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Abstract

This paper examines how returns to education are related to occupation choices.

Specifically, I investigate the returns to attending a two-year college and a four-year

college and how these returns to education differ from a blue-collar occupation to a

white-collar occupation. To address the endogenous education and occupation choices, I

use a finite mixture model. I show how the finite mixture model can be nonparametrically

identified by using test scores and variations in wages across occupations over time.

Using data taken from the National Longitudinal Survey of Youth (NLSY) 1979,

I estimate a parametrically specified model and find that returns to education are

occupation specific. Specifically, a two-year college attendance enhances blue-collar

wages by 24% and white-collar wages by 17% while a four-year college attendance

increases blue-collar wages by 23% and white-collar wages by 30%.
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1 Introduction

The association between education and earnings is perhaps the most well-documented

and studied subject in social science. Much recent work by economists has investigated the

extent to which this correlation is causal in nature (see Card, 2001, for a recent survey of this

literature, also see Heckman et al., 2006a). However, how returns to education are related to

the choice of occupations has received less attention.

It is plausible that returns to education are occupation specific. Returns to education are

found to be lower in secondary sector occupations (Blaug, 1985, Dickens and Lang, 1985)

and in occupations which do not require the education that one obtains(Duncan and Homan,

1981, Sicherman, 1991). In this paper, I examine how returns to attending a two-year college

and a four-year college differ from those of a blue-collar occupation to those of a white-collar

occupation, using the National Longitudinal Survey of Youth (NLSY) 1979. Intuitively, the

wage premium for high school graduates attending a two-year college may be higher in a

blue-collar occupation such as that of a machinist than it may be in a white-collar occupation

such as that of a manager while the wage premium for high school graduates attending a

four-year college may be higher in a white-collar occupation than it may be in a blue-collar

occupation.

The main complication of estimating the occupation-specific returns to education comes

from the endogenous education and occupation choice. As in Roys model (Roy, 1951),

individuals are endowed with different abilities to work in a blue-collar occupation or a

white-collar occupation. They tend to work in the occupation in which they have a comparative

advantage. Moreover, occupation abilities can also influence the education choice. For example,

individuals who know that they are more likely to work in a white-collar occupation are

more likely to attend a four-year college, which would increase the white-collar wages they

would earn more so than attending a two-year college would. In addition, individuals vary in

their education psychic costs. Those with lower education psychic costs may obtain more

education than may those with higher education psychic costs (Willis and Rosen, 1979; Willis,
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1986; Carneiro et al., 2003). While the occupation abilities and the education psychic costs

are known to individuals making education and occupation decisions, these abilities and costs

are unobserved by the econometrician. In the presence of self-selection in both education and

occupation, the Ordinary Least Squares (OLS) estimates of occupation-specific returns to

education are biased. One traditional way of dealing with the endogeneity issue in the returns

to education literature is to use compelling instruments for education such as institutional

rules or natural experiments (see Card, 2001, for a survey of papers using IV approach in

this literature). However, the standard IV approach is hard to implement here because it is

difficult to find good instruments for both education and occupation choices.

I address the issue of endogeneity in education and occupation by explicitly modelling

the sequential education and occupation choices. The unobserved occupation abilities and

education psychic costs are specified with a flexible multinomial distribution in a finite

mixture model. Departing from previous papers that use a finite mixture model to tackle

the endogeneity issue in the education literature, I achieve nonparametric identification of

the finite mixture model without imposing parametric assumptions on the joint distribution

of wages, education, and occupation choices. Based on Kasahara and Shimotsu (2009) and

Kasahara and Shimotsu (2012), I rigorously show how to nonparametrically identify the

occupation abilities using the variations in wages across occupations over time. Since the

information from the panel data alone is not enough to identify the unobserved education

psychic costs, I bring in additional data. Specifically, I use scores from four tests (math skills,

verbal skills, coding speed, and mechanic comprehension) conducted by the Armed Force

Vocational Aptitude Battery(ASVAB), together with the Rotter Locus of Control test score

and the Rosenberg Self-Esteem Scale. I show that conditional on occupation abilities and

education psychic costs the education psychic costs can be nonparametrically identified under

the assumption that the test scores do not directly affect wages, education, or occupation

choices. My identification strategy allows the unobserved occupation abilities and education

psychic costs to be freely correlated. Carneiro et al. (2003), Hansen et al. (2004), Heckman
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et al. (2006b), and Cunha and Heckman (2008) also use test scores to identify their mixture

model. However, they assume the unobserved variables to be mutually independent. Cunha

et al. (2010) relax the strong independence assumption, but their identification replies on the

assumption that distributions are bounded complete. My identification strategy does not

require this strong rank condition.

While I show that the finite mixture model can be nonparametrically identified, estimating

the high-dimensional model nonparametrically is nearly impossible given the relatively

small sample size of NLSY 1979. Therefore, I impose some parametric forms in wage,

education, occupation, and test scores to facilitate the estimation. I find that attendance

of a two-year college enhances blue-collar wages by 24% and white-collar wages by 17%.

Therefore, attendance of a two-year college helps accumulate more blue-collar skills than it

does white-collar skills. The reverse holds true for attendance of a four-year college, which

increases blue-collar wages by 23% and white-collar wages by 30%.

This paper is the first to quantify the occupation-specific returns to attending a two-year

and a four-year college. Although many papers have estimated returns to a two-year college

and a four-year college (Kane and Rouse, 1995; Grubb, 1997; Light and Strayer, 2004;

Marcotte et al., 2005), these papers assumed that returns to education are homogeneous

across occupations. The occupation-specific returns to education suggest that analyzing the

potential impact of an education policy, such as tuition subsidy, requires consideration of

individuals possible occupation choices when these individuals have finished school because

returns to education depend on their subsequent occupation choices.

Moreover, this paper helps us understand the choice made between attendance of a

two-year and that of a four-year college. I find that individuals make their post-secondary

education choices based on both occupation abilities and education psychic costs. The idea

that individuals invest in education based on their occupation abilities was first raised in a

seminal paper by Willis and Rosen (1979). Willis and Rosen studied the choice made by high

school graduates between entering the labour market or attending a college; they suggest that
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individuals who are more suitable to the college labour market are more likely to attend a

college. Keane and Wolpin (1997) extend Willis and Rosen (1979) by taking into account the

sequential choices of education and occupation. They studied how individuals with different

occupation abilities make year-by-year decisions as to whether to further their education. My

paper departs from that of Keane and Wolpin by bringing additional data, the test scores, to

achieve nonparametric identification of the education psychic costs. I find that the education

psychic costs play an important role in post-secondary decisions. This is consistent with

the findings in Carneiro et al. (2003). Carneiro et al. (2003) extend the model of Willis and

Rosen (1979) to account for the education psychic costs and use the ASVAB scores to identify

the education psychic costs. They find that individuals decide whether to attend college or

not taking into account education psychic costs. In addition, I show that without considering

the selection based on the unobserved education psychic costs, the returns to attending a

two-year college are biased upward.

The rest of the paper proceeds as follows. Section 2 describes the data. Section 3 discusses

the empirical specifications. Section 4 shows the nonparametric identification of the finite

mixture model. Section 5 reports the empirical results, and Section 6 concludes.

2 Data

This paper uses data taken from the NLSY79. The NLSY79 is a U.S. national survey of

12686 young men and women who were 14-22 years old in 1979. It consists of a core random

sample of civilian youths, a supplemental sample of minority and economically disadvantaged

youths and a sample of youths in the military. The analysis is based on the 2439 male

respondents in the core random sample. The individuals were interviewed annually through

1994 and are currently interviewed on a biennial basis. I use the observations from 1979 to

1994.

The NLSY79 collects information on individuals’ education attainment and the type of
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post-secondary education individuals in which were enrolled. I assign individuals to three

educational categories: high school graduates, two-year college attendants and four-year

college attendants.1 High school graduates are those who are reported to have completed at

least 12 years of education and have never attended either a two-year college or a four-year

college. Two-year college attendants are those who are reported to have enrolled in a two-year

college and have never attended a four-year college. Four-year college attendants are the ones

who are reported to have enrolled in a four-year college. I distinguish two-year college and

four-year college education because a two-year college provides more technical and vocational

programs while a four-year college offers more academic and professional programs.

The NLSY79 asks individuals about their occupations and the associated hourly payment

in each survey year. I assign individuals to a blue-collar occupation and a white-collar

occupation2 according to the occupation they work the most during the survey year based

on one-digit census codes. Blue-collar occupations are (1) craftsmen, foremen, and kindred;

(2)operatives and kindred; (3) laborers, except farm; (4) farm laborers and foremen; and (5)

service workers. White-collar occupations are (1) professional, technical, and kindred; (2)

managers, officials, and proprietors; (3) sales workers; (4) formers and farm managers; and

(5) clerical and kindred.

One advantage of the NLSY79 is that many of the respondents were in school when

they were first interviewed. Therefore, information about their first jobs are available. Such

information about initial conditions is especially useful because it is important to take into

account the persistent shocks in wages and occupation choices as pointed out by Hoffmann

(2011).

To identify the individual unobserved occupation abilities and education psychic costs,

1Although the main analysis of this paper is based on these three education groups, I examine the
occupation-specific returns to a bachelor’s degree because usually college graduates earn more than college
dropouts (Jaeger and Page, 1996). However, I do not investigate the occupation-specific returns to an
associate degree because the sample size of associate degree earners are too small to give any reasonable
estimates.

2Although a finer aggregation is possible, I focus on two occupation categories to emphasize the importance
of the role of occupational choices in returns to education.
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I use ASVAB, which was administrated in 1979, to construct four test scores: math skill,

verbal skill, coding speed, and mechanic comprehension. The higher scores indicates higher

skills. In addition, I use the Rotter Locus of Control Scale, which was administered in 1979,

and the Rosenberg Self-Esteem Scale ,which was administered in 1980. The Rotter Locus of

Control Scale measures whether individuals believe that events in their life derive primarily

from their own actions. It is normalized to the case that a higher score indicates higher

degree of control individuals feel they possess over their life. The Rosenberg Self-Esteem

Scale measures perceptions of self worth. A higher score indicates higher self-esteem.3

Table 1 presents the sample summary statistics by the three education groups: high

school graduates, two-year college attendants, and four-year college attendants.4 The sample

consists of 934 individuals, of which 34% are high school graduates, 17.5% are two-year college

attendants, and 48.5% are 4-year college attendants. On average, the high school graduates

complete 11.9 years of schooling. The two-year college attendants finish 13.1 years of school.

The complete years of schooling of the two-year attendants suggests that a large fraction of the

two-year attendants do not graduate5. The four-year college attendants complete 15.7 years

of schooling, which suggests that a large proportion of the four-year college attendants obtain

a bachelor’s degree6. The comparison of the fraction of individuals working in a white-collar

occupation as their first jobs7 across the three education groups suggests that the probability

of the initial job in a white-collar occupation increases with education: around 11% of the high

school graduates, 26.4% of the two-year college attendants, and 64% of the four-year college

attendants work initially in a white-collar occupation. The average wages associated with the

first jobs as presented in table 1 suggest that the higher the education, the higher the wages:

on average, the high school graduates earn $9.88, the two-year college attendants earn $10.80,

3All measures are standardize to mean zero and variance one.
4Table A1 gives the summary statistics for two-year college dropouts, those with an associate degree,

four-year college dropouts, and those with a bachelor’s degree.
5Around 75% of the two-year attendants do not have an associated degree.
6Around 70% of the four-year college attendants obtain a bachelor’s degree.
7I look at individuals’ first jobs to get rid of the impact of work experience on the probability of working

in a white-collar occupation.
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and the four-year college attendants earn $13.10. Further, I look at the blue-collar wages and

white-collar wages associated with individuals’ first jobs. For those who initially work in a

white-collar occupation, I find that higher education are associated with higher wages: the

high school graduates earn around $8.41, the two-year attendants earn around $10.47, and

the four-year attendants earn around $14.80. However, the relationship between wages and

education is different for those who initially work in a blue-collar occupation: the two-year

college attendants earn the most among the three education groups, and the high school

graduates and the four-year college attendants earn almost the same. The average blue-collar

wages of the high school graduates are $10.06, those of the two-year college attendants are

$10.91, and those of the four-year college attendants are $10.09. Table 1 also shows that the

three education groups have quite different family background. Individuals whose parents

have more education, who have fewer siblings, grew up in a two-parent family, and live in an

urban area at age 14 tend to obtain more education.

Table 2 presents the average test scores of the six tests across education groups and

occupation groups. Table 2a shows that individuals who initially work in a white-collar

occupation perform better than those who initially work in a blue-collar occupation in all

the six test scores, and therefore, the six test scores may be informative about individuals’

occupation abilities. Table 2b shows the six test scores increase with education. Further,

table 2c and table 2d show that the six test scores increase with education when conditional

on initial occupations. The positive correlation between education attainment and the test

scores suggest that the six test scores may be informative about individuals’ education psychic

costs.

3 Empirical Specification

In this section I specify the wage regression in which returns to education are

occupation-specific, explicitly model how individuals make their subsequent postsecondary
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education choices and occupation choices based on their unobserved occupation abilities and

education psychic costs, and present the test scores regression specification, which is essential

for the identification of the finite mixture model.

To control for the selection in education and occupation, I specify the joint distribution

of occupation abilities and education psychic costs by a multinomial distribution in a finite

mixture model. A finite mixture model assumes that the overall population consists of M

types of people. Each type shares the same occupation abilities and education psychic costs,

and different types are different in occupation abilities and/or education psychic costs. I

assume that the unobserved types affect the intercepts of the wage regression, the test scores

regression, and the expectations on utility in the choice of postsecondary education and

occupations. The superscript m in the following equations represents the mth type-specific

parameters. The finite mixture model is discussed in more detail in Section 3.2.

3.1 A Model for Postsecondary Education, Occupation Choice

and Wages

3.1.1 The Model for Wages

Different from the conventional Mincer-type wage specification, I allow returns to attending

a two-year and a four-year college to depend on the occupation choice. The log wage, Wit,

for individual i at time t is as follows,

Wit = αmW,1 + αmW,2Oit + β12YRi + β24YRi + β32YRiOit + β44YRiOit +X ′itβ5 + εW,it, (1)

where 2YRi is a dummy variable which equals 1 if individual i is a two-year college

attendant, 4YRi is a dummy variable which equals 1 if individual i is a four-year college

attendant, and Oit is a dummy variable which equals 1 if individual i works in a white-collar

occupation at time t. The occupation-specific work experience and its squared terms are

collected into Xit. Since different occupations reward the occupation-specific work experience
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differently, Xit also includes the interaction terms of the occupation-specific work experience

and the occupation dummy variable Oit, and the interaction terms of the occupation-specific

work experience squared and Oit.

The returns to attending a two-year college and a four-year college in a blue-collar

occupation are represented by β1 and β2 respectively, and the returns to attending a two-year

college and a four-year college in a white-collar occupation are denoted by β1 +β3 and β2 +β4

respectively. Since a two-year college focuses on technical and vocational programs while a

four-year college provides academic and vocational programs, we would expect the returns

to attending a two-year college to be higher in a blue-collar occupation than a white-collar

occupation, i.e. β3 < 0, and the returns to attending a four-year college to be higher in a

white-collar occupation than a blue-collar occupation, i.e. β4 > 0.

The relationship between wages and innate occupation abilities are captured by αmW,1 and

αmW,2, which are specific to type m. A large value of αmW,1 means type m has a high blue-collar

ability, and a large value of αmW,1 + αmW,2 implies type m has a high white-collar ability. In

other words, if type m has a comparative advantage in a white-collar occupation than a

blue-collar occupation, we would expect αmW,2 > 0.

I assume that productivity shocks εW,it follow a first-order Markov process8:

εW,it = ρεW,it−1 + ζit,

where εW,i1
iid∼ N(0, σW,1) and ζit|εW,it−1

iid∼ N(0, σW,2).

8I assume the same productivity shock for a blue-collar and a white-collar occupation. It is because
occupation choice in current period is influenced by current wages in blue- and white-collar occupations. The
current occupation-specific wages depend on the blue- and white-collar productivity shocks in the last period.
However, we only observe the wage associated with the last period occupation an individual worked in. The
wage associated with the other occupation is unobserved. So if we consider occupation-specific productivity
shocks, we have to integrate out the unobserved productivity shock associated the other occupation. This
significantly increase the computation burden.
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3.1.2 The Model for Occupation Choices

In each period, individuals choose to work in either in a blue-collar or a white-collar

occupation to maximize life-time income. Let IO,it denote the latent utility associated with a

white-collar occupation relative to a blue-collar occupation at time t:

IO,it = αmO + λ12YRi + λ24YRi + λ3Oit−1 +X ′itλ4 + εO,it, (2)

where εO,it
iid∼ N(0, 1). Since the latent utility, Iit, depends on wages, all the regressors in

Equation (1) are included. In addition, the occupation choice at time t− 1 may affect the

occupation choice at time t because job switching costs may prevent individuals from moving

from one occupation to another. Such a relationship between the occupation choices at time

t− 1 and time t are captured by the dummy variable, Oit−1, which equals to 1 if the job at

time t− 1 is a white-collar occupation.

The type-specific intercept, αmO , reflects that the latent utility, IO,it, depends on occupation

abilities. In other words, holding everything else the same, an individual with a comparative

advantage in a white-collar occupation is more likely to work in a white-collar occupation

than an individual with a comparative advantage in a blue-collar occupation. As illustrated

in figure 1, occupation abilities drive both wages and occupation choices. Therefore, the

occupation choice in Equation (1) is endogenous and OLS estimates of occupation-specific

returns to education are biased in general.

3.1.3 The Model for The Education Choice

A high school graduate faces three options: attending a two-year college, attending a

four-year college, and entering the labour market without pursuing more education. She makes

the postsecondary education decision to maximize the life-time utility. Let IS,ij
9represent the

net benefit associated with education level j (j ∈ {1, 2, 3}) relative to the benefit associated

9IS,i1 is normalized to 0.
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with education level 1:

IS,ij =

 εS,ij if j = 1

αmS,j + Z ′S,iδj + εS,ij if j = 2, 3
(3)

where {εS,ij}3
j=1 are mutually independent and follows type I extreme value distribution while

ZS,i includes family background variables. The intercept, αmS = (αS,2, αS,3)′, is different across

types. The reasons are twofold. First, future occupations and wages depend on occupation

abilities. For instance, an individual with a comparative advantage in a white-collar occupation

would expect herself to be more likely to work in a white-collar occupation and tend to

attend a four-year college because a four-year college helps accumulating more white-collar

skills than blue-collar skills. Second, education psychic costs also play an important role.

For example, an individual with a comparative advantage in a white-collar occupation may

choose to attend a two-year college rather than a four-year college if her psychic costs to

attend a four-year college are high, although a four-year college enhances white-collar skills

more than a two-year college.

As shown in figure 1, occupation abilities are related to both wages and the postsecondary

education choice. Education psychic costs, which affect the education choice, may be correlated

with occupation abilities and cause the correlation between wages and the education choices

as well. Hence, the education dummy variables are endogenous in Equation (1) and the OLS

estimates of the occupation-specific returns to education are biased in general.

To sum up, the education dummy variables and the occupation choice in Equation (1)

are endogenous because the unobserved types connects wages, occupation choices, and the

postsecondary education choice. I address the endogeneity issue using a finite mixture model

in which the distribution of types are specified by a flexible multinomial distribution. Since

same types of individuals have the same occupation abilities and education psychic costs, the

variations in education and occupation choices within type, holding the observables constant,

are purely random. Once the finite mixture model is nonparametrically identified, we can get
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unbiased and consistent estimates of the occupation-specific returns to attending a two-year

and a four-year college.

3.1.4 The Model for The Six Test Scores

As I will discuss in details in Section 4, To achieve nonparametric identification of the finite

mixture model, I bring in additional information. Specifically, I use four test scores conducted

from ASVAB. They are tests for math skills, verbal skills, coding speed, and mechanic

comprehension. I also use the Rotter Locus of Control, and the Rosenberg Self-Esteem Scale.

In the following specification for test scores, I take into account the possibility that the

test scores are influenced by the education level at the date of the tests. Since the tests

were administered to all respondents in the sample in year 1979 and 1980, when they were

between 14 and 22 years of age and many had finished their schooling, the tests may not be

fully informative about the occupation abilities and education psychic costs (Hansen et al.,

2004;Heckman et al., 2006b). Let Qi,r denote the test score in test r:

Qir = αmQ,r + θr,12YRir + θr,24YRir + Z ′i,rθr,3 + εQ,ir, for r = 1, . . . , 6, (4)

where 2YRir is a dummy variable, which equals 1 if individual i was a two-year college

attendant at the time test r was administrated, and 4YRir is a dummy variable, which equals

1 if individual i was a four-year college attendant at the time test r was administrated. Other

observables, which influence the test score r, such as family background variables and the

age when test r was administrated, are collected in Zi,r.

The intercept αmQ,r is subpopulation-specific, because the test scores reflect the occupation

abilities and education psychic costs. For example, mechanic comprehension is important to

a blue-collar occupation. The Rotter Locus of Control which measures people’s belief in their

ability to control life may be important to a management job. Math and verbal skills can

reflect education psychic costs.
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I assume that the test scores are mutually independent conditional on occupation abilities,

education psychic costs, and the observables, i.e. εQ,ir ⊥⊥ εQ,ir′ for r 6= r′ and εQ,ir ∼ N(0, σQ,r)

for r ∈ {1, . . . , 6}. Further, I assume that the test scores do not directly affect wages,

occupation and education choices once conditional on occupation abilities, education psychic

costs, and the observables, i.e. εQ,ir ⊥⊥ εW,it, εQ,ir ⊥⊥ εO,it, and εQ,ir ⊥⊥ εS,ij. These two

assumptions are the key for the nonparametric identification of the finite mixture model,

which will be discussed in Section 4.

3.2 A Finite Mixture Model

In the finite mixture model, the conditional joint distribution of wages {Wit}Tt=1,

occupations {Oit}Tt=1, education Si, and tests {Qir}6
r=1 in the overall population is a weighted

average of type-specific conditional joint distribution. The weight πm is the proportion of

type m. Formally,

f({Wit, Oit}Tt=1, Si, {Qir}6
r=1|{Xit}Tt=1, ZS,i, {Zir}6

r=1) (5)

=
M∑
m=1

πmfm({Wit, Oit}Tt=1, Si, {Qir}6
r=1|{Xit}Tt=1, ZS,i, {Zir}6

r=1),

where {Xit}Tt=1, ZS,i, and {Zir}6
r=1 are observables in Equation (1), Equation (2), Equation

(3), and Equation (4). With the assumptions (i) test scores do not directly affect wages,

occupations, and education conditional on type, (ii) the error terms in test scores are

mutually independent, (iii) the error terms in wage follows a first order Markov process, (iv)

the occupation choice is only affected by the previous occupation, not the whole occupation

history, and (v) the regressors and the error terms in Equation (1), Equation (2), Equation (3),

and Equation (4) are independent, I simplify the type-specific conditional joint distribution

of wages, occupations, education, and test scores, and express the population conditional
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joint distribution as follows10:

f({Wit, Oit}Tt=1, Si, {Qir}6
r=1|{Xit}Tt=1, ZS,i, {Zir}6

r=1) (6)

=
M∑
m=1

πmfm(Wi1|Oi1, Si)
T∏
t=2

fm(Wit|Oit, Si, Xit,Wit−1, Oit−1, Xit−1)

× fm(Oi1|Si)
T∏
t=2

fm(Oit|Oit−1, Si, Xit)f
m(Si|ZS,i)

6∏
r=1

fm(Qir|Zir).

In Section 4, I rigorously show how this finite mixture model is nonparametrically identified,

i.e. how to recover the unknowns, which are on the right hand side of Equation (6), from the

observed restriction, which is on the left hand side of Equation (6). Many papers that use a

finite mixture model in the returns to education literature do not show the nonparametric

identification. In other words, their finite mixture models may rely on restrictive parametric

assumptions, which can lead to biased estimates of occupation-specific returns.

Once the nonparametric identification of the finite mixture model is established, I use

the Maximum Likelihood Estimator (MLE) to estimate the occupation-specific returns to

attending a two-year and a four-year college. Although the finite mixture model can be

nonparametrically identified, estimating a high dimensional nonparametric statistical model

requires very heavy computation and is nearly impossible given the relatively small sample

size of NLSY 1979. Therefore, I estimate a statistical model with parametric assumptions in

Section 3.1. Let Yi = ({Wit, Oit, Xit}Tt=1, Si, Zi, {Qir, Zir}6
r=1). The log-likelihood contribution

for a particular individual is as follow:

L(Yi;αW , αO, αS, αR, β, λ, δ, θ, σW , σQ, ρ) (7)

=log(
M∑
m=1

πmLmW (Yi;αW , β, σW , ρ)LmO (Yi;αO, λ)LmS (Yi;αS, δ)LmQ(Yi;αQ, θ, σQ)).

where αW = {αmW,1, αmW,2}Mm=1, αO = {αmO}Mm=1, αS = {{αS,j}3
j=2}Mm=1, αR = {{αQ,r}6

r=1}Mm=1,

10Please refer to Appendix B for more details about how these assumptions simplify the type-specific
conditional joint distribution of wages, occupations, education, and test scores.
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β = {β1, β2, β3, β4, β5}, λ = {λ1, λ2, λ3, λ4}, σW = {σW,1, σW,2}, and σQ = {σQ,r}6
r=1.

Note the likelihood contribution of a particular individual who belongs to subpopulation

m consists of four pieces:

LmW (Yi;αW , β, σW , ρ)–the likelihood contribution of wages;

LmO (Yi;αO, λ)–the likelihood contribution of occupation;

LmS (Yi;αS, δ)–the likelihood contribution of education;

LmQ(Yi;αQ, θ, σQ)–the likelihood contribution of test scores.

The detailed expressions for each of the four likelihood contributions are collected in

Appendix C.

4 Nonparametric Identification of The Finite Mixture

Model

In this section, I discuss the nonparametric identification of the finite mixture model

using the results in Kasahara and Shimotsu (2009) and Kasahara and Shimotsu (2012).

Nonparametric identification means that the proportion of types, and type-specific joint

distributions of wages, occupations, education, and test scores, which is unknown, can be

recovered from the observed empirical population joint distribution of wages, occupations,

education, and test scores. I use two sources of information to achieve the nonparametric

identification: variations of wages across occupations over time and test scores. I show that

the wage history is helpful to identify the occupation abilities. Yet, test scores are essential

to identify the education psychic costs.
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4.1 Nonparametric Identification of the Occupation Abilities

I use variations in wages across occupations over time to identify the occupation abilities.

Intuitively, individuals with a comparative advantage in a white-collar occupation may have

high white-collar wages, and hence, the fraction of individuals with high white-collar wages

can be informative about the fraction of individuals with a comparative advantage in a

white-collar occupation. In other words, the fractions of individuals with high white-collar

wages over time impose restrictions on the unknowns type probabilities and type-specific

distributions.

Three elements are the important determinants of identification: (1) the time-dimension

of panel data, (2) the variation in the occupation-specific work experience, and (3) the

heterogeneity in wages and occupational choices of individuals with different occupation

abilities conditional on the occupation-specific work experience. The number of observed

restrictions depend on the first two elements. The third element says that variations in wages

are informative about the occupation abilities.

Let’s start with a simple case in which wage and occupation distribution functions are

stationary and there is no serial correlation.

Proposition 4.1. Suppose Assumption 1 and Assumption 2 hold. With T ≥ 3,

πm, fm(Si|Zi), fm(Wi1|Oi1, Si),fm(Oi1|Si), fm(Wit|Oit, Si, Xit,Wit−1, Oit−1, Xit−1), and

fm(Oit|Si, Xit, Oit−1) for t ≥ 2 can be identified up to M types.

The assumptions and the proof of Proposition 4.1 are collected in Appendix D. The

number of types M that can be identified depends on the number of values {Xit}Tt=1 can take

and its changes over time. The key insight is that each different value of {Xit}Tt=1 imposes

different restrictions on the type probabilities and type-specific distributions.

The assumption that current wage and occupational choice are not influenced by the

lagged values is restrictive. The productivity shocks in the wage equation can be serially

correlated and occupation in the last period can affect the occupation searching cost in the
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current period. The next proposition relaxes this strong assumption by allowing current wage

and occupation depend on those in the last period.

Proposition 4.2. Suppose Assumption 3 and Assumption 4 hold, and assume T ≥ 6.

Then πm, fm(Si|Zi), fm(Wi1|Oi1, Si), fm(Oi1|Si), fm(Wit|Oit, Si, Xit,Wit−1, Oit−1, Xit−1),

and fm(Oit|Si, Xit, Oit−1) for t ≥ 2 can be nonparametrically identified up to M types.

The assumptions and the proof of Proposition 4.2 are in Appendix D. If there is longer

dependence in either wage or occupational choice, a longer panel is required. For example,

suppose current wage is affected by wage two periods before, then at least 9-period observations

are needed for identification.

The education psychic costs cannot be nonparametrically identified with panel data. The

reason is that postsecondary education is one-period choice in my model, so there is no

information over time that can distinguish the unobserved noises and unobserved education

psychic costs in the education equations. Although Keane and Wolpin (1997) consider

year-by-year schooling decisions, education is not an option for each time period due to

the fact that the probability of going back to school after working is very low. Therefore,

education psychic costs are not nonparametrically identified in Keane and Wolpin (1997).

4.2 Nonparametric Identification of the Education Psychic Costs

In order to nonparametrically identify the education psychic costs, I use six test scores.

They are math, verbal, coding, mechanical tests in ASVAB, the Rotter Locus of Control,

and the Rosenberg Self-Esteem Scale. The nonparametric identification using test scores are

intuitive. For example, individuals with low education psychic costs may have good math

and verbal test scores. So the fraction of individuals with good test scores in math and verbal

is informative about the fraction of individuals with low education psychic costs.

Assume that the test scores do not directly affect postsecondary choices conditional on

type and some observables. In other words, test scores do not affect postsecondary education
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application and admission once type and other observables are known. In addition, assume

that there are three test scores which are independent from each other conditional on type

and some observables. These two assumptions lead to the nonparametric identification of

education psychic costs.

Proposition 4.3. With access to three test scores (Q1, Q2, Q3), Suppose Assumption 5 holds.

Then πm, fm(Si|Zi), and {fm(Qir|Sir, Zir)}3
r=1 can be nonparametrically identified up to M

types.

Assumption 5, and the proof of Proposition 4.3 are collected in Appendix D.

The nonparametric identification of the education psychic costs using test scores does

not require the six test scores to be perfect proxies. In other words, the nonparametric

identification does not need the assumption that education does not affect test scores as it does

when test scores are used as proxies. Such assumption is restrictive because some respondents

already finished schooling when the test were administrated. The finding that education does

influence the ASVAB scores, Rotter Locus of Control, and Rosenberg Self-Esteem Scale in

Heckman et al. (2006b) further show the importance to relax such assumption.

Not only can test scores identify the education psychic costs, they can identify the

occupation abilities as well. For instance, the Rotter Locus of Control which measures

people’s belief in their ability to control life may be important to a management job. So

the fraction of individuals who perform well in this test is informative about the fraction of

individuals with a comparative advantage in a white-collar occupation. It implies that the

nonparametric identification of the finite mixture model can be achieve without the panel

data, although the additional information from the variations in wages across occupations

over time are helpful to increase the efficiency. Different from previous papers such as Keane

and Wolpin (1997), Belzil and Hansen (2002), and Belzil and Hansen (2007), which reply on

a long panel data to identify a finite mixture model, test scores allow me to apply a finite

mixture model to data with limited periods of observations.

Assume that the test scores do not directly affect wages, education and occupation choices
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conditional on type and some observables. Further, assume that there are three test scores

which are independent from each other conditional on type and some observables. These

two assumptions lead to the nonparametric identification of both occupation abilities and

education psychic costs.

Proposition 4.4. With access to three test scores (Q1, Q2, Q3), Suppose Assumption

6 holds. Then πm, fm(Si|Zi), {fm(Qir|Sir, Zir)}2
r=1, fm(Wi1|Oi1, Si), fm(Oi1|Si),

fm(Wit|Oit, Si, Xit,Wit−1, Oit−1, Xit−1), and fm(Oit|Si, Xit, Oit−1) for t ≥ 2 can be

nonparametrically identified up to M types.

Assumption 6 and the proof of Proposition 4.4 are collected in Appendix D.

The exclusion condition that test scores do not directly affect wage, education and

occupation choices conditional on type and some observables is the key asumption to

nonparametrically identify occupation abilities and education psychic costs using test scores.

Intuitively, the exclusion of test scores from occupation and wage means that once employers

know an individual’s type, addition information about test scores would not influence the

their decision on hiring and salary. The exclusion of test scores from education means that

test scores do not affect postsecondary education application and admission once type is

known. The assumption that test scores are exclusive from wage, education, and occupation is

different from the exclusion condition in the IV approach and Heckman’s two-step. While the

exclusion variable in the IV approach and Heckman’s two-step must not be correlated with

the unobserved type, the exclusion variable in the finite mixture model has to be correlated

with the unobserved type.

5 Empirical Results

EM algorithm (Dempster et al., 1977) is applied in this paper to facilitate the computation

of finding the maximum likelihood estimates. As is well known, direct maximization of the

likelihood function based on Newton-Raphson type algorithm is difficult for a finite mixture
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model because of the possibility of many local maxima. EM algorithm is a method for finding

maximum likelihood estimates by iterating an expectation (E) step and a maximization (M)

step. In E step, the expectation of the log-likelihood is calculated given the estimated the

type proportions and parameters in the previous iteration. In M step, parameters are updated

by maximizing the expected log-likelihood found in E step. The details about the E step and

M step are discussed in Appendix E. Each iteration increases the value of log-likelihood and

it stops when convergence is achieved. The corresponding estimates upon convergence are

either a local maximum or saddle points. EM algorithm is found to be sensitive to initial

parameters. I choose initial parameters following the approach suggested by Heckman and

Singer (1984) and a detailed discussion is in Appendix F.

The empirical results are presented below. I assume that the overall population consists

of four types. There are two occupation abilities type: type 1 and type 2 have the same

occupation abilities, and so do type 3 and type 4. Within each occupation ability type, I

consider two types of education psychic costs: type 1 and type 2 are different in education

psychic costs, although they have the same occupation abilities. Similarly, type 3 and type 4

have different education psychic costs but share the same occupation abilities.

5.1 Occupation-specific Returns to Education, Education and

Occupation Choices

As illustrated in Section 4, the nonparametric identification of the finite mixture model

heavily relies on the informativeness of the test scores about the unobserved types. If test

scores are reflective about unobserved occupation abilities and education psychic costs, we

would expect different types to have different test scores. Table 3 reports the estimated

parameters in Equation (4). It shows that the test scores vary across the four types and

confirms that test scores are helpful to nonparametric identification of the finite mixture

model. In addition, table 3 suggests that it is important to take into account the impact

of education on test scores. A two-year college attendance significantly increases math and
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verbal test scores and a four-year college attendance significantly improves all the six test

scores. The finding that education improves test scores implies that the test scores are not

perfect proxies and using them as proxies would not help addressing the endogeneity issue to

give unbiased estimates of occupation-specific returns to attending a two-year college and a

four-year college.

Table 4 reports the estimated parameters in Equation (1). It shows that returns to

education are occupation specific. The return to attending a two-year college is significantly

higher in a blue-collar occupation than a white-collar occupation. A two-year college

attendance increases blue-collar hourly payment by 24% and white-collar hourly payment by

17%. Regarding the returns to attending a four-year college, a four-year college attendance

significantly increases more white-collar hourly wages than blue-collar wages. A four-year

college attendant’s hourly wage is 23% higher in a blue-collar occupation and 30% higher in

a white-collar occupation than a high school graduate. Comparing a two-year college and a

four-year college, these two kinds of postsecondary education institutions increase blue-collar

wages similarly while a four-year college attendance is significantly more helpful to enhancing

white-collar wages than a two-year college attendance does.

Converting the returns to attending a two-year college and a four-year college into

annual returns, the corresponding annual return11 to two-year college education is 20% in

a blue-collar occupation, and 14% in a white-collar occupation. The corresponding annual

return to four-year college education is 6% in blue-collar occupation, and 8% in white-collar

occupation.

Among the people with post-secondary education in the sample, 27% are two-year

college attendants and 73% are four-year college attendants. Hence, on average one year

post-secondary education increases blue-collar wages by 10% (20%× 27% + 6%× 73%) and

white-collar wages by 10%(14% × 27% + 8% × 73%). Keane and Wolpin (1997) find that

11According to Table 1, two-year college attendants have 1.20 year more schooling than high school
graduates and four-year college attendants have 3.82 year more schooling than high school graduates on
average.
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the annual return to postsecondary education is 2.4% in a blue-collar occupation and 7% in

a white-collar occupation. The annual return to postsecondary education in a white-collar

occupation in this paper is similar to that reported in Keane and Wolpin (1997). However,

the annual return to postsecondary education in a blue-collar occupation is higher in this

paper than in Keane and Wolpin (1997) where they do not distinguish a two-year college and

a four-year college.

The type-specific constants reported in table 4 suggest that individuals are endowed with

different occupation abilities. Among the four types of individuals, type 1 and type 2 share

the same occupation abilities, but are different in the education psychic costs. Type 3 and

type 4 have the same occupation abilities, but different education psychic costs. Although

the occupation abilities and the education psychic costs may be correlated, the education

psychic costs do not directly affect wages as assumed. So type 1 and type 2 earn the same,

and so do type 3 and type 4. As reported in table 4, type 1 and type 2 earn more in a

white-collar occupation than a blue-collar occupation. In other words, type 1 and type 2

have a comparative advantage in a white-collar occupation. On the other hand, type 3 and

type 4 are similarly productive in a blue-collar and a white-collar occupation, because they

earn similar wages in a white-collar and a blue-collar occupation.

Table 5 shows the estimated average partial effects in the occupation choice. Column 1

in table 5 reports the estimated average partial effects in making the occupation choice in

the first job. It indicates that individuals with a comparative advantage in a white-collar

occupation (type 1 and type 2) are 16% more likely to choose to work in white-collar jobs

than those with a comparative advantage in a blue-collar occupation (type 3 and type 4).

Moreover, education increases the probability of being employed in a white-collar occupation.

Comparing to high school graduates, two-year college attendants are 16% more likely to work

in a white-collar occupation and four-year college attendants are 50% more likely to work in

a white-collar occupation.

Column 2 in table 5 reports the estimated average partial effects in making the occupation
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choice in the sequential jobs. It shows that individuals with a comparative advantage in a

white-collar occupation (type 1 and type 2) are 6% more likely to work in white-collar jobs

than those with a comparative advantage in a blue-collar occupation (type 3 and type 4) in

the sequential jobs. Education has smaller influence on occupation in subsequent jobs than

initial jobs. Attending a two-year colleges and a four-year college increase the probability of

being employed by a white-collar occupation by 4% and 12% respectively. One important

factor which affects the occupation choice is the occupation in the previous period. An

individual who worked in a white-collar occupation in the previous period is 29% more likely

to work in a white-collar occupation in the current period than an individual who worked in

a blue-collar occupation in the previous period does.12

Regarding the postsecondary education choice, if individuals consider their future

occupations when making their education decisions, we would expect individuals with a

comparative advantage in a white-collar occupation (type 1 and type 2) to be more likely to

attend a four-year college than individuals earn similarly in a blue-collar occupation and a

white-collar occupation (type 3 and type 4). Table 6 reports the average partial effects in the

postsecondary education choice. It shows that type 1 and type 2 are 53% more likely to attend

a four-year college than type 3 and type 4. This finding confirms that the occupation abilities

affect the education choice. Further, the results in table 6 suggest that individuals take

into account the education psychic costs when making their education decisions. Although

type 1 and type 2 share the same occupation abilities, type 1 is 42% more likely to attend a

four-year college than type 2 is, which indicates that type 1 has lower psychic costs to attend

a four-year college than type 2 does. Similarly, type 4 are more likely to attend a four-year

college than type 3 does, which suggests that type 4 has lower psychic costs to attend a

12I have consider the case that individuals may have different occupation tastes. For example, those who
enjoy working outdoors may prefer a construction worker position to an economist position. To copy with
the potential heterogeneity in occupation taste, I estimate a finite mixture model with 8 types. Specifically,
I consider two occupation abilities types. Within each occupation abilities type, there are two education
psychic costs type. In addition, I look at two occupation taste types for individuals with the same occupation
abilities and education psychic costs. I do not find that individuals with the same occupation abilities and
education psychic costs behave differently in the occupation choices.
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four-year college than type 3 does. Regarding the decision to attend a two-year college,

the similarity across the four types in the decision to attend a two-year college suggests no

self-selection in attending a two-year college.

To sum up, individuals self select into different education groups based on their occupation

abilities and education psychic costs. Their occupation choices are also influenced by their

occupation abilities. Failure to address the endogenous education and occupation choices

can result in biased estimates of occupation-specific returns. Due to the complication of the

self-selection problem here, it is hard to tell the direction of the possible bias. I compare

the estimates of occupation-specific returns to education when controlling or not controlling

for occupation abilities and/or education psychic costs in table 7. Column (4) presents the

estimates of occupation-specific returns to attending a two-year college and a four-year college

controlling both the occupation abilities and education psychic costs (the same estimates as

those reported in table 4). Column (1) gives the OLS estimates of the occupation-specific

returns to education. The OLS estimates of the occupation-specific returns to attending a

two-year college are slightly lower than those in column (4) and the OLS estimates of the

occupation-specific returns to attending a four-year college are comparable to those in column

(3). Column (2) in table 7 shows the OLS estimates of the occupation-specific returns to

education when six test scores are included as proxies for occupation abilities and education

psychic costs. Using test scores as proxies requires that education does not affect test scores.

However, the results in table 3 suggest that education helps to improve the performance

in all the six tests. The estimated returns to attending a two-year college and a four-year

college in column (2) are around 6 percentage points lower than those reported in column (4).

Column (3) in table 7 gives the estimates of the occupation-specific returns to education only

controlling for the occupation abilities13. The estimates of the occupation-specific returns to

attending a two-year college in column (3) are larger than both the OLS estimates in column

13Here, I estimate a finite mixture model in which there are two occupation abilities types and everyone
has the same education psychic costs. Since the variations in wages across occupations over time are
sufficient to nonparametrically identify occupation abilities, I do not use test scores as an additional source of
nonparametric identification
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(1) and those in column (4). The estimates of the occupation-specific returns to attending a

four-year college in column (3) are comparable to those in column (1) and column (4). The

results in table 7 suggest that the possible biases are of different direction and cancel out

each other although education and occupation choices are endogenous.

5.2 Conditional Independence of Wages and Test Scores

One of the key assumptions of the nonparametric identification of the finite mixture model

is that conditional on type and some other observables the six test scores do not directly affect

wages. I test the validation of this conditional independence assumption by including the six

test scores one by one into the wage equation (Equation (1)). The idea is that assuming the

finite mixture model is nonparametrically identified using the other test scores, the coefficient

on test score r, which is included in the wage equation, should be zero when test score r

and wages are conditionally independent. Table 8 presents the estimated coefficients on the

six test scores. The estimated coefficients on coding speed, Rotter locus of control, and

Rosenberg self-esteem scale are not significantly different from zero. According to Proposition

4.4, the finite mixture model can be nonparametrically identified because we have three tests

satisfied the conditional independence assumption. However, we reject the hypothesis that

the conditional independence assumption holds for math skill, verbal skill, and mechanical

comprehension. The reason of the finding that math, verbal, mechanical comprehension

scores affect wages is that I only consider a small number of types (two occupation abilities

types and two education psychic costs types). It is possible that there are heterogeneity

in occupation abilities and education psychic costs within each of the four types and math

skill, verbal skill, and mechanical comprehension scores are informative about these within

type heterogeneity. I check the sensitivity of the estimates in two ways. First, I include the

math, verbal, and mechanical comprehension scores together into the wage equation and

check whether the estimates of the occupation-specific returns to education are different from

those reported in table 4. Table 9 shows that the estimates of the occupation-specific returns
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to education are around 2 to 5 percentage points smaller than those in table 4. Second,

I increase the number of types from 4 (two types of occupation abilities and two types of

education psychic costs) to 6 (three types of occupation abilities and two types of education

psychic costs) and the corresponding estimates in the wage equation are presented in table

10. Table 10 shows that the estimates of occupation-specific returns to education are around

1 to 4 percentage points smaller than those reported in table 4.

5.3 The Occupation-Specific Returns to A Bachelor’s Degree

The wage gap between college dropouts and college graduates are documented in the

literature (Jaeger and Page, 1996). It is interesting to examine the occupation-specific

returns to college graduate besides the occupation-specific returns to college attendants.

Due to the small sample size of the two-year college graduates, I focus on investigating the

occupation-specific returns for those obtained a bachelor’s degree.

Among the four-year college attendants in my sample, around 70% obtained a bachelor’s

degree. A simple comparison of the first year wage of the four-year college dropouts and the

four-year college graduates shows that the four-year college dropouts and the four-year college

graduates earn similarly in a blue-collar occupation, yet the four-year college graduates earn

30% more than the four-year college dropouts in a white-collar occupation14.

Table 11 presents the estimated parameters of the wage equation (Equation (1)) using

the sample where the four-year college dropouts are eliminated. It shows that a bachelor’s

degree increases blue-collar wages by 26% and white-collar wages by 33% for a high school

graduate. Comparing to the returns to attending a four-year college as reported in table 4,

ie. 23% and 30% respectively for a blue-collar occupation and a white-collar occupatio, the

estimated occupation-specific returns to a bachelor’s degree are not much higher.

14For more summary statistics of the college dropouts and college attendants, please refer to table A1.
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5.4 The Expected Returns to Education

Individuals make their education choices taking into account their future occupations.

Yet, they do not know exactly their occupations because of the uncertainty in the labour

market. Therefore, their education choices are based on the expected returns to attending a

two-year and a four-year college. Below, I calculated the expected returns to education by

simulating a sample of 10000 observations.

Panel A of table 12 shows that the expected returns to attending a two-year college are

around 23% for type 1 and type 2 (individuals with a comparative advantage in a white-collar

occupation) over time15, and they are around 22% for type 3 and type 4 (individuals with

a comparative advantage in a blue-collar occupation) over time. Returns to attending a

two-year college are similar to all types, which explains that individuals do not select to

attend a two-year college based on their occupation abilities as suggested by the results in

table 6. Regarding a four-year college, the expected returns to attending a four-year college

for type 1 and type 2 are 34% in the first year and increase to 40% nine years later. Returns

to attending a four-year college for type 3 and type 4 are 25% in the first year and increase

to 29% in the tenth year. Returns to attending a four-year college are around 9 percentage

points higher for type 1 and type 2 than type 3 and type 4 in the first year and the difference

increases to 11 percentage points in the 10th year. Therefore, individuals with a comparative

advantage in a white-collar occupation (type 1 and type 2) are more likely to attend a

four-year college than those with a comparative advantage in a blue-collar occupation (type 3

and type 4) as shown in table 6. Comparing returns to attending a two-year and a four-year

college, returns to attending a four-year college are 10 percentage points higher than returns

to a two-year college in the beginning and the discrepancy is enlarged to 16 percentage points

after nine years for type 1 and type 2. For type 3 and type 4, returns to attending a four-year

15Since the occupation choice depend on the occupation abilities and not influenced by education psychic
costs directly, the expected returns to attending a two-year college are the same for individuals with same
occupation abilities and different education psychic costs. That is to say that type 1 and type 3 have the
same expected returns to attending a two-year college, and type 2 and type 4 gain the same in earnings from
attending a two-year college
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college are 3 percentage points higher than returns to attending a two-year college in the

beginning and the difference increases to 7 percentage points after nine years. The difference

between returns to attending a two-year college and a four-year college echoes the findings in

Belzil and Hansen (2002) that returns can be education-level-specific.

The expected returns to attending a two-year and a four-year college are different across

types of people with different occupation abilities. The relationship between returns to

education and innate abilities are well documented in the literature (Belzil and Hansen,

2007; Carneiro et al., 2003). The reason of the correlation between the expected returns to

education and the occupation abilities is that the expected returns to education are related

to the probability of working in a white-collar occupation, which depend on occupation

abilities. The expected returns to education and the probability of working in a white-collar

occupation can be related in two ways. First, education helps accumulating white-collar and

blue-collar skills differently. For example, attending a four-year college increases white-collar

skills more than blue-collar skills. Therefore, individuals with a comparative advantage in

a white-collar occupation, who are more likely to work in a white-collar occupation, have

higher returns to attending a four-year college on average. Second, education enhances the

probability of working in a white-collar occupation. For individuals with a comparative

advantage in a white-collar occupation, the reward to their occupation abilities are higher

in a white-collar occupation than a blue-collar occupation. Attending a four-year college

education increases the probability of working in a white-collar occupation and leads to a

high reward to their occupation abilities. I decompose the returns to education into these

two parts: enhancing occupation-specific skills and increasing the probability of working in a

white-collar occupation.

Panel B of table 12 shows the part of returns to education from enhancing

occupation-specific skills and panel C of table table 12 presents the part of returns to

education from increasing the probability of being employed in a white-collar occupation.

Let’s first look at the decomposition of the expected returns to attending a two-year college.
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For individuals with a comparative advantage in a white-collar occupation (type 1 and type 2),

a two-year college attendance increases wages by 22% from enhancing the occupation-specific

skills. The part of expected returns from increasing the probability of working in a white-collar

occupation is 2% at the beginning and 4% at the end. As type 1 and type 2 become more likely

to work in a white-collar occupation, their latter part of the expected returns to attending

a two-year college increases. For individuals with a comparative advantage in a blue-collar

occupation (type 3 and type 4), the expected returns from enhancing occupation-specific

skills are around 22% over the ten years, which is comparable to those of type 1 and type 2 in

magnitude. The part of expected returns from increasing the probability of being employed in

a white-collar occupation is almost close to zero over time. This is because type 3 and type 4

are rewarded similarly to their occupation abilities in both occupations. Next, let’s look at the

decomposition of the expected returns to attending a four-year college. For type 1 and type

2, the part of expected returns attending a four-year college due to occupation-specific skills

accumulation is around 28%. The part of expected returns from increasing the probability

of working in a white-collar occupation increases from 6% to 14% with the probability of

working in a white-collar occupation increasing from 71% to 83% over time. After ten years

in the labour market, 65% of the total expected returns to attending a four-year college

education are from its impact on occupation-specific skills accumulation for type 1 and type

2. For type 3 and type 4. The part of expected returns to attending a four-year college due to

occupation-specific skills accumulation is around 26%, which is comparable to that for type 1

and type 2 in magnitude. The part of expected returns to attending a four-year college from

its influence on occupation affiliation is close to zero because type 3 and type 4 are rewarded

similarly to their occupation abilities in a blue-collar and a white-collar occupation.

The increasing expected returns to attending a four-year college for individuals with

a comparative advantage in a white-collar occupation (type 1 and type 2) imply a faster

wage growth rate of four-year college attendants than high school graduates. This finding

is consistent with Willis and Rosen (1979) where they find that a college attendant’s wage
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grows faster than a high school graduates. This chapter suggests that one important reason

for the faster wage growth rate of four-year college attendants is that they switch to the

occupation they have a comparative advantage of over time.

5.5 Test Scores and Returns to Education

As shown in table 3, test scores are informative about individuals occupation abilities

and education psychic costs. Once the type-specific joint distributions of the six test scores

are identified, we can get the probabilities of types conditional on the six test scores using

Bayes’ rule. In other words, we are able to tell which type an individual is most likely to

be given her six test scores and demographic information. Further, we can infer her expect

returns to attending a two-year college and a four-year college.

I simulate the six test scores for 10,000 high school graduates, whose parents are high

school graduates, who have three siblings, were raised in a two-parent family, lived in the

northern urban area of U.S. at age 14, and took the six test scores at age 18. For simplicity,

I divide the six test scores into two groups: cognitive tests (math skills, verbal skills, coding

speed, and mechanical comprehension) and noncognitive tests (the Rotter Locus of Control

and the Rosenberg Self-Esteem Scale). Then I calculate the average scores, Q̂c and Q̂nc, for

the two groups. For further simplicity, each of the two average test scores are partitioned into

four parts. The proportion of each type conditional on test scores are presented in table 13.

For example, look at an individual with high school graduates parents, 3 siblings, raised in a

two parents family, lived in the North urban area of U.S. at age 14, and took the cognitive

and noncognitive tests at age 18. If all her test scores are at the 10th percentile, her net

average scores are in the cell of row 1 and column 1 and she is 0.1% likely to be type 1, 61.5%

likely to be type 2, 29.8% likely to be type 3, and 8.6% likely to be type 4. If all her test

scores are at the 50th percentile, her net average scores are in the cell of row 2 and column 3

and she is 15% likely to be type 1, 0.1% likely to be type 2, 32.5% likely to be type 3, and

52.3% likely to be type 4. If all her test scores are at the 90th percentile, her net average
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scores are in the cell of row 4 and column 4 and she is 90.9% likely to be type 1, 0% likely

to be type 2, 0% likely to be type 3, and 9.1% likely to be type 4. Once the conditional

proportion of types is known, her returns to education can be calculated accordingly. Table

14 shows the expected returns to attending a two-year college and a four-year college for

such an individual with test scores at the 10th, 50th, and 90th percentile. Since returns to

two-year college are similar to all types, the expected returns to two-year college are almost

the same for different test scores. Regarding a four-year college, the expected returns to

attending a four-year college increase as test scores increase. The reason is that high test

scores imply a high probability of a comparative advantage in a white-collar occupation, and

a comparative advantage with a white-collar occupation are associated with a high returns

to attending a four-year college.

6 Conclusion

In this paper, I examine the returns to attending a two-year college and a four-year college

and how the returns to education differ from those of a white-collar occupation to those

of a blue-collar occupation. Despite a vast literature on returns to education, the existing

research on how returns to attending a two-year college and a four-year college depend on the

occupation choice is limited. The reason for this limitation is that it is difficult to estimate the

occupation-specific returns in the presence of endogenous education and occupation choices.

On the one hand, individuals are endowed with different abilities to work in a blue-collar

occupation or a white-collar occupation. They tend to work in the occupation in which

they have a comparative advantage. Moreover, they are more likely to choose the type of

postsecondary education that intensively accumulates the skills needed in the occupations they

would like to work in when they finish schooling. Therefore, occupation abilities drive wages,

education, and occupation. On the other hand, individuals vary in their education psychic

costs, which may be correlated with occupation abilities. While the occupation abilities and
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the education psychic costs are known to the individuals making education and occupation

decisions, these abilities and costs are unobserved by the econometrician, thus leading to the

missing variable problem. The instrumental variables (IV) approach, conventionally used to

deal with the endogeneity issue in the returns to education literature, is difficult to implement

here simply because good instruments for both education and occupation are difficult to find.

I address the endogeneity issue in education and occupation by explicitly modeling the

sequential education and occupation choices, specifying the unobserved occupation abilities

and education psychic costs with a flexible multinomial distribution in a finite mixture model.

I show how to nonparametrically identify the occupation abilities using the variations in

wages across occupations over time. However, the information from the panel data alone

is not enough to identify the education psychic costs. In order to achieve nonparametric

identification of the education psychic costs, I use test scores such those of the ASVAB,

the Rotter Locus of Control, and the Rosenberg Self-Esteem Scale. I show that conditional

on occupation abilities and education psychic costs the education psychic costs can be

nonparametrically identified under the assumption that the test scores do not directly affect

wages, education, or occupation choices.

Using data taken from the National Longitudinal Survey of Youth (NLSY) 1979, I estimate

a parametrically specified finite mixture model for joint wages, education, occupation, and

test scores and find that returns to education are occupation-specific. Specifically, I find

that attendance of a two-year college enhances blue-collar wages by 24% and white-collar

wages by 17% while attendance of a four-year college increases blue-collar wages by 23% and

white-collar wages by 30%.
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Appendices

A Summary Statistics, College Dropouts vs. College

Graduates

In table A1, I divide two-year college attendants into those with and without an associate

degree, and divide four-year attendants to those with and without a bachelor’s degree.

Among the two-year college attendants, 75% do not obtain an associate degree. The average

schooling years of the two-year college dropouts are 12.70 years and those of the two-year

college graduates are 14.2 years. Among the four-year college attendants, around 30% drop

out of four-year college while the majority obtain a bachelor’s degree. The average schooling

years of the four-year college dropouts are 13.6 years and those of the four-year college

graduates are around 16.6 years. Regarding the the first job after schooling, those who obtain

an associate degree are slightly more likely to work in a white-collar occupation than those

drop out of a two-year college. The probability of initially working in a white-collar position

of the two-year college dropouts is 24.4% and that of individuals with an associate degree is

27.5%. Interestingly, although the four-year college dropouts have more schooling years than

those with an associate degree, the former are more likely to work in a white-collar occupation

entering the labour market than the latter. On average, around 37.4% of the four-year college

dropouts initially work in a white-collar occupation. Those with a bachelor’s degree are much

more likely to start with a white-collar occupation than the others. Around 75.2% of those

with a bachelor’s degree work in a white-collar occupation as their first jobs. Regarding

wages, the two-year college dropouts and the four-year dropouts earn almost the same. The

average hourly payment for the two-year college dropouts and the four-year dropouts are

$10.19 and $10.67 respectively. Those with an associate degree earn around $12.19 per hour

for their first jobs. The hourly payment of those with an associate degree is higher than that

of the two-year college dropouts and four-year college dropouts. Those with a bachelor’s
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degree earn the most among the post-secondary attendants. The average hourly payment

of those with a bachelor’s degree is around $14.11. When we take a closer look at wages

by separating individuals into two occupation groups, those initially work in a blue-collar

occupation and those initially work in a white-collar occupation, the story is different. The

two-year college dropouts, the four-year college dropouts, and those with a bachelor’s degree

earn around $10 per hour if their first job is blue-collar while those with an associate degree

earn $12.27 per hour if their first job is blue-collar. For those whose first job is white-collar,

the two-year college dropouts earn $9.15 per hour. Those with an associate degree and the

four-year college dropouts earn around $12 per hour. Those with a bachelor’s degree earn

more than the two-year college dropouts, those with an associate degree, and the four-year

college dropouts. The hourly payment of those with a bachelor’s degree is $15.48 per hour.

Although this paper mainly examines the impact of attendance of a two-year college and a

four-year college on wages, I also provide estimates of the occupation-specific wage gains to

obtain a bachelor’s degree for a high school graduate by eliminating the four-year college

dropouts from the sample. I do not study the occupation-specific returns to an associate

degree because the sample size of those with an associate degree is too small or reasonable

results.

B Simplification of the Type-Specific Joint

Distribution

Below, I show how to simplify the type-specific joint distribution of wages, occupations,

education, and the test scores.
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fm({Wit, Oit}Tt=1, Si, {Qir}6
r=1|{Xit}Tt=1, ZS,i, {Zir}6

r=1)

=fm({Wit, Oit}Tt=1, Si|{Qir}6
r=1, {Xit}Tt=1, ZS,i, {Zir}6

r=1)

× fm({Qir}6
r=1|{Xit}Tt=1, ZS,i, {Zir}6

r=1)

=fm({Wit, Oit}Tt=1, Si|{Qir}6
r=1, {Xit}Tt=1, ZS,i)f

m({Qir}6
r=1|{Zir}6

r=1)

=fm({Wit, Oit}Tt=1, Si|{Qir}6
r=1, {Xit}Tt=1, ZS,i)

6∏
r=1

fm({Qir}6
r=1|{Zir}6

r=1)

=fm({Wit, Oit}Tt=1, Si|{Qir}6
r=1, {Xit}Tt=1, ZS,i)

6∏
r=1

fm({Qir}6
r=1|{Zir}6

r=1)

=fm(Wi1|Oi1, Si)
T∏
t=2

fm(Wit|Oit, Si, Xit,Wit−1, Oit−1, Xit−1)

× fm(Oi1|Si)
T∏
t=2

fm(Oit|Oit−1, Si, Xit)f
m(Si|ZS,i)

6∏
r=1

fm(Qir|Zir).

The first equality holds under the assumption that the six test scores do not directly

affect wages, occupations, and education conditional on type. The second equality holds

under the assumption that the regressors and the error terms in Equation (1), Equation

(2), Equation (3), and Equation (4) are independent. The third equality holds under the

assumption that the error terms in test scores are mutually independent (εQ,ir ⊥⊥ εQ,ir′ for

r 6= r′). The fourth equality holds under the assumptions that the error terms in wage follows

a first order Markov process (εW,it = ρεW,it−1 + ζit) and the occupation choice is only affected

by the previous occupation, not the whole occupation history.

C Likelihood Contributions

(a) The likelihood contribution of wages:

LmW (Yi;αW , β, σW , ρ) = φ(
Wi1 − µW,i1

σW,1
)

T∏
t=2

φ(
Wit − µW,i2

σW,2
).
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The wage density functions follow a normal distribution according to the assumptions

in Equation 1. Specifically,

µW,i1 = αmW1 + αmW,2Oit + β12YRi + β24YRi + β32YRiOit + β44YRiOit +X ′itβ5,

and

µW,i2 =αmW1 + αmW,2Oit + β12YRi + β24YRi + β32YRiOit + β44YRiOit +X ′itβ5

− ρ(Wit−1 − (αmW1 + αmW,2Oit−1 + β12YRi + β24YRi + β32YRiOit−1

+ β44YRiOit−1 +X ′it−1β5))

where DO,ijt is a dummy variable, which equals 1 if individual i works in occupation j

at time t

(b) The likelihood contribution of occupations:

LmO (Yi;αO, λ) =Φ(αmO + λ12YRi + λ24YRi)

×
T∏
t=2

Φ(αmO + λ12YRi + λ24YRi + λ3Oit−1 +X ′itλ4).

(c) The likelihood contribution of education:

LmS (Yi;αS, δ) =
exp(αmS,j + Z ′iδj)

1 +
∑3

j′=2 exp(α
m
S,j′ + Z ′iδj′)

.

(d) The likelihood contribution of test scores:

LmQ(Yi;αQ, θ, σQ) =
6∏
r=1

φ(
Qir − µQ,ir

σQ,r
).

The density functions of test scores follow a normal distribution according to the
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assumptions in Equation 4, and µQ,ir = αmr + θr,12YRir + θr,24YRir + Z ′i,rθr,3.

D Assumptions and Proofs of Propositions

D.1 Assumptions and proof of Proposition 4.1

Assumption 1. For m=1,. . . ,M and t ≥ 2,

(a)

fmt (Wt|Ot, Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Wt|Ot, Xt, S, {Wτ , Oτ , Xτ}t−1

τ=2),

and

fmt (Ot|Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Ot|Xt, S, {Wτ , Oτ , Xτ}t−1

τ=2).

(b)

fm(Wt|Ot, Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Wt|Ot, Xt, S),

and

fm(Ot|Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Ot|Xt, S).

Assumption 1 reduces the number of unknown type-specific distributions and the

conditional type-specific joint distributions of wages, occupations, and education can be
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simplified as follows:

fm({Wt, Ot}Tt=1, S|{Xit}Tt=1, ZS)

=fm(W1|O1, S)
T∏
t=2

fm(Wt|Ot, S,Xt)

× fm(O1|S)
T∏
t=2

fm(Ot|S,Xt)f
m(S|ZS).

For the sake of clarity, assume the support of Xt (t=2,. . . ,T) is discrete and known. Let

(ηt,1, ηt,2, . . . , ηt,M−1) be elements of Xt for t=1,. . . ,T. Fix S = s and define, for (ηt, η1, zS) ∈

Xt ×X1 ×ZS ,

λ∗mO,η1
= Pm(O1 = 1|(X1, S) = (η1, s)),

λmO,ηt = Pm(Ot = 1|(Xt, S) = (ηt, s)),

π̃mzS = πmPm(S = s|ZS = zS)

Construct a matrix of type-specific distribution functions and type probabilities as

Lt =


1 λ1

O,ηt,1
· · · λ1

O,ηt,M−1

· · · · · · . . . · · ·

1 λMO,ηt,1 · · · λMO,ηt,M−1

 , for t = 2, . . . , T

DO
η1

= diag(λ∗1O,η1
, . . . , λ∗MO,η1

), and VzS = diag(π̃1
zS
, . . . , π̃MzS ).

The elements of Lt,D
O
η1

, and VzS are parameters of the underlying mixture model to be

identified. Consider we have data for three time periods i.e. T = 3. Fix Ot = 1 for all t and

define

FO∗
ZS ,X1,X2,X3

=
M∑
m=1

π̃mZS
λ∗mO,X1

λmO,X2
λmO,X3
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.

Now fix O2 = O3 = 1 and define

FO
ZS ,X2,X3

=
M∑
m=1

π̃mZS
λmO,X2

λmO,X3
.

Similarly, define the following functions

FO∗
ZS ,X1,X2

=
M∑
m=1

π̃mZS
λ∗mO,X1

λmO,X2
,

FO∗
ZS ,X1,X3

=
M∑
m=1

π̃mZS
λ∗mO,X1

λmO,X3
,

FO∗
ZS ,X1

=
M∑
m=1

π̃mZS
λ∗mO,X1

,

FO
ZS ,X2

=
M∑
m=1

π̃mZS
λmO,X2

,

FO
ZS ,X3

=
M∑
m=1

π̃mZS
λmO,X3

.

Arrange these into two M ×M matrices:

PO
zS

=



1 FO
zS ,η3,1

. . . FO
zS ,η3,M−1

FO
zS ,η2,1

FO
zS ,η2,1,η3,1

. . . FO
zS ,η2,1,η3,M−1

...
...

. . .
...

FO
zS ,η2,M−1

FO
zS ,η2,M−1,η3,1

. . . FO
zS ,η2,M−1,η3,M−1


,
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and

PO∗
zS ,η1

=



FO∗
zS ,η1

FO∗
zS ,η1,η3,1

. . . FO∗
zS ,η1,η3,M−1

FO∗
zS ,η1,η2,1

FO∗
zS ,η1,η2,1,η3,1

. . . FO∗
zS ,η1,η2,1,η3,M−1

...
...

. . .
...

FO∗
zS ,η1,η2,M−1

FO∗
zS ,η1,η2,M−1,η3,1

. . . FO∗
zS ,η1,η2,M−1,η3,M−1


.

To achieve identification, further assume:

Assumption 2. There exist some {ηt,1, . . . , ηt,M−1}Tt=2 such that PO
zS

is of full rank and that

all the eigenvalues of (PO
zS

)−1PO∗
zS ,η1

take distinct values.

Proof of Proposition 4.1. PO
zS

and PO∗
zS ,η1

can be expressed as the follows:

PO
zS

= L′2VzSL3, and PO∗
zS ,η1

= L′2VzSD
O
η1
L3.

Because PO
zS

is full rank, it follows that L2 and L3 are full rank. We can construct a

matrix AzS = (PO
zS

)−1PO∗
zS ,η1

= L−1
3 DO

η1
L3. Because AzSL

−1
3 = L−1

3 DO
η1

and the eigenvalues of

AzS are distinct, the eigenvalues of AzS determines the elements of DO
η1

.

Moreover, the right eigenvectors of AzS are the columns of L−1
3 up to multiplicative

constants. Denote L−1
3 K to be the right eigenvectors of AzS where K is some diagonal

matrix. Now we can determine VzSK from the first row of PO
zS
L−1

3 K because PO
zS
L−1

3 K =

L′2VzSK and the first row of L′2 is a vector of ones. Then L′2 is determined uniquely by

L′2 = (PO
zS
L−1

3 K)(VzSK)−1. Similarly, by construct a matrix BzS = (PO′
zS

)−1(PO∗′
zS ,η1

), we can

uniquely determine L′3.

We can determine VzS from the first row of PO
zS
L−1

3 K because PO
zS
L−1

3 K = L′2VzSK and

the first row of L′2 is a vector of ones. Till now we have identified {π̃mzS}
M
m=1, {λmO,η1

}Mm=1 and

{λmO,ηt,j}
M−1
j=1 }Mm=1 for t = 2, 3.

Next I show how to identify DO
x1

for any x1 ∈ X1. Let’s construct PO∗
zS ,x1 in the same

way as PO∗
zS ,η1

. It follows that DO
x1

= (L′2Vx1)
−1P ∗O,x1

L−1
3 . So {λ∗mO,x1

}Mm=1 for any x1 ∈ X1 is
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identified.

To identify {λmO,x2
}Mm=1 for any x2 ∈ X2, construct the following matrices:

Lx2 =


1 λ1

O,x2

...
...

1 λMO,x2

 ,

and

P x2 =

 1 FO
z,η3,1

. . . FO
z,η3,M−1

FO
z,x2

FO
z,x2,η3,1

. . . FO
z,x2,η3,M−1

 .

P x2 can be expressed as P x2 = (Lx2)′VzSL3. So (Lx2)′ = P x2(VzSL3)−1. So {λmO,x2
}Mm=1 is

identified. With similar approach {λmO,x3
}Mm=1 for any x3 ∈ X3 can also be identified.

To identify Vz′S for any z′S ∈ ZS , construct PO
z′S

by replacing zS with z′S in PO
zS

. PO
z′S

can

be expressed as PO
z′S

= L′2Vz′SL3. Then Vz′S = (L′2)−1PO
z′S
L−1

3 and {π̃mz′S}
M
m=1 for any z′S ∈ ZS is

identified. By integrating out S, we can get {πm}Mm=1 and fm(S|ZS) = π̃mz′S
/πm.

I have shown the identification of πm, fm(S|ZS),fm(O1|X1, S) and fm(Ot|Xt, S) for any

({Xt}3
t=1, S, ZS) ∈

∏3
t=1Xt×S×ZS . The rest is to show the identification of the type-specific

wage marginal distributions. Define

λ∗mW,(w1,x1) = fm((W1, O1) = (w1, 1)|(X1, S) = (η1, s)),

DW
w,η1

= diag(λ∗1W,(w,η1), . . . , λ
∗M
W,(w,η1)).

43



Fix W1 = w1, Ot = 1 for t = 1, 2, 3, and define the following functions:

FW∗
ZS ,X1,X2,X3

=
M∑
m=1

π̃mZS
λ∗mW,(w1,X1)λ

m
O,X2

λmO,X3
,

FW∗
ZS ,X1,X2

=
M∑
m=1

π̃mZS
λ∗mW,(w1,X1)λ

m
O,X2

,

FW∗
Z,X1,X3

=
M∑
m=1

π̃mZS
λ∗mW,(w1,X1)λ

m
O,X3

,

FW∗
Z,X1

=
M∑
m=1

π̃mZS
λ∗mW,(w1,X1).

Arrange these to an M ×M matrix:

PW∗
zS ,η1

=



FW∗
zS ,η1

FW∗
zS ,η1,η3,1

. . . FW∗
zS ,η1,η3,M−1

FW∗
zS ,η1,η2,1

FW∗
zS ,η1,η2,1,η3,1

. . . FW∗
zS ,η1,η2,1,η2,M−1

...
...

. . .
...

FW∗
zS ,η1,η2,M−1

FW∗
zS ,η1,η2,M−1,η3,1

. . . FW∗
zS ,η1,η2,M−1,η3,M−1


.

PW∗
zS ,η1

= L′2VzSD
W
w1,η1

L3. Then DW
w1,η1

= (L′2VzS)−1PW∗
zS ,η1

L−1
3 and fm(W1, O1|X1, S) is

identified. Further fm((W1|O1, X1, S) = fm(W1, O1|X1), S)/fm((O1|X1), S).

To identify fm(Wt|Ot, Xt, S) for t = 2, define

λmW,(w2,η2) = fm((W2, O2) = (w2, 1)|(X2, S) = (η2, s)).

Fix W2 = w2, Ot = 1 for t = 2, 3, and define the following functions:

FW
ZS ,X2,X3

=
M∑
m=1

π̃mZS
λmW,(w2,X2)λ

m
O,X3

,

FW
ZS ,X2

=
M∑
m=1

π̃mZS
λmW,(w2,X2).
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Then construct the following matrices:

Lw2 =


1 λ1

W,(w2,η2)

...
...

1 λMW,(2,η2)

 ,

and

Pw2 =

 1 FO
zS ,η3,1

. . . FO
zS ,η3,M−1

FW
zS ,x2

FW
zS ,η2,η3,1

. . . FW
zS ,η2,η3,M−1

 .

Pw2 can be expressed as Pw2 = (Lw2)′VzSL3. Then (Lw2)′ =

Pw2(VzSL3)
−1 and {fm(W2, O2|X2, S)}Mm=1 is identified and fm(W2|O2, X2, S) =

fm(W2, O2|X2, S)/fm(O2|X2, S) for m = 1, . . . ,M . With similar approach, fm(W3|O3, X3, S)

can be identified for m = 1, . . . ,M . This completes the proof of Proposition 4.1.

D.2 Assumptions and proof of Proposition 4.2

Assumption 3. For m=1,. . . ,M and t ≥ 2,

(a)

fmt (Wt|Ot, Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Wt|Ot, Xt, S, {Wτ , Oτ , Xτ}t−1

τ=2),

and

fmt (Ot|Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Ot|Xt, S, {Wτ , Oτ , Xτ}t−1

τ=2).

(b)

fm(Wt|Ot, Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Wt|Ot, S,Xt,Wt−1, Ot−1, Xt−1),
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and

fm(Ot|Xt, S, {Wτ , Oτ , Xτ}t−1
τ=2) = fm(Ot|Ot−1, S,Xt).

Under Assumption 3, the conditional joint distribution of wages, occupations, and

education can be simplified as follows:

fm({Wt, Ot}Tt=1, S|{Xt}Tt=1, ZS)

=fm(W1|O1, S)
T∏
t=2

fm(Wt|Ot, S,Xt,Wt−1, Ot−1, Xt−1)

× fm(O1|S)
T∏
t=2

fm(Ot|Ot−1, S,Xt)f
m(S|ZS).

The transition process of (Wt, Ot, Xt) becomes a stationary first-order Markov process.

Define Yt = (Wt, Ot, Xt). The variation of Yt affects both the type-specific conditional

joint distribution at period t and that at period t+ 1. This makes it difficult to construct

factorization equations as before. To solve this problem, we look at every other period. Fix

Yt to be ȳt for odd t and define

π̃mȳ,zS = πmfm(ȳ1, s|zS),

λmȳ (Yt) = fm(ȳt+1|Yt, s)fm(Yt|ȳt−1, s),

λ∗mȳ (YT ) = fm(YT |ȳT−1, s).

Let ξt be element of Yt and define

Lt,ȳ =


1 λ1

ȳ(ξt,1) . . . λ1
ȳ(ξt,M−1)

...
...

. . .
...

1 λMȳ (ξt,1) . . . λMȳ (ξt,M−1)

 ,
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Vȳ = diag(π̃1
ȳ,zS

, . . . , π̃Mȳ,zS), and DO
YT |ȳ = diag(λ∗1ȳ (YT ), . . . , λ∗Mȳ (YT )).

Then construct

PO
ȳ = L′2,ȳVȳL4,ȳ,

PO∗
ȳ = L′2,ȳD

O
YT |ȳVȳL4,ȳ.

Further, assume

Assumption 4. There exist some {ξt,1, . . . , ξt,M−1}Tt=1 such that PO
ȳ is of full rank and that

all the eigenvalues of (PO
ȳ )−1PO∗

ȳ take distinct values.

Proof of Proposition 4.2. Without loss of generality, set T = 6. Fix (Y1, Y3, Y5) = (y1, y2, y5)

and define

F ∗OY2,Y4,Y6
=

M∑
m=1

π̃ȳ,ZS
λmȳ (Y2)λmȳ (Y4)λ∗mȳ (YT ),

F ∗OY2,Y6
=

M∑
m=1

π̃ȳ,zSλ
m
ȳ (Y2)λ∗mȳ (YT ),

F ∗OY6
=

M∑
m=1

π̃ȳ,zSλ
∗m
ȳ (YT ),

FO
Y2,Y4

=
M∑
m=1

π̃ȳ,zSλ
m
ȳ (Y2)λmȳ (Y4),

FO
Y2

=
M∑
m=1

π̃,̄zSλ
m
ȳ (Y2),

FO =
M∑
m=1

π̃ȳ,zS .
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And construct matrices as follows:

PO
ȳ =



FO FO
ξ4,1

. . . FO
ξ4,M−1

FO
ξ2,1

FO
ξ2,1,ξ4,1

. . . FO
ξ2,1,ξ4,M−1

...
...

. . .
...

FO
ξ2,M−1

FO
ξ2,M−1,ξ4,1

. . . FO
ξ2,M−1,ξ4,M−1


,

and

PO∗
ȳ =



FO∗
ξ6

FO∗
ξ4,1,ξ6

. . . FO∗
ξ4,M−1,ξ6

FO∗
ξ2,1,ξ6

FO∗
ξ2,1,ξ4,1,ξ6

. . . FO∗
ξ2,1,ξ4,M−1,ξ6

...
...

. . .
...

FO∗
ξ2,M−1,ξ6

FO∗
ξ2,M−1,ξ4,1,ξ6

. . . FO∗
ξ2,M−1,ξ4,M−1,ξ6


.

Then repeat the argument of the proof of Proposition 4.1 and we achieve the identification

of π̃mȳ,zS , λmȳ (ξt), and λ∗mȳ (YT ). Then integrate out the other elements and apply Bayes’ rule, we

can get πm, fm(W1|O1, X1, S), fm(O1|X1, S), fm(S|ZS), fm(Wt|Ot, S,Xt,Wt−1, Ot−1, Xt−1),

and fm(Ot|Ot−1, S,Xt).

D.3 Assumptions and proof of Proposition 4.3

Denote the support of Q1, Q2, and Q3 byQ1, Q2, andQ3 respectively. PartitionQ1 into M

mutually exclusive and exhaustive subsets and denote the partitions as 4Q1 = {δ1
Q1
, . . . , δMQ1

}.

Similarly denote the partitions of Q2 as 4Q2 = {δ1
Q2
, . . . , δMQ2

}. Let 4 = 4Q1 ×4Q2 . Also

partition Q3 into 2 mutually exclusive and exhaustive subsets as 4Q3 = {δ1
Q3
, δ2
Q3
}.
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Let’s define

pmQ1
= (Pm(Q1 ∈ δ1

Q1
|s, zs), . . . , Pm(Q1 ∈ δMQ1

)|s, zs)′,

pmQ2
= (Pm(Q2 ∈ δ1

Q2
|s, zs), . . . , Pm(Q2 ∈ δMQ2

)|s, zs)′,

pmQ3
(h) = Pm(Q3 ∈ δhQ3

|s, zs),

π̃m = πmfm(s, zs).

Collect the type-specific distributions into following matrices

LQ1 = (p1
Q1
, . . . , pMQ1

),

LQ2 = (p1
Q2
, . . . , pMQ2

),

V = diag(π̃1, . . . , π̃M),

and

Dh = diag(p1
Q3

(h), . . . , pMQ3
(h)).

Let Ps(Q1 ∈ δmQ1
, Q2 ∈ δm

′
Q2

) be the probability that Q1 ∈ δmQ1
and Q2 ∈ δm

′
Q2

for S = s and

Ps(Q1 ∈ δmQ1
, Q2 ∈ δm

′
Q2
, Q3 ∈ δhQ3

) be the probability that Q1 ∈ δmQ1
, Q2 ∈ δm

′
Q2

, and Q3 ∈ δhQ3

for S = s. Define two M ×M matrices as follows:

P4 =


Ps(Q1 ∈ δ1

Q1
, Q2 ∈ δ1

Q2
) . . . Ps(Q1 ∈ δ1

Q1
, Q2 ∈ δMQ2

)

... . . .
...

Ps(Q1 ∈ δMQ1
, Q2 ∈ δ1

Q2
) . . . Ps(Q1 ∈ δMQ1

, Q2 ∈ δMQ2
)

 ,
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P4,h =


Ps(Q1 ∈ δ1

Q1
, Q2 ∈ δ1

Q2
, Q3 ∈ δhQ3

) . . . Ps(Q1 ∈ δ1
Q1
, Q2 ∈ δMQ2

, Q3 ∈ δhQ3
)

... . . .
...

Ps(Q1 ∈ δMQ1
, Q2 ∈ δ1

Q2
, Q3 ∈ δhQ3

) . . . Ps(Q1 ∈ δMQ1
, Q2 ∈ δMQ2

, Q3 ∈ δhQ3
)

 .

Assume:

Assumption 5. There exists a partition 4×4Q3 on the variables (Q1, Q2, Q3) for which

the matrix P4 is nonsingular and the eigenvalues of P4,hP
−1
4 are distinct for partition level

h = 1 of the variable Q3.

Proof of Proposition 4.3. P4 and P ∗4,h can be expressed as the follows:

P4 = LQ1V (L′Q2
), and P4,h = LQ1DhV (L′Q2

).

Since P4 is nonsingular, both LQ1 and LQ2 are nonsingular. Construct Ah = P4,hP
−1
4 =

LQ1DhL
−1
Q1

, and we have AhLQ1 = LQ1Dh. The distinct eigenvalues of Ah determines

the elements of Dh, and its eigenvectors determine the columns of LQ1 uniquely up to a

multiplicative constant. Then LQ1 is uniquely determined since the elements of each column

of LQ1 must sum to one. Construct Bh = (P ′4,h)(P ′4)−1 = LQ2DhL
−1
Q2

, and LQ2 is determined

using the similar argument. Once LQ1 and LQ2 are determined, V is uniquely determined

by V = (LQ1)
−1P4(L′Q2

)−1. Then {πm}Mm=1 is identified by integrating out S and ZS, and

fm(S|ZS) = π̃m/(πmf(ZS)).

For any q1 ∈ Q1, denote pq1 = (P 1
Q1

(q1), . . . , P
M
Q1

(q1)) and define Pq1,4Q2 = pq1V (LQ2)
′.

Then pq1 = Pq1,4Q2(V (LQ2)
′)−1, and {PM

Q1
(q1)}Mm=1 is identified. Define P4Q1,q2 and P4Q1,q3

analogously and apply the same argument, {PM
Q2

(q2), PM
Q3

(q3)}Mm=1 are identified.
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D.4 Assumptions and proof of Proposition 4.4

Denote pmOt
= Pm(Ot = 1|(S,ZS) = (s, zS)), and DOt = diag(p1

Ot
, . . . , pMOt

). Construct an

M ×M matrix

P4,Ot =


P (Q1 ∈ δ1

Q1
, Q2 ∈ δ1

Q2
, Ot = 1) . . . P (Q1 ∈ δ1

Q1
, Q2 ∈ δMQ2

, Ot = 1)

... . . .
...

P (Q1 ∈ δMQ1
, Q2 ∈ δ1

Q2
, Ot = 1) . . . P (Q1 ∈ δMQ1

, Q2 ∈ δMQ2
, Ot = 1)

 ,

Assume

Assumption 6. The eigenvalues of P4,OtP
−1
4 are distinct.

Proof of Proposition 4.4. The proof of the nonparametric identification of education psychic

costs using test scores is already shown in the proof of Proposition 4.3. Below, I prove the

nonparametric identification of occupation abilities using test scores.

Express P4,Ot as P4,Ot = LQ1DOtV L
′
Q2

. Replacing P4,h in the proof of Proposition 4.3

by P4,Ot , and repeating the proof, πm, fm(S|ZS), and fm(Ot|Xt, S) are identified.

Next, denote pmWt
= Fm((Wt, Ot) = (wt, 1)|(S, ZS) = (s, zS)) and DWt =

diag(p1
Wt
, . . . , pMWt

). Let P (Q1 ∈ δmQ1
, Q2 ∈ δm

′
Q2
, (ωt, 1)) be the probability that Q1 ∈ δmQ1

,

Q2 ∈ δm
′

Q2
, Wt = ωt, and Ot = 1 for S = s. The corresponding M ×M matrix is

P4,wt =


PS(Q1 ∈ δ1

Q1
, Q2 ∈ δ1

Q2
, (ωt, 1)) . . . PS(Q1 ∈ δ1

Q1
, Q2 ∈ δMQ2

, (ωt, 1))

... . . .
...

PS(Q1 ∈ δMQ1
, Q2 ∈ δ1

Q2
, (ωt, 1)) . . . PS(Q1 ∈ δMQ1

, Q2 ∈ δMQ2
, (ωt, 1))

 .

P4,wt = LQ1DwtV L
′
Q2

. Then Dwt = L−1
Q1
P4,wt(V L

′
Q2

)−1, and fm(Wt, Ot|Xt, S) is

identified. By Bayes’ rule, fm(Wt|Ot, Xt, S) = fm(Wt, Ot|Xt, S)/fm(Ot|Xt, S).
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E EM Algorithm

Consider (k + 1)th iteration. In E step, calculate the expectated log-likelihood φ based

on the estimates from the kth iteration:

φ(k) =
n∑
i=1

M∑
m=1

µ
m(k)
i (logπm + logLmW + logLmO + logLmS + logLmQ),

where

µ
m(k)
i =

πm(k)Lm(k)
W Lm(k)

O Lm(k)
S Lm(k)

Q∑M
m=1 π

m(k)Lm(k)
W Lm(k)

O Lm(k)
S Lm(k)

Q

.

In M step, compute the parameters by maximizing the expected log-likelihood φ:

πm(k+1) satisfies ∂φk

∂πm(k+1) = 0. Correspondingly,

πm(k+1) =

∑n
i=1 µiπ

m(k)

n
.

β
m(k+1)
W satisfies ∂φk

∂β
m(k+1)
W

= 0. And it can be simplified to

∂
∑n

i=1

∑T
t=1 L

m(k+1)
W

∂β
m(k+1)
W

= 0,

which is an OLS regression.

γ
m(k+1)
O satisfies ∂φk

∂γ
m(k+1)
O

= 0, and it can be simplified to

∂
∑n

i=1

∑T
t=1 L

m(k+1)
O

∂γ
m(k+1)
O

= 0.

(θ
m(k+1)
R satisfies ∂φk

∂θ
m(k+1)
R

= 0. And it can be simplified to

∂
∑n

i=1

∑R
r=1 L

m(k+1)
Q

∂θ
m(k+1)
R

= 0,
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which is a probit.

δ
m(k+1)
S satisfies ∂φk

∂δ
m(k+1)
S

= 0, and it can be simplified to

∂
∑n

i=1 L
m(k+1)
S

∂δ
m(k+1)
S

= 0,

which is a multinomial logit.

F Choice of Initial Values

The strategy is to start with estimating the parameters in Equation (7) when the population

is homogenous (M=1) and then add one more type at a time and re-estimate the parameters.

Let Lmi denote the likelihood for individual i and define

µm =
n∑
i=1

(1− Lmi∑m−1
k=1 L

k
i π

k
)

The estimation follows the algorithm as below:

(a) Set M = 1 and π1 = 1. Choose initial values for αW , αO, αS, αR, β, λ, δ, θ, σW , σQ,

and ρ in Equation (7).

(b) Given the current value of M , maximize the likelihood over αW , αO, αS, αR, β, λ, δ, θ,

σW , σQ, ρ, and πm.

(c) Evaluate µM+1 for a grid of values of the type-specific parameters.

(d) Set the type-specific parameters to the values that yield the smallest value for µM+1.

(e) Maximize the likelihood. Increase the value of M by 1. Return to Step (b).
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Table 2: Test Scores by Education and Initial Occupation

(a) By Intial Occupation

Blue Collar White Collar
Variable Obs Mean S.D. Obs Mean S.D.
Math skill 566 -0.323 0.961 368 0.497 0.844
Verbal skill 566 -0.279 1.066 368 0.428 0.700
Coding speed 566 -0.231 0.966 368 0.356 0.947
Mechanical 566 -0.065 1.044 368 0.101 0.920
Locus of control 566 -0.099 0.982 368 0.153 1.009
Self-esteem 566 -0.110 1.000 368 0.169 0.978

(b) By Education

High School 2-yr College 4-yr College
Variable Obs Mean S.D. Obs Mean S.D. Obs Mean S.D.
Math skill 318 -0.684 0.814 163 -0.236 0.870 453 0.565 0.812
Verbal skill 318 -0.672 1.107 163 -0.068 0.867 453 0.497 0.607
Coding speed 318 -0.430 0.911 163 -0.099 0.955 453 0.338 0.953
Mechanical 318 -0.248 1.096 163 0.049 0.969 453 0.156 0.903
Locus of control 318 -0.256 0.956 163 -0.017 1.026 453 0.186 0.982
Self-esteem 318 -0.325 0.947 163 0.058 0.943 453 0.207 0.999

(c) By Education, Blue-Collar

High School 2-yr College 4-yr College
Variable Obs Mean S.D. Obs Mean S.D. Obs Mean S.D.
Math skill 283 -0.708 0.801 120 -0.255 0.925 163 0.294 0.910
Verbal skill 283 -0.734 1.105 120 -0.071 0.855 163 0.359 0.705
Coding speed 283 -0.476 0.916 120 -0.126 0.965 163 0.116 0.934
Mechanical 283 -0.257 1.097 120 0.063 0.959 163 0.294 0.910
Locus of control 283 -0.263 0.971 120 0.006 1.001 163 0.108 0.943
Self-esteem 283 -0.348 0.943 120 0.071 0.969 163 0.171 1.024

(d) By Education, White-Collar

High School 2-yr College 4-yr College
Variable Obs Mean S.D. Obs Mean S.D. Obs Mean S.D.
Math skill 35 -0.495 0.899 43 -0.181 0.698 290 0.718 0.708
Verbal skill 35 -0.178 1.004 43 -0.061 0.908 290 0.574 0.531
Coding speed 35 -0.061 0.783 43 -0.022 0.933 290 0.462 0.942
Mechanical 35 -0.178 1.108 43 0.011 1.009 290 0.718 0.708
Locus of control 35 -0.204 0.834 43 -0.079 1.101 290 0.23 1.003
Self-esteem 35 -0.139 0.975 43 0.021 0.877 290 0.228 0.986
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Table 4: Estimated Wage Parameters (Equation (1))

Blue Collar White Collar
Constants
Type 1 & 2 6.932 ∗∗∗ 7.044 ∗∗∗

(0.021) (0.033)
Type 3 & 4 6.485 ∗∗∗ 6.457 ∗∗∗

(0.021) (0.038)
2-year college 0.243 ∗∗∗ 0.170 ∗∗∗

(0.024) (0.036)
4-year college 0.231 ∗∗∗ 0.296 ∗∗∗

(0.022) (0.031)
Blue-collar experience 0.078 ∗∗∗ 0.033 ∗∗∗

(0.008) (0.009)
Blue-collar experience squared -0.285 ∗∗∗ -0.076

(0.069) (0.075)
White-collar experience 0.040 ∗∗∗ 0.079 ∗∗∗

(0.012) (0.008)
White-collar experience squared -0.044 -0.191 ∗∗

(0.169) (0.084)

Hypothesis testing p-value
blue-collar return=white-collar return, 2-year college 0.016
blue-collar return=white-collar return, 4-year college 0.018
2-year college return=4-year college return, blue-collar 0.311
2-year college return=4-year college return, white-collar 0.000
Dependent variable: log hourly salary

Type 1 and type 2 have the same occupation abilities. So do type 3 and type 4.

Type 1 and type 2 have different education psychic costs. So do type 3 and type 4.

Standard errors are in parenthesis.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 5: Estimated Average Partial Effects, Occupation Choice

Initial job Subsequent jobs
Constant
Type 1 & 2 -0.246 ∗∗∗ -0.137 ∗∗

(0.057) (0.071)
Deviation of type 3 & 4 from type 1 & 2 -0.162 ∗∗∗ -0.056 ∗∗

(0.063) (0.027)
2-year college 0.159 ∗∗∗ 0.042 ∗∗

(0.044) (0.019)
4-year college 0.503 ∗∗∗ 0.122 ∗∗∗

(0.028) (0.046)
Blue-collar experience -0.044

(0.193)
Blue-collar experience squared 0.262 ∗∗

(0.128)
White-collar experience 0.054

(0.120)
White-collar experience squared -0.266 ∗∗

(0.137)
White-collar job in the last period 0.287 ∗∗∗

(0.079)
The average partial effect is calculated as the average of the partial effect of each individual.

Type 1 and type 2 have the same occupation abilities. So do type 3 and type 4.

Type 1 and type 2 have different education psychic costs. So do type 3 and type 4.

Standard errors are in parenthesis.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 6: Estimated Average Partial Effects, Educational Choice

2-year College 4-year College
Constant
Type 1 -0.028 -0.293

(0.179) (0.283)
Deviation of type 2 from type 1 0.083 -0.416 ∗∗∗

(0.828) (0.11)
Deviation of type 3 from type 1 0.092 -0.525 ∗∗∗

(0.112) (0.116)
Deviation of type 4 from type 1 0.094 -0.204 ∗∗∗

(0.792) (0.085)
Mother education -0.004 0.038

(0.645) (0.078)
Father education 0.004 0.031

(0.735) (0.087)
#siblings -0.001 -0.021

(0.103) (0.086)
Broken family at age 14 0.032 -0.066

(0.063) (0.126)
South at age 14 -0.013 0.077 ∗∗

(0.059) (0.033)
Urban at age 14 0.059 0.044

(0.070) (0.043)
The average partial effect is calculated as the average of the partial effect of each individual.

Type 1 and type 2 have the same occupation abilities. So do type 3 and type 4.

Type 1 and type 2 have different education psychic costs. So do type 3 and type 4.

Standard errors are in parenthesis.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 7: Occupation-Specific Returns

(1) (2) (3) (4)
2-year college × blue-collar 0.224 ∗∗∗ 0.188 ∗∗∗ 0.277 ∗∗∗ 0.243 ∗∗∗

(0.024) (0.023) (0.024) (0.024)
2-year college × white-collar 0.136 ∗∗∗ 0.105 ∗∗∗ 0.192 ∗∗∗ 0.170 ∗∗∗

(0.034) (0.031) (0.035) (0.036)
4-year college × blue-collar 0.246 ∗∗∗ 0.172 ∗∗∗ 0.237 ∗∗∗ 0.231 ∗∗∗

(0.022) (0.023) (0.022) (0.022)
4-year college × white-collar 0.295 ∗∗∗ 0.227 ∗∗∗ 0.293 ∗∗∗ 0.296 ∗∗∗

(0.029) (0.027) (0.030) (0.031)
Column (1): OLS estimates of the occupation-specific returns to education

Column (2): OLS estimates of the occupation-specific returns to education when six test scores are included

as proxies for occupation abilities

Column (3): estimates of the occupation-specific returns to education when controlling for occupation

abilities only

Column (4): estimates of the occupation-specific returns to education when controlling for both occupation

abilities and education psychic costs

All the regressors in Equation (1) are included.

Standard errors are in parenthesis.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 9: Estimated Wage Parameters, with Three Test Scores in the Wage Equation

Blue Collar White Collar
Constants
Type 1 & 2 6.914 ∗∗∗ 7.048 ∗∗∗

(0.021) (0.032)
Type 3 & 4 6.461 ∗∗∗ 6.443 ∗∗∗

(0.023) (0.038)
2-year college 0.222 ∗∗∗ 0.121 ∗∗∗

(0.023) (0.034)
4-year college 0.228 ∗∗∗ 0.273 ∗∗∗

(0.024) (0.032)
Blue-collar experience 0.075 ∗∗∗ 0.034 ∗∗∗

(0.008) (0.009)
Blue-collar experience squared -0.278 ∗∗∗ -0.125 ∗∗

(0.069) (0.074)
White-collar experience 0.050 ∗∗∗ 0.080 ∗∗∗

(0.012) (0.009)
White-collar experience squared -0.158 -0.205 ∗∗∗

(0.161) (0.084)
Test Scores
Math 0.085 ∗∗∗

(0.013)
Verbal -0.137 ∗∗∗

(0.012)
Mechanical comprehension 0.068 ∗∗∗

(0.009)
Dependent variable: log hourly salary

Type 1 and type 2 have the same occupation abilities. So do type 3 and type 4.

Type 1 and type 2 have different education psychic costs. So do type 3 and type 4.

The coefficients on the three test scores are restricted to be the same across

occupations.

Standard errors are in parenthesis.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 10: Estimated Wage Parameters in the Wage Equation (6 types)

Blue Collar White Collar
Constants
Type 1 & 2 6.998 ∗∗∗ 7.116 ∗∗∗

(0.027) (0.034)
Type 3 & 4 6.501 ∗∗∗ 6.439 ∗∗∗

(0.026) (0.041)
Type 5 & 6 6.609 ∗∗∗ 6.679 ∗∗∗

(0.021) (0.037)
2-year college 0.235 ∗∗∗ 0.126 ∗∗∗

(0.023) (0.036)
4-year college 0.238 ∗∗∗ 0.283 ∗∗∗

(0.021) (0.032)
Blue-collar experience 0.076 ∗∗∗ 0.03 ∗∗∗

(0.008) (0.009)
Blue-collar experience squared -0.284 ∗∗∗ -0.063

(0.07) (0.078)
White-collar experience 0.042 ∗∗∗ 0.078 ∗∗∗

(0.011) (0.008)
White-collar experience squared -0.075 -0.211 ∗∗∗

(0.162) (0.086)
Dependent variable: log hourly salary

Type 1 and type 2 have the same occupation abilities. So do type 3 and type 4

as well as type 5 and type 6.

Type 1 and type 2 have different education psychic costs. So do type 3 and

type 4 as well as type 5 and type 6.

Standard errors are in parenthesis.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 11: The Occupation-Specific Returns to A Bachelor’s Degree

Blue Collar White Collar
Constants
Type 1 & 2 6.914 ∗∗∗ 6.983 ∗∗∗

(0.024) (0.035)
Type 3 & 4 6.465 ∗∗∗ 6.425 ∗∗∗

(0.023) (0.042)
2-year college 0.257 ∗∗∗ 0.191 ∗∗∗

(0.025) (0.036)
Bachelor’s degree 0.257 ∗∗∗ 0.328 ∗∗∗

(0.035) (0.033)
Blue-collar experience 0.084 ∗∗∗ 0.047 ∗∗∗

(0.009) (0.01)
Blue-collar experience squared -0.326 ∗∗∗ -0.162 ∗∗

(0.076) (0.08)
White-collar experience 0.038 ∗∗∗ 0.083 ∗∗∗

(0.014) (0.01)
White-collar experience squared -0.049 -0.214 ∗∗

(0.189) (0.094)
Dependent variable: log hourly salary

Type 1 and type 2 have the same occupation abilities. So do type 3 and type 4.

Type 1 and type 2 have different education psychic costs. So do type 3 and type 4.

The four-year college dropouts are eliminated from the sample.

Standard errors are in parenthesis.

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 12: Expected Returns to Education

2-Year College 4-Year College
Type 1 & 2 Type 3 & 4 Type 1 & 2 Type 3 & 4

Panel A: Total

1st year 0.238 0.225 0.337 0.251
5th year 0.225 0.212 0.349 0.255
10th year 0.239 0.22 0.397 0.287
Panel B: Occupation-Specific Skills Accumulation

1st year 0.216 0.229 0.277 0.264
5th year 0.206 0.221 0.283 0.271
10th year 0.201 0.221 0.288 0.275
Panel C: Better Occupation Match

1st year 0.022 -0.004 0.06 -0.013
5th year 0.019 -0.009 0.065 -0.016
10th year 0.038 -0.001 0.109 0.011
Calculation is based on the simulation of 10000 observations.

Panel A: total expected returns to attending a two-year college and a four-year college

Panel B: expected returns to education from enhancing the occupation-specific skills

Panel C: expected returns to education from increasing the probability of being employed in

a white-collar occupation

Total expected returns to education (Panel A) is the sum of the expected returns from enhancing

the occupation-specific skills (Panel B) and the expected returns from increasing the probability

of being employed in a white-collar occupation (Panel C).

Type 1 and type 2 have the same occupation abilities. So do type 3 and type 4.

Type 1 and type 2 have different education psychic costs. So do type 3 and type 4.
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Table 13: Posterior Probabilities of Types Conditional on Test Scores

(a) Type 1

Q̄nc ≤ −0.5 −0.5 < Q̄nc ≤ 0 0 < Q̄nc ≤ 0.5 Q̄nc ≥ 0.5
Q̄c ≤ −0.5 0.001 0 0.013 0.007
−0.5 < Q̄c ≤ 0 0.065 0.127 0.150 0.191
0 < Q̄c ≤ 0.5 0.328 0.459 0.565 0.680
Q̄c ≥ 0.5 0.782 0.777 0.873 0.909

(b) Type 2

Q̄nc ≤ −0.5 −0.5 < Q̄nc ≤ 0 0 < Q̄nc ≤ 0.5 Q̄nc ≥ 0.5
Q̄c ≤ −0.5 0.615 0.54 0.445 0.357
−0.5 < Q̄c ≤ 0 0.000 0.001 0.001 0.002
0 < Q̄c ≤ 0.5 0.000 0.000 0.000 0.000
Q̄c ≥ 0.5 0.000 0.000 0.000 0.000

(c) Type 3

Q̄nc ≤ −0.5 −0.5 < Q̄nc ≤ 0 0 < Q̄nc ≤ 0.5 Q̄nc ≥ 0.5
Q̄c ≤ −0.5 0.298 0.353 0.432 0.529
−0.5 < Q̄c ≤ 0 0.313 0.343 0.325 0.327
0 < Q̄c ≤ 0.5 0.056 0.043 0.033 0.031
Q̄c ≥ 0.5 0.000 0.006 0.000 0.000

(d) Type 4

Q̄nc ≤ −0.5 −0.5 < Q̄nc ≤ 0 0 < Q̄nc ≤ 0.5 Q̄nc ≥ 0.5
Q̄c ≤ −0.5 0.086 0.106 0.111 0.107
−0.5 < Q̄c ≤ 0 0.623 0.529 0.523 0.481
0 < Q̄c ≤ 0.5 0.616 0.498 0.402 0.289
Q̄c ≥ 0.5 0.218 0.217 0.127 0.091
Calculation is based on the simulation of 10000 high school graduates whose parents are high school

graduates, who have three siblings, were raised in a two-parent family, lived in the northern urban area

of U.S. at age 14, and took the six test scores at age 18.

Q̄c is the average (standardized) math, verbal, coding speed, mechanical comprehension scores.

Q̄nc is the average (standardized) Rotter Locus of Control and Rosenberg Self-Esteem Scale.

Each cell shows the probability of belonging to a specific type given that Q̄c and Q̄nc fall in a specific

region.
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Table 14: Expected Returns to Education, By Test Scores

2-Year College 4-Year College
10th 50th 90th 10th 50th 90th

Percentile Percentile Percentile Percentile Percentile Percentile

1st year 0.230 0.232 0.238 0.280 0.293 0.333
5th year 0.217 0.219 0.225 0.286 0.300 0.342
10th year 0.225 0.228 0.236 0.323 0.339 0.388
Calculation is based on the simulation of 10000 observations.
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Figure 1: Sequential Education and Occupation Choices
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