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Abstract

Greenhouse gas mitigation efforts in the electricity sector emphasize accelerated

deployment of energy efficiency measures and renewable energy resources. Short-run

benefits associated with incremental investments in energy efficiency or renewables

manifest indirectly as reductions in the economic operating costs and emissions of

marginal electricity generating units. We evaluate different renewable energy (RE)

and energy efficiency (EE) technologies across regional power systems. Using standard

social cost of carbon assumptions, our estimates of emissions-related benefits comprise

a significant share of estimated returns on investment in some regions. On a per-MWh

basis, regional variation in emissions displaced and costs avoided is more significant

than variation across technologies within individual regions. This implies that the

choice of location, more than the technology choice, determines the value generated

by these investments. We also find that regional variation in avoided carbon benefits

generates significant regional variation in the implied abatement costs associated with

each technology. These results underscore the importance of designing policy incentives

that accurately capture regional differences in emissions-related returns on RE and EE

investments.

∗The authors would like to acknowledge the generous support of the UC Berkeley Hellman Faculty Fund.

1



D
RAFT

1 Introduction

Investments in renewable energy and demand-side energy efficiency improvements are play-

ing a crucial role in efforts to reduce greenhouse gas emissions from the power sector which

accounts for an estimated 40 percent of domestic CO2 emissions. Renewable energy invest-

ment in U.S. has increased nearly 250 percent since 2004, reaching 36.7 billion in 2013.1

Annual investments in energy efficiency, estimated as the extra cost for efficient goods and

services relative to the average goods and services, are also on the rise in the U.S., estimated

to be approximately $90 billion per year in 2010 (Laitner, 2013).2.

Over the short to medium-run, return on incremental investments in renewable energy

(RE) and energy efficiency (EE) manifest indirectly in two ways. First, RE generation and

EE savings reduce operating costs at incumbent electricity generators. These cost-related

benefits can generally be captured privately in the form of revenues from electricity sold (in

the case of RE) or reduced energy expenditures (in the case of EE). Benefits also manifest in

the form of avoided emissions at marginal generating units on the system. Emissions-related

benefits are, to a large extent, external to electricity market transactions. In particular,

greenhouse gas emissions remain untaxed in much of the power sector.

Much of the recent investment in renewable energy cannot be rationalized on the basis of

private returns alone. Numerous policies and programs are currently in place to incentivize

investments that are socially – but not privately – cost effective. External, uncompensated

benefits associated with reduced greenhouse gas emissions serve as an important justification

for these policy interventions.

The primary objective of this paper is to estimate the CO2 emissions-related benefits

generated by incremental investments in renewable energy and energy efficiency, and to

assess the economic significance of these benefits. We are particularly interested in analyzing

variation in these emissions impacts along spatial and technological dimensions. If variation

in external, uncompensated benefits is economically significant, policy incentives should be

designed to reflect this variation.

Many of the policies and programs used to accelerate investments in RE and EE do not

explicitly account for variation in external benefits across RE and EE resources.3 Conceptu-

1Michael Liebreich, Bloomberg New Energy Finance Summit (London: Bloomberg New Energy
Finance, 2013), available at http://about.bnef.com/summit/content/uploads/ sites/3/2013/12/2013-04-
23-BNEF-Summit-2013-keynote- presentation-Michael-Liebreich-BNEF-Chief-Executive.pdf; Pew Charita-
ble Trusts, Whos Winning the Clean Energy Race? (2014), available at http://www.pewenvironment.
org/uploadedFiles/PEG/Publications/Report/clen-whos- winning-the-clean-energy-race-2013.pdf.

2Laitner, Skip (2013). ”Calculating the Nation’s Annual Energy Efficiency Investments”, ACEEE
3There are several important policies that currently serve to accelerate investment in RE and EE. Twenty-
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ally, this variation can be partitioned into regional variation (arising from differences in the

emissions profiles of regional power systems) and technological variation (arising from differ-

ences in temporal profiles of production or savings different RE and EE resources). Several

recent studies have explored regional differences in the quantity of emissions displaced per

unit of renewable energy generated (e.g. Callaway and Fowlie (2009), Siler-Evans, Azevedo

and Morgan (2012), Kaffine, McBee and Lieskovsky (2013), Graff Zivin, Kotchen and Mansur

(2014)). Novan (2014 ) finds that even within a single region (Texas), output from different

renewable energy technologies can provide different external benefits due to differences in

the correlation between the emissions profile of the power system and the production profile

of the renewable energy resource. Novan argues that, if governments continue to subsidize

RE and EE via production and investment-based policies, more emphasis should be placed

on designing policies that more accurately reflect variation in external benefits across regions

and technologies.

In principle, increasing the accuracy with which policy incentives reflect variation in ex-

ternal benefits should improve the allocative efficiency of policy outcomes. But increased

accuracy comes at a cost of increased complexity in terms of both policy design and imple-

mentation. This begs the question: How economically significant is the variation in emissions

displaced by EE and RE resources? And what dimensions (e.g. spatial or technological) are

most important from a policy design perspective?

We use detailed hourly data from six major independent system operators (ISOs) in the

United States over the period 2010-2012, together with detailed, site-specific profiles of re-

newable energy production potential and energy efficiency savings potential, to estimate the

impacts of incremental RE and EE investments on power system emissions and operating

costs. Emissions displacement and avoided operating cost are evaluated on the same em-

pirical footing in order to facilitate a comparative assessment of the economic returns on

alternative renewable energy and energy efficiency investments. We explore the extent to

which variation in emissions displacement across regions and technologies drives variation in

marginal returns on investment and marginal abatement costs.

There are several important findings. The first pertains to regional variation in emissions

displacement benefits. We document statistically significant regional variation in marginal

nine states have adopted renewable portfolio standards which mandate minimum levels of renewable gen-
eration. Twenty states have efficiency standards which establish specific targets for demand-side energy
savings. Incentives offered under these programs are based on electricity production. In addition, the federal
government has established minimum efficiency standards for certain appliances and buildings, and provides
sizable tax credits for renewable energy and energy efficiency improvements.
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operating emissions rates (i.e. the emissions intensity of marginal producers). The quantity

of emissions displaced per MWh of renewable energy generation (or per MWh of energy

saved in the case of EE investments) also varies significantly across regions. For example,

the quantity of emissions displaced, on average, by a MWh of renewable electricity in the

midwest is more than double the average rate in California where marginal producers tend

to be relatively clean gas-fired plants.

In contrast, emissions displacement (on a per-MWh basis) does not vary significantly

across technologies in most of the regions we analyze. The reason is that marginal operating

emissions rates are relatively homogeneous within regions across hours, days, or seasons. So

resources with very different profiles displace very similar quantities of emissions per MWh.

This finding has implications for the design of policy incentives. Policy incentives that are

regionally differentiated – but neglect to capture intra-regional variation in resource profiles

– can capture the vast majority of the variation in emissions displacement in our data.

A third finding is that emissions-related benefits can comprise a large share of the short-

run returns on RE and EE investments. Our measure of the short-run value generated per

MWh of RE or EE is comprised of both the avoided operating costs (e.g. fuel) and the value

of avoided CO2 emissions. Using a social cost of $38 /ton of CO2, emissions related benefits

account for anywhere between one quarter and one half of the total estimated value per

MWh in regions where emissions are not subject to a binding cap.4 In contrast, variation

in emissions displacement benefits across technologies within a region has little economic

significance.

Finally, we assess the extent to which variation in emissions displacement rates drives

variation in abatement costs. We combine our estimates of avoided emissions and avoided

operating costs with estimates of investment costs in order to compute the implied cost per

ton of avoided emissions across resources and regions. Variation in investment costs across

technology types drives much of the variation in abatement costs, although regional variation

in emissions displacement benefits has a significant role to play.

Taken together, these findings underscore the importance of designing policy incentives

to accurately capture regional variation in external, emissions-related benefits. Within a

region, variation in emissions displacement across resources and technologies is less likely to

be economically significant.

The paper proceeds as follows. Section 2 provides a conceptual framework for the analysis.

4The Regional Greenhouse Gas Initiative (RGGI) imposed a binding cap on GHG emissions from the
power sector during our study period. In RGGI states, RE and EE investments should have no impact on
aggregate emissions, so emissions displacement benefits are assumed to be zero.
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Section 3 summarizes the data. Section 4 estimates marginal operating emissions rates

across time and space. Section 5 estimates marginal emissions displacement rates across

regions and technologies. Section 6 relates estimates of emissions displacement to a more

comprehensive measure of economic value. Section 7 estimates region and resource-specific

marginal abatement costs. Section 8 concludes.

2 Conceptual framework

An overarching goal of this paper is to estimate the returns on investment in renewable

energy and energy efficiency over the short-run, and to summarize the variability in these

values along spatial, temporal, and technological dimensions. This is a short-run analysis in

that we condition on the existing infrastructure of regional electric power systems. This is a

marginal analysis in that we focus on incremental investments in grid-connected renewables

and energy efficiency.

Returns on these investments manifest indirectly as avoided emissions and reductions

in variable operating costs at marginal generating units on the system. Our analysis will

emphasize the former; policies designed to accelerate investment in renewable energy and

energy efficiency are largely rationalized on the basis of these uncompensated external ben-

efits. To put these estimates in context, however, we also take a more comprehensive look

at relative costs and benefits. More precisely, we assess the extent to which variation in

emissions displacement benefits affects returns on investment (inclusive of avoided operating

costs) and marginal abatement costs across regions and technologies.

Our analysis proceeds in four steps. In this section we organize these steps within a

simple conceptual framework; in Sections 4–7 we describe each step in more detail and

discuss estimation results.

2.1 Marginal operating emissions rate

On the operating margin, environmental benefits associated with additional renewable gen-

eration or efficiency improvements are determined by the emission intensities of the marginal

units displaced. Modeling the relationship between marginal changes in system operating

conditions and emissions is a critical first step in our analysis.

We specify an emissions equation, EMr(yrt, xrt) which defines system-wide emissions in

region r as a function of factors we can observe. The yrt denotes the total production from

generators that respond to marginal changes in production from RE, or savings from EE,
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in region r at time t. Other observable factors that can affect system operating conditions,

such as weather, are captured by xrt. Differentiating with respect to net load, we obtain an

expression for the marginal operating emissions rate (MOER):

φrt ≡
∂EMr(yrt, xrt)

∂yrt
(1)

This partial derivative captures the system-wide emissions associated with the last megawatt

produced by dispatchable units. Figure 1 serves to illustrate how this MOER can vary across

hours and seasons, with this example specific to New York State. In this case there is signif-

icant seasonal and diurnal variation in MOERs.5 Electricity consumption levels are higher

in the day than at night, and higher on average in New York in the summer. The diurnal

variation in the winter MOER curve is likely the result of coal more often on the margin at

night, while combined cycle gas turbines are more often on the margin during the day.

2.2 Marginal emissions displacement rate

The next step in our analysis estimates the quantity of emissions displaced by a given re-

newable or efficiency technology j. Our approach turns on two features that distinguish

grid connected wind, solar, and demand-side efficiency technologies from combustion-based

generation resources. First, wind, solar and energy efficiency savings are variable and “non-

dispatchable”. Second, because the variable costs of wind, solar and efficiency savings are

negligible when compared to combustion generators, they will almost always cause a reduc-

tion in output from emitting units. Taking these two factors together, if one neglects changes

in transmission and distribution line losses, the quantity of emissions displaced by a resource

is given by the product of the hourly MOER and the technology’s electricity production

or savings in that hour. Therefore it is essential to capture the hourly correlation between

MOER and resource profile; we will explain this mathematically below.

Figure 2 plots average hourly resource availability for a representative wind site, a repre-

sentative solar PV installation, a generic residential lighting upgrade, and a generic commer-

cial lighting upgrade (all located in New York state). Realized resource availability varies

around these average values. Referring to Figures 1 and 2 together, one can see that dif-

ferent resources have potentially significantly different capability to displace emissions from

5To put these rates in perspective, using the U.S. Energy Information Administration estimates for prime
mover heat rates in 2012 and CO2 emissions by fuel type, coal plants emit roughly 2075 pounds of CO2 per
MWh (assuming bituminous coal), combined cycle gas turbines (CCGT) emit 892 pounds per MWh and
simple cycle gas turbines (SCGT) emit 1346 pounds per MWh.
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Figure 1: Seasonal marginal operating emissions rate profile (NYISO)

Notes: This figure illustrates hour-specific estimates of the marginal operating emissions rate in
New York by season. Bars denote 95 percent confidence intervals. Our approach to constructing
point estimates and associated confidence intervals is explained in detail in Section 4.
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combustion generators.

Figure 2: Resource-specific production profiles

Notes: This figure plots the share of energy generated (or saved) on an average winter day in New
York by hour of day. See the data appendix for a discussion of data sources.

To facilitate direct comparisons of emissions displacement across resource profiles, we

define δrj as the marginal emissions displacement rate (MEDR) specific to each technology
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j and region r over time horizon T :

δrj ≡ E

[
T∑
t=1

(
ωrjtφrt

)]
(2)

= T · E [ωrjt] · E [φrt] + T · cov(ωrj, φr) (3)

= φr + T · cov(φr, ωrj) (4)

where the weights ωrjt represent the energy produced (or saved) by a resource in time interval

t normalized by the total production from the resource over the time horizon T .6 Variation

in the MOER and resource profile parameters ωrjt consists of both systematic and random

components; E[·] denotes an expected, or average, value.

A key implication of Equation (4) is that the average quantity of emissions displaced per

MWh generated or saved by a resource is determined not only by the average MOER in the

region, φr, but also the correlation between the resource production profile and the marginal

operating emissions rate. This highlights the importance of capturing both regional and

technological variation in our analysis. As MOER and resource profiles vary across regions,

the ability of a particular technology to deliver emissions displacement benefits can also

change.

2.3 Marginal economic value

Having summarized variation in emissions displacement rates across regions and technologies,

we turn to an assessment of the economic significance of this variation. To put our estimates

of emissions displacement into perspective, we introduce a measure of marginal value that

accounts for both avoided environmental damages as well as its impact on power system

direct operating costs.

E [MBrj] =E

[
T∑
t=1

(
τωrjtφrt

)]
+ E

[
T∑
t=1

(
ωrjtλrt

)]
(5)

= τ(φr + Tcov(φr, ωrj))︸ ︷︷ ︸
Emissions displacement value

+λr + Tcov(λr, ωrj)︸ ︷︷ ︸
Avoided operating costs

(6)

6For ease of exposition, we ignore variation in resource profiles for each technology within a region.
Below we show empirical support for the assumption that within-region variation is not a significant driver
of variation in resource value
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The τ parameter captures the monetary value of the health and environmental damages

avoided per unit of displaced emissions.7 The λ parameter represents the cost of the last

MWh produced by dispatchable units over a particular hour. If ωrj is positively (negatively)

correlated with the marginal cost of supplying load, this will positively (negatively) influence

the marginal economic value of the renewable or efficiency resource.

2.4 Marginal abatement cost

To assess the economic implications of external emissions benefits, we should ideally account

for benefits and costs of investing in renewable energy generation and energy efficiency. We

combine our estimates of marginal benefits introduced in the previous section with estimates

of levelized investment costs to compute the marginal abatement cost – i.e. the net cost per

ton of CO2 emissions avoided – as follows:

E [MACrj] =
LCOErj − (λr + Tcov(λr, ωrj))

(φr + Tcov(φr, ωrj))
(7)

The numerator is the net cost per MWh: the levelized cost of electricity (LCOE) net of

the value of avoided fuel costs. The LCOE is a common benchmarking tool used to assess

the relative cost-effectiveness of different energy technologies. Conceptually, it measures the

constant (in real terms) price per unit of electricity generated that would equate the net

present value of revenue from the plant’s output with the net present value of the cost of

production. Dividing the net cost per MWh by the quantity of emissions displaced per MWh

(in the denominator) yields a cost per ton of emissions avoided. If this value exceeds the

social cost of carbon emissions, the investment cannot be rationalized on the basis of the

emissions externality alone.8

The marginal abatement cost measure summarized by Equation (7) provides a simple

metric that facilitates a comparison the relative merits of wind, solar and efficiency invest-

ments on the basis of the investment required to avoid carbon emissions. Framing compar-

isons in this way, we can evaluate the extent to which an accurate internalization of emissions

benefits would alter the rank order – and level – of investment in RE and EE resources across

regions and technologies.

7We assume this damage value is constant over the relevant range of emissions levels.
8In a regional electricity market that has imposed an emissions cap, if this cost per ton exceeds the

prevailing permit price, the investment is not cost effective unless there are other market failures (e.g.
learning by doing) in play.
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3 Data

The data sets used in this paper include combustion generator emissions and production;

hourly production from wind and solar generators; hourly savings from efficiency measures;

marginal electricity prices; and estimates of levelized costs for each renewable and efficiency

resource. Except where otherwise noted, the period of analysis is each hour of the period

2010-2012. Before we describe these data sets in detail, we discuss three research design

choices that shape our data set construction.

3.1 Regional unit of analysis

We define the regions r to be the six major independent system operators (ISOs) in the

United States: ISO New England (ISONE), the New York ISO (NYISO), the PJM Intercon-

nection, the Midcontinent Independent System Operator (MISO), the Electric Reliability

Council of Texas (ERCOT) and the California ISO (CAISO).9 We chose these regions for

two central reasons. First, they coordinate large-scale pooled electricity markets to econom-

ically balance local load with supply on daily, hourly and sub-hourly time scales.10 Second,

as balancing authority areas (BAAs), these ISOs coordinate local generation via ancillary

services – most notably frequency regulation – to balance net load forecast errors on a

second-to-second basis, after all electricity markets have cleared.

The choice of ISOs as the region of analysis contrasts with other papers that use North

American Electric Reliability Corporation (NERC) regions (Siler-Evans et al., 2012; Graff Zivin

et al., 2014). NERC regions are used for monitoring expansion plans and assessing historical

reliability performance, but do not define the footprint of any single pooled market or BAA.

In fact, in some cases NERC regions are much larger than ISOs (CAISO is a very small

part of the WECC NERC region), and in other cases ISOs straddle multiple NERC regions

(for example PJM straddles the MRO, RFC and SERC NERC regions; MISO straddles the

MRO and RFC NERC regions).

9Because the Sacramento Municipal Utility District and Los Angeles Department of Water and Power
are surrounded completely by CAISO, we include generators in those footprints in our analysis; therefore we
refer to the total region of analysis as California.

10On March 1, 2014 the Southwest Power Pool began coordinating daily, hourly and sub-hourly markets
via its Integrated Marketplace. At the time of writing this paper there was insufficient data to include it in
our analysis.
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3.2 Marginal generating units

Several recent studies have estimated the emissions impacts of grid-connected renewable

electricity generation in a variety of contexts. Empirical strategies vary in terms of the

degree of complexity, data requirements, and identification strategies. In this study, we use

observable variation in production at grid-connected thermal power plants to proxy for the

effects of adding a new grid-connected renewable energy resource or efficiency improvements.

To estimate marginal operating emissions rates, we regress hourly CO2 emissions in a

regional power system on generation at thermal power plants in the region. An alternative

approach would regress emissions on the sum of generation from combustion-based sources

as well as production from non-emitting inframarginal sources such as renewables, large hy-

dro and nuclear. However, though inframarginal, the output of these non-emitting resources

might change for reasons unrelated to operator dispatch decisions. For example, wind and

solar change production in response to available natural resources,11 and hydro plant oper-

ators typically self-schedule their output, in part to manage environmental constraints. To

the extent the output of these non-marginal generators are correlated (but not causally) with

changes in net load, marginal emissions analyses that regress emissions on net load will be

biased.

3.3 Power flows between regions

Our base specification does not include transfers across ISO boundaries for two reasons. First,

there is no straightforward way to allocate flow into a region to specific types of generation

(specifically emitting versus non-emitting generation) and for this reason, as discussed in the

previous paragraph, using a measure of total imports in a regression suffers the same problems

that load-based regression estimates suffer (namely changes in non-marginal, non-emitting

generation can bias MOER estimates). Second, market barriers (for example the challenge

of congestion management across ISOs, a lack of standard definitions for energy products,

and fees for importing and exporting across ISO interchanges) prevent generators outside

an ISO’s footprint from efficiently participating in that ISO’s market. Though ongoing

efforts between ISOs to address these so-called “seams” issues may eventually resolve these

inefficiencies,12 generators within an ISO’s footprint currently face fewer hurdles to being

11In extreme conditions wind and solar can be curtailed, however, to the extent this curtailment occurs in
existing systems it is generally driven by transmission congestion rather than a system-wide excess of supply.
In that sense those curtailed resources are locally marginal, but not at the aggregate level.

12http://www.isorto.org/Documents/Report/2010IRCMetricsReport_2005-2009.pdf, last accessed
December 28, 2014.
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dispatched to meet a change in net load.13

We note that this modeling choice specifies a mechanism for how generation is dispatched,

but given that choice we are not omitting data. That is, we will focus on estimating the

marginal emissions rates of combustion-fired generation within an ISO footprint – with an

accurate accounting of local generation and emissions – and our key assumption is that the

output of those local generators will change in response to renewables or efficiency. This

is in contrast to load-based estimates that measure the marginal change in local emissions

with respect to a marginal change in local load (e.g. Siler-Evans et al. (2012)); that approach

suffers from accounting errors because local emissions may in fact be changing in response

to remote changes in load, or remote emissions may be changing in response to local changes

in load. A credible modeling alternative, similar to that employed in Graff Zivin et al.

(2014), is to regress total emissions within an entire interconnection (i.e. an aggregation

of ISOs and utilities that interchange power) on a vector whose elements comprise load in

each sub-region of the interconnection. This implicitly captures exchange between areas,

however, we still prefer the generation-based approach used in this paper for two reasons.

First, it avoids the load-based estimate problem of accounting for non-marginal changes in

non-emitting generation mentioned above. Second, load in neighboring regions tends to be

highly collinear, which complicates the interpretation of the estimated coefficients.

3.4 Data Sources

Combustion generator production and emissions data. We obtained generation (in

MWh per hour) and CO2 emissions (in pounds per hour) for combustion-fired plants that

report to EPAs Continuous Emissions Monitoring System (CEMS) dataset. We use plant

latitude and longitude to locate the plants within ISOs using a spatial database of the

footprints of each ISO14. We exclude combined heat and power units and so-called “self

generating” units which are unlikely to ever be called upon to follow load).

Generation cost. To capture marginal fuel and operating costs (λr in the previous

section) we collected real-time hourly average locational marginal prices for each region15.

In ISONE, we set λr equal to the Internal Hub real-time LMP in ISONE. For all other regions,

13In October 2014, CAISO and the utility PacifiCorp began operating a shared energy imbalance market
to facilitate inter-hour economic adjustments in flow between the regions. This market is designed to reduce
the inefficiency of inter-regional trade and may need to be considered in future analyses of this type.

14http://www.ventyx.com/en/solutions/business-operations/business-products/

velocity-suite, last accessed December 28, 2014.
15http://www.gdfsuezenergyresources.com/index.php?id=712, last accessed December 28 2014.

13

http://www.ventyx.com/en/solutions/business-operations/business-products/velocity-suite
http://www.ventyx.com/en/solutions/business-operations/business-products/velocity-suite
http://www.gdfsuezenergyresources.com/index.php?id=712


D
RAFT

we set λr equal to the unweighted spatial average of each region’s hourly LMPs. Note that

ERCOT’s nodal market began on December 1, 2010; we dropped all preceding dates from

our analysis of ERCOT. LMPs in ISOs containing states that participate in the Regional

Greenhouse Gas Initiative (RGGI) will be influenced by the marginal carbon abatement cost

in RGGI; in Section 7 we will adjust those LMPs by the carbon market price, which we take

to be the permit price in 2012, $1.93/ton.16.

Wind production data. We obtained simulated wind production data from the Na-

tional Renewable Energy Laboratory’s (NREL) Eastern Wind dataset17 and Western Wind

dataset18. NREL and its partners produced these datasets with a combination of meso-scale

wind speed models and the production characteristics of hypothetical wind farms. The re-

sulting simulated datasets cover more than 30,000 sites across the United States, have a

temporal resolution of 6 minutes (which we used to construct hourly averages), and span 3

years from 2004-2006.19 We used the latitude and longitude of each simulated wind site to lo-

cate the production within each ISO, and normalized these data to hourly energy production

per megawatt of installed capacity for each site.

Levelized cost of wind energy (LCOE) are constructed from data provided by

Lawrence Berkeley National Laboratory (LBNL) Wiser et al. (2014). This report analyzes

power purchase agreements (PPAs) from a large sample of wind installations to produce an-

nual average levelized prices per megawatt-hour of wind. We used the 2012 data for each of

four regions: Great Lakes, Interior, West and Northeast. Prices and ISOs that we assigned

to each region are in the Appendix. Because all projects should have received the federal

production tax credit (PTC) we set the total LCOE equal to the sum of PPA prices and

the 2012 PTC ($22/MWh). Assuming the wind industry is competitive, these prices are

representative of total social costs per MWh. Table 1 summarizes the wind LCOE data

along with LCOEs for other technologies, described below.

Solar production data are from NRELs PV WATTS simulation tool 20. This software

applies PV performance modeling to typical meteorological year weather data to estimate

the hourly average production of a solar array installed at thousands of different sites. We

16https://www.rggi.org, last accessed December 28, 2014.
17http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html, last accessed De-

cember 28, 2014.
18http://www.nrel.gov/electricity/transmission/western_wind.html, last accessed December 28,

2014.
19Data of this extent are not available in the years that we collected combustion generator data (2010-

2012). Though correlation between wind speed and electricity load is very weak, using wind data from
different years than those used to construct MOERs could introduce small errors in our analysis.

20http://pvwatts.nrel.gov, last accessed December 28, 2014.
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Table 1: LCOEs for all technologies and regions.

technology CAISO ERCOT ISONE MISO NYISO PJM
Utility scale solar $123.49 $133.47 $140.80 $150.41 $150.27 $151.73
Utility scale wind $87.36 $52.58 $75.11 $64.39 $75.11 $75.11
Residential lighting $25.25 $25.25 $25.25 $25.25 $25.25 $25.25
Commercial lighting $4.12 $4.12 $4.12 $4.12 $4.12 $4.12

replicate this average year for each year in our analysis. We used the default assumptions

for a fixed PV array facing south, with a tilt angle set equal to the sites latitude. Because

solar production is highly spatially correlated on hourly time scales we use only two sites

per region and chose sites to be relatively far apart and such that one was in a location with

very good resource potential for that region; these sites are listed in the Appendix.

Solar LCOE data are constructed from data from LBNL Barbose et al. (2014). We

used the 2012 installed cost for >5MW utility scale systems ($2.97 per watt).21 The LBNL

data are reported prior to receipt of any direct financial incentives or tax credits, therefore

assuming the PV industry is competitive, these prices are representative of total social costs

per MWh. We use the same cost model as in (Baker et al., 2013), namely: we assume that

the inverter is replaced every 10 years at a cost of $0.20/W but declining at 2% annually in

real terms; assume a project life of 30 years; assume a panel degradation rate of 0.5% per

year; and assume a real discount rate of 3%. We computed LCOE for each of the two sites

per region and averaged the result within each region; the resulting LCOE are in Table 1.

Energy efficiency “production” data. For efficiency, we will focus only on commer-

cial and residential lighting efficiency We obtained a year of simulated hourly consumption

data for typical residential and commercial buildings (details on the data are can be found

in (Wei et al., 2012)). These hourly profiles vary by hour of day, weekdays/weekends and

season. Commercial lighting consumption is concentrated in business hours and residential

lighting energy is concentrated in evening hours. We assumed that a unit of energy saved

from lighting efficiency would be distributed in proportion to the hourly consumption data,

and treat those saved units of energy in a given hour as equivalent to energy produced from

a wind or solar generator. We assumed the hourly consumption profiles, conditioned on

season, and weekend / weekday, would be the same in each year of our analysis.

Energy efficiency LCOE data are from the US Department of Energy Appliance

21We note that residential scale solar installed prices vary systematically across the country, and large-scale
systems likely do as well, however the data available comprise only a single nation-wide number. However,
local resource potential drives levelized cost, and this was factored into our analysis.
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and Equipment Standard Programs 2011 Fluorescent Lamp Ballast rulemaking. For each

appliance efficiency rulemaking under consideration, the DOE releases a technical support

document including either a Life Cycle Cost Assessment or a National Impacts Analysis

which provide estimates of the energy savings and costs associated with different efficiency

levels (EL) under consideration. For both residential and commercial categories, we focused

on general service fluorescent lamps (GSFL). DOE estimates that there are more than 2

billion of these lamps in service in the US residential and commercial sectors (DOE, 2009),

with most (92%) in the commercial sector 22. DOE documents GSFL lamp characteristics

extensively for rulemaking purposes. The current DOE standard is 88 lumens per watt for the

lamp-ballast system (DOE, 2009). For each sector, we chose the baseline as the technology

with the lowest installed cost in that sector that also meets the standard. We defined the

efficiency option as the technology with the second lowest installed cost that also meets

the standard and is more efficient than the baseline. The resulting technology choices were

different for the residential and commercial sectors. We calculated a levelized cost of energy

saved by the efficiency option over a fifteen-year period (to reflect ballast lifetimes DOE

(2009)) at a 3% discount rate. Further detail on efficiency calculations, including the chosen

technologies and their costs, in the appendix.

4 Marginal operating emissions rates

Our primary empirical challenge in this section is to isolate the variation in generation that

most closely mimics the system-wide response to an incremental investment in EE or RE.

To capture this variation, we estimate the following equation:

Erkt = αrkhs + φrkhsGrkt + erkt, (8)

where Erkt measures electricity production at dispatchable, fossil-fueled sources in region r

and hour t. As noted in Section 3, we exclude production at resources that do not typically

vary in output to follow load (such as biomass, landfill gas, wind, hydro, solar, and nuclear).

Much of the unit scheduling that determines how electricity generating units are dis-

patched occurs day-ahead. Therefore, in any given hour, system-wide emissions are a func-

tion of not only contemporaneous operating conditions, but also the forecast conditions

22Though this suggests the number in the residential sector is relatively small, at roughly 35 W per lamp,
the residential sector alone has over 6.5 GW of lamps installed. DOE estimates these lamps are used 791
hours per year, suggesting roughly 5 TWh of end-use electricity consumption per year
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throughout the day that determined how units were dispatched day-ahead. We want to

isolate the variation in system-wide emissions that could conceivably be caused by marginal

increases in RE or EE. In other words, we want to be careful to use variation across days

with similar load profiles to estimate the coefficients in Equation (8). Comparing system-

wide emissions across days with very different load profiles can confound the effects of small

differences in net load (such as those associated with incremental EE and RE investments)

with the effects of larger differences in underlying system dispatch. To address this issue,

we cluster days within a region and season that share very similar generation profiles. More

precisely, we use a k-means clustering algorithm to cluster daily observations (within a region

and season) over the period 2010-2012 into groups of days with very similar load profiles and

peak loads. This algorithm, which is explained in more detail in the appendix, gives rise to

clusters of days within each season and region denoted by k. The α and φ coefficient values

are allowed to vary across clusters to reflect differences in underlying operating conditions

that are distinct from the kind of variation generated by incremental changes in RE and EE.

The α parameter captures the average emissions level observed in region r, season s,

hour h, and load profile type k. Differencing out these average values helps to control for

the effect of systematic differences in system operating conditions across regions, hours, or

seasons that will persist independent of incremental RE or EE investments.

We are primarily interested in the φ coefficients which are estimated separately for each

hour of the day to capture systematic, within-day variation in marginal operating conditions.

To capture systematic, seasonal variation in MOERs, these hour-specific coefficients are

estimated separately for summer and winter seasons (denoted s). We define our seasons to

match the seasonal NOx emissions regulations which switch on in May and switch off in

October and which affect the marginal operating costs of fossil-fuelled generating units.

Standard errors throughout the analysis are estimated using a block bootstrap. We

generate 1,000 permutations of the main data set as follows. For each each region and

season, we select (with replacement) a set of days which preserves the observed composition

of week days and week-end days within that region-season over the study period (2010-

2012). We keep 24 hour blocks within each day together because electricity grid operations

are optimized day-ahead for the following day. Each simulated data set is used to repeatedly

estimate Equation 8.
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Figure 3: Seasonal marginal operating emissions rates

This figure illustrates the range of hour-specific estimates of the marginal operating emissions rate
by season and cluster.

4.1 Estimation results

With six regions, twenty-four hours, two seasons, and an average of three clusters per region

and season, the empirical strategy summarized above yields no fewer than point estimates

of 840 φhrsk.

Figure 3 summarizes the range of variation in these MOER point estimates. Each box

corresponds to a region, season, and cluster. Within a region and season, clusters are dis-

played in increasing order of generation. Fifty percent of the corresponding, hour-specific

point estimates fall within the range of the box. The line within each box denotes the median

value. The whiskers add (or subtract) 1.5 times the interquartile range to the third (or first)

quartile.

The figure illustrates striking variation in marginal operating emissions rates across re-

gions. California’s fossil fuel mix is dominated by natural gas. Variation in emissions rates
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is therefore driven primarily by variation in fuel efficiency, with more fuel efficient plants

preceding less efficient plants in the merit order. Consequently, we see MOER estimates

increasing with generation levels in both the summer and winter. In contrast, coal accounts

for a significant fraction of the fuel mix in PJM and MISO regions. The MOER estimates

in these regions indicates coal is marginal in some fraction of hours. Intuitively, MOER

estimates are decreasing with generation levels in these regions (because coal units will often

precede cleaner gas units in the merit order).

Region-hour-season-specific MOER estimates are reported in the appendix along with

bootstrapped confidence intervals. 23

5 Marginal Emissions Displacement Rates

In this section, we estimate the region and technology specific marginal emissions displace-

ment rates, δrj introduced in Section 2. These values are estimated empirically as:

δrjt =

∑T
t=1 (φrkhs · qrjt)∑T

t=1 (qrjt)
. (9)

For each hour of the data period (indexed by t), we multiply the quantity of simulated

renewable energy production (or energy demand reductions in the case of efficiency) qrjt with

the corresponding regional MOER estimate. The numerator in Equation 9 is the estimate

of the pounds of CO2 displaced by renewable energy generation – or avoided due to demand

reductions – over time period T . Dividing by the sum of energy produced (or saved) yields an

estimate of the average quantity of emissions displaced per MWh. For each region-technology

pairing, confidence intervals are estimated using the block bootstrap described above.

5.1 Estimation results

Equation 4 from Section 2 shows how variation in these MEDR values will depend on both

variation in regional average MOERs and any correlation between MOER profiles and re-

source profiles. Figure 4 starts to unpack this variation along regional and technological

dimensions.24

23The appendix also summarizes an exercise in which summer marginal emissions rates are re-estimated
using a data set that excludes those generating units that report in summer-only. We find that dropping
these units does not significantly affect the summer estimates.

24Because bootstrapping the full suite of results is a computationally intensive process, we choose two
representative PV sites and 20 wind sites per region to incorporate in the subsequent analysis. So, in the

19



D
RAFT

Figure 4: Marginal emissions displacement rates

Notes: This figure illustrates the range of resource-specific marginal emissions displacement rates
estimated by region. The top and bottom of each box represent the upper and lower quartile values,
respectively. Whiskers denote 1.5 times the interquartile range beyond the 25th and 75th percentile
values. Resource profiles for lighting efficiency improvements capture generic seasonal and hourly
variation in energy savings. Solar and wind profiles vary within and across days according to
simulated meteorological conditions and are site specific. Subsets of sites from each region are used
to estimate regional MEDRs.

20



D
RAFT

These box plots illustrate substantial variation in emissions displacement rates across

regions. In California, marginal operating emissions rates are low and relatively constant

over the course of a day. Emissions displacement rates in this region are accordingly low

and do not vary significantly across technologies with different resource profiles. In New

York, there is more inter-temporal variation in the MOER profile, and thus more variation

in emissions displacement rates across technologies with different resource profiles. Solar PV

resource availability is negatively correlated with the MOER profile (see Figures 1 and 2);

solar is therefore associated with a relatively low δ. In contrast, demand reductions associated

with residential lighting improvements are positively correlated with diurnal MOER profiles.

This results in a relatively high average MEDR for this technology.

Figure 4 summarizes emissions displacement estimates for generic efficiency profiles and

a representative set of PV and wind resource installations from each region. However, we

observe thousands of PV and wind sites within each region. Whereas PV production tends

to be highly correlated across sites within a region, spatial variation in elevation, topography,

and vegetation can generate significant variation in wind patterns across relatively short dis-

tances. Significant intra-regional differences in wind resource profiles could imply significant

variation in emissions displacement rates and within technology. To assess the extent of

the intra-regional variation in emissions displacement across wind sites, we generate MEDR

point estimates for all wind sites in the data. Results are summarized in Appendix A.4. We

find very limited intra-region, intra-technology variation in emissions displacement values.

Subsequent analysis will therefore focus on variation across regions and technologies.

5.2 Analysis of variance in emissions displacement rates

Suppose a policy maker is looking to design policy incentives that compensate external emis-

sions displacement benefits summarized by Figure 4. The nature of the variation in MEDRs

across resources should inform the design of these policy incentives. The Figure clearly shows

that inter-regional variation in simulated marginal emissions rates dominates within region

variation. From a policy design perspective, this suggests that much of the variation in

emissions displacement benefits across resources could be captured using production-based

incentives that vary significantly across- but not within-regions.

In what follows, we assess the extent to which alternate regional measures of emissions

intensity capture variation in MEDRs across regions and resource types. For each bootstrap

case of solar PV for example, Figure 4 summarizes the results of 2,000 bootstrap repetitions in each region.
We discuss within region, within technology variation in more detail below.
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repetition (indexed by b), we compute two regional summary statistics for each year of data:

the regional average emissions rate (averaged across all fossil units) and the regional average

MOER. We then use a regression-based approach to analyze the correlation between annual

MEDR estimates, the δrjb, and these summary measures.

As a point of reference, Column (1) of Table 2 reports the average δ value of 1442 lbs CO2

per MWh. Column (2) regresses δrb on a regional measure of the average annual emissions

intensity (the average emissions rate of fossil generators within a region). This average

emissions rate captures a significant share of the variation in MOERs; the R-squared is 0.83.

Column (3) restricts the coefficient on the regional average to equal one and includes a set

of technology-specific indicator variables. These technology-specific coefficients measure the

average difference – by technology type – between this regional average proxy and the δrb.

The regional average emissions rate exceeds the average δrb for all technology types. This

implies that, if resource owners were compensated based on a regional average emissions rate,

avoided emissions would be over-compensated. This over-compensation is most significant

for solar and commercial lighting, both of which peak during the middle of the day when

the MOERs tend to be lowest.

Columns (4) and (5) of Table 2 regress the δrj on the regional annual average MOER.

This marginal (versus average) rate is a superior proxy for the emissions displaced per unit

of renewable energy generation or energy saved; the R-squared increases to 0.97. Emissions

displaced by residential lighting improvements are slightly underestimated on average. Emis-

sions displaced by commercial lighting and solar PV are significantly over-estimated. These

technology-specific interactions report average deviations from the regional proxy. Appendix

A.4 reports the results from estimating a more fully saturated model. Intuitively, deviations

from the regional average are relatively small on average in regions like California and MISO

where MOER profiles are quite flat. In contrast, deviations are more significant in New York.

For example, the average MOER over-estimates emissions displaced per MWh of electricity

generated by solar PV by approximately 190 lbs on average (a 17 percent increase above the

estimated MEDR for this technology in this region).

6 Marginal Economic Value

In the preceding section, we document statistically significant variation in marginal emis-

sions displacement rates across regions and technologies. In this section, we begin to assess

the economic implications of this variation. More specifically, we assess how differences in
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Table 2: Regression-based decomposition of variance in marginal emissions displacement

Dependent variable is MEDR
(1) (2) (3) (4) (5)

Constant 1441.6∗∗ 193.9∗∗ . 14.289∗∗ .
(9.36) (1.29) (0.41)

Average emissions 0.85∗∗ 1
rate (<0.01)
(regional by year)

Marginal operating 0.98∗∗ 1
emissions rate (<0.01)
(regional by year)

Wind -11.56∗∗ 0.46
(0.54) (0.49)

Solar PV -53.89∗∗ -41.97∗∗

(13.06) (10.37)

Residential lighting -9.34 2.67
(8.32) (4.98)

Commercial lighting -32.39 -20.38
(14.64) (12.26)

R-squared 0.83 0.84 0.97 0.98

Observations 72 72 72 72 72

Note: Bootstrapped standard errors.
* Significant at the 5 percent level
** Significant at the 1 percent level
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emissions displacement drive differences in social returns on investment across regions and

technologies.

We use a monetary measure of marginal economic value (summarized by Equation 6

from Section 2) that includes both the value of avoided emissions (often external to market

transactions) and the operating costs (e.g. fuel costs) associated with generation displaced

marginal units. This marginal value measure is implemented empirically as:

MBrj = τ · δrj +

∑T
t=1 (λrt · qrjt)∑T

t=1 (qrjt)
. (10)

To construct the first term on the right hand side, we multiply the MEDR estimates

by the social cost of carbon denoted τ . We assume a value of $38 per ton CO2 (in 2011

dollars).25 Notably, this value will not fully manifest in cases where power sector emissions

are subject to a binding cap. We return to this point below.

To estimate the second term on the right hand side of Equation 10, we need regional and

hourly measures of the variable operating costs at marginal dispatchable generating units

(λrjt). We use region-specific, real-time locational marginal prices (LMPs) as a proxy. These

prices reflect the marginal cost of supplying (at least cost) the next increment of electricity

to a particular location given the supply and demand bids submitted by market participants

and the physical constraints on the system.

Our approach to estimating the value of avoided operating costs parallels our approach

to estimating avoided emissions. In each hour we multiply the megawatt-hours of simu-

lated renewable energy production (or energy demand reductions in the case of efficiency

improvements) with the corresponding regional LMP value. Aggregating these avoided costs

across all hours and dividing by the sum of energy produced (or saved) yields a region

and technology-specific estimate of the average marginal value per MWh. For each region-

technology pair, confidence intervals are estimated using the block bootstrap described above.

6.1 Avoided operating costs

Figure 5 summarizes region and technology-specific estimates of avoided operating costs

per MWh. Variation within a region and across technologies is driven by differences in

25This is approximately equal to the value associated with a 3 percent discount rate: U.S. Interagency
Working Group on Social Cost of Carbon. 2013. Technical Support Document: Technical Update of the So-
cial Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866. http://www.whitehouse.
gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_2013_update.pdf, last ac-
cessed December 20, 2014.
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Figure 5: Avoided operating costs per MWh by technology type and region.

the temporal correlation between resource profiles and marginal operating costs. Intuitively,

across all regions, solar PV is associated with the highest value estimates. Of all the resources

we consider, solar PV production peaks are most coincident with peak load. In contrast,

wind production tends to be negatively correlated with demand.

Cross-region comparisons of the λrjt should be made carefully. Differences in marginal

prices across regions can reflect, among other factors, differences in market structure and

associated incentives that govern the bidding behavior of the market. In our context, there

are two institutional considerations that warrant careful consideration.

The first pertains to regional differences in resource adequacy and procurement. In

contrast to other regions, ERCOT does not presently have a direct mechanism to procure

generation capacity; all generator revenue comes from transactions for energy. As a conse-

quence, energy prices in ERCOT are allowed to rise to very high levels to reflect scarcity

of generation and incentivize construction of new capacity. In other words, ERCOT prices

capture the cost to build new generation capacity in addition to fuel costs. Figure 5 shows

that estimates of avoided operating costs are relatively more volatile in ERCOT. In the
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other regions, load serving entities are required to contract with generators solely on the

basis of their existing capacity before any energy is transacted. These transactions are in-

tended to ensure that sufficient generation capacity is built (or kept operating) to maintain

system reliability. The resulting payments to owners of generation form part of their total

revenue, meaning they only need to capture a portion of their revenue in energy markets

to be profitable. MEV comparisons between ERCOT and other ISOs should made in this

context.

A second consideration pertains to regional differences in emissions regulations. New

York, New England, and some states in the PJM participate in the Regional Greenhouse

Gas Initiative (RGGI). This initiative imposes a cap on CO2 emissions from electricity gen-

eration; electricity producers must hold permits to offset emissions. This binding cap has

two important implications for our analysis. First, the price of electricity generation in these

three regions reflects the carbon permit price in addition to other variable operating costs.

Second, because the emissions cap is binding, marginal increases in renewable generation

capacity or energy efficiency will not reduce carbon emissions in RGGI. In other words,

there are no external emissions displacement benefits of RE or EE in these regions; benefits

manifest as avoided abatement costs on the margin (captured by the wholesale prices).

6.2 The marginal social value of RE and EE resources

Figure 6 summarizes the point estimates of marginal economic value in terms of emissions

displacement benefits (red) and the value of avoided operating cost components (blue) by

region and technology.

In the figure, there are no emissions displacement benefits associated with RE and EE

investments in New York and New England. These markets are completely covered by

the binding cap on CO2 emissions. Wholesale market prices in these regions reflect fuel,

operations, and emissions abatement costs incurred on the system operating margin. In the

remaining regions where all (or in the case of PJM, a majority) of emissions are uncapped, the

value of emissions displaced per MWh is added to the value of displaced operating costs. In

California, where natural gas is on the margin in a majority of hours, emissions displacement

benefits comprise a relatively small share (approximately a quarter) of marginal social value.

Emissions displacement benefits comprise a larger share (as much as one half) of marginal

social value estimates in PJM and MISO.

An overarching implication of Figure 6 is that, in regions where emissions are uncapped,

external emissions displacement value comprise an important source of marginal social value
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Figure 6: Marginal social value by technology type and region.

Notes: This figure summarizes point estimates of emissions displacement (in red; measured in
monetary terms) and operating costs (in blue) displaced per MWh of renewable energy generated
or demand-side electricity saved.
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– ranging from roughly 25% of value in California to over half in MISO. By summing operat-

ing costs and the cost of carbon, we also see that, in the non-RGGI states, total social value

becomes more similar across regions. That is, the regions with low operating costs tend to

be those with the highest avoided carbon benefits. We also find that variation in operating

costs can dominate the ranking of total social value – for example, solar PV ranks last with

respect to emissions displacement value in MISO, ERCOT, and PJM, but first in terms of

total social value due to the operating costs displaced during peak hours.

7 Marginal abatement cost

The final step in our analysis incorporates estimates of both benefits and costs of EE and RE

investments. Using the notation from Section 2, where j corresponds to technology type, r

denotes region, and t denotes time in hours, we compute the region- and technology-specific

MACs as follows:

MACrj =
LCOErj −

∑T
t=1 (λ′rtωrjt)

δrj

where λ′rt is the marginal operating cost, and LCOErj is the levelized cost of energy intro-

duced in Section 3. As in Section 2, ωrjt is the ratio of a technology’s production (or savings)

in a region in period t to the production over the total period of analysis, and δrj is the mean

MEDR computed in Section 5.

For CAISO, MISO, ERCOT and PJM, we set λ′rt directly equal to the marginal fuel and

operating cost λrt introduced in Section 3. For NYISO and ISONE, where all states are

subject to a binding cap on power sector carbon emissions, we subtract the product of the

emissions permit price and the corresponding MOER from the ISO LMP data to construct

the marginal energy cost: λ′rt = λrt − PRGGIδrj. We set PRGGI equal to the average RGGI

permit price in 2012( $1.93/ton CO2).
26

Although we have made some adjustments to the λ parameter to account for carbon

permit prices, there are several remaining caveats to consider. The first relates to levelized

cost of energy calculations. As described in Section 3, wind LCOEs are built from records

of region-specific power purchase agreements and solar LCOEs are built from historical in-

26We did not adjust PJM prices because, although Maryland, Delaware and New Jersey participated in
RGGI for some or all of our study period, they are only a fraction of the larger PJM market, and we are
using a spatially weighted LMP.
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stalled costs ($/watt) combined with region-specific solar resource potential. On the other

hand, our lighting efficiency LCOE calculations are built from DOE’s engineering-economic

forecasts of the retail price of and costs to install new technologies, their power consumption,

and estimates of how much they are operated on an annual basis (see Appendix for details).

There are a number of reasons to argue that other factors should be included in the true

levelized cost of lighting efficiency, including the economic impact on manufacturers and

differences between the utility and the performance of the baseline technology and the more

efficient option. In sum, considering that the levelized cost estimates for each technology are

derived from disparate data sources, we cannot draw precise comparisons across technolo-

gies. However, as we shall see in the results, the marginal abatement cost differences across

technologies tend to be very large, suggesting that, in most cases, the ranking of technologies

is likely to be robust to methods for computing LCOE.

Second, as we discussed above, the ERCOT LMP also includes the effect of supply

scarcity, whereas all other ISOs have capacity markets that tend to suppress wholesale energy

prices. This inflates the average energy price in ERCOT somewhat, which has the effect of

reducing ERCOT’s MACs relative to what they would be in the presence of a capacity

market.

Finally, note that for ISONE and NYISO – the two regions fully within RGGI – the MAC

should not be interpreted as a marginal abatement cost (implying a reduction in carbon if

the technology were deployed) but rather a marginal compliance cost. In other words, our

estimates represent the cost to comply with RGGI’s binding cap if one chose to use the

technologies we are studying.

In light of these caveats, we will not show our results with confidence intervals because,

although our bootstrap approach captures the variability from marginal operating emissions

rates and wind, solar and lighting profiles, we cannot fully characterize the remaining sources

of uncertainty in the MAC calculations, especially with respect to the LCOE. The latter

uncertainty may well dominate any uncertainty we are able to capture. Therefore we present

our results as point estimates only, with strong caveats on interpreting small differences in

MAC values.

Figure 7 summarizes the results. The figure shows striking variation across technologies.

Owing to its relatively high installed cost, solar PV is associated with the highest MAC.27

Wind, still not competitive with wholesale electricity prices during our time period– at least

27It is worth noting that recent estimates of signed, but not completed, utility scale solar PPAs suggest that
the cost of utility scale solar is dropping precipitously, in some cases to that of wind or even lower Bolinger
and Weaver (2014).
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Figure 7: Marginal abatement costs across technologies and regions

when measured with the average PPA prices in the data we used – is associated with positive

costs per ton of CO2 offset. However, in several of the regions we consider, estimated costs

are similar to standard estimates of the social cost of carbon.

Turning to the investments in lighting efficiency, cost estimates are negative due to LCOE

estimates produced by DOE. One interpretation is that the efficiency standards should be

more stringently in order to equate marginal costs with marginal social returns. Note that

our estimates take as given the engineering estimates of energy savings and technology costs.

If, for example, assumed utilization rates are too high or assumed implementation costs are

too low, this would reduce cost effectiveness. Recall also that we are using a 3% discount rate

to calculate the LCOE, again reflecting our focus on total social costs rather than private

consumer costs. A higher discount rate would be more realistic for private decisions and

would push residential lighting to have positive cost in some regions.28

Keeping these caveats in mind, the basic ranking of options – PV with the highest MAC

and commercial efficiency with the lowest – is likely to be robust to modifications to total

social LCOEs for efficiency, owing to the large difference between them. For lighting tech-

nology, commercial MAC are superior to residential; though slightly different technologies

are used for the LCOE calculations in commercial and residential, this difference is largely

28For example, a 7 percent discount rate would raise the LCOE by roughly 20 percent.
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driven by the difference in operating hours (roughly 9 hours per day in the commercial sector

versus two hours for residential).

We now turn our attention to variation in MAC estimates across regions and within

technologies. Figure 7 technology rankings are identical across all regions. But within

technologies, regional rankings vary. For solar PV, MAC estimates are highest in NYISO

and California – but for very different reasons. In the case of New York, though the MEDR

and economic value are average relative to other regions, the solar LCOE is low owing to

a low solar resource. California, on the other hand, has a relatively good solar LCOE and

economic value, but the MEDR is the lowest of the regions we are studying. At the other

end, perhaps surprisingly, PJM and MISO are the best regions for solar in spite of their

relatively low solar LCOE, due to the high avoided emissions.

The ranking of regions changes modestly for wind. In particular, due to historically high

PPA prices there, California overtakes New York as the worst region. However the ranking

remains intact otherwise.

For efficiency, the regional rankings within technologies takes on a different interpretation.

Variation in negative cost estimates is driven predominantly by regional variation in MEDR

(the difference between LCOE and avoided energy value is relatively similar across regions),

with the lowest MEDR regions having the most negative MAC. This result is mathematically

intuitive – smaller emissions reductions in the denominator results in a larger (in absolute

value) fraction. In other words, relatively few tons of CO2 are avoided for each unit of

electricity saved.

In regions where greenhouse gas emissions are subject to a binding cap, these marginal

abatement cost estimates can be compared to carbon allowance prices which reflect the

shadow value of the constraint imposed by the emissions cap. In the period of our analysis,

RGGI prices were below $2 per ton of carbon. In contrast, we find that, in NYISO and

ISONE (regions that fully participate in RGGI), PV’s associated abatement cost is over

$120 per ton and wind’s is about $50 per ton. On the basis of carbon displacement potential

alone, and with current technology costs and electricity supply infrastructure, PV and wind

do not appear to be cost-effective technologies for carbon abatement vis a vis other abatement

options. On the other hand, using data from the DOE to compute a levelized cost of energy

for lighting efficiency, we find that the associated abatement cost is negative – a result driven

by the fact that avoided energy costs exceed the LCOEs we use. This result suggests that

further increasing efficiency standards would be very cost effective tool for reducing carbon

emissions – or, in the case of ISONE and NYISO, reducing the costs of complying with the
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RGGI cap.

8 Discussion

In this paper we have estimated the carbon displacement benefits associated with differ-

ent RE and EE technologies across several regions in the United States. Within each re-

gion we find limited temporal variation in marginal operating emissions rates. As a result,

technology-specific estimates of emissions displacement benefits vary little within regions,

even though the timing of energy production does vary significantly across technologies.

In contrast, we find significant variation in emissions-related benefits across regions. For

example, marginal emissions displacement rates in MISO and PJM’s are more than double

those in California across all technologies. Valuing carbon at $38 per ton, we find that carbon

displacement potential is an important driver of marginal returns on investment. In regions

where power sector emissions are not capped, emissions displacement value ranges from 50

to 100 percent of the avoided operating cost benefits of a given technology.

In addition to marginal economic value, we also examine marginal cost per ton of CO2

– a measure that reflects regional and technological variation in levelized cost of energy,

avoided operating cost and carbon displacement potential. Here we find that the variation

in levelized cost of energy across technologies has a very strong influence on the marginal

abatement cost. Cost estimates for solar PV exceed $100 per ton CO2, whereas estimated

costs associated with lighting efficiency improvements are negative. Within technologies,

variation in emissions displacement rates across regions differs by technology. For example,

abatement costs associated with PV are highest in NY and lowest in PJM, and costs associ-

ated with wind are highest in California and lowest in Texas. The range of variation within

technologies is also economically large – marginal abatement costs for PV are 65 percent

greater in NY than PJM and abatement costs for wind are nearly three times greater in

California than Texas.

Overall, these results underscore the importance of designing policies that capture vari-

ation in emissions displacement benefits across regions. For example, the economic value of

PV to a potential developer will appear to be highest in California under a production-based

policy applied uniformly across regions. But from a social welfare perspective, our analysis

suggests that PV will be more valuable in ERCOT, MISO and parts of PJM. In contrast,

the efficiency gains associated with designing policies to capture intra-regional variation in

emissions-related benefits appear small (if the primary policy objective is to efficiently in-
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ternalize the carbon externality). 29

These results should be interpreted with some important caveats in mind. First, this is

a short-run analysis that conditions on the power system structure, the policy environment,

and the technology characteristics we observe in recent years. Second, this is a marginal

analysis; we evaluate impacts of relatively small, incremental increases in renewable energy

and efficiency investment. Our approach is not well suited to evaluating long run impacts,

nor should our estimates be used to value returns on large, non-incremental investments.

These caveats notwithstanding, our results do highlight the general importance of design-

ing policies that accurately reflect regional differences in emissions displacement potential.

The future of carbon regulation in the power sector is highly uncertain. However, under the

proposed Clean Power Plan, RE and EE investments are virtually certain to play a very

significant role in achieving emissions reduction targets. States are currently considering a

wide range of possible compliance options, including production-based policies such as re-

newable portfolio standards and efficiency portfolio standards. If emissions targets are to be

met cost effectively, it will be critical that policy incentives are designed to capture regional

variation in emissions-related returns on carbon mitigation investments.

A Appendix

A.1 Data

Wind PPA data. In the 2013 Wind Technology Market Report, LBNL reports on a data set

of 343 power purchase agreements (PPAs) totalling nearly 30 GW of installed wind capacity.

LBNL collected these data from multiple sources, including FERCs Electronic Quarterly

Reports, FERC Form 1, avoided-cost data filed by utilities, pre-offering research conducted

by bond rating agencies, and a Berkeley Lab collection of PPAs. Figure 8 shows a summary

of the full data set. There is a clear downward trend in wind prices following the 2009 peak.

Though there are relatively few data in 2012-2013, their averages fall in line with the overall

trends in the data set.

These PPAs bundle together the sale of electricity, capacity and renewable energy cer-

tificates and the receipt of federal incentives (e.g. the production tax credit, investment tax

29We note that our conclusions are based on interpreting performance-based (i.e. per-MWh) incentives.
Though we did not directly relate our findings to capacity-based incentives, our findings regarding the
relative insignificance of intra-regional variation in the emissions externality likely generalizes to capacity-
based incentives.
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2013 Wind Technologies Market Report 59 

that the turbine scaling and other improvements to turbine efficiency described in Chapter 4 have 
more than overcome these headwinds to help drive PPA prices lower. 
 

Source: Berkeley Lab 
Figure 46. Generation-weighted average levelized wind PPA prices by PPA execution date and region 
 
Figure 46 also shows trends in the generation-weighted average levelized PPA price over time 
among four of the five regions broken out in Figure 30 (the Southeast region is omitted from 
Figure 46 owing to its small sample size). Figures 45 and 46 both demonstrate that, based on our 
data sample, PPA prices are generally low in the U.S. Interior, high in the West, and in the 
middle in the Great Lakes and Northeast regions. The large Interior region, where much of U.S. 
wind project development occurs, saw average levelized PPA prices of just $22/MWh in 2013. 
 

The relative competitiveness of wind power improved in 2013 
 
Figure 47 shows the range (minimum and maximum) of average annual wholesale electricity 
prices for a flat block of power64 going back to 2003 at 23 different pricing nodes located 
throughout the country (refer to the Appendix for the names and approximate locations of the 23 
pricing nodes represented by the blue-shaded area). The dark diamonds represent the generation-
weighted average levelized wind PPA prices in the years in which contracts were executed 
(consistent with the nationwide averages presented in Figure 46). 

                                                 
64 A flat block of power is defined as a constant amount of electricity generated and sold over a specified period. 
Although wind power projects do not provide a flat block of power, as a common point of comparison a flat block is 
not an unreasonable starting point. In other words, the time variability of wind energy is often such that its wholesale 
market value is somewhat lower than, but not too dissimilar from, that of a flat block of (non-firm) power (Fripp and 
Wiser 2006). 

Figure 8:

credit or treasury grant). Neglecting the influence of policies at the state and local level as

well as local market characteristics on PPAs, and assuming a competitive wind market, the

PPA plus federal incentives will be representative of the levelized cost of wind power, and

we treat them as such in this paper.

Solar production data. We chose 2 sites per region: Butte, CA and China Lake, CA

(California); Austin, TX and Marfa, TX (ERCOT); Boston, MA and Concord, NH (ISONE),

Rapid City, SD and Lansing, MI (MISO); Binghamton, NY and New York, NY (NYISO);

Mansfield, OH and Virginia Beach, VA (PJM).

Efficiency LCOE calculations We used DOE estimates of technology costs and energy

consumption to compute efficiency LCOEs. The key assumptinos are in Table 3, taken from

the DOE’s Technical Support Document for the General Service Fluorescent and Incandes-

cent Reflector Lamps Energy Conservation Standard (Navigant Consulting, 2009).

The current DOE standard for general service fluorescent lamps is 88 lumens per watt

for the lamp-ballast system (DOE, 2009). We gathered data on technology costs and energy

consumption from the National Impacts Analysis for the current standard . In addition to

technical assessments of the lumens per watt and installed cost (including retail price to
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Table 3: Data used to calculate efficiency LCOE.

residential commercial

baseline technology 0.75 ballast factor, 32 watt 0.78 ballast factor, 32 watt
efficiency option 0.75 ballast factor, 30 watt 0.75 ballast factor, 32 watt
baseline cost $52.96 $62.87
baseline energy 39.2 kWh 224.1 kWh
efficiency cost $53.55 $63.31
efficiency energy 37.3 kWh 215.4 kWh
LCOE $15.38 $2.51

Notes: (1) All lamps are electronic ballast. (2) We assumed a lamp and ballast replacement (due to failure
of existing lamp and ballast) for both residential and commercial. (3) All lamps are T8. (4) Levelized cost
computed by dividing cost difference between baseline and efficient option by the energy saved times an
annuity factor for 15 years at 3% discount rate (=12.3).

consumer, taxes and installation labor) for each technology, DOE assumes residential lamps

will be operated 791 hours per year, and commercial lamps for 3,435 hours per year. For each

sector, we chose the baseline as the technology with the lowest installed cost in that sector

that also meets the current standard. We defined the efficiency option as the technology with

the lowest installed cost from among technologies that are more efficient than the baseline.

We calculated a levelized cost of energy saved by the efficiency option over a fifteen-year

period (per DOE’s estimates that ballast lifetime is 15 years (DOE, 2009)), at a 3% discount

rate.

A.2 k-means clustering

We cluster calendar days in our data using a k-means clustering algorithm. Within a given

region and season, every day of the period 2010-2012 is given a 24-dimensional value based

on the megawatt-hours per hour of fossil fuel generation in that hour. An additional value

is added for the megawatt-hours per hour at peak that day (which may occur at different

times). We then k-means cluster these 25-dimensional values. Thus, we are matching days

on both the shape of electricity demand and the quantity in that day. We seed the clusters

by initially matching entirely based on peak load in that day. In practice, the clustering

algorithm frequently returns results which also closely map to clustering based on peak

quantity, with load shape having relatively less influence on the cluster assignment.

We determine the number of clusters using the following algorithm. For each region and

season combination, we cluster each of 11 different ways from 2 clusters, through 12. We

then calculate MOERs using these methods. Beginning with the 12 cluster approach, we
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then check for a statistically significant difference between any of the MOERs that result. If

there are no statistically significant differences between any of the clusters, we drop to the

next lowest number of clusters. Thus, we use the smallest number of clusters which provides

more informational content than the next smallest number of clusters.

Figure summarizes the results of this exercise. Each figure plots the average generation

profile for each season-region-cluster triad. Bars denote 95-percentile confidence intervals.

These graphs illustrate significant variation in load profiles even within a region-season.

A simpler approach to capturing this variation in load profiles would be to use the

calendar month to proxy for intra-seasonal variation in load profiles. Figure X illustrates how

our season-specific cluster composition varies in space and time. In each region and season,

green denotes the first cluster associated with low load levels. Higher numbered clusters

correspond with higher average load profile days. The figures show how our approach leads

to a very different grouping of days as compared to a by-month grouping. We argue that

our approach does a better job at controlling for the effects of load profile differences across

days within a region-season.

A.3 MOER estimates

MOER panel figures

Also include (in future drafts). MOER table of estimates

MOER table of estimates dropping units reporting summer only.

A.4 Intra-regional variation in emissions displacmement across

wind sites

We are interested in assessing the potential significance of variation in wind energy produc-

tion profiles within a region. We start by estimating marginal emissions displacement rates

for the over 30,000 wind sites in the data. Figure X arranges these sites in ascending order

of estimated MEDR values. The figure suggests minimal variation in emissions displacement

across sites.This is not altogether surprising given the limited variation in MOERs within

most regions.

To put the variation summarized in the figure above into context, we systematically

compare the MEDR estimates in either tail of these regional distributions. More precisely, in

each region we select the ten sites straddling the 2.5 percentile value and ten sites straddling
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Figure 9: Marginal operating emissions rates

MOER estimates by season and region.
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Figure 10: Site-specific marginal emissions displacement

See the data appendix for a discussion of data sources.
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the 97.5th percentile value. We bootstrap within region differences in MEDR across all

possible pairwise comparisons between low and high ranked sites.

The table below summarizes these differences. The average pairwise difference between

sites with high and low emissions displacement estimates, normalized by the average MEDR

across all sites in the region, varies from 1 to 3 percent. We also report a more extreme

difference. We take the two most different sites in each region, bootstrap the difference, and

report the 95th percentile difference in MEDRs. The table shows that even this extreme

measure of the difference in emissions displacement rates across sites within a region is small

relative to the average MEDR (averaged across all sites in the region).

Region
Mean

difference
(lbs/MWh)

Extreme difference
(lbs/MWh)

Mean difference as
share of

regional average

Extreme difference
as share of

regional average
ISONE 13 61 1% 5%
ERCOT 26 124 2% 9%
MISO 31 137 2% 7%
NYISO 28 89 2% 7%
PJM 14 105 1% 5%
California 24 141 3% 16%

Based on these results, we conclude that intra-regional variation in emissions displace-

ment rates across wind sites is very small. We thus use only a subset of the sites (twenty

sites from each region) to summarize the variation in emissions displacement values across

regions and technologies.

A.5 Variation in marginal emissions displacement rates

The paper reports the average deviation of simulated marginal emissions displacement rates

from regional and annual averages by technology. These interaction terms mask some re-

gional variation. The table below reports the coefficient estimates from a fully saturated

model (i.e. one including technology-region interactions).
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