equal to $1,150 for all patients. To arrive at this estimate for 6;, we rely on the fact (see
Section that a typical course of radiation therapy treatment involves 25 round trips to the radiation
facility, and that the average hourly wage as reported by the Bureau of Labor Statistics is just over 23
dollars (so 23 -25 -2 = $1,150)[F] Of course, one could (and should) raise plausible concerns that the
opportunity cost of time may be heterogeneous across patients, or that the opportunity cost of time of a
breast cancer patient may be higher or lower than that of a healthy working individual. Fortunately, the
transformation is sufficiently simple and transparent that one could fairly easily use our results to obtain

quantitative estimates that rely on alternative values of 6;.

Equipped with an estimate of F'(v;) and given an (incremental) price of lumpectomy p defined by the
insurance design, the share of patients choosing lumpectomy is given by 1 — F(p) and consumer surplus
(per patient, relative to everyone being forced to choose mastectomy) is given by (1 — F(p))E(v;|v; > p).

The total incremental cost is given by (1 — F(p))ec.

Figure |3| illustrates the nature of this exercise. In Figure (a) we plot the implied demand system
for lumpectomy using the simplest specification - column 1 of Table |3 - and in Figure (b) we plot the
implied demand system for lumpectomy using our richest specification - column (6) of Table These
figures are the empirical analogs to our conceptual Figure |1} and we indicate the analogous points along
them. We also use Figure [3|to illustrate the variation (in distance) used to estimate the demand function
by plotting the empirical distribution of the monetized distance (that is, distance in hours multiplied by
6 = $1,150), illustrating the point we emphasized in the introduction: our key counterfactual exercises
are quite far out of sample, and therefore should be treated with caution. For this illustrative purpose,
we use the information discussed in Section to approximate the incremental cost of lumpectomy (c)
at $10,000 and the total cost of lumpectomy at $50,000, which is the incremental cost together with the

baseline cost of $40,000 for mastectomy.

Figure [3|(a) is based on specification (1) of Table [3| which does not include any controls. This speci-

18Specifically, this Bureau of Labor Statistics figure is for average hourly earnings in October 2012: http://www.bls.gov/
news.release/empsit.t19.htm.


http://www.bls.gov/news.release/empsit.t19.htm
http://www.bls.gov/news.release/empsit.t19.htm
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fication indicates that the US-style “full coverage” policy (given by point D) in which consumers do not
pay on the margin for lumpectomy raises the lumpectomy rate by about 37 percentage points relative to
the efficient level (given by point E) of about 21 percent; the associated welfare cost is about $2,000 per
patient relative to the efficient allocation. Figure [3{(b) is instead based on the richest model (column (6) of
Table [3]), which allows heterogeneity in the response to price and thus make the demand curvature much
greater, leading to more elastic demand for small price changes but to a much lower elasticity for large
changes. This specification suggests that the US-style “full coverage” policy raises the lumpectomy rate
by only about 10 percentage points relative to the efficient level of 48 percent, with a resultant welfare
cost of about $710 per patient.

Likewise, the estimates without controls in Figure (a) suggest that a UK-style “no top-up” policy
(given by point A) in which insurance only covers mastectomies and patients must pay the full cost of
a lumpectomy reduces the lumpectomy rate from about 21 percent under the efficient top-up policy to
nearly zero, and reduces welfare by about $1,400 per patient, relative to the efficient outcome. When we
use the richest model, Figure (b), however, a large fraction of the patients are estimated to be not very
price sensitive, so lumpectomy rates fall by only about 4.5 percentage points from the efficient level of 48
percent, with a welfare cost of about $800 per patient relative to the efficient level.

For completeness, Table [4] reports additional estimates for a variety of counterfactuals for each of the
six demand specifications reported in Table [3| The top panel reports the observed outcome (for p = 0),
which corresponds to our US-style full coverage benchmark. Each of the subsequent panels report a set
of estimates for a different (counterfactual) price for lumpectomy (retaining a zero price for mastectomy).
The first row of each panel reports the demand response; that is, the reduction in lumpectomy share
(relative to the observed level) from the increase in price. The second row of each panel reports the (per
patient) reduction in consumer surplus (relative to the observed level). The change in surplus consists of
two components: a set of “marginal” patients change their choice to mastectomy as a result of the price
change, and their change in consumer surplus is given by integrating under this portion of the demand
curve; and a set of “inframarginal” patients, who have high willingness to pay for lumpectomy, do not
change their choices, but now face a higher price which reduces their surplus. The third row of each panel
uses a cost of $10,000 for the incremental costs of lumpectomy to report the change in insurer profit, which
consist of not paying for lumpectomies for the “marginal” patients and (except for the case of mandate)
from charging an incremental price for lumpectomies from the “inframarginal” patients. Finally, the fourth
row of each panel reports the overall change in welfare by adding up the change in consumer surplus and
the change in insurer profits. We chose the counterfactuals to illustrate price changes of $5,000 as a figure

that is close to the lower 95% confidence interval of cost differences from |[Polsky et al. (2003)), and is a
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smaller change that is less out of sample; $10,000 as a figure that is close to the midpoint of the cost
difference range from Polsky et al. (2003); and $50,000 as a figure that is close to the “full” (no top-up)
cost based on the figures from |Polsky et al.| (2003).

5 Ex-ante efficiency: A simple calibration

Our analysis thus far has focused on the impact of alternative insurance designs for the (ex-post) efficiency
of treatment choice, taking as given the extent of the patient’s risk exposure. We would be remiss, however,
to analyze the welfare consequences of insurance designs without considering their impact on risk exposure
and hence ex-ante utility. We briefly do so here.

The different insurance designs have different implications for ex-ante risk exposure, making the qual-
itative ranking of ex-ante efficiency between the US policy and the top-up policy a priori ambiguous. This
is because the “top up” policy — which produces the (ex-post) efficient treatment decision — leaves the
consumer exposed to risk ex ante. To see this, note that under a “top up” policy in which individuals can
pay on the margin for L, risk exposure is increasing in v; (up to c).

To evaluate ex-ante utility of a given individual, the key empirical object will once again be the
individual’s willingness to pay for lumpectomy relative to mastectomy v;, which we assume is known to
the individual at the beginning of the coverage year. In addition, we assume individuals are expected-
utility maximizers with CARA utility w(zx) = —exp(—rz) with a (homogeneous) coefficient of absolute
risk aversion 7, and (homogeneous) annual probability of illness p. Assuming mastectomy is fully covered
and the lumpectomy price is p, the individual is faced with a risk of losing min(p,v;) with probability
p. She will either choose lumpectomy and face a financial risk of p, or choose mastectomy and incur a
monetized risk of v;, whichever is smaller.

The individual’s ex-ante utility is given by m;, which is the solution to: w(z — m;) = (1 — p)w(z) +

pw(x — min(p, v;)).For v; > qﬂ this yields:

™ = %log[p -exp(r - min(v;;p)) + 1 — p)]. (6)

The price p depends on the insurance design. Under the “top up” policy p = ¢, and equation @ indicates
that this leaves the individual exposed to risk (m; > 0).

The “first-best” policy — which involves no ex-ante risk exposure and achieves the ex-post efficient
treatment choice — would be to offer a continuum of indemnity insurance policies, which pay each patient

a lump sum of min(v;, ¢) in the event of illness and then allows individuals to pay the incremental cost of L

YFor v; < 0 the individual will always choose M and be fully insured under any of the insurance arrangements we consider.
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out of pocket; in a competitive equilibrium a policy that pays min(v;, ¢) would be priced at pmin(v;, ¢) and
will be bought by individuals with willingness to pay v; > 0, leaving them unexposed to risk. Such a policy
would eliminate both ex-ante and ex-post efficiency losses. From an ex-post perspective, patients would
obtain the lump sum, but only those patients with v; > ¢ would choose lumpectomy, thus replicating the
treatment efficiency described in the previous section. From an ex-ante perspective, individuals would be
fully insured and would not be exposed to any risk, which is the efficient outcome (assuming, as is typical,
that the insurance provider is risk neutral).

Given the impracticality of this policy, we consider the ex-ante utility properties of the three policies
we have explored@ The “full coverage” (US) policy sets p = 0; it removes ex-ante risk exposure (m; = 0)
and maximizes consumer surplus (—m;) but, as discussed, produces ex-post socially inefficient treatment
choices. The “no top up” UK policy sets p = T'C, the total cost of L; it therefore not only produces ex-post
inefficient treatment choices but also exposes the individual to ex-ante risk. Moreover, since TC > ¢ —
by definition the total cost of L is greater than the incremental cost — it is clear from equation @ that
consumer surplus is lower (; is higher) under the UK policy than the top-up policy. The higher social
welfare ranking of the top-up policy relative to the UK policy is thus preserved when ex-ante utility is
considered. The relative social welfare ranking of the US policy and the top-up policy is a priori unclear
as is the relative ranking of the US and UK policies; all else equal, the US policy’s relative ranking is
increasing in risk aversion r.

To assess ex-ante social welfare under the alternative insurance designs, equation @ makes clear that
in addition to the demand curve F(v;) that we have already estimated, we also need values for the risk
of breast cancer (p) and the coefficient of absolute risk aversion (r). Table [5| reports the results from an
illustrative calibration exercise. We assume a homogeneous annual risk of breast cancer for a 60 year old
female of p = 0.48%@ We calibrate r based on a range of estimates reported in Table 6 of |(Cohen and
Einav| (2007). We use the estimates of F'(v;) from the simplest empirical specification reported in column
(1) of Table

The first column reports the share of breast cancer patients choosing lumpectomy, which does not

depend on the level of risk aversion. The second column reports the cost savings to insurers relative to the

29The first best seems impractical primarily because typical markets offer discrete rather than continuous coverage and
coverage tends to be in the form of payment for treatment options, rather than lump sum cash payments. One might
naturally consider therefore the possibility of a (break-even) insurance policy that would cover the social incremental cost of
L in the event of illness. Note however that this does not achieve the first best. Any individual with v; > ¢ would purchase
the policy, face no ex-ante risk exposure and make efficient ex-post treatment decisions. However, some individuals with
sufficiently high v; < ¢ would also purchase the insurance to avoid financial risk, and would therefore (inefficiently) choose
L ex-post.

2n our California cancer registry data in 2000, there were 585 60-year-old females diagnosed with breast cancer. Dividing
this number by the total population of 60-year-old females in California as of 1-July 1999 (120,668; http://www.census.
gov/popest/data/state/asrh/1990s/tables/st-99-10.txt) gives p = 0.48%.


http://www.census.gov/popest/data/state/asrh/1990s/tables/st-99-10.txt
http://www.census.gov/popest/data/state/asrh/1990s/tables/st-99-10.txt
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US-style full coverage case. For the no top-up case, these insurer cost savings are $50,000 for the small
share of people who still choose L, and $10,000 for anyone who previously chose L but now chooses M.
For the top-up case these insurer cost savings are $10,000 times the share of people who chose L under
full coverage. The third column reports the loss in consumer surplus relative to full coverage; we measure
this by the change in m;, as defined in equation @ Note that this loss in consumer surplus is associated
with all individuals in the population, not only with those who are subsequently diagnosed with breast
cancer, so even a small magnitude of 7 could be magnified once it affects the entire population of potential
breast cancer patients. Finally, the fourth column reports the total social cost relative to full coverage,
by adding up the second and third columns.

The results indicate how the (total) efficiency ranking of the top-up policy relative to the US-style full
coverage policy depends on risk aversion. For the lowest value of risk aversion we consider, social welfare
is higher under the top-up policy, but for higher values of risk aversion it is higher under the US-style full
coverage policy. The full-coverage policy always delivers higher total welfare than the UK-style “no top up”
policy for our calibrated values. This illustrative analysis suggests that focusing solely on ex-post efficiency
analysis could miss an important part of the picture, and that the ex-ante risk exposure generated by
top-up policies could be much more costly than the allocative efficiencies these policies may provide. Of
course, this calibration exercise is extremely stylized; evaluating this trade-off more systematically would
require, among other things, better estimates of r and p — as well as potentially heterogeneity in them

and selection on them — for our population.

6 Conclusion

We present a simple framework to illustrate the welfare gains from a health insurance policy that allows
patients to pay the incremental price for more expensive treatment options. Such a policy efficiently
sorts low willingness-to-pay patients to the cheaper treatment option, in contrast with the current status
quo in the US where the incentives for such sorting are minimal. At the same time, this policy does
not “over price” the more expensive treatment, as is common in the UK and several other high-income
countries, which allocates too many patients to the cheaper treatment. Our analysis of the choice between
lumpectomy and mastectomy for breast cancer patients provides an empirical illustration as to how such
a policy could be evaluated, and what the quantitative welfare gains to such a policy might be.

Most of our analysis (with the exception of Section [5|) focused on analyzing the efficiency of sorting
patients to treatments, taking the overall level of risk exposure as given. In this analysis, our “top up”

policy resembles a form of indemnity insurance, which pays a fixed amount for a given medical “event,”
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such as the diagnosis of breast cancer. (Cutler and Zeckhauser| (2000) describe how health insurance in
the US started off as a quasi-indemnity policy — in most cases paying a fixed cash amount per day in the
hospital. Ma and McGuire| (1997) argue that pure indemnity payments dissolved over time because of the
difficulty of verifying — in a contractually feasible way — what the adverse health event was. Thus, even
absent political economy barriers, implementing such an indemnity-type policy could be challenging in

many — although perhaps not all — contexts.
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Figure 1: Conceptual framework: Treatment choice
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Notes: This figure illustrates conceptually the efficiency consequences of alternative insurance designs (i.e. prices for lumpec-
tomy (L) relative to mastectomy (M)). The efficient allocation is given by point E and the “top-up” insurance design under
which patients pay the incremental cost of L relative to M, and fraction Liop-up choose L. Equilibrium under a US-style
“full coverage” insurance design in which individuals do not pay on the margin for L relative to M is given by point D,
where fraction L coverage choose L. The welfare loss from this outcome relative to the efficient outcome is given by triangle
CDE. Equilibrium under a UK-style “no top-up” alternative insurance design in which only M is covered by insurance and
patients must pay the total cost for L is given by point A, where Lno top-up choose L and the welfare loss relative to the

efficient outcome is given by triangle ABE.



23

Figure 2: Treatment choice by travel time to nearest radiation facility
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Notes: These figures plot the probability of treatment by travel time in minutes to the nearest radiation facility, measured
from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample (N=323,612). Panel (a) plots
the raw data, and a histogram of the number of patients by travel time. Panel (b) plots the de-meaned lumpectomy rate
as well as two residualized versions. The first residualizes lumpectomy probability using patient characteristics. The second
adds neighborhood-level covariates from the 2000 Census and clinical covariates. All covariates are as described in the notes
to Table 1l
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Figure 3: Empirical analog of conceptual framework: Treatment choice
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Notes: These figures represent the empirical analog of Figure E The curves plot the implied demand system for lumpectomy
based on: in Panel (a), the estimates in column (1) of Table |3} and in Panel (b), the estimates in column (6) of Table

The scatterplots in the lower right-hand corners of the graphs illustrate the variation (in travel time) used to estimate the

demand function by plotting the empirical distribution of the monetized distance (that is, distance in hours multiplied by
0 = $1,150), using the 7 distance “bins” shown in Figure |2} this illustrates the point we emphasize in the text: our key
counterfactual exercises are quite far out of sample, and therefore should be taken with caution.
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Table 1: Summary statistics

Mean Std. Dev. 5th Pct. 95th Pct.

Treatment choice:

Lumpectomy 0.579
Mastectomy 0.421
Distance to nearest radiation:
Driving time (minutes) 10.9 143 2 32
Driving distance (miles) 7.9 11.6 1.0 24.9
Spherical distance (miles) 5.3 7.8 0.7 17.6
Demographics (at time of diagnosis):
Year of diagnosis 2003.2 3.7 1997 2009
Age 60.8 13.8 40 83
Married 0.570
Medicaid coverage 0.156
Race: Non-Hispanic White 0.692
Race: Hispanic 0.141
Race: Asian or Pacific 0.101
Race: Other 0.066
Census-block characteristics (using 2000 census):
Share below twice poverty line 0.253 0.187 0.041 0.636
Median annual income 58,908 28,525 24,063 110,595
Share with blue collar job 0.108 0.060 0.020 0.213
Share unemployed 0.037 0.029 0.001 0.090
Median monthly rental rate 955.2 404.6 466 1,814
Median home value 266,417 188,861 76,300 660,300
Average years of schooling 13.9 1.3 11.3 15.5

Clinical characteristics (at time of diagnosis):
Cancer Stage:

In Situ 0.182
Local 0.533
Regional spread 0.264
Remote spread 0.017
Tumor grade:
1 0.190
2 0.379
3 0.278
4 0.047

Notes: This table displays the mean and - for non-binary variables - the standard deviation, 5th percentile, and 95th percentile

in our baseline sample (N=323,612). Distance is one-way distance. Our demographic covariates are year of diagnosis (here
continuous; indicator variables in our analyses, with 1997 as the omitted year); age (here continuous; indicator variables in
our analyses for below 40, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, and above 80, with below 40 as the omitted
group); marital status indicators (married; other/missing is omitted in our analyses); a Medicaid coverage indicator (=1 if
Medicaid covered part of the primary source of payment to the hospital); and race/ethnicity indicators (non-Hispanic White,
Hispanic, and Asian or Pacific; other/missing is omitted in our analyses). Our census block characteristics are drawn from
the 2000 census: percent of population within the census block group that is at or below 200% of the poverty line; median
household income within the census block group; proportion of those 16 years of age or over within the census block group
with a blue collar job; proportion of those 16 years of age or over within the census block group in the labor force that are
unemployed; median gross rent of renter occupied houses within the census block group; median gross home value of owner
occupied houses within the census block group; and average years of schooling in the census tract. Our clinical characteristics
are two measures of the extent of disease at the time of diagnosis: indicators for cancer stage (in situ, localized, regional, and
remote; missing stage is omitted in our analyses), and indicators for cancer grade (1, 2, 3, and 4; missing grade is omitted

in our analyses).
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Table 2: Summary statistics by above and below median travel time

Mean
Above median distance Below median distance P-val
Treatment choice:
Lumpectomy 0.569 0.588 0.000
Mastectomy 0.431 0.412 0.000
Distance to nearest radiation:
Driving time (minutes) 17.4 44 0.000
Driving distance (miles) 132 2.6 0.000
Spherical distance (miles) 8.8 1.9 0.000
Demographics (at time of diagnosis):
Year of diagnosis 2003.2 2003.1 0.000
Age 60.5 61.1 0.000
Married 0.608 0.533 0.000
Medicaid coverage 0.150 0.163 0.000
Race: Non-Hispanic White 0.724 0.660 0.000
Race: Hispanic 0.128 0.155 0.000
Race: Asian or Pacific 0.088 0.114 0.000
Race: Other 0.060 0.071 0.000
Census-block characteristics (using 2000 census):
Share below twice poverty line 24.004 26.613 0.000
Median annual income 60,245 57,572 0.000
Share with blue collar job 0.111 0.104 0.000
Share unemployed 0.037 0.037 0.007
Median monthly rental rate 952.6 957.9 0.000
Median home value 253,002 279,832 0.000
Average years of schooling 14.0 13.9 0.000
Clinical characteristics (at time of diagnosis):
Cancer Stage:
In Situ 0.183 0.182 0.386
Local 0.533 0.533 0.981
Regional spread 0.263 0.265 0.388
Remote spread 0.017 0.017 0.573
Tumor grade:
1 0.195 0.186 0.000
2 0.376 0.382 0.000
3 0.273 0.284 0.000
4 0.048 0.046 0.068

Notes: This table splits our baseline sample (N=323,612) by above and below median distance from a radiation facility,

presents the mean for each sub-sample, and presents the p-value from a test for a difference between these means (with

unadjusted standard errors). All covariates are as described in the notes to Table



27

[T] °Iq®L 07 S990U 1) Ul PO(LIdSap
SB OI® S9IRLIRAOD [[ '90URISIP UO SHUSIOJO0D WOPURI SMO[[e (Q) UWMN[O)) PUR ‘SOINSLIUl 9OUR)SIP INO PUR SOJRLIBAOD 9SOY} USIMIO( SUOIIORISIUI Sppe (G) uwnjo))
"ATOATSSEIONS S[OIJUOD [RITUID PUR ‘S[OIJU0D }DO[] Snsua)) ‘sorydeiSowap I0J sajelreaod ppe (F) pue ‘(g) ‘(g) sumwmio)) ‘S[OIJU0d OU [IM [9POUW J1S0] &' UWIOI] SOJRUITISO
syprodar (1) uwnjo)) ‘syualyed ssoIor 1090 SIY) JO UOIIRIAGD PIepuR)s o1} Sk [[om se ‘(deiisjooq oy jo suoljesijdel ()G UO paseq pur ‘[9ad] AJUNOD oY} JB PaIo)snio)
Iol1o prepue)s s pue ojdures o) Ul }09po [eulSIewr oaFeioe o) 110dol WA} om (I9SUO] SOYNUIUT ()] SALIP IS OPRUI oM JI 9SURYD P[NOM )T Aem oY) Pue (SHUSIILJO0D
PpojewI)se oY) ULAIS) ao10yd Awojoedwn] e Jo Aj1iqeqoid pajorpeid oy - ojdures o ur juatyed yoes 10f - Jurnduwod £q ouwr) [oARI} AeM-9UO Ul 9SeSIOUl 9INUTI-U) ©
01 90adso1 )M 109]jo pojeul)se o1} sproder oqey sty ], ‘Awojooduwn] ® seA1eda1 juatjed o) JT T 09 [enbe ‘o[qeLIes I09eIIpPUI UR SI d[qRLIRA dW02INO ST, (ZT9‘CZE=N)
o[dures auraseq INo I0J ‘SISOUSRIP I90URD JO SUWII) YY) I8 90USPISI JO sseIppe sjusljed o) WOIJ poInseaul ‘AYI[I0R] UOIJRIPRI )SOIedU 9} 0] oW} [9ARI} (AvM-9UO) pU®

Ame = Edwav %EO@U@QEEM JO 901070 jusuujeal} JI20URD }SeII( UdoM}oq Qﬁﬂmﬁo_adﬁwh o} mﬁsﬁgsmw mgoﬁmmwhwwh ﬁmoﬁ WO} SojelII}So SoZlIewiwuns a[qe} SIyJ, :SoJ0ON

109130 9AOQE oY) JO

Y200 L0000°0 £0000°0 £0000°0 900000 £0000°0 (s1u5mred $50108) TONEIASD PIEPUEIS
(£9200°0) (#9000°0) (95000°0) (6¥000°0) (95000°0) (95000°0) (Jo115 prepuess)
$520°0- 8010°0- 6CL00°0- ¥0L00°0- 0010°0- LLOO0- JwiI} [2ABI) UT 9SBAIOUI
nuIW-()| © JO 109}J0 93BIOAY
) (9] ) (©) @ (n
uoﬁ.mum% AEO.SQOO :mv moEmCOwomumﬂo
SJUSIOIJA0D WOpURI : SOISLIdJORIBYD C soydesdowap
1M pajoeIaul J00[q SnSud) S9JBLIBAOD ON
+ () uwnjo) P [edrur[o ey — + (1) uwnjo)
+ (¢) uumjo)

1307 snouadoro)oy

31807 snosudgowoy

ouII} [9ARI) AQ 9D10YD JUdWIedI], ¢ d[(e],



28

Table 4: Counterfactual analysis

Homogeneous Logit Heterogenous Logit

lumn (3) +
Nocoa | Com(e COL Ml AL oy
demographics characteristics characteristics distance random coefficients
(all controls)
M @ 3 (C)) ©F (6)°

Observed choices ("Full coverage" benchmark

Lumpectomy share 0.579 0.579 0.579 0.579 0.579 0.579

Consumer surplus 5,255 4,066 5,796 5,899 9,559° 6.84E+13
Charge $5,000 for lumpectomy (= 4.35 hours)

Change in lumpectomy share -0.203 -0.257 -0.184 -0.177 -0.254 -0.076

Change in consumer surplus -2,385 -2,242 -2,434 -2,453 -2,125 -2,623

Change in insurer profits 3,910 4,180 3,815 3,780 4,163 3,275

Overall change in welfare 1,525 1,938 1,381 1,327 2,038 652
Charge $10,000 for lumpectomy (= 8.7 hours). ("Top up" benchmark)

Change in lumpectomy share -0.369 -0.438 -0.342 -0.335 -0.398 -0.096

Change in consumer surplus -3,826 -3,357 -3,996 -4,053 -3,234 -5,082

Change in insurer profits 5,790 5,790 5,790 5,790 5,790 5,790

Overall change in welfare 1,964 2,433 1,794 1,737 2,556 708
Charge $50,000 for lumpectomy (= 34.8 hours). ("No-top up" benchmark)

Change in lumpectomy share -0.579 -0.579 -0.578 -0.578 -0.579 -0.149

Change in consumer surplus -5,253 -4,066 -5,791 -5,894 -9,559 -23,099

Change in insurer profits 5,790 5,790 5,830 5,830 5,790 22,990

Overall change in welfare 537 1,724 39 -64 -3,769 -109
Mandate mastectomy

Change in lumpectomy share -0.579 -0.579 -0.579 -0.579 -0.579 -0.579

Change in consumer surplus -5,255 -4,066 -5,796 -5,899 -9,559°¢ -6.84E+13

Change in insurer profits 5,790 5,790 5,790 5,790 5,790 5,790

Overall change in welfare 535 1,724 -6 -109 -3,769 -6.84E+13

Notes: All reported changes (in lumpectomy share, consumer surplus, and total cost saving) are relative to the observed choices, for our baseline sample (N=323,612).
Counterfactuals involve various potential charges for lumpectomy (ranging from $5,000 to infinity). For each counterfactual we report in parentheses the equivalent
addition to one-way drive time (assuming 25 round trips valued at $23 per hour, as described in the text). The columns are as described in the notes to Table - All
covariates are as described in the notes to Table [I]

A@vn in the specification of column (5), the point estimate of 3; is negative for 4.3% of individuals. The reported results assume that 8; = 0 for these individuals.

AS” due to the large estimated heterogeneity of §8; in the specification of column (6), the welfare estimates for the "mandate mastectomy" case (bottom set of rows)
are extremely large and should be interpreted with a great deal of caution. This does not affect the welfare estimates for finite price changes, in which the individuals
with low 3;’s are infra-marginal and thus do not affect the estimates.

(€).the welfare estimates for actual choices (top set of rows) and for the “mandate mastectomy” case (bottom set of rows) are computed for the 95.7% of the individuals

whose f;’s are strictly positive.
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Figure A.1: Treatment choice

by spherical distance to nearest radiation facility
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Notes: These figures plot the probability of treatment by spherical distance in miles to the nearest radiation facility, measured
from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample (N=323,612). Panel (a) plots

the raw data, and a histogram of the number of patients by spherical distance. Panel (b) plots the de-meaned lumpectomy

rate as well as two residualized versions. The first residualizes lumpectomy probability using patient characteristics. The

second adds neighborhood-level covariates from the 2000 Census and clinical covariates. All covariates are as described in

the notes to Table [
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Figure A.2: Treatment choice by travel distance to nearest radiation facility

(a) Raw data
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Notes: These figures plot the probability of treatment by travel distance in miles to the nearest radiation facility, measured
from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample (N=323,612). Panel (a) plots
the raw data, and a histogram of the number of patients by spherical distance. Panel (b) plots the de-meaned lumpectomy
rate as well as two residualized versions. The first residualizes lumpectomy probability using patient characteristics. The
second adds neighborhood-level covariates from the 2000 Census and clinical covariates. All covariates are as described in
the notes to Table [1l
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Table A.2: Robustness: Treatment choice by spherical distance

Homogeneous Logit Heterogenous Logit
Column (3) +
. Column (1) + Column (2) + clinical All controls, also gy 4
No covariates . Census block . interacted with .
demographics - characteristics . random coefficients
characteristics distance
(all controls)
M ®)) 3) ) (5) (6)
Average effect of a 10-mile increase
in spherical distance -0.0177 -0.0211 -0.0146 -0.0151 -0.0231 -0.0732
(standard error) (0.00116) (0.00097) (0.00097) (0.00101) (0.00120) (0.00840)
Standard deviation (across patients) 0.00010 0.00052 0.00052 0.00124 0.01470 0.26626
of the above effect

Notes: This table summarizes estimates from logit regressions estimating the relationship between breast cancer treatment choice of lumpectomy (mean = 0.58)
and spherical distance to the nearest radiation facility, measured from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample
(N=323,612). The outcome variable is an indicator variable, equal to 1 if the patient receives a lumpectomy. This table reports the estimated effect with respect
to a ten mile increase in spherical distance by computing - for each patient in our sample - the predicted probability of a lumpectomy choice (given the estimated
coeflicients) and the way it would change if we made her travel ten spherical miles longer; we then report the average marginal effect in the sample and its standard
error (clustered at the county level, and based on 50 replications of the bootstrap), as well as the standard deviation of this effect across patients. Column (1) reports
estimates from a logit model with no controls. Columns (2), (3), and (4) add covariates for demographics, Census block controls, and clinical controls successively.

Column (5) adds interactions between these covariates and our distance measures, and Column (6) allows random coefficients on distance. All covariates are as
described in the notes to Table [T]
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Table A.4: Parameter estimates and standard errors underlying Table -

Homogeneous Logit Heterogenous Logit
Column (3) +
. Column (1) + Column (2) + clinical >.= controls, m_mo Column (4) +
No covariates . Census block . interacted with .
demographics . characteristics . random coefficients
characteristics distance
(all controls)
(O] @ 3 @ ) (6)
Travel time (minutes)
-0.0032 -0.0041 -0.0029 -0.0030 -0.0045
(standard error) (0.00102) (0.00124) (0.00112) (0.00129) (0.00197)
Mean of (random) coefficient on
travel time -8,910
(standard error) (51,629)
Std. deviation of (random)
coefficient on travel time (minutes) 3.5E+12
(standard error) (4.78E+13)

Notes: This table summarizes the parameter estimates and their standard errors that give rise to the average marginal effects reported in Table H All details are as
reported in the notes to Table[3]
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Table A.6: Robustness: Treatment choice by travel time, linear probability models

Column (2) + Oo_zﬂ:m 3)+ All controls, also
. Column (1) + clinical . .
No covariates . Census block .. interacted with
demographics . characteristics .
characteristics distance
(all controls)
)] 2 3) 4 &)
Trvael time (in 10-minute units)
-0.0078 -0.0100 -0.0070 -0.0068 -0.0101
(standard error) (0.00252) (0.00303) (0.00275) (0.00293) (0.00440)

Notes: This table summarizes estimates from linear probability models estimating the relationship between breast cancer treatment choice of lumpectomy (mean
= 0.58) and travel time to the nearest radiation facility, measured from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample
(N=323,612). The outcome variable is an indicator variable, equal to 1 if the patient receives a lumpectomy. Column (1) reports estimates from a model with no
controls. Columns (2), (3), and (4) add covariates for demographics, Census block controls, and clinical controls successively. Column (5) adds interactions between

these covariates and our distance measures. Standard errors are clustered by county. All covariates are as described in the notes to Table [I]



