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Abstract

We present a simple framework to illustrate the welfare consequences of a “top up” health insurance
policy that allows patients to pay the incremental price for more expensive treatment options. We
contrast it with common alternative policies that require essentially no incremental payments for
more expensive treatments (as in the United States), or require patients to pay the full costs of
more expensive treatments (as in the United Kingdom). We provide an empirical illustration of this
welfare analysis in the context of treatment choices among breast cancer patients, where lumpectomy
with radiation therapy is a more expensive treatment than mastectomy, with similar average health
benefits. We use variation in distance to the nearest radiation facility to estimate the relative demand
for lumpectomy and mastectomy. Extrapolating the resultant demand curve (grossly) out of sample,
our estimates suggest that the “top-up” policy, which achieves the efficient treatment decision, increases
total welfare by $700-2,500 per patient relative to the current US “full coverage” policy, and by $700-
1,800 per patient relative to the UK “no top up” policy. While we caution against putting much
weight on our specific estimates, the analysis illustrates the potential welfare gains from more efficient
reimbursement policies for medical treatments. We also briefly discuss additional tradeoffs that arise
from the top-up and UK-style policies, which both lead to additional (ex-ante) risk exposure.
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1 Introduction

Medical expenditures in the US are high and increasing. Policy and academic discussions of strategies to

reduce health care spending have largely focused on increasing cost sensitivity either on the demand side

through consumer cost-sharing, or on the provider side by making providers the residual claimant on cost

savings. A natural economic solution which has not received much attention is a “top-up” design in which

health insurance contracts would cover the cost of a baseline treatment, and patients could choose to pay

the incremental cost of more expensive treatments out of pocket.

This type of “top-up” design contrasts with the standard “full coverage” insurance design in the United

States, in which consumers face essentially no incremental cost of choosing a more expensive treatment

(other than perhaps some minimal consumer cost-sharing). Other high-income countries have taken

an alternative approach: individual medical treatments deemed “cost-effective” are fully covered, and

treatments deemed not to be cost effective are not covered at all. In the UK, for example, the National

Institute for Health and Care Excellence (NICE) determines which medical technologies will be covered

by the National Health Service (NHS), using – in recent years – a threshold of around $50,000 per quality-

adjusted year of life saved (McCabe, Claxton and Culyer, 2008). This threshold rule results in the NHS

not covering some medical treatments: for example, in 2010 NICE refused coverage for the drug Avastin

as a treatment for metastatic colorectal cancer on the basis that the drug improved life expectancy by six

weeks (relative to the preexisting standard of care) at a cost of around $115,000 per quality-adjusted year

of life saved.1 As a result, patients in the UK who want to choose a treatment like Avastin must pay the

full cost of that treatment. Such UK-style “no top-up” designs have recently been introduced in Australia,

France, and Germany (Chalkidou and Anderson, 2009), and received a great deal of negative publicity in

the US under the name of “death panels” during the debate over the 2010 Affordable Care Act.2

Relative to either the US “full coverage” or the UK “no top up” regimes, a “top-up” design in which

individuals internalize treatment costs on the margin achieves the efficient allocation of patients across

treatments. Conceptually, this simple point is not new. It has been made in other contexts, such as

public subsidies for education (Peltzman, 1973), public health insurance subsidies (Cutler and Gruber,

1996), pricing of employer-provided health insurance plans (Enthoven and Kronick, 1989), and incentives

for patients to see specific providers within health insurance plans (Robinson and MacPherson, 2012).

However, to our knowledge, it has not received much attention in discussions of insurance coverage for

1See http://www.nice.org.uk/media/E58/E7/2010182BevacizumabForColorectalCancerFinalGuidance.pdf and the
discussion in Chandra, Jena and Skinner (2011).

2Such negative publicity not withstanding, Pollack (2014) describes some groups of US medical specialists (in particular,
for cardiology and oncology) who are recommending that costs be taken into account when developing medical guidelines;
insurance companies often use medical guidelines to determine reimbursement policies.

http://www.nice.org.uk/media/E58/E7/2010182BevacizumabForColorectalCancerFinalGuidance.pdf


2

different treatments, with the exception of a recent paper by Baicker, Shephard and Skinner (2012) who

use a calibrated simulation model to explore this idea. Moreover, quantifying the welfare consequences of

a “top-up” design naturally requires empirical estimates.

In this paper, we present a simple graphical framework to illustrate the welfare consequences of alter-

native insurance designs for reimbursement of different treatment choices, and explore this welfare analysis

empirically in the specific context of treatment choices among breast cancer patients. Most patients di-

agnosed with breast cancer receive surgery as an initial course of treatment. The key treatment choice is

between two types of surgery: mastectomy, which removes the cancerous breast, and lumpectomy, which

removes the tumor while preserving the breast and is generally followed by a course of radiation therapy.

While evidence from randomized clinical trials has suggested no average difference in survival between

mastectomy relative to lumpectomy with radiation (Fisher et al., 1985), mastectomy tends to be less

expensive (Polsky et al., 2003).

Public and private insurance in the US typically covers the costs of both treatments fully (or nearly

fully) so that patients do not internalize the difference in treatment costs. In principle, under comparative

effectiveness regulations – where the goal is stated as covering the lowest-cost option attaining the best

health outcome (Chandra, Jena and Skinner, 2011) – mastectomy would be covered by insurance whereas

lumpectomy with radiation would not. Because the latter is a more costly treatment with no evidence

of superior average health outcomes, patients choosing it would face the full cost of the treatment.3 In

contrast, a top-up policy in this context is analogous to an indemnity insurance policy that pays out if

a patient is diagnosed with breast cancer, at a fixed sum equal to the cost of a mastectomy.4 While we

focus on the example of a comparative effectiveness regulation which uses a threshold of zero, as long as

the incremental value for society is less than the incremental cost, the same qualitative analysis holds for

a threshold above zero (such as the UK threshold of $50,000 per quality-adjusted year of life saved).

The key empirical object needed to evaluate the welfare consequences of these three insurance designs

is the (relative) demand curve for the more expensive treatment option, which in this case is lumpectomy.

We know of no useful variation in the relative price for lumpectomy. Instead, we estimate the relative

demand curve for lumpectomy using variation across patients in the distance between their residence at

the time of diagnosis and the nearest radiation clinic.5 A standard course of post-lumpectomy radiation

3Although the comparative effectiveness literature recognizes the potential that health benefits may be heterogeneous,
in principle (if not in practice) that limitation could be solved by randomized clinical trials that are sufficiently powered to
detect such heterogeneity. Such approaches could not however, even in principle, address heterogeneity in preferences over
non-health aspects of treatment. Recent work in social insurance has emphasized the potential importance of heterogeneous
preferences both conceptually (Feldstein, 1995) and empirically (Einav, Finkelstein and Schrimpf, 2010).

4Of course, such alternative insurance designs for breast cancer may not be particularly realistic from a political perspec-
tive. We focus on breast cancer because of the empirical traction it offers for estimating demand for alternative treatments.

5The use of distance between patients and providers as variation dates back in the health economics literature at least
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therapy requires 25 round-trips to a radiation facility, spread over 5 weeks. Our key economic assumptions

are that travel time can be monetized and that preferences for reduction in travel time are analogous to

preferences for any other equivalent price difference. These assumptions allow us to use the variation in

distance to the radiation facility as if it were variation in the relative price of lumpectomy, thus identifying

the demand curve.

We analyze cancer registry administrative data on the characteristics and treatment choices of over

300,000 breast cancer patients initially diagnosed in California between 1997 and 2009, linked to data on

the location of radiation treatment facilities over the same time period. Building on similar results in the

medical literature (Schroen et al., 2005), we document that women living further away from radiation

facilities at the time of their breast cancer diagnosis are more likely to choose mastectomies rather than

lumpectomies. Our key econometric assumption is that there are not omitted patient characteristics

correlated with both distance and demand for lumpectomy. We observe a rich set of patient demographic

and clinical characteristics and find that while some of these variables vary with distance, the magnitude

of the relationship between treatment choice and travel time is not very sensitive to their inclusion. Our

baseline estimates imply that a 10 minute increase in one-way travel time (approximately two-thirds of a

standard deviation in our data) reduces the probability of a lumpectomy by about 0.7 to 1.1 percentage

points, relative to a baseline lumpectomy rate of about 58 percent.

We then use the estimated demand curve to illustrate how the welfare effects of alternative insurance

designs can be quantified, albeit highly out of sample relative to our observed variation in “price.” We

estimate, for example, that the efficient “top-up” policy – in which patients pay $10,000 on the margin for

a lumpectomy – increases the lumpectomy rate by 15-25 percentage points relative to the UK-style “no

top-up” regime, and decreases the lumpectomy rate by 35-40 percentage points relative to the US-style

“full coverage” regime. Our estimates suggest total welfare gains from the “top-up” policy of between $700

and $1,800 per patient relative to a “no top-up” UK-style policy and between $700 and $2,500 per patient

relative to a “full coverage” US-style policy.

In the final section of the paper, we briefly consider the additional tradeoffs faced when the welfare

analysis is done from an ex-ante perspective, thus accounting for differential risk exposure across regimes.

Qualitatively, the top-up policy continues to dominate the UK-style no top-up policy, but the relative

ranking of the top-up policy and the US-style full coverage policy is now ambiguous. We present a simple

and highly stylized calibration which shows that, for high enough levels of risk aversion, ex-ante welfare

can be higher under a US-style full coverage policy than under a top-up policy that produces the ex-post

efficient treatment decisions.

to the work of McClellan, McNeil and Newhouse (1994).
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The paper is organized as follows. Section 2 details our empirical setting – treatments for breast

cancer – and describes our data. Section 3 outlines our conceptual framework, and describes our empirical

strategy. Section 4 presents our main results. Section 5 briefly discusses implications for ex-ante welfare,

and Section 6 concludes.

2 Setting and data

2.1 Treatment choices for breast cancer

Our analysis is focused on the treatment choice made by breast cancer patients.6 Most patients diagnosed

with breast cancer have surgery to attempt to remove the cancer from the breast; in our data, 95 percent

of women diagnosed with breast cancer receive surgery as an initial course of treatment. For women

receiving surgery, the key treatment choice is between two alternatives, lumpectomy and mastectomy.

Lumpectomies are breast-conserving surgeries that remove the cancer but not the breast itself, and are

generally followed by a course of radiation therapy. Mastectomies, in contrast, remove the entire cancerous

breast and are generally not followed by a course of radiation therapy. Other forms of treatment such as

chemotherapy are commonly administered either before or after (or both) either type of surgery.

In terms of clinical effectiveness, the key comparative evidence on these treatments comes from the

National Surgical Adjuvant Breast and Bowel Project (NSABP) B06 clinical trial, which enrolled women

with stage I and stage II breast tumors. The initial results of this trial were released in 1985 (Fisher

et al., 1985), with subsequent follow-up results (with longer-term mortality outcomes) published in 1989

(Fisher et al., 1989), 1995 (Fisher et al., 1995), and 2002 (Fisher et al., 2002). The results of this clinical

trial suggested there were no detectable differences in survival outcomes across random assignment to

more invasive (total mastectomy) versus less invasive (lumpectomy with or without radiation therapy)

treatments.

In terms of overall financial costs (shared by both patients and insurers), there is a consensus that

lumpectomy with radiation is more expensive than mastectomy. Mastectomy is cheaper primarily because

of the add-on cost of the radiation therapy which accompanies lumpectomies. A common argument is that

the more relevant costs are not those associated with the initial course of treatment, but rather the total,

subsequent “lifetime” costs over the following years. While comparing these longer-run costs of the two

treatments is more difficult due to various selection concerns – for example, co-morbidities that vary with

treatment choice – the evidence on lifetime costs also strongly suggests that mastectomy is cheaper, even

6Many of the clinical details in this section are drawn from the National Cancer Institute’s guide to the treatment of
breast cancer; see http://www.cancer.gov/cancertopics/pdq/treatment/breast/Patient/.

http://www.cancer.gov/cancertopics/pdq/treatment/breast/Patient/
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after attempting to correct for potential selection bias. For example, Polsky et al. (2003) compare five-year

total Medicare payments across Medicare patients with breast cancer receiving lumpectomy relative to

mastectomy: the unadjusted difference between mastectomy and lumpectomy was $8,389 (relative to a

baseline of $40,130 for mastectomy), the risk-adjusted difference was $13,775 (relative to a baseline of

$38,623 for mastectomy), and the propensity score-adjusted difference was $14,054 (relative to a baseline

of $38,664). In all three versions of their analysis, the 95-percent confidence intervals can reject cost

differences smaller than $4,500.7

An additional difference in cost between the two treatments, which our empirical exercise will focus

on, is the time cost of traveling to receive post-surgery radiation therapy associated with lumpectomy.8

A standard course of radiation therapy requires 25 treatments spread over 5 weeks.9 Motivated by this

substantial time commitment required for radiation therapy, several papers in the medical literature have

explored whether women living further away from radiation facilities are more likely to choose to have

mastectomies rather than lumpectomies with radiation. For example, Schroen et al. (2005) use data

from the Virginia cancer registry from 1996-2000 (∼20,000 patients) and document that the probability

of patients choosing mastectomy increases with distance from the radiation facility: in their full sample,

43% of women choose mastectomy if they live within 10 miles of a radiation facility, whereas among

women living more than 50 miles from a radiation facility the share is 58%.10 Our empirical work will

build on this medical literature by confirming a relationship between distance from radiation facilities and

treatment choice in a much larger sample of over 300,000 patients in California, and using this variation

to estimate a demand curve for lumpectomy. This estimated demand curve will in turn be the key input

into policy counterfactual exercises investigating how patients might respond to changes in the financial

costs of treatments induced by different health insurance contract designs.

7In our illustrative quantitative welfare analyses below, we assume that the higher payments for lumpectomy relative to
mastectomy reflect differences in underlying resource costs (i.e. social marginal cost). To the extent that prices paid are
distorted relative to social marginal costs, our results below would naturally need to be adjusted.

8While our cancer registry data offers an incomplete set of information on cancer treatments, as observed in our data
more than 60 percent of patients choosing lumpectomy receive radiation therapy during their initial course of treatment,
compared to less than 20 percent of mastectomy patients.

9See this US National Cancer Institute Cancer Bulletin from 2010: http://www.cancer.gov/aboutnci/
ncicancerbulletin/archive/2010/022310/page2.

10Nattinger et al. (2001) and Celaya et al. (2006) document similar patterns in the SEER cancer registry (1991-1992,
∼17,000 patients) and the New Hampshire cancer registry data (1998-2000, ∼3,000 patients), respectively. Athas et al.
(2000) investigate this relationship in the New Mexico tumor registry data (1994-1995, ∼1,000 patients) and do not find
evidence of a similar relationship, although they do find that the probability of receiving radiation post-lumpectomy falls
with distance from a radiation facility.

http://www.cancer.gov/aboutnci/ncicancerbulletin/archive/2010/022310/page2
http://www.cancer.gov/aboutnci/ncicancerbulletin/archive/2010/022310/page2
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2.2 Data

Our empirical analysis uses two datasets from the state of California: a patient-level cancer registry

dataset, and data on radiation treatment facility locations.

Our patient-level data is drawn from the California Cancer Registry (CCR), a program of the California

Department of Public Health. The CCR was established in 1985, and every cancer diagnosis made in

California from 1988 forward is required by law to be reported to the CCR.11 Data are collected directly

from cancer patients’ medical records at the time of the cancer diagnosis, rather than by interviewing

patients. Available variables in the CCR research database include demographic covariates such as age,

race, and sex; diagnostic information such as cancer type and stage of disease; and treatment information

on the first course of treatment received by the patient (if any). A key advantage of the CCR research

database relative to other cancer registry databases such as the SEER cancer registry is that the CCR

data include patients’ exact address of residence at the time of diagnosis, which enables our empirical

analysis to rely on a more precise measure of how far patients live from radiation treatment facilities than

would be possible if we only observed county of residence, as is available in the SEER data.

Our data on radiation treatment facility locations comes from the private firm IMV. IMV aims to

identify all hospital and non-hospital sites in the US performing radiation therapy, and queries these

sites with a telephone survey. The sampling frame for the telephone survey is constructed from several

sources, including federal and state nuclear licensing lists.12 We obtained data on the full sampling frame

of California sites, including exact street address for all institutions, for all available survey years (1996

to 2011).13 Because survey response rates vary across years (ranging from 45 to 87 percent), we use all

institutions in the sampling frame as our set of facilities of interest, regardless of whether the institution

responded to the survey.

We restrict the CCR data to female breast cancer patients diagnosed between 1997 and 2009, which

covers all years after the first IMV survey (1996) and until the last year of the CCR cancer registry

data (2009). Following sample restrictions used in National Cancer Institute analyses of breast cancer

11See http://www.ccrcal.org/pdf/Reports/Physicians.pdf for more details on these reporting requirements, which fall
under California Health and Safety Code 103885.

12Specifically, IMV reports that it identifies candidate sites from nuclear licensing lists compiled by the Nuclear Regulatory
Commission, lists from state licensing agencies, the American Hospital Association Guide to the Health Care Field database,
internal IMV lists, previous IMV data collections, and internal IMV internet research. Because many radiation facilities are
based at non-hospital sites, the IMV data are preferable to relying solely on hospital-based datasets such as the American
Hospital Association annual survey data. The IMV data have been used in several previous papers, such as Baker (2001),
Baker and Atlas (2004), and Baker, Atlas and Afendulis (2008).

13Surveys are conducted approximately every one to two years over this time period. Specifically, IMV’s data collection
periods are 1996 (covering 2/96 to 1/97), 1998 (covering 3/98 to 9/98), 2000 (covering 3/00 to 10/00), 2001 (covering 11/01
to 7/02), 2003 (covering 11/02 to 1/04), 2004 (covering 8/04 to 12/05), 2006/08 (covering 9/06 to 10/08), and 2010/11
(covering 12/09 to 11/11).

http://www.ccrcal.org/pdf/Reports/Physicians.pdf
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registry data (Gloeckler Ries and Eisner, 2007), we exclude cases identified through autopsy and death

certificate only (<0.5% of observations), and cases where the age at diagnosis was less than 20 (<0.1% of

observations). Given our empirical strategy, we also limit the sample to patients with non-missing data

on treatment (<0.3% of observations) and non-missing data on residence at the time of diagnosis (<0.2%

of observations).

For ease of presentation, because our primary analysis is focused on the choice between lumpectomy

and mastectomy, we also omit from the baseline sample the 5.8 percent of the cases in which the patient

chose neither of these two surgical treatments. Our results are not sensitive to this sample selection, and

the appendix presents analogous results for the full sample (Appendix Table A.1).

Finally, combining these two datasets, for each patient we computed (using Google Maps in summer of

2012) the distance between her residence at the time of diagnosis and the nearest facility offering radiation

treatment as recorded in the IMV sampling frame as of January 1st in the year of diagnosis. Our baseline

analysis uses driving time, while the appendix reports results that are based on driving distance and

spherical distance; our results are not sensitive to the choice of distance measure (see Appendix Figures

A.1 and A.2, and Appendix Tables A.2 and A.3).

To summarize, our baseline sample covers 323,612 breast cancer patients that were diagnosed between

1997 and 2009 and chose either mastectomy or lumpectomy as their initial treatment, with each patient

matched to her nearest radiation facility.

3 Conceptual framework and empirical strategy

Consider a woman i recently diagnosed with breast cancer, facing a binary choice between receiving a

mastectomy (M) or receiving a lumpectomy together with radiation therapy (L). The key input into the

analysis of the welfare effect of alternative reimbursement policies is the relative valuation (or willingness

to pay) for L, given by

vi ≡ vi,L − vi,M , (1)

and its distribution across cancer patients, which is given by the cumulative distribution function F (vi).

That is, our main empirical object of interest can be summarized by the demand curve for lumpectomy,

which is illustrated in Figure 1, and is given by F−1(·). Variation in the relative valuation of L across

patients may reflect heterogeneity in relative health benefits, or heterogeneity in relative valuation of

non-health attributes of the two treatments, or both.

Abstracting from income effects, this demand curve F−1(·) is sufficient to evaluate the welfare effects
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of alternative policy structures. Note that our discussion of welfare and efficiency here refers to efficiency

of treatment choice, or ex-post efficiency, a point we return to in Section 5. With that in mind, the efficient

policy is to cover both treatments, but to require cancer patients to incur the incremental costs associated

with lumpectomy. We denote this policy by “top-up” in Figure 1, which denotes the incremental (social)

cost of L by c, and the incremental price the patient faces for L by p. The top-up policy sets p = c. The

resultant allocation, point E in Figure 1, occurs when F−1(·) = c. Since patients internalize the social

marginal cost of treatment, the allocation is efficient; all patients whose incremental willingness to pay for

lumpectomy (vi) is above the social marginal cost of the lumpectomy (c) would choose it, and all those

for whom vi < c would not.

The US-style “full coverage” policy is given by point D in Figure 1; cancer patients can choose between

M and L and do not face any of the incremental financial cost associated with L (p = 0). Because

lumpectomy is more expensive than mastectomy, this policy produces inefficient treatment decisions. A

set of cancer patients whose relative valuation for L is lower than c inefficiently choose L because they do

not pay the cost c (paid by the insurer) associated with it. This welfare loss is summarized in Figure 1

by the triangle CDE.

Finally, we consider a third possible policy (denoted “No top-up” in Figure 1) in which the insurance

policy covers only the choice of the cheaper treatment M . In this situation, cancer patients may still

choose L, but if they do so will have to pay its entire cost out of pocket. As detailed in the introduction,

the UK uses this type of “no top-up” insurance regime, and other high-income countries have been moving

towards similar frameworks. In our setting, such a “no top-up” policy would cover the patient’s full cost

of mastectomy, but would not reimburse any costs if the patient chooses lumpectomy. This would lead

to a welfare loss that is summarized in Figure 1 by triangle ABE: a set of cancer patients who prefer

lumpectomy would opt into mastectomy in order to avoid the financial cost, despite the fact that vi > c,

thus implying that a choice of L would have been socially efficient. This is analogous to the classic welfare

analyses of requiring individuals who opt out of the public schools to pay the full cost of private schooling

(Peltzman, 1973) or requiring individuals who opt out of public insurance to pay the full cost of private

insurance (Cutler and Gruber, 1996).

In the rest of the paper we explore these tradeoffs quantitatively. Figure 1 makes clear that the key

empirical object for welfare analysis is the demand curve for lumpectomy (relative to mastectomy). The

demand curve is derived from vi, individuals’ incremental willingness to pay for L. Our empirical strategy

is therefore focused on estimating this demand curve.

Estimation of the demand curve requires identifying variation in the relative price of lumpectomy.

Motivated by the medical literature discussed in Section 2.1, which has documented an empirical rela-
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tionship between distance from radiation facilities and breast cancer treatment choices, we use variation

across patients in the distance to the nearest radiation facility in order to estimate the demand curve.

Specifically, we normalize patient i’s utility from mastectomy to zero and assume that her (relative)

utility from lumpectomy is given by

ui ≡ αi − βi(θidi + p), (2)

where αi and βi are the (potentially patient-specific) preference parameters, di is the distance of patient

i to the nearest radiation facility, and p is the incremental price she would need to pay for lumpectomy

(relative to mastectomy). Distance is denominated in miles or travel hours while price is denominated in

dollars, so the parameter θi captures the opportunity cost of time, and thus serves as a simple conversion

factor that allows us to monetize distance/time. The patient would choose lumpectomy if and only if

ui > 0. From the econometrician’s perspective, we obtain

Pr(Lumpectomy) = Pr(ui > 0). (3)

An important assumption in this specification, and one that is crucial for our empirical strategy, is

that θi can be calibrated using external information so that, conditional on θi, price and (monetized)

distance have the same effect on individual utility. This assumption allows us to estimate the distribution

of αi and βi in the data using variation in distance only, but then use the estimated distributions to assess

the impact of counterfactual policy designs that change price. Because the out-of-pocket price from either

treatment is effectively zero in our California data, this assumption or the choice of θi does not affect

estimation; it only becomes relevant in the counterfactual exercises. To see this, replace p = 0 in equation

(2), and define β′i = βiθi, to obtain

ui ≡ αi − β′idi, (4)

which has a familiar form. We assume that αi = x′iγ
α
i + εi and that βi = x′iγ

β
i + uβi and that εi follows a

type I extreme value distribution. These assumptions lend themselves to a standard logit regression when

uβi = 0 and to a random-coefficient logit model otherwise.
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4 Results

4.1 Summary statistics and initial evidence

Table 1 presents some summary statistics for the baseline sample. We aggregate the detailed treatment

information in the cancer registry data into indicator variables for whether the patient received a lumpec-

tomy or a mastectomy as their initial course of treatment: 58% of women receive lumpectomy and 42%

receive mastectomy.14 A standard course of radiation consists of 25 round trips. Patients would need, on

average, to drive eight miles (11 minutes) each way to the nearest radiation facility. However, there is a

fair amount of variation along this dimension, with many patients living within a few minutes of a facility,

while others would be required to drive more than half an hour each way for each treatment.

An attraction of our data is the availability of a relatively rich set of covariates measuring patient

demographics and clinical characteristics. Specifically, we observe patient age, race, marital status, and

some information on type of insurance coverage. While the data lack individual-level measures of co-

variates such as income or educational attainment, the cancer registry data matches on these and other

characteristics at the census-block level. In terms of clinical covariates measuring cancer severity, we

observe data on the two primary measures of the extent of the disease at the time of diagnosis which are

used by physicians to guide patient treatment decisions: stage and grade. In situ corresponds to an early

stage (sometimes called “pre-cancer”), and local, regional, and remote correspond to increasing extents of

disease.15 Grade is an alternative measure of the extent of disease at the time of diagnosis, with higher

values corresponding to increasing extents of disease.16

Table 2 splits the sample by above and below median travel time from a radiation facility. Women

who live further from a radiation facility are more likely to receive mastectomies and less likely to receive

lumpectomies. However, as in Schroen et al. (2005) and other previous work, women closer to and further

from radiation facilities also appear to differ on observable characteristics. In terms of demographic

characteristics, women living closer to radiation facilities tend to be older, less likely to be white, less likely

to be married, and more likely to have Medicaid as a primary payment source.17 In terms of neighborhood

characteristics, women living closer to radiation facilities tend to live in slightly poorer neighborhoods (as

measured by income), but also in areas with slightly higher median home values. In terms of clinical

characteristics, the above- and below-median distance samples appear relatively more balanced on stage

14Only the initial course of treatment is recorded in the cancer registry data. Our coding of lumpectomy and mastectomy
follows Roetzheim et al. (2008).

15For more details, see the SEER training website: http://training.seer.cancer.gov/ss2k/staging/review.html.
16For more details, see the SEER instructions for coding grade: http://seer.cancer.gov/tools/grade/.
17The California cancer registry data also includes information on non-Medicaid payment sources: around 16% of women

are covered by Medicaid, 26% by Medicare, 56% by private payers, and the small remainder (<2%) self-pay or other sources.

http://training.seer.cancer.gov/ss2k/staging/review.html
http://seer.cancer.gov/tools/grade/
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and grade of disease: while several of the differences in grade indicators are statistically significant, no

clear pattern emerges in terms of one group being in “better” health in terms of cancer progression at the

time of diagnosis. Overall, Table 2 provides preliminary support for the idea that distance may affect

treatment choices among breast cancer patients, but also highlights the need to examine the robustness of

this relationship to conditioning on demographic, neighborhood, and clinical characteristics, as distance

to radiation facility is clearly correlated with other patient characteristics which may themselves affect

treatment choice.

To explore how travel distance to a radiation facility affects the treatment choice of breast cancer

patients in our sample, Figure 2(a) plots the probability of mastectomy and the probability of lumpectomy

by travel time to the nearest radiation facility. The histogram in light gray displays the number of

observations (patients) in each travel time bin in our sample. These raw data on treatment choices

display the expected pattern: women who live further from radiation facilities are more likely to receive

mastectomies and less likely to receive lumpectomies.

Figure 2(b) investigates whether this relationship between distance and treatment choice can be ex-

plained by the differences in demographic or health characteristics of the patients that we saw in Table

2. It presents a series of plots which residualize the y-axis (lumpectomy) for various covariates; to retain

comparability with Figure 2(a) we do not residualize the x-axis (distance), but our regression specifications

below which condition out these covariates paint a similar picture. The first line (dashed and square de-

noted) presents the de-meaned lumpectomy rates for each travel time bin as a point of comparison. The

other two lines show the residualized lumpectomy estimates after sequentially adding more covariates.

The second line (solid and triangle denoted) conditions out patient characteristics, and the third (dashed

and circle denoted) adds neighborhood-level covariates and clinical characteristics. Consistent with what

we will document in the regression specifications below, Figure 2(b) suggests that the overall relationship

between treatment choice and travel time is not very sensitive to the inclusion of these covariates.

4.2 Treatment choices by distance

Table 3 quantifies the treatment-distance relationship, estimating different specifications of the logit re-

gression in equation (4). For ease of interpretation, Table 3 reports our estimate of the average marginal

effect on lumpectomy probability of a ten-minute increase in (one way) travel time, with bootstrapped

standard errors clustered at the county level (50 iterations); recall from Table 1 that this ten-minute

increment is about two-thirds of a standard deviation of travel time in our sample. We also report the

standard deviation of this effect across patients. In the appendix, we report the parameter estimates (and
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their standard errors) that give rise to these average marginal effects (see Appendix Table A.4).

Column (1) of Table 3 reports the simplest specification, where we estimate a logit model of whether

the patient chose lumpectomy on travel time with no controls. Using the notation of Section 3, column

(1) assumes that neither αi nor βi are affected by any patient-specific variables. Columns (2), (3), and

(4) retain the same (homogenous logit) assumption for βi but increasingly add covariates that shift αi,

thus affecting the mean utility from lumpectomy. In column (5) we also allow these observables to change

βi by adding interaction terms between these covariates and distance. Finally, column (6) reports results

from a specification that allows random coefficients on distance: it assumes that βi follows a lognormal

distribution, thus relaxing the assumption of uβi = 0 that is assumed in all other specifications.

The effect of distance is statistically significant and is quantitatively reasonably stable across all

specifications, as would be expected given the patterns we documented in Figure 2. The specification

of column (6) leads to the largest effect, but this estimate is quite noisy (as the estimated parameters

that govern the distribution of the random coefficient are imprecisely estimated; see Table A.4). Overall,

we find that having the nearest radiation facility ten minutes further from the patient’s residence makes

her less likely to choose lumpectomy by about 0.7 to 1.1 percentage points (or about 1.2 to 1.9 percent

relative to the mean lumpectomy probability of 58 percent). Observable characteristics do not appear to

have an important effect on this distance estimate, as can be seen from the fact that the heterogeneity in

this estimate does not change much in column (5) relative to the preceding columns.

Taken together, these estimates suggest a reasonably robust relationship between the distance from

womens’ place of residence at the time of their diagnosis with breast cancer to the nearest radiation

treatment facility, and their choice of cancer treatments. In the appendix, we show that these basic

results are robust to a variety of alternative specifications, including alternative (mileage-based rather than

time-based) measures of distance (Appendix Figures A.1 and A.2, and Appendix Tables A.2 and A.3),

non-linear parameterizations of distance (Appendix Table A.5), and estimation with linear probability

models (Appendix Table A.6). In the next section, we build on these estimates to use this distance

measure as a shifter in the effective relative price women face for breast cancer treatments in order to

investigate how breast cancer patients would respond to various (out of sample) policy counterfactuals.

4.3 Policy counterfactuals: estimating treatment choices and ex-post welfare

Following the conceptual framework depicted in Figure 1, our estimated demand curve for lumpectomy

allows us to perform quantitative exercises of the impact of alternative insurance designs which vary the

price the consumer faces for L. .To see what the exercise is, one can think of each demand specification
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as estimating a distribution of the willingness to pay for lumpectomy. To do so, we can use equation (2),

which defines patient i’s willingness to pay for lumpectomy to be

vi ≡
αi
βi
− θidi, (5)

and, as before, denote the estimated demand by the distribution F (vi). A given demand specification

provides estimates for the joint distribution of αi and βi, and di is observed. We assume throughout this

section that θi is equal to $1,150 for all patients. To arrive at this estimate for θi, we rely on the fact (see

Section 2.1) that a typical course of radiation therapy treatment involves 25 round trips to the radiation

facility, and that the average hourly wage as reported by the Bureau of Labor Statistics is just over 23

dollars (so 23 · 25 · 2 = $1, 150).18 Of course, one could (and should) raise plausible concerns that the

opportunity cost of time may be heterogeneous across patients, or that the opportunity cost of time of a

breast cancer patient may be higher or lower than that of a healthy working individual. Fortunately, the

transformation is sufficiently simple and transparent that one could fairly easily use our results to obtain

quantitative estimates that rely on alternative values of θi.

Equipped with an estimate of F (vi) and given an (incremental) price of lumpectomy p defined by the

insurance design, the share of patients choosing lumpectomy is given by 1 − F (p) and consumer surplus

(per patient, relative to everyone being forced to choose mastectomy) is given by (1− F (p))E(vi|vi > p).

The total incremental cost is given by (1− F (p))c.

Figure 3 illustrates the nature of this exercise. In Figure 3(a) we plot the implied demand system

for lumpectomy using the simplest specification - column 1 of Table 3 - and in Figure 3(b) we plot the

implied demand system for lumpectomy using our richest specification - column (6) of Table 3. These

figures are the empirical analogs to our conceptual Figure 1, and we indicate the analogous points along

them. We also use Figure 3 to illustrate the variation (in distance) used to estimate the demand function

by plotting the empirical distribution of the monetized distance (that is, distance in hours multiplied by

θ = $1, 150), illustrating the point we emphasized in the introduction: our key counterfactual exercises

are quite far out of sample, and therefore should be treated with caution. For this illustrative purpose,

we use the information discussed in Section 2.1 to approximate the incremental cost of lumpectomy (c)

at $10,000 and the total cost of lumpectomy at $50,000, which is the incremental cost together with the

baseline cost of $40,000 for mastectomy.

Figure 3(a) is based on specification (1) of Table 3, which does not include any controls. This speci-

18Specifically, this Bureau of Labor Statistics figure is for average hourly earnings in October 2012: http://www.bls.gov/
news.release/empsit.t19.htm.

http://www.bls.gov/news.release/empsit.t19.htm
http://www.bls.gov/news.release/empsit.t19.htm
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fication indicates that the US-style “full coverage” policy (given by point D) in which consumers do not

pay on the margin for lumpectomy raises the lumpectomy rate by about 37 percentage points relative to

the efficient level (given by point E) of about 21 percent; the associated welfare cost is about $2,000 per

patient relative to the efficient allocation. Figure 3(b) is instead based on the richest model (column (6) of

Table 3), which allows heterogeneity in the response to price and thus make the demand curvature much

greater, leading to more elastic demand for small price changes but to a much lower elasticity for large

changes. This specification suggests that the US-style “full coverage” policy raises the lumpectomy rate

by only about 10 percentage points relative to the efficient level of 48 percent, with a resultant welfare

cost of about $710 per patient.

Likewise, the estimates without controls in Figure 3(a) suggest that a UK-style “no top-up” policy

(given by point A) in which insurance only covers mastectomies and patients must pay the full cost of

a lumpectomy reduces the lumpectomy rate from about 21 percent under the efficient top-up policy to

nearly zero, and reduces welfare by about $1,400 per patient, relative to the efficient outcome. When we

use the richest model, Figure 3(b), however, a large fraction of the patients are estimated to be not very

price sensitive, so lumpectomy rates fall by only about 4.5 percentage points from the efficient level of 48

percent, with a welfare cost of about $800 per patient relative to the efficient level.

For completeness, Table 4 reports additional estimates for a variety of counterfactuals for each of the

six demand specifications reported in Table 3. The top panel reports the observed outcome (for p = 0),

which corresponds to our US-style full coverage benchmark. Each of the subsequent panels report a set

of estimates for a different (counterfactual) price for lumpectomy (retaining a zero price for mastectomy).

The first row of each panel reports the demand response; that is, the reduction in lumpectomy share

(relative to the observed level) from the increase in price. The second row of each panel reports the (per

patient) reduction in consumer surplus (relative to the observed level). The change in surplus consists of

two components: a set of “marginal” patients change their choice to mastectomy as a result of the price

change, and their change in consumer surplus is given by integrating under this portion of the demand

curve; and a set of “inframarginal” patients, who have high willingness to pay for lumpectomy, do not

change their choices, but now face a higher price which reduces their surplus. The third row of each panel

uses a cost of $10,000 for the incremental costs of lumpectomy to report the change in insurer profit, which

consist of not paying for lumpectomies for the “marginal” patients and (except for the case of mandate)

from charging an incremental price for lumpectomies from the “inframarginal” patients. Finally, the fourth

row of each panel reports the overall change in welfare by adding up the change in consumer surplus and

the change in insurer profits. We chose the counterfactuals to illustrate price changes of $5,000 as a figure

that is close to the lower 95% confidence interval of cost differences from Polsky et al. (2003), and is a
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smaller change that is less out of sample; $10,000 as a figure that is close to the midpoint of the cost

difference range from Polsky et al. (2003); and $50,000 as a figure that is close to the “full” (no top-up)

cost based on the figures from Polsky et al. (2003).

5 Ex-ante efficiency: A simple calibration

Our analysis thus far has focused on the impact of alternative insurance designs for the (ex-post) efficiency

of treatment choice, taking as given the extent of the patient’s risk exposure. We would be remiss, however,

to analyze the welfare consequences of insurance designs without considering their impact on risk exposure

and hence ex-ante utility. We briefly do so here.

The different insurance designs have different implications for ex-ante risk exposure, making the qual-

itative ranking of ex-ante efficiency between the US policy and the top-up policy a priori ambiguous. This

is because the “top up” policy – which produces the (ex-post) efficient treatment decision – leaves the

consumer exposed to risk ex ante. To see this, note that under a “top up” policy in which individuals can

pay on the margin for L, risk exposure is increasing in vi (up to c).

To evaluate ex-ante utility of a given individual, the key empirical object will once again be the

individual’s willingness to pay for lumpectomy relative to mastectomy vi, which we assume is known to

the individual at the beginning of the coverage year. In addition, we assume individuals are expected-

utility maximizers with CARA utility w(x) = −exp(−rx) with a (homogeneous) coefficient of absolute

risk aversion r, and (homogeneous) annual probability of illness ρ. Assuming mastectomy is fully covered

and the lumpectomy price is p, the individual is faced with a risk of losing min(p, vi) with probability

ρ. She will either choose lumpectomy and face a financial risk of p, or choose mastectomy and incur a

monetized risk of vi, whichever is smaller.

The individual’s ex-ante utility is given by πi, which is the solution to: w(x − πi) = (1 − ρ)w(x) +

ρw(x−min(p, vi)).For vi > 019 this yields:

πi =
1

r
log[ρ · exp(r ·min(vi; p)) + 1− ρ)]. (6)

The price p depends on the insurance design. Under the “top up” policy p = c, and equation (6) indicates

that this leaves the individual exposed to risk (πi > 0).

The “first-best” policy – which involves no ex-ante risk exposure and achieves the ex-post efficient

treatment choice – would be to offer a continuum of indemnity insurance policies, which pay each patient

a lump sum of min(vi, c) in the event of illness and then allows individuals to pay the incremental cost of L
19For vi < 0 the individual will always chooseM and be fully insured under any of the insurance arrangements we consider.
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out of pocket; in a competitive equilibrium a policy that pays min(vi, c) would be priced at ρmin(vi, c) and

will be bought by individuals with willingness to pay vi > 0, leaving them unexposed to risk. Such a policy

would eliminate both ex-ante and ex-post efficiency losses. From an ex-post perspective, patients would

obtain the lump sum, but only those patients with vi > c would choose lumpectomy, thus replicating the

treatment efficiency described in the previous section. From an ex-ante perspective, individuals would be

fully insured and would not be exposed to any risk, which is the efficient outcome (assuming, as is typical,

that the insurance provider is risk neutral).

Given the impracticality of this policy, we consider the ex-ante utility properties of the three policies

we have explored.20 The “full coverage” (US) policy sets p = 0; it removes ex-ante risk exposure (πi = 0)

and maximizes consumer surplus (−πi) but, as discussed, produces ex-post socially inefficient treatment

choices. The “no top up” UK policy sets p = TC, the total cost of L; it therefore not only produces ex-post

inefficient treatment choices but also exposes the individual to ex-ante risk. Moreover, since TC > c –

by definition the total cost of L is greater than the incremental cost – it is clear from equation (6) that

consumer surplus is lower (πi is higher) under the UK policy than the top-up policy. The higher social

welfare ranking of the top-up policy relative to the UK policy is thus preserved when ex-ante utility is

considered. The relative social welfare ranking of the US policy and the top-up policy is a priori unclear

as is the relative ranking of the US and UK policies; all else equal, the US policy’s relative ranking is

increasing in risk aversion r.

To assess ex-ante social welfare under the alternative insurance designs, equation (6) makes clear that

in addition to the demand curve F (vi) that we have already estimated, we also need values for the risk

of breast cancer (ρ) and the coefficient of absolute risk aversion (r). Table 5 reports the results from an

illustrative calibration exercise. We assume a homogeneous annual risk of breast cancer for a 60 year old

female of ρ = 0.48%.21 We calibrate r based on a range of estimates reported in Table 6 of Cohen and

Einav (2007). We use the estimates of F (vi) from the simplest empirical specification reported in column

(1) of Table 3.

The first column reports the share of breast cancer patients choosing lumpectomy, which does not

depend on the level of risk aversion. The second column reports the cost savings to insurers relative to the

20The first best seems impractical primarily because typical markets offer discrete rather than continuous coverage and
coverage tends to be in the form of payment for treatment options, rather than lump sum cash payments. One might
naturally consider therefore the possibility of a (break-even) insurance policy that would cover the social incremental cost of
L in the event of illness. Note however that this does not achieve the first best. Any individual with vi > c would purchase
the policy, face no ex-ante risk exposure and make efficient ex-post treatment decisions. However, some individuals with
sufficiently high vi < c would also purchase the insurance to avoid financial risk, and would therefore (inefficiently) choose
L ex-post.

21In our California cancer registry data in 2000, there were 585 60-year-old females diagnosed with breast cancer. Dividing
this number by the total population of 60-year-old females in California as of 1-July 1999 (120,668; http://www.census.
gov/popest/data/state/asrh/1990s/tables/st-99-10.txt) gives p = 0.48%.

http://www.census.gov/popest/data/state/asrh/1990s/tables/st-99-10.txt
http://www.census.gov/popest/data/state/asrh/1990s/tables/st-99-10.txt
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US-style full coverage case. For the no top-up case, these insurer cost savings are $50,000 for the small

share of people who still choose L, and $10,000 for anyone who previously chose L but now chooses M .

For the top-up case these insurer cost savings are $10,000 times the share of people who chose L under

full coverage. The third column reports the loss in consumer surplus relative to full coverage; we measure

this by the change in πi, as defined in equation (6). Note that this loss in consumer surplus is associated

with all individuals in the population, not only with those who are subsequently diagnosed with breast

cancer, so even a small magnitude of π could be magnified once it affects the entire population of potential

breast cancer patients. Finally, the fourth column reports the total social cost relative to full coverage,

by adding up the second and third columns.

The results indicate how the (total) efficiency ranking of the top-up policy relative to the US-style full

coverage policy depends on risk aversion. For the lowest value of risk aversion we consider, social welfare

is higher under the top-up policy, but for higher values of risk aversion it is higher under the US-style full

coverage policy. The full-coverage policy always delivers higher total welfare than the UK-style “no top up”

policy for our calibrated values. This illustrative analysis suggests that focusing solely on ex-post efficiency

analysis could miss an important part of the picture, and that the ex-ante risk exposure generated by

top-up policies could be much more costly than the allocative efficiencies these policies may provide. Of

course, this calibration exercise is extremely stylized; evaluating this trade-off more systematically would

require, among other things, better estimates of r and ρ – as well as potentially heterogeneity in them

and selection on them – for our population.

6 Conclusion

We present a simple framework to illustrate the welfare gains from a health insurance policy that allows

patients to pay the incremental price for more expensive treatment options. Such a policy efficiently

sorts low willingness-to-pay patients to the cheaper treatment option, in contrast with the current status

quo in the US where the incentives for such sorting are minimal. At the same time, this policy does

not “over price” the more expensive treatment, as is common in the UK and several other high-income

countries, which allocates too many patients to the cheaper treatment. Our analysis of the choice between

lumpectomy and mastectomy for breast cancer patients provides an empirical illustration as to how such

a policy could be evaluated, and what the quantitative welfare gains to such a policy might be.

Most of our analysis (with the exception of Section 5) focused on analyzing the efficiency of sorting

patients to treatments, taking the overall level of risk exposure as given. In this analysis, our “top up”

policy resembles a form of indemnity insurance, which pays a fixed amount for a given medical “event,”
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such as the diagnosis of breast cancer. Cutler and Zeckhauser (2000) describe how health insurance in

the US started off as a quasi-indemnity policy – in most cases paying a fixed cash amount per day in the

hospital. Ma and McGuire (1997) argue that pure indemnity payments dissolved over time because of the

difficulty of verifying – in a contractually feasible way – what the adverse health event was. Thus, even

absent political economy barriers, implementing such an indemnity-type policy could be challenging in

many – although perhaps not all – contexts.
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Figure 1: Conceptual framework: Treatment choice
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Notes: This figure illustrates conceptually the efficiency consequences of alternative insurance designs (i.e. prices for lumpec-
tomy (L) relative to mastectomy (M)). The efficient allocation is given by point E and the “top-up” insurance design under
which patients pay the incremental cost of L relative to M , and fraction Ltop-up choose L. Equilibrium under a US-style
“full coverage” insurance design in which individuals do not pay on the margin for L relative to M is given by point D,
where fraction Lfull coverage choose L. The welfare loss from this outcome relative to the efficient outcome is given by triangle
CDE. Equilibrium under a UK-style “no top-up” alternative insurance design in which only M is covered by insurance and
patients must pay the total cost for L is given by point A, where Lno top-up choose L and the welfare loss relative to the
efficient outcome is given by triangle ABE.
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Figure 2: Treatment choice by travel time to nearest radiation facility
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Notes: These figures plot the probability of treatment by travel time in minutes to the nearest radiation facility, measured
from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample (N=323,612). Panel (a) plots
the raw data, and a histogram of the number of patients by travel time. Panel (b) plots the de-meaned lumpectomy rate
as well as two residualized versions. The first residualizes lumpectomy probability using patient characteristics. The second
adds neighborhood-level covariates from the 2000 Census and clinical covariates. All covariates are as described in the notes
to Table 1.
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Figure 3: Empirical analog of conceptual framework: Treatment choice

(a) Homogeneous logit

(b) Random coefficient logit

Notes: These figures represent the empirical analog of Figure 1. The curves plot the implied demand system for lumpectomy
based on: in Panel (a), the estimates in column (1) of Table 3; and in Panel (b), the estimates in column (6) of Table 3.
The scatterplots in the lower right-hand corners of the graphs illustrate the variation (in travel time) used to estimate the
demand function by plotting the empirical distribution of the monetized distance (that is, distance in hours multiplied by
θ = $1, 150), using the 7 distance “bins” shown in Figure 2; this illustrates the point we emphasize in the text: our key
counterfactual exercises are quite far out of sample, and therefore should be taken with caution.
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Table 1: Summary statistics

Mean Std. Dev. 5th Pct. 95th Pct.

Treatment choice:
Lumpectomy 0.579
Mastectomy 0.421

Distance to nearest radiation:
Driving time (minutes) 10.9 14.3 2 32
Driving distance (miles) 7.9 11.6 1.0 24.9
Spherical distance (miles) 5.3 7.8 0.7 17.6

Demographics (at time of diagnosis):
Year of diagnosis 2003.2 3.7 1997 2009
Age 60.8 13.8 40 83
Married 0.570
Medicaid coverage 0.156
Race: Non-Hispanic White 0.692
Race: Hispanic 0.141
Race: Asian or Pacific 0.101
Race: Other 0.066

Census-block characteristics (using 2000 census):
Share below twice poverty line 0.253 0.187 0.041 0.636
Median annual income 58,908 28,525 24,063 110,595
Share with blue collar job 0.108 0.060 0.020 0.213
Share unemployed 0.037 0.029 0.001 0.090
Median monthly rental rate 955.2 404.6 466 1,814
Median home value 266,417 188,861 76,300 660,300
Average years of schooling 13.9 1.3 11.3 15.5

Clinical characteristics (at time of diagnosis):
Cancer Stage:

In Situ 0.182
Local 0.533
Regional spread 0.264
Remote spread 0.017

Tumor grade:
1 0.190
2 0.379
3 0.278
4 0.047

Notes: This table displays the mean and - for non-binary variables - the standard deviation, 5th percentile, and 95th percentile
in our baseline sample (N=323,612). Distance is one-way distance. Our demographic covariates are year of diagnosis (here
continuous; indicator variables in our analyses, with 1997 as the omitted year); age (here continuous; indicator variables in
our analyses for below 40, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, and above 80, with below 40 as the omitted
group); marital status indicators (married; other/missing is omitted in our analyses); a Medicaid coverage indicator (=1 if
Medicaid covered part of the primary source of payment to the hospital); and race/ethnicity indicators (non-Hispanic White,
Hispanic, and Asian or Pacific; other/missing is omitted in our analyses). Our census block characteristics are drawn from
the 2000 census: percent of population within the census block group that is at or below 200% of the poverty line; median
household income within the census block group; proportion of those 16 years of age or over within the census block group
with a blue collar job; proportion of those 16 years of age or over within the census block group in the labor force that are
unemployed; median gross rent of renter occupied houses within the census block group; median gross home value of owner
occupied houses within the census block group; and average years of schooling in the census tract. Our clinical characteristics
are two measures of the extent of disease at the time of diagnosis: indicators for cancer stage (in situ, localized, regional, and
remote; missing stage is omitted in our analyses), and indicators for cancer grade (1, 2, 3, and 4; missing grade is omitted
in our analyses).
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Table 2: Summary statistics by above and below median travel time

Above median distance Below median distance

Treatment choice:
Lumpectomy 0.569 0.588 0.000
Mastectomy 0.431 0.412 0.000

Distance to nearest radiation:
Driving time (minutes) 17.4 4.4 0.000
Driving distance (miles) 13.2 2.6 0.000
Spherical distance (miles) 8.8 1.9 0.000

Demographics (at time of diagnosis):
Year of diagnosis 2003.2 2003.1 0.000
Age 60.5 61.1 0.000
Married 0.608 0.533 0.000
Medicaid coverage 0.150 0.163 0.000
Race: Non-Hispanic White 0.724 0.660 0.000
Race: Hispanic 0.128 0.155 0.000
Race: Asian or Pacific 0.088 0.114 0.000
Race: Other 0.060 0.071 0.000

Census-block characteristics (using 2000 census):
Share below twice poverty line 24.004 26.613 0.000
Median annual income 60,245 57,572 0.000
Share with blue collar job 0.111 0.104 0.000
Share unemployed 0.037 0.037 0.007
Median monthly rental rate 952.6 957.9 0.000
Median home value 253,002 279,832 0.000
Average years of schooling 14.0 13.9 0.000

Clinical characteristics (at time of diagnosis):
Cancer Stage:

In Situ 0.183 0.182 0.386
Local 0.533 0.533 0.981
Regional spread 0.263 0.265 0.388
Remote spread 0.017 0.017 0.573

Tumor grade:
1 0.195 0.186 0.000
2 0.376 0.382 0.000
3 0.273 0.284 0.000
4 0.048 0.046 0.068

Mean
P-val

Notes: This table splits our baseline sample (N=323,612) by above and below median distance from a radiation facility,
presents the mean for each sub-sample, and presents the p-value from a test for a difference between these means (with
unadjusted standard errors). All covariates are as described in the notes to Table 1.
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A Appendix: Additional figures and tables
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Figure A.1: Treatment choice by spherical distance to nearest radiation facility

(a) Raw data

(b) Residualized data
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Notes: These figures plot the probability of treatment by spherical distance in miles to the nearest radiation facility, measured
from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample (N=323,612). Panel (a) plots
the raw data, and a histogram of the number of patients by spherical distance. Panel (b) plots the de-meaned lumpectomy
rate as well as two residualized versions. The first residualizes lumpectomy probability using patient characteristics. The
second adds neighborhood-level covariates from the 2000 Census and clinical covariates. All covariates are as described in
the notes to Table 1.
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Figure A.2: Treatment choice by travel distance to nearest radiation facility

(a) Raw data

(b) Residualized data
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Notes: These figures plot the probability of treatment by travel distance in miles to the nearest radiation facility, measured
from the patients’ address of residence at the time of cancer diagnosis, for our baseline sample (N=323,612). Panel (a) plots
the raw data, and a histogram of the number of patients by spherical distance. Panel (b) plots the de-meaned lumpectomy
rate as well as two residualized versions. The first residualizes lumpectomy probability using patient characteristics. The
second adds neighborhood-level covariates from the 2000 Census and clinical covariates. All covariates are as described in
the notes to Table 1.
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ographics

C
olum

n (2) + 
C

ensus block 
characteristics

C
olum

n (3) + 
clinical 

characteristics 
(all controls)

A
ll controls, also 

interacted w
ith 

distance

(1)
(2)

(3)
(4)

(5)

Trvael tim
e (in 10-m

inute units)
-0.0078

-0.0100
-0.0070

-0.0068
-0.0101

(standard error)
(0.00252)

(0.00303)
(0.00275)

(0.00293)
(0.00440)

N
otes:

T
his

table
sum

m
arizes

estim
ates

from
linear

probability
m
odels

estim
ating

the
relationship

betw
een

breast
cancer

treatm
ent

choice
of

lum
pectom

y
(m

ean
=

0.58)
and

travel
tim

e
to

the
nearest

radiation
facility,

m
easured

from
the

patients’
address

of
residence

at
the

tim
e
of

cancer
diagnosis,

for
our

baseline
sam

ple
(N

=
323,612).

T
he

outcom
e
variable

is
an

indicator
variable,

equal
to

1
if
the

patient
receives

a
lum

pectom
y.

C
olum

n
(1)

reports
estim

ates
from

a
m
odel

w
ith

no
controls.

C
olum

ns
(2),(3),and

(4)
add

covariates
for

dem
ographics,C

ensus
block

controls,and
clinicalcontrols

successively.
C
olum

n
(5)

adds
interactions

betw
een

these
covariates

and
our

distance
m
easures.

Standard
errors

are
clustered

by
county.

A
llcovariates

are
as

described
in

the
notes

to
T
able

1.


