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Abstract

We derive a dynamic theoretical model that tests the social opti-

mum and selfish Nash equilibrium of a renewable resource, a stock of

fish. In the social optimum, maximum fishing effort is observed in the

last period only. The predictions are tested at a recreational fishing

pond. The subjects, experienced recreational fishermen, are placed in

groups of four and face a dynamic social dilemma. The results show

strong support for the selfish Nash equilibrium. Fishermen exert as

much effort in the last period as in the preceding periods, and effort is

independent of the stock of fish.
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Since Hardin (1968)’s seminal paper, the ‘Tragedy of the Commons’ is

the standard metaphor to describe how the unregulated use of natural re-

sources can result in the depletion of these resources. Hardin used overgraz-

ing of the local commons as a motivating example, but the metaphor has

also been applied to the overuse and depletion of other resources, including

fish stocks in the high seas. Indeed, Hardin’s paper helped to popularize

earlier work, especially by Gordon (1954) and Scott (1955), on fishery man-

agement. The work of the latter two authors, as well as that of Schaefer

(1957), gave rise to the ‘canonical renewable resource model’ that has been

used in hundreds of papers in natural resource and environmental economics

(Brown (2000)).

The core of this model is that resource regeneration is a logistic function

of the size of the stock. When left untouched, stocks tend to increase accord-

ing to an S-function, with growth being fastest at intermediate stock sizes.1

Hotelling (1931) argued that natural resources can be viewed as assets, and

hence the socially optimal stock is the one at which the rate of return on

the resource equals the rate of return on other assets – the risk adjusted

interest rate. However, standard game theory predicts that non-cooperative

users over-extract relative to this optimum, as the benefits of catching addi-

tional fish are private, whereas the costs (increased search costs, or reduced

regeneration of the stock) are borne by all.

Experimental study of the behavioral properties of the canonical model

has been scant. Laboratory research has established that individuals have

social preferences, but how prominently they appear depends on the context.

It is therefore important to conduct experiments to study whether, and

to what extent, behavior conforms to the non-cooperative or cooperative

benchmarks in this canonical model. The few studies that are published in

this domain yielded mixed results regarding the observed level of cooperation

(see Keser and Gardner (1999), Herr, Gardner and Walker (1997), Mason

and Phillips (1997), Chermak and Krause (2002), and Fischer, Irlenbusch

1When stocks are small, there is little offspring because of the small number of females
producing offspring. When the number of surviving offspring is also small when stocks
are large because of fierce competition for food and other base resources.
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and Sadrieh (2004)).

We construct a framed field experiment to evaluate the canonical renew-

able resource model. The experiment, conducted at a recreational fishing

facility, offers a unique opportunity to test its predictions in a contextual-

ized setting. The subjects of the experiment are all experienced recreational

fishers. For fishermen at this site the task of fishing and imposing negative

externalities on other fishers comes naturally. While the fishermen are all

better off if they cooperate and reduce their catch, we find no evidence of

such behaviour. Rather, we find strong support for the Nash equilibrium

prediction of our model.

1 The canonical model of renewable resource use

A finite number (n > 1) of homogenous agents indexed i have access to

a fish stock. Access may be indefinite, but it may also be restricted to a

specific time period. Let us denote this time horizon by T ∈ 〈0,∞〉. The

size of the resource stock at time t is denoted by x(t), which evolves over

time according to:

dx(t)/dt = g(x(t)) −

n∑

i=1

hi(t). (1)

where g(x(t)) is the net natural increase in the resource stock that emanates

from a stock of size x(t), and hi(t) is the quantity harvested by agent i at

time t. The natural increase of a stock with size x(t), g(x(t)), is captured

by a logistic growth function:

g(x(t)) = γx(t)

(
1−

x(t)

K

)
. (2)

Here, γ > 0 is the intrinsic growth rate and K > 0 denotes the maximum

size of the resource stock the ecosystem can sustain. Agent i’s catch at time

t, hi(t), is given by the standard Schaefer (1957) production function:

hi(t) = αqi(t)x(t), 0 ≤ qi(t) ≤ q̄, (3)
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where qi(t) is agent i’s harvesting effort at time t, and q̄ is the maximum

amount of effort an agent can put in at any moment. The marginal produc-

tivity of effort, ∂hi/∂qi, depends on the harvesting technology (α, e.g. nets

or fishing rod, etc.), and also on the size of the fish stock, x(t). For a given

effort and technology, the larger the stock size, the greater the fish density,

and the more fish will be caught per unit of effort.

We now derive x(t), the size of the stock at every point in time. For

any initial x(t0), and as long as aggregate effort (Q ≡
∑n

i=1 qi) is constant

during a specific time interval, [t0, t1], the size of that stock at t1 can be

found by substituting (2) and (3) into (1) and integrating:

x(t1; t0, x(t0), Q) =
K (γ − αQ) /γ(

K(γ−αQ)/γ−x(t0)
x(t0)

)
e−(γ−αQ)(t1−t0) + 1

.

We assume that αnq̄ > γ: given the effort constraint and the technology

used, the fishery can be depleted. We also assume that x(0) = K: when

harvesting begins, the fish stock is maximal. Finally, if fishermen care only

about their own catch, and there are no (variable) harvesting costs, then

the net present value of an agent’s welfare is then equal to:

∫ T

t=0
p̄hi(t)e

−rtdt, (4)

where p̄ is the marginal value of a resource unit extracted (assumed to

be exogenous and time invariant), and r is the appropriate discount rate

(possibly the interest rate).

Maximizing group welfare requires to

max
hi(t)

∫ T

t=0

n∑

i=1

p̄hi(t)e
−rtdt (5)

subject to (1)-(3) and x(0) = K.

Proposition 1 The socially optimal program is:
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QSO(t) =





nq̄ if 0 ≤ t < T 0,
g(x∗)
αx∗

if T 0 ≤ t < T 1,

nq̄ if T 1 ≤ t ≤ T,

with x∗ ≡ K(γ−r)/(2γ) and with T 0 and T 1 implicitly defined by x(T 0; 0,K, nq̄) =

x∗ and x(T ;T 1, x∗, nq̄) = 0 (see (4)).

Proof Substituting (1) into (5) and integrating by parts, the social

welfare maximization problem becomes

max
x(t)

{
p̄
[
x0 − x(T )e−rT

]
+ p̄

∫ T

t=0
[g(x(t)) − rx(t)] e−rtdt

}
,

with transversality condition x(T )e−rT = 0.

Suppose that T → ∞. Because limT→∞ e−rT = 0, we may have limT→∞ x(T ) >

0. In (6), the per-period profit flow is maximized if x∗ = K(γ − r)/(2γ)

– the stock where g′(x) ≡ dg(x)/dx = r. Starting from x(0) = K, so-

cial welfare is therefore maximized if x∗ is reached as quickly as possible.

Hence, QSO(x) = nq̄ for all x > x∗, while QSO(x∗) is implicitly defined by

αx∗QSO = g(x∗). The moment at which harvesting effort switches from

QSO(x) = nq̄ to QSO(x∗), T 0, is implicitly determined by x(T 0; 0,K, nq̄) =

x∗.

With finite T and because harvesting is costless, the transversality con-

dition requires that x(T ) = 0. To deplete the resource at T , aggregate

harvesting effort should increase, from Q∗ to nq̄, at time T 1, where T 1 is

implicitly defined by x(T ;T 1, x∗, nq̄) = 0. �

The socially optimal program has a Most Rapid Approach Path (MRAP),

as the two focal stock sizes, x = x∗ and x = 0, should be reached at maxi-

mum speed (QSO(t) = nq̄ if either t < T 0 or t > T 1).

Regarding the non-cooperative game, we cannot rule out that there are

many potential Nash equilibria. Because the social optimum is MRAP, we

focus on the class of Nash equilibria that are MRAP too (see Clark (1980), or

Dockner et al. (2000)). Absent cooperation, each agent’s objective function
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is

max
hi(t)

∫ T

t=0
p̄hi(t)e

−rtdt

subject to (1)-(3) and x(0) = K. We state the following proposition.

Proposition 2 The unique MRAP solution to the non-cooperative game

is that QNE(x) = nq̄ for all x > 0. The time at which the stock is

depleted, TNE , is implicitly defined by x(TNE ; 0,K, nq̄) = 0.

Proof Let us use Q−i =
∑

j 6=i qj to denote aggregate effort by all agents

other than i. Using g−i(x) = g(x)− αxQ−i to denote the ‘residual regener-

ation function’ faced by agent i, she maximizes

max
x(t)

{
p̄
[
x0 − x(T )e−rT

]
+ p̄

∫ T

t=0
[g−i(x(t)) − rx(t)] e−rtdt

}
.

A candidate solution to (6) is to choose qi = q̄ if x > x̃, qi = 0 if x < x̃,

and qi = g−i(x̃)/αx̃ if x = x̃, where x̃ solves g′−i(x̃) = r. We prove that this

cannot be an equilibrium.

Consider the case where T → ∞. For x̃ > 0 to be a symmetric Nash

equilibrium steady state, all agents must harvest at qj = g(x̃)/(nαx̃) if

x = x̃, and choose qj = 0 (qj = q̄) if x < x̃ (x > x̃). That means that

the amount of net regeneration agent i faces for any stock level x, g−i(x),

equals:

g−i(x) =





g(x) − (n− 1)αxq̄ if x > x̃,

g(x̃)/n if x = x̃,

g(x) if x < x̃.

If agent i decreases the stock infinitesimally below x̃, her residual regen-

eration would increase by almost a factor n (from g(x̃)/n to infinitesimally

less than g(x̃)), yielding a net present value of (almost) p̄g(x̃)/r for agent i

and a zero payoff for all other agents j 6= i in an infinite time horizon model.

Clearly, this holds for all agents i = 1, . . . , n and for all x̃ ∈ 〈0,K]. Hence,
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the only steady state equilibrium stock is x̃ = 0 if the time horizon is finite.

�

2 The experiment

2.1 Experimental design

In each session, sixteen fishermen were assigned to groups of four (n = 4),

with fixed membership. Fishing took place in four periods of 1 hour each

(T = 4). Subjects could catch as many fish as they liked, as long as total

catch did not exceed the stock available to their group. Regeneration was

mimicked by throwing in extra fish at the end of each period depending on

the number of fish remaining.

We implemented the experiment as follows. First, in the experiment the

continuous growth equation (2) was approximated by a discrete function.

We set K = 8 and γ = 2 in (2), giving rise to the dotted line in Figure 1;

the solid line represents the discretized version implemented at the fishing

pond. For example, if a group had 2 fish remaining at the end of a period,

then an additional 3 fish would be thrown into the pond, implying that 5

fish would be available for the group to catch in the next period.

Second, in the experiment time is discrete, and the discrete time equiv-

alent of (1) is:

xt+1 − xt = Ht + g(xt −Ht), (6)

where Ht =
∑n

i=1 hit. The size of the stock at the beginning of period

t is denoted xt, and the total amount of fish harvested in that period, Ht,

cannot be larger than xt. In the instructions, xt was referred to as the

‘allowable catch remaining’ (ACR) at the beginning of period t. Third, we

did not pay ‘interest’ on the payments received in any period, and subjects

plausibly attach the same value to the nth fish they catch, independent of

whether this fish was caught in the first or the fourth period. Hence, in the

experiment r = 0. Fourth, each subject was allowed to keep and take home

all fish she caught, and to avoid problems with negative marginal utility of
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Figure 1: Theoretical and experimental specification of the regeneration
function (with γ = 2 and K = 8).

fish, subjects also received e5 for every fish caught.2 Fifth, if the last fish

of a group’s allowable catch remaining was caught, its members would be

required to leave the pond.

The above design gives rise to the following predictions. Proposition 1

shows that social welfare is maximized if the fish stock is reduced to the

point where the rate of regeneration, g′, equals the discount rate, r. Hence,

harvesting should be at maximum speed until K(γ−r)/(2γ) = K/2 = 4 fish

are remaining. All agents should then stop harvesting to allow the remaining

fish to regenerate. The allowable catch remaining at the beginning of the

next period then equals (2 + γ + r)K(γ − r)/(4γ) = 8 fish, and harvesting

should again be at maximum speed until K(γ − r)/(2γ) = K/2 = 4 fish

are remaining – except in the last period, in which all 8 fish available at

the beginning of the last period, should be caught. From Proposition 2

we infer that the Nash equilibrium harvesting program in discrete time is

to harvest at maximum intensity until the stock is depleted, which should

happen within the first period.

2Because harvesting costs are zero, neither the socially optimal nor the Nash equilib-
rium harvesting paths are affected if the marginal value of fish would not be constant as
long as it is strictly positive.
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Comparing the cooperative and non-cooperative solutions, our experi-

ment thus poses a social dilemma in three respects: fishing time, number of

fish caught, and amount of money earned. If subjects cooperate, groups can

fish for (almost) four hours, catch twenty fish (four in each of the periods

1-3, and eight in period 4) and receive e100. In the subgame perfect Nash

equilibrium harvesting path, groups can fish for (at most) one hour, catch

eight fish, and receive e40.

2.2 Experimental procedure

We conducted two sessions. Four groups of four fishermen participated in

each session, yielding a total of eight observations. At the beginning of

the first period, 38 rainbow trout were released into the pond (two per

participant, plus an additional six). At the beginning of each subsequent

period, a quantity of fish was released, equal to the number caught in the

previous period by all groups in the session that had not exhausted their

stock yet. Hence, the actual number of fish in the pond, per fisherman

participating, was the same at the beginning of each period. Replacing fish

caught avoids the possibility that one group’s harvesting path affects the

feasible catch of other groups in the same session.

Participants were aware of which other individuals were in their group.

Each wore a colored ribbon indicating her group. We gave this information

because the model presented in section 1 has a closed-loop solution. We

believe that if this feature of the design affects behavior, it would enhance

cooperativeness (Duffy, Ochs and Vesterlund (2007)). Hence, if we do not

find any evidence of cooperation, the results would be even more convincing

than in the absence of the group affiliation information.

At the end of each period, subjects were informed of (i) their total earn-

ings in the period, (ii) total group catch in the period, Ht, (iii) the to-

tal group quota still remaining, xt − Ht, (iv) the increase in the group’s

quota, g(xt−Ht), and (v) the size of the resulting ACR for the next period,

xt+1 = xt −Ht + g(xt −Ht).

The instructions were read out aloud by the experimenter at a central
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location, participants were provided with a handout summarizing the in-

structions, and communication was strictly forbidden. We explicitly tested

the participants’ understanding of the game by having them answer test

questions before the start of the session. The sessions were conducted in

April 2009. Average earnings of the participants in this experiment were

e15.30.

2.3 Measuring cooperation

The model’s predictions, as well as the experimental payoffs, are based on the

number of fish caught. However, catching fish involves an element of luck.

Influences from, for example, the weather can prevent a fisherman from

catching fish. For that reason, we measure the effort a fisherman exerts to

catch fish: the amount of times a fisherman casts his rod. Rainbow trout is a

predatory fish that actively pursues bait. By constantly casting and reeling

back the bait, a fisherman draws the attention of a fish. Hence, the more a

fisherman casts his rod, the greater the probability of getting a catch. The

advantage of the effort measure is that it is independent of other factors

that influence the catch of fish. A fisherman makes a conscious decision

to cast the rod, and deciding to cast the rod is relatively independent of

temperature, wind direction, and the like. In the online Appendix, we show

that there is a positive statistical relationship between effort and catch in

the data.

There are two patterns that we use to distinguish cooperation from non-

cooperation in this experiment.3 The first is that, under non-cooperative

behavior, there would be no difference in behavior over the four periods.

Players would fish with the same, maximum, effort in all periods. Under the

social optimum, however, effort would be greater in the last period, relative

to the first three periods. This would indicate an attempt to reduce catch

in periods 1-3 to below the maximum feasible level. The second pattern is

that, under cooperative behavior, effort would exhibit a dependence on the

number of fish remaining in the group’s quota in periods 1-3. If fishermen

3Note, an ACR close to the socially optimal level may be due to a binding feasibility
constraint instead of cooperation.
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(A) (B)

Figure 2: (A) Average group effort over the periods, (B) Average individual
effort conditional on the allowable catch remaining (ACR) in period 1 − 3
(each 5 minute interval is an observation, observations are indicated above
the bars).

fish less intensely when the stock of fish is below the socially optimal level

in any of the first three periods, this is consistent with a targeting of the

social optimum. If they fish with the same intensity regardless of whether

the remaining catch is above or below the social optimum in any of these

periods, this is evidence of non-cooperative behavior.

3 Results

In our experiment, no cooperation is observed. Figure 2(A) shows the av-

erage group effort levels over the four periods, while Figure 2(B) shows the

effort levels conditional on stock size. A Wilcoxon test indicates no differ-

ence in effort between the fourth period and the first period (N1 = N2 =

6, p = 0.75), taking the average effort levels of each group as an independent

observation.4 Similar results are found when the fourth period is compared

with either the second period (N1 = N2 = 6, p = 0.67), or the third period

(N1 = N2 = 6, p = 0.60).

4Six observations are used for this test, because two groups caught their ACR in a
period before the fourth (one in period 1 and one in period 3).

11



The relationship between effort and the ACR is shown in Figure 2(B).

The figure shows the average individual number of casts in the five minute

intervals after which a specific stock level is reached. The figure reveals that

the average effort level in a group is independent of the ACR. There is no

evidence that effort is greater for x > 4 than for 0 < x ≤ 4. In the online

appendix, the estimation of a a fixed effects model shows that effort at low

stock sizes (x ≤ 4) is not statistically different from effort at high stock

sizes (x > 4). This is evidence of a lack of cooperation, since if an attempt

to attain the social optimum were occurring, it would be evident in an less

exploitation of the resource as the stock fell to lower levels.

4 Conclusion

In our framed field social dilemma experiment, we find no evidence of co-

operation. Our results are consistent with standard economic theory that

assumes selfish preferences and non-cooperative behavior. The difference

between our results and abstract laboratory implementations show that con-

textualization is important when testing the canonical renewable resource

model. To achieve good social outcomes in this field setting, voluntary co-

operation is not enough, and specific institutions that promote cooperation,

such as punishment technologies or voting processes, may be required.
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