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Abstract

We study the economic causes and consequences of the recent explo-
sion in gourmet food trucks. We argue that 1) new mobile communica-
tion technology enabled food truck growth by relaxing an information
friction complicating their business model and 2) that an important ad-
vantage of food trucks over brick-and-mortar restaurants is that trucks
can use mobility to capitalize on consumers’ taste-for-variety. We use
novel data from the internet, including food trucks’ real-time Twitter
feeds, to support our theory. We also provide evidence suggesting that
the growth in food trucks has increased social surplus for urban con-
sumers by increasing access to food variety.
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1 Introduction

Gourmet food trucks are a rapidly growing phenomenon in major U.S. cities.
Figure 1 shows that food truck revenues started growing very rapidly in 2007,
achieving 50% growth in revenue over 5 years and reaching $1.5 billion in
2012.1 The growing food truck phenomenon has attracted much attention
from popular media and has raised a host of issues for local policymakers
related to congestion, taxation, and opposition from those who are negatively
affected by food trucks. In this paper, we ask: What underlying economic
forces are driving the rapid growth in gourmet food trucks?

We formalize and then provide empirical evidence for two underlying fac-
tors driving the growth in food trucks. First, we argue that the introduction
and proliferation of new mobile communication technologies (e.g. smartphones
and social media) have relaxed an information friction complicating the entire
food truck business model. To be more specific, we argue that technology
allows food trucks to broadcast their location information to consumers in
real-time, which reduces consumer uncertainty and increases demand for and
profitability of food trucks. Indeed, Figure 1 shows that food trucks began
growing rapidly in the same year that the iPhone—one of the first popular
smartphones capable of accessing the internet from anywhere—was first re-
leased.

Second, we argue that one of the main advantages that food trucks have
over brick-and-mortar restaurants is that they can serve different consumers
each day by switching locations. By reducing information frictions associ-
ated with changing locations, mobile technology allows food trucks to better
capitalize on consumers’ taste-for-variety. One consequence of the food truck
industry’s growth is therefore that consumers have access to a greater variety
of restaurants in close proximity than they would have had otherwise.

We begin the paper by developing a theory that illustrates our two mecha-
nisms. Consider a consumer who is deciding whether or not to eat at a nearby

1Although we do not have revenue data for other countries, Google searches for “food
trucks” have increased rapidly in other countries, suggesting that food trucks may be a
growing phenomenon in other countries too.
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food truck when there is no mobile technology. In order to purchase from
the food truck, the consumer must pay a cost to visit the truck’s expected
location, but there is some probability that the truck will not be there (if,
for example, the truck was unable to find a parking space). This locational
uncertainty reduces the expected value the consumer receives from visiting
the food truck, and therefore reduces the size of the market for the truck at
any given location. The reduction in market size may be large enough that a
restaurant owner would prefer to operate as a brick-and-mortar store (which
does not suffer from locational uncertainty) instead of a food truck, or to not
operate at all. Consider now an alternative scenario in which the food truck
can broadcast its location in real-time to the consumer using new technology.
Consumers equipped with a device for receiving the broadcast no longer face
uncertainty about the food truck’s location. The size of the market is therefore
not reduced and so technology increases the market for food trucks.

We model consumers as having a taste-for-variety, so that all else equal,
they would prefer not to eat at the same restaurant in consecutive days. With
this preference structure, the introduction of mobile technology can make it
more profitable to operate as a food truck than a brick-and-mortar, even if the
costs of operating are the same. This is because, with technology, mobility
becomes an advantage for food trucks: they can visit different locations day-
by-day to capitalize on consumer taste-for-variety, and they can mitigate the
associated information costs by broadcasting their location to consumers in
real-time. Consumers are also better off due to their increased access to food
variety.

To provide empirical support for our theory, we first confirm the broad pre-
diction of the model that there is a link between smartphones, social media and
food truck growth. Using MSA-level Google search data from Google Trends,
we show that growing search interest in smartphones and social media corre-
sponds to growing search interest in food trucks. Moreover, the relationship
passes a test for Granger causality; we find that past search interest for smart-
phones and social media predicts search interest for food trucks while future
interest for smartphones and social media does not. The results are robust to
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alternative explanations such as changing food attitudes or demographics.
While the Google search analysis suggests a causal link between mobile

technology and food trucks, it does not directly test whether the particular
mechanisms in our model are responsible for the connection. To add stronger
evidence for our specific theory, we use rich micro-evidence from Washington
D.C. food trucks to show that 1) locational uncertainty generates an infor-
mation friction that is alleviated by mobile technology and 2) food trucks
choose different locations day-by-day in order to take advantage of consumers’
taste-for-variety.

To test for locational uncertainty, we downloaded the Twitter feeds for all
individual food trucks operating in Washington D.C. from 2010 to 2013. We
find that most trucks use twitter at a daily frequency to announce their location
choices and that many of these location related tweets are used to indicate a
change of location due to unforeseen circumstances such as parking and traffic
difficulties. Our results imply that in 1 out of every 13 days, the typical
truck will not be at its expected location at the expected time, suggesting
that locational uncertainty is a significant friction. Furthermore, the timing
of the tweets (which we observe down to the second in our data) suggests
that circumstances often require a change of plans at the last minute (e.g.
right before the lunch hour) and thus the ability to send real-time updates
using smartphones and social media is indeed important. Overall, the Twitter
data strongly suggests that locational uncertainty is a significant obstacle to
the food truck business model, but that food trucks use mobile technology to
mitigate its effects.

To test for the presence of taste-for-variety, we collect a panel dataset
on D.C. food truck location decisions. For each food truck, we observe its
daily lunch-time location decisions from the beginning of May 2012 to the
end of March 2013. Estimating a discrete choice model of food truck location
decisions, we find that food trucks are very unlikely to locate in places that they
have visited recently. The effect is strongest for locations that were visited just
one day ago, becomes weaker as the length of time between visits increases,
and dies out after about one week. The magnitude of the effect is economically
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significant: the implied loss in profits from visiting the same place two days
in a row is on the same order of magnitude as the effect of a rainy or snowy
day, or of the imposition of a 10% sales tax. Considering that the primary
market for our food trucks are office workers who are fixed to their locations
by exogenous reasons, the tendency for food trucks to avoid recently visited
locations is strong evidence for consumer taste-for-variety. This interpretation
is robust to a variety of alternative explanations, such as learning or time-
varying demand.

We conclude our paper by demonstrating that the increase in variety due
to food truck mobility is substantial. For the ten most popular food truck
locations in our data, we find that the average number of trucks visiting each
location per week is 23.4 while the average number of brick-and-mortar restau-
rants within walking distance of these locations is 42.3. Food truck mobility
contributes significantly to the increase in restaurant variety: in a counterfac-
tual where trucks are forced to choose a location permanently, each location
will have on average only 15.8 food trucks.

Our paper contributes to two strands of literature in urban economics. The
first is the literature on the consumption benefits to urban density, among
which is greater access to product variety, as discussed in a seminal paper by
Glaeser, Kolko, and Saiz (2001).2 Assuming that food trucks could not be
profitable in non-urban settings (because, for example, transportation costs
are too high), then our results highlight a new way in which product variety
is being increased in cities. The increase in variety generated by restaurant
mobility does not actually require an increase in retail space, and so our results
suggest one way in which even congested cities can continue to increase access
to variety. The second strand is the literature on whether information technol-
ogy is a substitute or complement for cities, a question posed in Gaspar and
Glaeser (1998) and further studied in Sinai and Waldfogel (2004). Our results
show how IT can be a complement to cities by mitigating the effects of conges-
tion. In particular, we show how food trucks use IT to overcome the locational

2Other related studies include Waldfogel (2003), Berry and Waldfogel (2010), Lee (2010)
and Couture (2013).
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uncertainty caused by urban problems such as traffic and parking difficulty.
Interestingly, our paper connects these two literatures by showing how IT acts
as a complement to cities through the consumption variety channel.

Our paper also contributes to the literature that studies how advance-
ments in IT affect the information structure of various markets. Jensen (2007)
shows how mobile phones relaxed information frictions and increased social
welfare in the South Indian fishing market by allowing fishermen to coordi-
nate on sales while at sea. Our results provide an example of how mobile
technology can have such positive spillover effects even in developed markets
where information was already disemminated quite efficiently before mobile
technology. Brynjolfsson, Hu, and Smith (2003) study how the internet has
affected the market for books, which is another example of a market in which
IT has increased access to variety. Other related studies include Anderson
and Magruder (2012), a study of online restaurant reviews and the restaurant
industry; Kroft and Pope (2013), a study of the effect of Craigslist on housing
and labor markets; Aker (2010), a study of the effect of mobile phones on price
dispersion in agricultural markets; and Brown and Goolsbee (2002), a study
of internet price competition in the life insurance market.

Methodologically, our paper is closest to Kearney and Levine (2014), who
use both Google and Twitter data to study media influence on teen fertility
decisions. Both Kearney and Levine (2014) and our paper contribute to a
growing body of research that uses rich new data sources from the internet to
answer interesting economic questions. For example, Da, Engelberg, and Gao
(2011), Markellos and Vlastakis (2012), and Stephens-Davidowitz (2013) use
Google search activity as proxies for variables that are difficult to measure,
as we do in this paper. Choi and Varian (2009b,a); Choi and Liu (2011) and
Chauvet, Gabriel, and Lutz (2013) show the utility of using Google Trends
in economic forecasting for a variety of markets, from the labor market, to
tourism, to housing, respectively.
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2 A theory of food trucks

Model overview

The goal of the modeling exercise is to illustrate in a simple way how mobile
communication technology can enable the food truck industry and thereby
increase access to food variety. In the model, a restaurant owner decides
either to operate as a food truck, which allows him to serve different locations
day-to-day, or to operate as a brick-and-mortar shop, which ties him to a
single location. The benefit to being able to serve different locations is that
consumers have a taste-for-variety in their day-to-day food consumption and so
the food truck can avoid customers which have already been served recently.
The cost to being a food truck is that there is uncertainty as to whether a
location will be accessible on any given day. For example, all the parking spots
at a location may be taken before the food truck can arrive. We abstract from
other differences between operating as a food truck or as a brick-and-mortar,
such as cost differences, to focus on the model’s qualitative predictions about
taste-for-variety and the role of mobile technology.3

Without mobile communication, the locational uncertainty reduces con-
sumer demand because the consumer must pay an inspection cost (going out-
side) before learning whether the food truck is at his location or not.4 The
introduction of mobile communication technology allows the food truck to
broadcast its location in real-time to the consumer. The consumer will there-
fore know whether or not the food truck is at his location before going outside.

3Another mechanism through which mobile technology can increase food truck prof-
itability is by helping trucks to coordinate on their location decisions. Although we did
not find direct evidence of coordinating behavior, neither can we rule this out as a possibil-
ity. Nevertheless, our empirical evidence will strongly suggest that both locational uncer-
tainty and taste-for-variety are important mechanisms, regardless of whether coordination
is present as an additional mechanism.

4It is possible that if there are already many food trucks in operation, then the effects
of uncertainty on consumer demand may be smaller, as the consumer may just go outside
assuming that at least one truck he likes will be available. However, as we show below,
gourmet food trucks really did not exist prior to smartphones and social media. Our model
therefore focuses on the case where the industry is not already mature and where the
information costs may be large.
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For reasonable parameter values, we show that this technological innovation
has an enabling effect on the food truck business model, pushing its profitabil-
ity from below brick-and-mortar to above brick-and-mortar.

Operating as a brick-and-mortar

Consider the decision of a single restaurant deciding whether to be a food
truck (FT ) or a brick-and-mortar (BM). There are two identical locations
each with a unit mass of consumers. Consumers are tied to their location,
which reflects the fact that consumers face significant travel costs (i.e. office
workers going out to lunch). In each period, consumers decide whether to go
outside to visit the restaurant, or to consume an outside option with utility
normalized to zero. The utility that consumer i receives from visiting the
restaurant at time t is given by:

uit = u0 − βdi,t−1 − εit

where dit−1 is an indicator for whether the consumer visited the restaurant
last period and εit is an idiosyncratic component that is i.i.d. over time and
over consumers, distributed according to the c.d.f. F .

If the restaurant is brick-and-mortar, then there is no uncertainty as to
whether the restaurant will be there when the consumer goes outside. The
cost of going outside is K, and so the expected demand at time t is:

QBM
t =

ˆ
i

[u0 − βdi,t−1 − εit −K ≥ 0] di

= QBM
t−1 F (u0 −K − β) +

(
1−QBM

t−1

)
F (u0 −K)

In the steady state, demand is given by:

QBM = F (u0 −K)
1 + F (u0 −K)− F (u0 −K − β)

If we normalize profits per customer to 1, then the steady state profit each
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period is simply equal to the demand:

ΠBM = QBM = F (u0 −K)
1 + F (u0 −K)− F (u0 −K − β) (1)

Operating as a food truck

If the restaurant operates as a food truck, it may choose a different loca-
tion each period. It begins the period by announcing an intended location,
call it j, and consumers at both locations observe the announcement. After
the announcement, each location becomes inaccessible to the food truck with
probability λ. The accessibility shock is assumed to be independent across
locations. If the announced location is accessible, the food truck will visit it;
otherwise it will visit the alternative location k if k is accessible but j is not.
If both locations are inaccessible, the food truck does not operate that period.

When there is no mobile communication, we assume that the consumer
has to pay the cost K of going out before knowing the realization of λ. If
a consumer goes outside and the truck is not there, he consumes the outside
option. A consumer’s expected utility to going out at the announced location
j is therefore:

Vijt = (1− λ)uit −K

and the demand at the announced location j is:

QFT
jt =

ˆ
i

[(1− λ) (u0 − βdi,t−1 − εit)−K ≥ 0] di

= QFT
jt−1F

(
u0 −

K

1− λ − β
)

+
(
1−QFT

jt−1

)
F
(
u0 −

K

1− λ

)

Because of taste-for-variety, the truck’s optimal strategy is to change locations
each period. So j is the announced location only if QFT

jt−1 = 0 and QFT
jt

simplifies to:
QFT
jt = F

(
u0 −

K

1− λ

)
At the unannounced location, k, a consumer’s utility to going out is given
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by:
Vikt = λ (1− λ)uit −K

Demand at the unannounced location is therefore:

QFT
kt = QFT

kt−1F

(
u0 −

K

λ (1− λ) − β
)

+
(
1−QFT

kt−1

)
F

(
u0 −

K

λ (1− λ)

)

In the Appendix, we characterize the full steady-state solution for the quantity
demanded (and profit) QFT . For ease of exposition and to build the key
intuition, in the main text we present a first order Taylor approximation of
the full solution around λ = 0:

ΠFT = QFT = (1− λ)F (u0 −K)− λKf (u0 −K) (2)

where f is the p.d.f. of F . The first term in (2) can be thought of as the
probability of the preferred location being accessible multiplied by demand at
that location under no uncertainty. The second term is the penalty to demand
coming from consumer uncertainty about whether the truck will be at the
announced location or not. Terms related to demand from the unannounced
location disappear in the first-order approximation because the uncertainty
cost K/λ (1− λ) is too high—very few consumers are going to go out at the
unannounced location because the food truck is unlikely to visit it.

When comparing ΠBM to ΠFT , note that if λ = 0 and β > 0, then
ΠFT > ΠBM . Food truck dominates brick-and-mortar in this case because
the food truck can alternate between locations each period, capitalizing on
the consumers’ taste-for-variety without facing a reduced market due to loca-
tion uncertainty. However, for λ > 0 the comparison between ΠBM and ΠFT

is ambiguous—there is always a λ large enough such that ΠFT < ΠBM .

The effect of mobile communication technology

Mobile technology allows the food truck to broadcast its location in real-time,
so that consumers at both the announced and unannounced locations know
the realization of λ before paying the inspection cost. Therefore, at whichever
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location the food truck ultimately visits, the consumer’s utility to going out
becomes:

Vit = uit −K

and expected demand at the visited location l is:

QFT,MC
lt = QFT,MC

lt−1 F (u0 −K − β) +
(
1−QFT,MC

lt−1

)
F (u0 −K)

If the visited location is the announced location j then quantity demanded is:

QFT,MC
jt = F (u0 −K)

If the visited location is the unannounced location k then quantity demanded
is:

QFT,MC
kt = QFT,MC

kt−1 F (u0 −K − β) +
(
1−QFT,MC

kt−1

)
F (u0 −K)

The first order approximation of the steady state expected quantity demanded
is:

ΠFT,MC = QFT,MC

= (1− λ)F (u0 −K)

+λ
[
1 + F (u0 −K − β)− F (u0 −K)

]
F (u0 −K) (3)

When comparing equation (3) with equation (2), it is easy to see that
ΠFT,MC > ΠFT for all values of λ, β and K. The first term in (3) is identical
to the first term in equation (2). The second term in equation (2) does not
appear in (3): there is no demand penalty due to uncertainty in (3) because
consumers can observe the realization of λ before deciding whether to go out.
Therefore, mobile communication increases demand at the announced location.
The second term in (3), which is always positive, is the probability that the
preferred location is inaccessible, but the non-preferred location is accessible,
multiplied by the quantity demanded at the non-preferred location. Without
mobile communication, this term disappeared because demand is negligible
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at the unannounced location. The second term in (3) therefore illustrates a
second benefit that mobile communication confers upon food trucks: it in-
creases demand at the unannounced location in the event that a truck needs
to deviate from its announced location. Demand is increased at the unan-
nounced location because mobile technology allows the truck to communicate
to consumers that it will be at the unannounced location, after uncertainty is
realized. Finally, we also note that in our simple model, quantity demanded
is a sufficient statistic for total surplus, and so enabling food trucks increases
welfare.

Figure 2 shows a phase diagram indicating the values of λ and β for which
either it is always more profitable to be a food truck, always more profitable
to be a brick-and-mortar, or when the introduction of mobile communication
has an enabling effect on the food truck business model. The parameters used
to generate Figure 2 are: u0 = 0.5, K = 0.05, and εit ∼ U [0, 1]. The model
is simulated using the full steady-state solution rather than the first-order
approximation, so the results are valid even for large λ. The figure shows
that when λ is low and β is high, it is always more profitable to be a food
truck. When β is low and λ is high, then it is always more profitable to
be a brick-and-mortar. For intermediate levels of β and λ, the introduction
of mobile communication has an enabling effect on the food truck business
model, pushing its profitability from below brick-and-mortar to above brick-
and-mortar. To the extent that restaurants are associated with heterogeneous
β’s, the theory allows for the realistic possibility that some food trucks did
exist before mobile technology and at the same time the existence of others
trucks is directly facilitated by mobile technology.

3 The empirical link between food trucks and
mobile technology

We now present evidence in support of our model’s prediction that the rise of
the food truck industry is related to the rise in mobile communication tech-
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nology. Our empirical strategy exploits within MSA variation in the timing
of mobile communication proliferation. Different regions of the country ex-
perienced this technology growth at different times and at different rates for
reasons that are plausibly unrelated to food truck growth, such as timing in
the construction of 3G-capable base-stations and the market shares of carriers
selling 3G-capable smartphones.

3.1 Data

Given the absence of MSA-level data on direct measures of mobile commu-
nication proliferation and real food truck activity, we use data from Google
Trends (http://www.google.com/trends/). We downloaded a panel dataset on
Google search volume for terms related to food trucks and for terms related
to smartphones and social media (henceforth S&S).5 These data are useful
because if the food truck industry is growing, we should observe an increase in
the number of Google searches for food trucks as consumers search online to
learn about reviews, menus, prices, locations, etc, for trucks serving in their
area. Likewise, growth in access to mobile communication devices and social
media should be associated with an increase in Google searches for S&S terms,
as consumers search online for product and price information, and for specific
social media sites, like Twitter.

For each time period t and for each geographic unit i, Google Trends pro-
vides an index yit measuring the popularity of a particular search term relative
to all other Google searches by users in that geographic unit in that time pe-
riod. In our main specifications, we use MSAs – which is the finest level of
geographic detail available – as our geographic unit and quarter as our time
unit.6 The data are normalized so that within each MSA, yit takes the value

5Search terms related to smartphones and social media include “3g”, “smartphone”,
“iphone”, “android”, “4g” and “twitter”. Search terms related to food trucks were simply
“food truck”. We included variations of compound words with alternative spacing and
hyphenation.

6The Google Trends data can only be downloaded at the weekly level. We aggregate
the data to the MSA-quarter level by taking the median index value over the weeks in each
MSA-quarter.
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of 100 in the week where the search term was most popular relative to other
weeks in that MSA. If yit = 50 and yi,t+1 = 55, this would imply that the
search term was 10% more popular in MSA i in week t+1 than in week t. The
data are not comparable across MSAs because the normalization occurs within
MSAs. As a result, our main regressions below include MSA fixed effects and
use within MSA variation in search intensity.

3.2 Results

We first explore the search trends at the national level and then move to
our main specifications, which explore the trends at the MSA level. Figure 3
shows that interest in food trucks is strongly related to interest in S&S at the
national level. The explosion in search activity for food trucks following the
introduction of S&S is mostly consistent with the revenue data presented in
Figure 1.7 One difference is that internet searches for food trucks were very low
before mobile technology whereas the revenue data show that industry revenue
was still sizeable.8 One possible explanation is that some mobile trucks were
able to operate profitably pre-technology despite the difficulty of making their
real-time location decisions searchable online. In our model from Section 2,
these would have been restaurants who serve food types for which taste-for-
variety is especially high (e.g. an ice cream truck).

Figure 3 also plots the time series for searches on restaurants, which does
not appear to be related to interest in either S&S or food trucks. This suggests
that the relationship between food trucks and mobile technology is not reflect-
ing an underlying trend in the food service industry, but rather something
unique about food trucks. 9

7One may wonder why food trucks only took off with smartphones when other forms of
mobile communication, such as text messaging, had been available years before. The key
feature of smartphones is that they allow mobile internet access and access to social media
applications, which are less cumbersome than text messaging for the purpose of reaching a
large, unspecified audience, and for the purpose of transmitting longer forms of media, such
as pictures and restaurant reviews.

8A Google Trend value of zero means that search volume is below some threshold and
does not necessarily imply that there is literally zero search volume.

9We can also rule out the possibility that growth in food truck interest is due to changes
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We next turn to our main results, which explores search trends at the MSA
level for each of the 100 largest MSAs in the U.S.10 We run variations of the
following linear regression:

foodtruckit = α1 × S&Sit + α2 × (S&Sit)× (popranki) + βXit + γi + δt + εit

where foodtruckit (S&Sit) is the value of the search index for food trucks
(S&S) in MSA i quarter t. We interact S&S search volume with the city’s
population rank because it is possible that smaller cities do not have the pop-
ulation to support a food truck industry, even if mobile technology is prevalent.
The remaining right hand side variables reflect observable controls, MSA ef-
fects, and time effects respectively; the inclusion of these variables will vary
by specification.

Table 1 presents the results of these regressions. Column 1 of Table 1
presents the results with MSA fixed effects and seasonal controls (i.e. a dummy
for each calendar quarter). For a large city like New York or Los Angeles, our
results imply that a one unit increase in the search volume index for mobile
communication corresponds to over a 0.8 unit increase in the search volume
index for food trucks, which suggests a strong relationship between mobile
communication proliferation and food truck growth. If we strip out aggregate
time series trends by including year fixed effects, the effect is attenuated but
still highly significant, as shown in column 2 of Table 1. Columns 3 and
5 present the results when we add city-by-year demographic and economic
controls from the County Business Patterns census data.11 There is still a
strong relationship between food truck and S&S searches, and when we restrict
the specification in column 2 so that the sample includes only years where our

in food attitudes. Figure 4 shows that searches for “gourmet” and “organic” stayed roughly
flat. In currently unreported results, we also find that searches for terms related to “do-
it-yourself" cooking such as “home cooking", “food network", “chef" also stayed roughly
flat.

10The estimation sample will include only 54 cities because only 54 cities had enough
search volume for food trucks for Google Trends to provide the data.

11We include average age of the population, percent white, percent male, average income,
unemployment rate, percent with college degree, and total population.
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control variables are available, we find that adding the control variables does
not change the coefficient of interest. This gives us confidence that adding
additional omitted variables would not overturn our main result on the close
relationship between foodtruck and S&S related searches.

Since our sample includes multiple years of data, we can run a test for
causality in the spirit of Granger (1969), as discussed in Angrist and Pischke
(2008) and applied in Autor (2003). The idea is that if S&S growth causes an
increase in food truck growth, then we should expect the relationship between
S&S searches and food truck searches to be strongest when S&S searches
are lagged. After all, we would not expect food trucks to begin operating
immediately once the technology is in place to facilitate their business model;
we expect that it should take some time for restauranteers to recognize the
effects of the new technology, and some time for them to set up their businesses
and overcome startup costs. Furthermore, future values of S&S searches should
not have an effect on current food truck searches, all else equal. This discussion
motivates the specifications presented in Table 2, which adds one and two year
lagged and forward values of S&Si,t to the specifications run in Table 1. The
estimates show that the effect of S&Si,t is strongest when it enters with a two
year lag, and the effects of forward values of S&Si,t are substantially smaller
and statistically insignificant in most of the specifications. This pattern is
consistent with a causal interpretation of the correlations between S&S and
foodtrucks.

Finally, Table 3 shows the regression results when we consider the effects
of smartphones and social media separately. Interestingly, the separate effect
of smartphones and social media are statistically insignificant by themselves
(although precision is an issue), but the interacted effect is positive and sig-
nificant. This result is consistent with the theory that both the hardware
(smartphones) and the software (social media) have to be in place in order for
mobile technology to overcome the information friction in our theory.
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4 The Washington D.C. food truck market

The previous section documents evidence for the main prediction of our model:
that introduction of mobile technology will facilitate the growth of food trucks.
The evidence provided, however, is silent on what mechanisms could gener-
ate this link. We now turn to directly testing the specific mechanisms in our
model—locational uncertainty and taste-for-variety. To test for these mecha-
nisms, we use rich and novel micro-datasets on food trucks operating in the
Washington D.C. metro area. Before turning to the specifics of the data and
analysis, we first provide a brief description of the Washington D.C. food truck
market.

The Washington D.C. metro area is one of the largest markets for food
trucks in the U.S. Relative to population, the D.C. metro area generates the
fourth most google searches for food trucks; the top seven cities are Los An-
geles, San Diego, Orlando, DC, San Francisco, Raleigh-Durham, and Miami.
According to FoodTruckFiesta.com, there are (as of December 2013) 204 active
food trucks operating in the Washington D.C. metro area.

There are several unique features of the D.C. food truck market that make
it ideal for our study. First, Washington D.C. has a dominant aggregator web-
site, FoodTruckFiesta.com, which centralizes information about the universe
of food trucks operating in the metro area. Because there is a single domi-
nant website, the collection of the daily location decisions for the universe of
food trucks is a simple and standardized task. Second, the primary market for
food trucks in D.C. are office workers going out to lunch. Thus, the market
is roughly consistent with two assumptions that we use in our theory—that
consumers are fixed to their location and that the distribution of consumers
at each location is the same each day. Third, D.C. food trucks tend to cluster
along a couple of blocks outside large employment centers rather than spread-
ing out over multiple surrounding blocks (as in Los Angeles, for example).
This makes the behavior of D.C. food trucks amenable to a tractable discrete
choice model of location decisions. Fourth, according to FoodTruckFiesta.com,
about 90 percent of D.C. food trucks have Twitter accounts, and the large ma-

17



jority of these use Twitter to broadcast their daily location decisions. We can
therefore be confident that our results, which are based on truck tweets, are
representative of the entire food truck industry in the D.C. metro area.

5 Direct evidence for locational uncertainty

To test for the presence of locational uncertainty, we obtained the entire his-
tory of Twitter feeds for 200 trucks that actively operate in the Washington
D.C. metro area and use Twitter.12 We downloaded the Twitter data using
software provided by Next Analytics Corporation. The data contains a total
of 189,550 tweets, with the first being posted on September 21st, 2009 and
the last being posted on November 20th, 2013. In addition to the content
of a tweet, we observe the exact date and time it was posted. Many tweets
contain information regarding the food truck’s location that day, and some
also contain information indicating an unexpected change of plans.

To formalize the extent to which tweets contain location information, we
parse the data to identify tweets announcing the location of the posting truck.13

Summary statistics are presented in Table 4. We find that out of 189,550
tweets, 71,777 (38 percent) contain location information. Out of an average of
3.5 tweets per truck per weekday, we find that the average number of location-
related tweets is 1.4. The average truck posts at least one location-related
tweet on about 69 percent of the days in which it tweets at all.This is strong
evidence that food trucks use social media to communicate their location, but
it does not necessarily indicate the presence of locational uncertainty. It is
possible, for example, that social media is used simply to remind customers
about a previously announced schedule.

To obtain stronger evidence that locational uncertainty is a factor, we
further parse the data to identify tweets indicating an unplanned change of

12Twitter is a website that allows users to post short messages (called tweets) that are
publicly viewable by anyone with an internet connection; a Twitter feed is the entire history
of messages that a user has posted. See Figure 5 for a sample of the Twitter data.

13We identify location-related tweets by parsing the text for known location and street
names. The data and parsing algorithms are available from the authors upon request.
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schedule. These tweets are identified based on statements about the unavail-
ability of parking, statements about change of plans, statements warning that
the truck will be late to arrive at a previously announced location, and state-
ments about unpredicted mechanical failures or maintenance. We find that
2.3 percent of all tweets indicate an unexpected change of plans. Out of an
average of 3.5 tweets per truck per weekday, the average number of these
uncertainty-related tweets is 0.08. This implies that the average truck posts
at least one uncertainty-related tweet on over 7 percent of the days in which
it tweets at all. From the perspective of the consumer, this is a significant
source of uncertainty. Assuming that every day in which a truck tweets is a
day in which it operates, the data imply that there is about a 1 in 13 chance
that a desired truck is not at its expected location at the expected time. The
implied level of uncertainty increases if one assumes that trucks tweet even on
days in which they do not operate.

The facts presented above show that food trucks use social media to com-
municate the realization of locational uncertainty and that the degree of loca-
tional uncertainty is significant. To further show that the real-time updating
of locational uncertainty is important (and hence, that smartphones, which
allow trucks to communicate with customers from the road, are important),
we plot the time distribution of location-related tweets and the distribution of
uncertainty-related tweets in Figure 6. Figure 6 shows that location-related
tweets occur slightly earlier in the day than uncertainty-related tweets. Addi-
tionally, uncertainty-related tweets exhibit a much larger density during lunch
hours (12:00pm to 1:00pm) than location-related tweets, suggesting that un-
planned changes of schedule often occur at the last minute. The last-minute
nature of these tweets suggests that the real-time broadcast of location infor-
mation through smartphones and social media is an important tool that food
trucks use to reduce the uncertainty faced by consumers.

Although we have only collected Twitter data for food trucks in Washing-
ton D.C., we can provide suggestive evidence that locational uncertainty is
important in other markets as well. To do this, we perform a Google search
for “[MSA name] food trucks” for the ten largest MSAs in the U.S. Table 5
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shows the fraction of the results that link to a location aggregator, out of the
top 10, top 3, and top 1 returned results.14 In most of the cities, Google re-
turns a location aggregator as the number one search result. Because Google
returns its search results by order of popularity, the results in Table 5 suggest
that many people who search for food trucks are looking for information about
food truck locations, and this effect is not limited to any one particular city.

We have documented three facts using the Twitter data that are all consis-
tent with our model of locational uncertainty. First, locational uncertainty is
a significant friction faced by food trucks. Second, food trucks use Twitter to
inform consumers about the realization of locational uncertainty. Third, food
trucks update consumers in real time. Combined with the results in section 3
showing the correlation between S&S searches and food trucks, the evidence is
substantial that mobile communication technology plays an important role in
reducing frictions related to locational uncertainty in the food truck industry.

6 Evidence for taste-for-variety

6.1 Food truck location data

In this section, we provide empirical support for another key hypothesis of
our model: that food trucks use their mobility to avoid recently visited loca-
tions, thereby capitalizing on consumer taste-for-variety. We collected data
on D.C. food truck location decisions by writing a computer program to auto-
matically extract information from daily emails sent by FoodTruckFiesta.com.
The emails have a consistent, easy to process format. The emails contain in-
formation about the daily lunchtime locations of each food truck in the D.C.
metro area, as well as some basic information about each truck, including
their name and cuisine type. We also recorded each day’s high temperature
and chance of rain from accuweather.com.

During our sample period, 204 food trucks were in operation. Table 6, panel

14A location aggregator is a website that collects real-time information about food truck
locations in its area and displays them on a single site.
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A summarizes some basic information about the food trucks. The majority of
food trucks were already open at the start of our sample on May 2nd, 2012.
The majority of food trucks also operated through the entire sample period:
over half of the food trucks were last observed operating on March 28, 2013
or later (our sample ends on March 29, 2013). Food trucks were observed to
operate an average of 80 days over our sample period, which on average is 37%
of the days between each truck’s first and last observed operation dates. This
calculation includes weekends even though our data does not allow us to see
food truck activity on weekends. If weekends are omitted, the average food
truck operates 50% of the days between its first and last observed operation
dates. This suggests that the decision of whether or not to operate on a given
a day is a non-trivial decision for food truck owners.15

There are 70 unique locations in the data, with the three most popular
being L’Enfant, Farragut Square, and Metro Center. The average food truck
visited just under 8 locations in our sample period, with 93% of the trucks
visiting at least 2 locations. Over half visited more than 8 locations, and the
largest number of distinct locations visited was 37. We explore the diversity in
location choices among food trucks further in Figures 7, 8 and 9. These figures
plot different measures of how concentrated the trucks’ location choices are.
The figures show that although there is a tendency for trucks to follow fixed
weekly schedules, there is still enough variation in each trucks’ day-to-day and
week-by-week location choices for us to conclude that they are actively making
decisions about where to locate each day.

6.2 Location choice model

We now introduce a model of food truck location choice that can capture the
effect of taste-for-variety. Each day t, food truck i chooses between operating
in locations j = 1, . . . , J or not operating (j = 0). The profit that food truck

15Many food trucks do not operate every day because it is not a full-time job for some
owners. On days where demand is expected to be low, such as when it is raining, a food
truck may not find it worthwhile to operate.
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i expects to receive from location j = 1, . . . , J is given by:

πijt = Xijtβ +
∑
l∈L

δlLlijt + α
∑

l={7,14,21}
dij,t−l + σ (εijt − εi0t)

and the profit to not operating is given by:

πi0t = 0

Llijt is an indicator for whether truck i operated in location j any time in the
past l days and dijt is an indicator for whether truck i operated in location j in
day t. The set of lags L that we used were L = {1, 2, 3, 4, 5, 6, 14, 21}; that is,
we compute separate effects for the truck having operated in the same location
within the past 1, 2, 3, 4, 5, 6, 14, and 21 days. The total effect of having
operated in a location one day ago is therefore the sum of all δl for l ∈ L, while
the total effect of having operated in a location not one, but two days ago, is
the sum of all δl for l ∈ L\ {1}.16 We included separate effects for the truck
having operated in the location exactly 7, 14, or 21 days ago (i.e. the dij,t−l’s)
in order to capture the tendency of many trucks to follow weekly schedules.
Xijt is a vector of observable controls. In our main specification, Xijt includes
an indicator for whether it was raining or snowing on day t, an indicator for
whether the high temperature for the day was less than 50F, and an indicator
for whether day t is before or after the imposition of a 10% sales tax which
took effect on October 1st, 2012. We will also experiment with various fixed
effects for (i) each location (ii) each foodtruck (iii) each weekday.17 The error
term, εijt, is assumed to be iid across i and t but not across j. Within i and t,
εijt follows a standard nested logit structure as described in Train (2009), with
scale parameter σ. The “inside options”, j = 1, . . . , J , are in one nest with

16We have also estimated a richer specification with a separate effect for every lag from
1 to 21. The results do not change much because the taste-for-variety effect turns out to
last no longer than a week.

17We ignore any possible agglomeration or competition effects in the location choice
model. We do not expect this omission to bias our estimates of taste-for-variety. Indeed,
when we include the observed number of trucks in each location as a proxy for competi-
tion/agglomeration, our estimates of taste-for-variety are little changed.

22



nesting parameter λ, and the “outside option”, j = 0, is in the other nest. This
structure is appropriate for our context because reasons which would cause a
food truck to choose to operate in one location over not operating can be
correlated with reasons which would cause a food truck to operate in another
location over not operating.

Each day, truck i chooses the option j to maximize πijt. For j = 0, . . . , J
let us define vijt = 1

σ
πijt − εijt + εi0t as the expected profits less the error

term, and normalized by the scale parameter. For locations j = 1, . . . , J , the
probability that truck i chooses to operate in j (taking expectations over εijt)
is:

Pijt =
evijt/λ

(∑J
k=1 e

vikt/λ
)λ−1

1 +
(∑J

k=1 e
vikt/λ

)λ
and the probability that the truck chooses to not operate (j = 0) is:

Pi0t = 1
1 +

(∑J
k=1 e

vikt/λ
)λ

Our data allows us to see the location decisions dijt of each truck i in each
day t. We can therefore estimate the parameters of the model (up to the
scale normalization) by maximum likelihood. The main parameters of interest
are the δl’s. For each l, δl represents the effect on profits from operating in a
location you visited at least once in the past l days. If there is taste-for-variety,
then we expect δl to be negative, especially for small l.

6.3 Results

Table 7 reports the estimation results from the nested logit model. The first
column reports baseline results when no fixed effects are included. The addi-
tion of fixed effects increases the magnitude of the lag effects in the first week,
and reduces the positive effects of having operated in a location two to three
weeks ago. It is likely that the positive effect of having chosen a location two
or three weeks ago is capturing some unobserved familiarity of certain trucks
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with certain locations. In column 3 we estimate a specification in which each
truck’s choice set is restricted to locations that it is observed to have chosen
at least once in the data. Once this restriction is made, the positive effect of
visiting the same location that was visited two to three weeks ago disappears.
Column 4 is identical to column 3, except that the cumulative effects are re-
ported. The estimates in specification 3 reveal that there is a strong negative
effect to operating in a location that has been visited recently. The cumulative
effect is strongest for a location that has been visited just one day ago, and
the strength of the effect decreases as the length of time since the last visit
increases. The effect seems to disappear after about a week. The results in
Table 7 are consistent with a taste-for-variety that dies out over time. The
results in Table 7 also reveal that there is a strong tendency for trucks to visit
the locations that they visited exactly 7, 14 or 21 days ago. This positive
weekly effect reflects the tendency for trucks to follow weekly schedules.

In order to assess the economic magnitude of our estimation results, we
must first estimate the scale parameter, which is not identified from the loca-
tion data alone. In order to do this, we note that

σ =
1
N

∑
i

∑
tE [maxj πijt]

1
N

∑
i

∑
tE [maxj vijt + εijt − εi0t]

In words, the formula above says that the scale parameter is equal to the
average daily profits measured in dollars, divided by the average value of the
normalized profit function used for estimating the choice model. In order to
compute the numerator, we use the estimated average daily profit for food
trucks in 2012 from Samadi (2012). In order to compute the denominator, we
first note that we can write the closed form of the expected maximum over j
as:

E
[
max
j
vijt + εijt − εi0t

]
= log

1 +
 J∑
j=1

evijt/λ

λ


We then compute the average of this value over the trucks and days in our
dataset, using the estimated coefficients for vijt and λ. We end up with a scale
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parameter equal to 668.92. To get the dollar value of the effect of a unit change
in Xijt on πijt, we multiply the coefficients reported in Table 7 by 668.92.

The estimation results suggest that the magnitude of the taste-for-variety
effect is quite significant. Choosing the same location two days in a row results
in a $257 loss in the day’s profit, which is about 38% of average daily profits.
In comparison, the effect of rain or snow is to decrease profits by $179 (26%),
the effect of cold weather is to decrease profits by $127 (19%), and the effect
of a 10% sales tax is to reduce profits by $207 (31%).

6.4 Alternative explanations

The tendency for food trucks to avoid locations they have visited recently in
the past is consistent with a consumer taste-for-variety. In this section, we
rule out time-varying demand, food truck learning, and consumer learning as
alternative explanations.

One alternative explanation for the results above is that different locations
simply have different demands depending on the day of the week. For example,
locations near a university may have lower demand on Fridays, while locations
near a shopping hub may have higher demand on Fridays. If this were true,
then food trucks may change locations day by day simply to follow demand.
To rule out this explanation, we re-estimate our preferred specification with
location-by-weekday fixed effects.

Second, a truck may avoid visiting the same places in short succession
because it desires to learn about the market in a number of different locations.
To rule out this explanation, we estimate our model on a sample restricted to
trucks with over two months of experience at the start of our sample (this is
less than half of the trucks in our sample). Our reasoning is that learning will
be less of a motivation for experienced trucks.

A third alternative explanation is that a truck may avoid choosing recently
visited places because it can increase consumer awareness by choosing a greater
variety of locations. To rule out the consumer awareness explanation, we re-
estimate our model on a sample restricted to trucks that are already popular,
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as measured by having over 1,000 Twitter followers (the median of our dataset).
Our reasoning in this case is that trucks which are already well known have
less need to increase consumer awareness.

It is possible, however, that trucks that are experienced or popular are
so precisely because they avoid visiting the same location too often. It is
also possible that all trucks, no matter how experienced or popular, continue
to have incentives to visit a variety of locations for the purpose of learning
or increasing awareness. To rule out this final possibility, we re-estimate the
model on a sample restricted to trucks that have visited less than nine locations
in the entire sample. These trucks would appear not to have any motivation
for visiting a wide variety of locations to either learn about the market or to
increase consumer awareness. If they are indeed popular or experienced, it is
not due to their diversity in location choice.

Table 8 reports the results of these robustness exercises. In none of the
alternative specifications are the estimated parameters on taste-for-variety
changed much. We therefore conclude that the tendency for trucks to avoid
recently visited location is better explained by taste-for-variety than any of
the above explanations.

6.5 Quantifying the increase in variety

We now perform some simple exercises to calculate the contribution of food
trucks to restaurant variety in Washington D.C. A direct measure of the in-
crease in variety would be the amount of unique restaurants that a specific
location is exposed to over the course of a week, with and without food trucks.
Table 9 computes these measures for the ten largest locations in our data, as
measured by total food truck visits. The top ten locations constitute over 75
percent of all food truck visits in the data, and are also among the largest em-
ployment centers in the city. Columns 1 and 2 of Table 9 report the count of
unique brick-and-mortar restaurants within 4 blocks and 1 mile of each loca-
tion, respectively, as measured by a search on www.yelp.com for “restaurants”
centered at the location. Column 3 counts the average number of unique food
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trucks that visit the location each week, as computed from our daily location
data described above.

Table 9 shows that food trucks generally contribute substantially to the
number of restaurants a location is exposed to each week. The average number
of food trucks visiting these locations each week is 23.4, whereas the average
number of brick-and-mortar restaurants within a 4-block radius of these lo-
cations is 42.3. We think of brick-and-mortar restaurants in a 4-block radius
as the relevant comparison group because food trucks tend to locate in very
close walking distance to each location. Nevertheless, when we use a broader
comparison group – the count of brick-and-mortar restaurants in a 1 mile ra-
dius, Table 9 shows that the contribution of food trucks to food variety is still
significant (23.4/514.9).

Table 9 also shows that mobility is an important mechanism through which
food trucks increase access to variety. Column 4 counts the number of food
trucks each location would have in a counterfactual world where food trucks
choose a location and then are fixed to it.18 The average number of food trucks
each location would have in this counterfactual world is 15.8. The increase in
weekly restaurant variety due to mobility is therefore 7.6, or 18% of the average
number of nearby brick-and-mortar stores.

The results in Table 9 show that food trucks substantially increase food va-
riety for many consumers and moreover, that mobility contributes significantly
to this increase. The latter distinction is important because the increase in
variety due to mobility is unique to food trucks. In other words, some of the
food trucks could have instead operated as brick-and-mortar, and so the mere
existence of these trucks should not be counted as contributing to new variety.
The contribution to variety from these trucks’ mobility, however, should still
be counted.

18In the counterfactual, each location is assigned a number of trucks equal to the share
of total visits it received in the location data.
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7 Conclusion

This paper develops a theory that illustrates two underlying economic forces
behind the rapid growth in food trucks: information frictions which are solved
by mobile technology, and taste-for-variety. We established three empirical
facts to support the theory. First, growing interest in smartphones and social
media lead to growing interest in food trucks at the city level, even when
controlling for national trends and city heterogeneity. This confirms the broad
prediction in our model that mobile technology facilitates the growth of food
trucks. Second, food trucks face a significant amount of locational uncertainty
and they communicate the realization of this uncertainty in real-time through
smartphones and social media. This confirms that locational uncertainty is
a significant friction faced by food trucks and that mobile technology helps
to relax it. Third, food trucks tend to avoid recently visited locations, even
though the distribution of consumers at each location is roughly the same
each day. This confirms that food trucks use their mobility to capitalize on
consumer taste-for-variety, and that one consequence of the growth in food
trucks is an increased access to food variety. We closed the paper by showing
that the increase in variety created by food trucks is large.

The results of our paper have implications for how local policymakers
should approach the regulation of food trucks. For example, Washington D.C.
recently implemented a lottery system whereby the locations that trucks are
allowed to visit each day are determined randomly. In our view, this may help
ease locational uncertainty, but can be counterproductive in reducing the abil-
ity of trucks to serve consumers’ taste-for-variety (for example, if two Korean
taco trucks are forced to locate in the same place on the same day, or the same
truck is forced to locate in the same locations on two consecutive days).

References

Aker, J. C. (2010): “Information from Markets Near and Far: Mobile Phones
and Agricultural Markets in Niger,” American Economic Journal: Applied

28



Economics, 2(3), 46–59.

Anderson, M., and J. Magruder (2012): “Learning from the Crowd:
Regression Discontinuity Estimates of an Online Review Database,” The
Economic Journal, 122, 957–989.

Angrist, J. D., and J.-S. Pischke (2008): Mostly Harmless Econometrics:
An Empiricist’s Companion. Princeton university press.

Autor, D. H. (2003): “Outsourcing at Will: The Contribution of Unjust
Dismissal Doctrine to the Growth of Employment Outsourcing,” Journal of
labor economics, 21(1), 1–42.

Berry, S., and J. Waldfogel (2010): “Product Quality and Market Size,”
Journal of Industrial Economics, 58(1), 1–31.

Brown, J. R., and A. Goolsbee (2002): “Does the Internet Make Markets
More Competitive? Evidence from the Life Insurance Industry,” Journal of
Political Economy, 110(3), 481–507.

Brynjolfsson, E., Y. J. Hu, and M. D. Smith (2003): “Consumer surplus
in the digital economy: Estimating the value of increased product variety
at online booksellers,” Management Science, 49(11), 1580–1596.

Chauvet, M., S. Gabriel, and C. Lutz (2013): “Fear and Loathing in
the Housing Market: Evidence from Search Query Data,” Working paper,
UCLA.

Choi, H., and P. Liu (2011): “Reading Tea Leaves in the Tourism Industry:
A Case Study in the Gulf Oil Spill,” Discussion paper, Google.

Choi, H., and H. Varian (2009a): “Predicting Initial Claims for Unemploy-
ment Benefits,” Discussion paper, Google.

(2009b): “Predicting the Present with Google Trends,” Discussion
paper, Google.

29



Couture, V. (2013): “Valuing the Consumption Benefits of Urban Density,”
Working paper, UC Berkeley.

Da, Z., J. Engelberg, and P. Gao (2011): “In Search of Attention,” The
Journal of Finance, 66(5), 1461–1499.

Gaspar, J., and E. L. Glaeser (1998): “Information Technology and the
Future of Cities,” Journal of Urban Economics, 43(1), 136–156.

Glaeser, E. L., J. Kolko, and A. Saiz (2001): “Consumer city,” Journal
of Economic Geography, 1, 27–50.

Granger, C. W. (1969): “Investigating Causal Relations by Econometric
Models and Cross-spectral Methods,” Econometrica, pp. 424–438.

Jensen, R. (2007): “The Digital Provide: Information (Technology), Mar-
ket Performance, and Welfare in the South Indian Fisheries Sector,” The
Quarterly Journal of Economics, 122(3), 879–924.

Kearney, M. S., and P. B. Levine (2014): “Media Influences on Social
Outcomes: The Impact of MTV’s 16 and Pregnant on Teen Childbearing,”
Working Paper 19795, National Bureau of Economic Research.

Kroft, K., and D. Pope (2013): “Does Online Search Crowd Out Tradi-
tional Search and Improve Matching Efficiency? Evidence from Craigslist,”
Journal of Labor Economics, 110(3), 481–507.

Lee, S. (2010): “Ability sorting and the consumer city,” Journal of Urban
Economics, 68(1), 20–33.

Markellos, R. N., and N. Vlastakis (2012): “Information Demand and
Stock Market Volatility,” Journal of Banking and Finance, 36(6), 1808–
1821.

Samadi, N. (2012): “Street Vendors in the US,” IBISWorld Industry Report
72233, IBISWorld, http://www.ibisworld.com.

30



Sinai, T., and J. Waldfogel (2004): “Geography and the Internet: is
the Internet a substitute or a complement for cities?,” Journal of Urban
Economics, 56(1), 1–24.

Stephens-Davidowitz, S. (2013): “The Cost of Racial Animus on a Black
Presidential Candidate: Using Google Search Data to Find What Surveys
Miss,” Unpublished manuscript.

Train, K. E. (2009): Discrete Choice Methods with Simulation. Cambridge
University Press, New York, NY.

Waldfogel, J. (2003): “Preference Externalities: An Empirical Study of
Who Benefits Whom in Differentiated Product Markets,” RAND Journal of
Economics, 34(3), 557–568.

31



Figure 1: Annual U.S. Food Truck Revenue and iPhone Sales
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Figure 1: Annual U.S. Food Truck Revenues and iPhone sales

Food Trucks iPhones

Notes: This figure shows food truck industry revenue and Apple iPhone sales revenues from 2003 to 2012.  
Source: Samadi (2012)
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Figure 2: Phase Diagram of Food Truck / Brick-and-Mortar Profitability
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Note: This figure shows simulation results for the two location model described in Section
2 for various values of λ (locational uncertainty) and β (taste-for-variety). εit is distributed
uniformly on the unit interval, u0 = 0.5 and K = 0.05. For intermediate values of λ and β,
mobile communication has an enabling effect on the food truck business model, pushing its
profitability above that of brick-and-mortar. For low values of λ and high values of β, it is
always more profitable to be a food truck. For low values of β and high values of λ, it is
always more profitable to be a brick-and-mortar.
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Figure 3: Google Search Trends in the U.S.
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Figure 2: Google Search Trends for the U.S.

Food Truck Mobile Communication Restaurant

Note: Mobile communication search terms include "3g", "smartphone", "iphone", "android", 
"4g", and "twitter".  The data shows no relationship between searches for restaurants and 
searches for mobile communication or food trucks, but a clear relationship between mobile
communication searches and food truck searches.
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Figure 4: Google Search Trends in the U.S.: Food Attitudes
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Organic Gourmet

Note: Figure plots Google Trends search intensities for “organic” and
“gourmet”, respectively. Searches for organic and gourmet show no partic-
ular trend nor any correlation to searches for smartphones, social media, or
food trucks.
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Figure 5: Example of Twitter Data
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Figure 6: Kernel Density Plots of Tweet Times by Tweet Type

Note: Kernel density plots of tweet times using Epanechnikov kernel with opti-
mal bandwidth. "Location related tweets" are tweets which specify the truck’s
location. "Uncertainty related tweets" are tweets which indicate a change or
delay of plans for the truck, usually due to the inability to find parking or to
traffic. Time of day is measured on a 24 hour block so that, for example, a
time of day equal to 13 denotes 1:00 pm.
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Figure 7: Distribution of Location Choices
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Figure 3: Distribution of location choices

Note: This figure plots the distribution of location choices for food trucks
in our data. There are 70 locations in total. Although food truck visits are
concentrated in about 20 or so locations, the Herfindahl concentration index
is quite low at 7.4%.
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Figure 8: Distribution of Food Truck Location HHI
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Figure 4: Distribution of food truck HHI

Note: This figure plots the distribution of TruckHHI over trucks, where

TruckHHIi =
J∑
j=1

(
# of days truck i chooses location j
# of days truck i chooses to operate

)2

is the location concentration index for a single truck i. While a handful of
trucks concentrate in a small number of locations, most trucks have a fairly
diverse location portfolio. The average TruckHHI across all trucks is 30%.
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Figure 9: Distribution of Food Truck-Weekday HHI
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Figure 5: Distribution of foodtruck-weekday HHI

Note: This figure plots the distribution of TruckWeekdayHHI over truck-
weekdays, where

TruckWeekdayHHIid =
J∑
j=1

(
# of days truck i chooses location j on weekday d
# of days truck i chooses to operate on weekday d

)2

is the location concentration index for a single truck i on a given weekday d.
There is a fairly strong tendency for trucks to follow fixed schedules, but there
is still significant variation in where each food truck chooses to locate on a
given weekday.
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Table 1: Google Search Regression Results
Dependent Variable: Google Searches for Foodtruck

(1) (2) (3) (4) (5)

Google searches for S&S related terms 0.8331*** 0.6816*** 0.2952** 0.1919** 0.1875*
(0.0265) (0.0411) (0.1061) (0.0638) (0.0829)

Searches for S&S * City population rank -0.0150*** -0.0124*** -0.0144*** -0.0119*** -0.0120***
(0.0008) (0.0009) (0.0021) (0.0029) (0.0022)

City FE X X X X X
Year FE X X X
Seasonal dummies X X X X X
City-by-year demographic and economic controls X X
Only years where demographic and economic controls available X X X

Observations 1908 1484 1908 1484 1484
R-squared 0.484 0.407 0.625 0.498 0.501

Standard errors in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Notes: Each observation is a city-quarter. Google searches is an index measuring the total number of google searches for a particular phrase in a
city-quarter relative to the total number of google searches in that city-quarter. S&S related search terms include searches for "3g",
"smartphone", "iphone", "android", "4g" and "twitter". Foodtruck searches include searches for "food truck". The sample period is 2004-2012.
Demographic and economic controls include the average age of the population, percent white, percent male, average income, unemployment
rate, percent with college degree, and population size.  Specifications with year fixed effects have standard errors clustered at the year level.
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Table 2: Google Search Regression Results, Granger Test
Dependent Variable: Google Searches for Foodtruck 

(1) (2) (4) (5)

Google searches for S&S related terms 0.2014*** 0.1680*** 0.1654 0.1468
(0.0375) (0.0385) (0.0948) (0.1128)

Google searches for S&S related terms* City population rank -0.0052*** -0.0047*** -0.0053 -0.0048
(0.0013) (0.0012) (0.0028) (0.0031)

Google searches for S&S related terms 1 year ago -0.3734*** -0.3414*** -0.3732* -0.3469
(0.0664) (0.0669) (0.1731) (0.1699)

Google searches for S&S related terms 1 year ago* City population rank 0.0084*** 0.0076*** 0.0083 0.0077
(0.0023) (0.0023) (0.0045) (0.0044)

Google searches for S&S related terms 2 year ago 1.1239*** 1.1541*** 1.1118* 1.1251*
(0.0631) (0.0640) (0.4630) (0.4828)

Google searches for S&S related terms 2 year ago* City population rank -0.0317*** -0.0310*** -0.0303* -0.0300*
(0.0024) (0.0024) (0.0122) (0.0117)

Google searches for S&S related terms 1 year from now -0.2024*** -0.2022*** -0.2200 -0.2212
(0.0299) (0.0302) (0.1126) (0.1041)

Google searches for S&S related terms 1 year from now* City population rank 0.0061*** 0.0061*** 0.0060 0.0059
(0.0010) (0.0010) (0.0035) (0.0033)

Google searches for S&S related terms 2 year from now 0.0041 0.0221 -0.0199 -0.0047
(0.0232) (0.0242) (0.0354) (0.0352)

Google searches for S&S related terms 2 year from now* City population rank -0.0000 -0.0005 0.0000 -0.0005
(0.0007) (0.0007) (0.0011) (0.0013)

City FE X X X X
Year FE X X
Seasonal Dummies X X X X
City-by-Year Demographic and Economic Controls X X
Only Years where Demographic and Economic Controls are available X X X

Observations 1060 1060 1060 1060
R-squared 0.449 0.467 0.453 0.471
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Each observation is a city, quarter.  Google searches is an index measuring the total number of google searches for a particular 
phrase in a city/quarter relative to the total number of google searches in that city/quarter.  For each city, the index value equals 
100 in the quarter where the search item accounts for the highest share of searches.  Smartphone searches include searches 
for "3g"+"smartphone"+"smart phone"+"iphone"+"android"+"4g".  Foodtruck searches include searches for"food 
truck"+"foodtruck".  Sample period is 2004 to 2012.   Demographic and economic controls include the average age of the 
population, percent white, percent male, income, unemployment rate, percent with college degree, and population.  
Specifications with year fixed effects have standard errors clustered at the year level.

42



Table 3: Google Search Regression Results, Smartphone and Social Media
Interaction
Dependent Variable: Google Searches for Foodtruck

(1) (2) (3) (4) (5)

Google searches for smartphone related terms 1 year ago 0.4045*** -0.1786* 0.0414 -0.2771 -0.3150
(0.0959) (0.1002) (0.3022) (0.1868) (0.1964)

Google searches for social media related terms 1 year ago 0.0618 0.0365 0.0556 -0.0472 -0.0337
(0.0428) (0.0457) (0.1208) (0.1315) (0.1289)

Searches for smartphone * Searches for social media, 1 year ago 0.0085*** 0.0173*** 0.0046 0.0163*** 0.0166***
(0.0014) (0.0018) (0.0052) (0.0040) (0.0037)

City FE X X X X X
Year FE X X X
Seasonal dummies X X X X X
City-by-year demographic and economic controls X X
Only years where demographic and economic controls available X X X

Observations 1696 1484 1696 1484 1484
R-squared 0.603 0.540 0.637 0.552 0.556

Standard errors in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Notes: Each observation is a city-quarter. Google searches is an index measuring the total number of google searches for a particular phrase in a
city-quarter relative to the total number of google searches in that city-quarter. S&S related search terms include searches for "3g",
"smartphone", "iphone", "android", "4g" and "twitter". Foodtruck searches include searches for "food truck". The sample period is 2004-2012.
Demographic and economic controls include the average age of the population, percent white, percent male, average income, unemployment
rate, percent with college degree, and population size. Specifications with year fixed effects have standard errors clustered at the year level. Each
specification continues to include full interactions with city population rank.
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Table 4: Twitter Data Summary Statistics
# trucks 200
# tweets 189,550
# location-related tweets 71,777
# uncertainty-related tweets 4,398
Avg. # tweets per truck-weekday 3.457
Avg. # location tweets per truck-weekday 1.386
Avg. # uncertainty tweets per truck-weekday 0.083
Share of truck-weekdays with ≥1 location tweets 0.687
Share of truck-weekdays with ≥1 uncertaint tweets 0.073

Notes: This table shows summary statistics for our Twitter data.  Twitter feeds of 200 trucks from the DC metro 
area were collected from Sep. 2009 to Nov. 2013.  The twitter data shows evidence that locational uncertainty 
is an important factor for food trucks, and that realization of these uncertainties is communicated in real-time 
on Twitter.

Table 5: Fraction of Google Search Results Returning Location Aggregators
MSA Top 10 Top 3 Top 1

New York City 50% 67% 0%

Los Angeles 40% 100% 100%

Chicago 40% 100% 100%

Dallas‐Fort Worth 20% 33% 0%

Houston 30% 33% 100%

Philadelphia 50% 33% 100%

Washington DC 40% 67% 100%

Miami 60% 100% 100%

Atlanta 10% 0% 0%

Boston 50% 67% 100%

San Francisco 60% 67% 100%

Note: "Top X" refers to the first X search results that Google returns in response to a search for "[City Name] 

Food Truck".  Location‐based websites include live maps, food truck finder apps, twitter aggregators, etc.  

Non location‐based websites include food truck reviews, food truck associations, etc. 
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Table 6: Summary Statistics for Food Truck Location Data

Min Mean Median Max
Opening date Jan 20, 2009 Feb 3, 2012 Apr 5, 2012 Mar 14, 2013
First observed operation date May 2, 2012 Jul 12, 2012 May 16, 2012 Mar 14, 2013
Last observed operation date May 3, 2012 Feb 19, 2013 Mar 28, 2013 Mar 29, 2013
Number days operated 1 80 67 207
Number locations visited 1 8.77 8 37
Twitter followers 0 2283.11 648.5 25591
FoodTruckHHI 0.045 0.303 0.212 1.000

Min Mean Median Max
Chance of rain 0 22.78 20 100
High temperature 0 68.60 73 102
Number trucks operating 4 75.30 78 110
Number trucks (Mondays) 4 59.35 62 84
Number trucks (Tuesdays) 38 74.40 77 97
Number trucks (Wednesdays) 30 80.47 83 110
Number trucks (Thursdays) 43 80.83 82.5 106
Number trucks (Fridays) 54 78.50 80 97

Min Mean Median Max
Times visited (total) 1 233.42 23.5 2097
Avg. # trucks per day 0.0030 0.7031 0.0708 6.3160
Avg. # trucks per day (days with 
at least one truck) 1.0000 1.8800 1.0870 9.7083

Table 4: Summary statistics for food truck location data

Panel A: Basic food truck information (N = 204)

Panel B: Dates information (N=217)

Notes: This table shows summary statistics for our food truck location data.  We observe the location decisions 
of each food truck each day from May 2, 2012 to March 29, 2013, except on weekends and except for a two 
week period between Dec. 22, 2012 and Jan. 1, 2013, for a total of 217 observed dates on which food trucks 
operated.  FoodTruckHHI is the location concentration index within each food truck.

Panel C: Location information (N=70)

(1) (2) (3) (4) (5)
Rain / Snow -0.2676*** -0.2682*** -0.2639*** -0.2473*** -0.4019***

(0.0077) (0.0072) (0.0109) (0.0102) (0.0088)
Cold (<50°F) -0.1898*** -0.1911*** -0.1694*** -0.1750*** -0.2927***

(0.0095) (0.0096) (0.0150) (0.0135) (0.0115)
Sales Tax -0.3100*** -0.3113*** -0.2687*** -0.2454*** -0.4627***

(0.0083) (0.0084) (0.0126) (0.0119) (0.0102)
Visited within last X days

1 -0.0543** -0.0523** -0.0508 -0.0498 -0.0812***
(0.0215) (0.0218) (0.0339) (0.0316) (0.0245)

2 -0.0509** -0.0497** -0.0532 -0.0545* -0.0485*
(0.0222) (0.0223) (0.0339) (0.0323) (0.0265)

3 -0.0585** -0.0592*** -0.0613* -0.0651** -0.0479*
(0.0228) (0.0228) (0.0341) (0.0324) (0.0285)

4 -0.0686*** -0.0686*** -0.0727** -0.0774*** -0.0588**
(0.0209) (0.0210) (0.0317) (0.0291) (0.0264)

5 -0.0747*** -0.0741*** -0.0806*** -0.0877*** -0.0565**
(0.0199) (0.0201) (0.0306) (0.0277) (0.0273)

6 -0.1024*** -0.0993*** -0.1100*** -0.1210*** -0.0972***
(0.0154) (0.0155) (0.0231) (0.0212) (0.0224)

14 0.0200* 0.0220** 0.0230 0.0001 -0.0069
(0.0107) (0.0108) (0.0152) (0.0137) (0.0173)

21 0.0056 0.0075 0.0128 -0.0089 -0.0494***
(0.0105) (0.0106) (0.0148) (0.0134) (0.0169)

Visited 7, 14, or 21 days ago 0.4272*** 0.4176*** 0.4352*** 0.4302*** 0.4273***
(0.0044) (0.0045) (0.0066) (0.0060) (0.0062)

Truck FE X X X X X
Weekday FE X X X X
Location FE X X X X
Choice restriction X X X X X
Location X Weekday FE X
Experienced trucks X
Popular trucks X
Few location trucks X

Log Likelihood -41,293 -40,909 -22,244 -26,055 -14,192
Observations 27,877 27,877 13,774 15,805 13,321

Specification

Note: Estimation results from additional specifications reported in section 5.3. Standard errors in parenthesis.
*, **, *** indicate p-values of <0.1, <0.05, <0.01 respectively. "Choice restriction" indicates that each truck's
choice set was restricted to locations that they were observed to have chosen at least once. Column 1 is
identical to column 3 of table 5 and is presented for the purpose of comparison.

Table 6: Food truck location choice model estimates (Alternative specifications)
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Table 7: Food Truck Location Choice Model Estimates

(1) (2) (3) (4)

Rain / Snow -0.5384*** -0.3905*** -0.2676*** -0.2676***

(0.0180) (0.0087) (0.0077) (0.0077)

Cold (<50°F) -0.2617*** -0.2705*** -0.1898*** -0.1898***

(0.0111) (0.0116) (0.0095) (0.0095)

Sales Tax -0.5828*** -0.4418*** -0.3100*** -0.3100***

(0.0127) (0.0101) (0.0083) (0.0083)

Visited within last X days

1 -0.0874*** -0.0696*** -0.0543** -0.3839***

(0.0278) (0.0278) (0.0215) (0.0166)

2 -0.0411 -0.0488* -0.0509** -0.3297***

(0.0298) (0.0264) (0.0222) (0.0161)

3 -0.0290 -0.0513* -0.0585** -0.2788***

(0.0305) (0.0271) (0.0228) (0.0174)

4 -0.0169 -0.0548** -0.0686*** -0.2203***

(0.0276) (0.0246) (0.0209) (0.0167)

5 0.0092 -0.0500** -0.0747*** -0.1517***

(0.0266) (0.0235) (0.0199) (0.0150)

6 0.0150 -0.0724*** -0.1024*** -0.0769***

(0.0207) (0.0182) (0.0154) (0.0153)

14 0.3158*** 0.1237*** 0.0200* 0.0255***

(0.0149) (0.0128) (0.0107) (0.0084)

21 0.3968*** 0.1467*** 0.0056 0.0056

(0.0142) (0.0126) (0.0105) (0.0105)

Visited 7, 14, or 21 days ago 0.8114*** 0.5490*** 0.4272*** 0.4272***

(0.0112) (0.0053) (0.0044) (0.0044)

Truck FE X X X

Weekday FE X X X

Location FE X X X

Choice restriction X X

Log Likelihood -53,939 -45,310 -41,293 -41,293

Observations 27,877 27,877 27,877 27,877

Specification

Note: Estimation results from location choice model described in section 5. Standard errors in

parenthesis. *, **, *** indicate p-values of <0.1, <0.05, <0.01 respectively. "Choice restriction"

indicates that each truck's choice set was restricted to locations that they were observed to

have chosen at least once. Column 4 is identical to column 3 except that it reports cumulative

effects.

Table 5: Food truck location choice model estimates
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Table 8: Food Truck Location Choice Model Estimates (Alternative specifica-
tions)

(1) (2) (3) (4) (5)
Rain / Snow -0.2676*** -0.2682*** -0.2639*** -0.2473*** -0.4019***

(0.0077) (0.0072) (0.0109) (0.0102) (0.0088)
Cold (<50°F) -0.1898*** -0.1911*** -0.1694*** -0.1750*** -0.2927***

(0.0095) (0.0096) (0.0150) (0.0135) (0.0115)
Sales Tax -0.3100*** -0.3113*** -0.2687*** -0.2454*** -0.4627***

(0.0083) (0.0084) (0.0126) (0.0119) (0.0102)
Visited within last X days

1 -0.0543** -0.0523** -0.0508 -0.0498 -0.0812***
(0.0215) (0.0218) (0.0339) (0.0316) (0.0245)

2 -0.0509** -0.0497** -0.0532 -0.0545* -0.0485*
(0.0222) (0.0223) (0.0339) (0.0323) (0.0265)

3 -0.0585** -0.0592*** -0.0613* -0.0651** -0.0479*
(0.0228) (0.0228) (0.0341) (0.0324) (0.0285)

4 -0.0686*** -0.0686*** -0.0727** -0.0774*** -0.0588**
(0.0209) (0.0210) (0.0317) (0.0291) (0.0264)

5 -0.0747*** -0.0741*** -0.0806*** -0.0877*** -0.0565**
(0.0199) (0.0201) (0.0306) (0.0277) (0.0273)

6 -0.1024*** -0.0993*** -0.1100*** -0.1210*** -0.0972***
(0.0154) (0.0155) (0.0231) (0.0212) (0.0224)

14 0.0200* 0.0220** 0.0230 0.0001 -0.0069
(0.0107) (0.0108) (0.0152) (0.0137) (0.0173)

21 0.0056 0.0075 0.0128 -0.0089 -0.0494***
(0.0105) (0.0106) (0.0148) (0.0134) (0.0169)

Visited 7, 14, or 21 days ago 0.4272*** 0.4176*** 0.4352*** 0.4302*** 0.4273***
(0.0044) (0.0045) (0.0066) (0.0060) (0.0062)

Truck FE X X X X X
Weekday FE X X X X
Location FE X X X X
Choice restriction X X X X X
Location X Weekday FE X
Experienced trucks X
Popular trucks X
Few location trucks X

Log Likelihood -41,293 -40,909 -22,244 -26,055 -14,192
Observations 27,877 27,877 13,774 15,805 13,321

Specification

Note: Estimation results from additional specifications reported in section 5.3. Standard errors in parenthesis.
*, **, *** indicate p-values of <0.1, <0.05, <0.01 respectively. "Choice restriction" indicates that each truck's
choice set was restricted to locations that they were observed to have chosen at least once. Column 1 is
identical to column 3 of table 5 and is presented for the purpose of comparison.

Table 6: Food truck location choice model estimates (Alternative specifications)
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Table 9: Food Truck Contribution to Restaurant Variety by Location

Location

# unique brick-and-mortar 

restaurants within 4 blocks

# unique brick-and-mortar 

restaurants within 1 mile

# unique food trucks 

per week

# unique food trucks per 

week (no mobility)

L'Enfant Plaza 26 153 39 26

Metrocenter 81 746 31 21

Farragut Square 117 1003 38 25

Union Station 23 610 31 20

Franklin Square 89 971 29 18

State Department 5 457 22 14

Navy Yard 1 99 18 12

West End 32 720 11 7

Tyson's Corner 23 218 8 8

Rockville 26 172 7 7

Average 42.3 514.9 23.4 15.8

Notes: Data for the number of brick-and-mortar restaurants at a location comes from Yelp searches for "restaurants" near the street 

address of the given location.  Column 4 presents the number of trucks that would choose to locate at the given location in a 

counterfactual where location is fixed.
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A Appendix (For online publication only)

A.1 Results on the steady state of the food truck loca-
tion model

Here we derive the steady state of the food truck location model described in
Section 2, both with and without mobile communication. We will also derive
approximation results for the steady state expected quantity, and show that
steady state expected quantity is always higher when mobile communication
is available.

No mobile communication

For consumers in the announced location (call it j), the expected value to
going out is:

Vit = (1− λ)uit −K

For consumers in the unannounced location (call it k), the expected value to
going out is:

Vit = λ (1− λ)uit −K

Therefore, the mass of consumers going out at the announced location is:

Qjt = Qjt−1F
(
u0 −

K

1− λ − β
)

+ (1−Qjt−1)F
(
u0 −

K

1− λ

)
= F

(
u0 −

K

1− λ

)
≡ QA

where the second equality follows from the fact that the announced location
will always be one in which the food truck did not operate last period. The
last equality is simply a definition for notational convenience.

At the unannounced location, the mass of consumers going out is:

49



Qkt = Qkt−1F

(
u0 −

K

λ (1− λ) − β
)

︸ ︷︷ ︸
QNβ

+ (1−Qkt−1)F
(
u0 −

K

λ (1− λ)

)
︸ ︷︷ ︸

QN

= Qkt−1QNβ + (1−Qkt−1)QN

= QN −Qkt−1(QN −QNβ)︸ ︷︷ ︸
∆

= QN −Qkt−1∆

Under this notation, QA is the quantity demanded at an announced location
that was not visited last period, QN is the quantity demanded at an unan-
nounced location that was not visited last period, and ∆ is the penalty per
unit sold in the same location last period.

In general, the ex-post demand for the truck in a period depends on three
state variables:

st = (at, ht, qt)

so we can write:
Qt = Q (at, ht, qt)

The state variables are defined as follows:

• The variable at defines the realization of the current period’s locational
uncertainty. at takes the value A if the announced location is accessi-
ble, N if the announced location is inaccessible but the non-announced
location is, and O if neither location is accessible.

• The variable ht defines, at the start of period t, the number of consecutive
periods it has served the previous location, with ht = 0 if the truck did
not visit any place last period. ht takes any value in the set of natural
numbers.

• Finally, the variable qt is the quantity that the truck sold at the start of
its current streak of consecutive visits. So, for example, if ht = 3 then
qt = Qt−3. Note that qt can only take the values of QA, QN , and 0. It
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takes the value of QA if the current streak of consecutive visits started
at an announced location. It takes the value of QN if the current streak
started at a non-announced location. Finally, it is defined to be 0 when
ht = 0; that is, when there is no current streak due to being out of the
market last period.

We can fully specify demand as a function of state variables. If at = O then
the truck is out of the market and Qt = 0. If at = A then the truck can visit
its preferred location, so Qt = QA. If at = N and ht = 0, then this means the
truck was out last period, but is unable to visit its announced location this
period. Its demand is Qt = QN . If at = N and ht > 0, then demand today is
Qt = QN − Qt−1∆. So for at = N and ht > 0, we can solve for Q (N, ht, qt)
using the following recursion:

Q (N, 1, q) = QN − q∆

Q (N, h, q) = QN −Q (N, h− 1, q) for h > 1

The recursion yields the following expression for Q (a, h, q):

Q (a, h, q) =



0 if a = O

QA if a = A

QN if a = N and h = 0
1−(−∆)h

1+∆ QN + q (−∆)h if a = N and h > 0

(4)

Now let f (st+1|st) denote the transition probability for the state space. An
unconditional distribution over the state space, f (s), is a steady state if it
satisfies the following:

f (s) =
∑
s′∈S

f (s|s′) f (s′) ∀s ∈ S

Because at+1 is independent of st, the transition matrix has the following form:

f (s|s′) = p (a) g (h, q|s′)
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which implies that the steady state distribution must have similar form:

f (s) =
∑
s′∈S

p (a) g (h, q|s′) f (s′)

= p (a)
∑
s′∈S

g (h, q|s′) f (s′)︸ ︷︷ ︸
g(h,q)

= p (a) g (h, q) (5)

where

p (a) =


1− λ if a = A

λ (1− λ) if a = N

λ2 if a = O

(6)

The deterministic transitions for h and q are given by:

(ht+1, qt+1) =



(0, 0) if at = O

(1, QA) if at = A

(1, QN) if at = N and ht = 0

(ht + 1, qt) if at = N and ht > 0

We can therefore write the following:

g (0, 0) =
∑
h,q

f (O, h, q) = p (O) = λ2

g (1, QA) =
∑
h,q

f (A, h, q) = p (A) = 1− λ

g (1, QN) = f (N, 0, 0) = p (N) g (0, 0) = λ3 (1− λ)

And finally, for h > 1:

g (h, q) = f (N, h− 1, q) = p (N) g (h− 1, q) = λ (1− λ) g (h− 1, q)

The above equation defines a recursion for g (h, q). Solving the recursion, we
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obtain the following closed-form expression for g (h, q):

g (h, q) =


λ2 if (h, q) = (0, 0)

[λ (1− λ)]h−1 (1− λ) if h > 0 and q = QA

[λ (1− λ)]h−1 λ3 (1− λ) if h > 0 and q = QN

(7)

Equations (5)-(7) give us the closed-form solution for the steady state distri-
bution f (s). Combined with equation (4), we can write down the expression
for the steady state expected value of Q:

E [Q] =
∑
s

Q (s) f (s)

= p (A)QA + p (N)


QNg (0, 0)

+∑∞
h=1Q (N, h,QA) g (h,QA)

+∑∞
h=1Q (N, h,QN) g (h,QN)

 (8)

The first order Taylor approximation around λ = 0 is:

E [Q] = (1− λ)F (u0 −K)− λKf (u0 −K)

With Mobile Communication

With mobile communication, the steady state distribution of the state vari-
ables does not change because the accessibility to locations does not change,
nor does the food truck’s optimal strategy. What changes with mobile commu-
nication is that consumers can now make their decision on whether to go out
based on the food truck’s actual location, rather than its announced location.
Therefore, at whichever location the food truck ultimately visits, the expected
value for the consumer to going out becomes:

Vit = uit −K
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At the announced location, expected demand is:

Qjt = Qjt−1F (u0 −K − β) + (1−Qjt−1)F (u0 −K)

= F (u0 −K)

≡ QA

where the second equality follows from the definition of the announced location
as one in which the food truck did not visit last period.

At the unannounced location, expected demand is:

Qkt = Qkt−1F (u0 −K − β)︸ ︷︷ ︸
QNβ

+ (1−Qkt−1)F (u0 −K)︸ ︷︷ ︸
QN

= Qkt−1QNβ + (1−Qkt−1)QN

= QN −Qkt−1(QN −QNβ)︸ ︷︷ ︸
∆

= QN −Qkt−1∆

As can easily be seen, the effect of mobile communication is to change the
values of QA, QN , and QNβ in the steady state equation (8).

The first order Taylor approximation using the new definitions ofQA, QN , QNβ

gives us:

E [Q] = (1− λ)F (u0 −K)+λ [1 + F (u0 −K − β)− F (u0 −K)]F (u0 −K)
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