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Abstract Two often-divergent U.S. GDP estimates are available, a widely-used
expenditure-side version GDPg, and a much less widely-used income-side version
GDP;. We propose and explore a “forecast combination” approach to combining
them. We then put the theory to work, producing a superior combined estimate of
GDP growth for the U.S., GDPc. We compare GDP¢c to GDPg and GDP;, with par-
ticular attention to behavior over the business cycle. We discuss several variations
and extensions.
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1 Introduction

GDP growth is surely the most fundamental and important concept in empiri-
cal/applied macroeconomics and business cycle monitoring, yet significant uncer-
tainty still surrounds its estimation. Two often-divergent estimates exist for the
U.S., a widely-used expenditure-side version, GDPg, and a much less widely-used
income-side version, GDP,;. Nalewaik (2010) makes clear that, at the very least,
GDP; deserves serious attention and may even have properties in certain respects
superior to those of GDPg. That is, if forced to choose between GDPr and GDP;, a
surprisingly strong case exists for GDP;.

But of course one is not forced to choose between GDPr and GDP;, and a com-
bined estimate that pools information in the two indicators GDPg and GDP; may
improve on both. In this paper we propose and explore a method for constructing
such a combined estimate, and we compare our new GDF¢ (“combined”) series to
GDPg and GDP; over many decades, with particular attention to behavior over the
business cycle, emphasizing comparative behavior during turning points.

Our work is motivated by, and builds on, five key literatures. First, and most
pleasing to us, our work is very much related to Hal White’s in its focus on dynamic
modeling while acknowledging misspecification throughout.

Second, we obviously build on the literature examining GDP; and its properties,
notably Fixler and Nalewaik (2009) and Nalewaik (2010). GDP; turns out to have
intriguingly good properties, suggesting that it might be usefully combined with
GDPg.

Third, our work is related to the literature distinguishing between “forecast error”
and “measurement error” data revisions, as for example in Mankiw et al. (1984),
Mankiw and Shapiro (1986), Faust et al. (2005), and Aruoba (2008). In this paper
we work largely in the forecast error tradition.

Fourth, and related, we work in the tradition of the forecast combination liter-
ature begun by Bates and Granger (1969), viewing GDPr and GDP; as forecasts
of GDP (actually a mix of “backcasts” and “nowcasts” in the parlance of Aruoba
and Diebold (2010)). We combine those forecasts by forming optimally weighted
averages.'

Finally, we build on the literature on “balancing” the national income accounts,
which extends back almost as far as national income accounting itself, as for exam-
ple in Stone et al. (1942), who use a quadratic loss criterion to propose weighting
different GDP estimates by the inverse of their squared “margins of error.” Stone
refined those ideas in his subsequent national income accounting work, and Byron
(1978) and Weale (1985) formalized and refined Stone’s approach. Indeed a number
of papers by Weale and coauthors use subjective evaluations of the quality of dif-
ferent U.K. GDP estimates to produce combined estimates; see Barker et al. (1984),

! For surveys of the forecast combination literature, see Diebold and Lopez (1996) and Timmer-
mann (2006).
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Weale (1988), Solomou and Weale (1991), and Solomou and Weale (1993).2 For ex-
ample, Barker et al. (1984) and Weale (1988) incorporate data quality assessments
from the U.K. Central Statistical Office. Weale et al. also disaggregate some of their
GDP estimates to incorporate information regarding differential quality of underly-
ing source data. In that tradition, Beaulieu and Bartelsman (2004) use input-output
tables to disaggregate GDPr and GDP;, using what they call “tuning” parameters to
balance the accounts. We take a similar approach here, weighting competing GDP
estimates in ways that reflect our assessment of their quality, but we employ more
of a top-down, macro perspective.

We proceed as follows. In section 2 we consider GDP combination under
quadratic loss. This involves taking a stand on the values of certain unobservable
parameters (or at least reasonable ranges for those parameters), but we argue that
a “quasi-Bayesian” calibration procedure based on informed judgment is feasible,
credible and robust. In section 3 we consider GDP combination under minimax loss.
Interestingly, as we show, it does not require calibration. In section 4 we apply our
methods to provide improved GDP estimates for the U.S. In section 5 we sketch
several extensions, and we conclude in section 6.

2 Combination Under Quadratic Loss

Optimal forecast combination typically requires knowledge (or, in practice, esti-
mates) of forecast error properties such as variances and covariances. In the present
context, we have two “forecasts,” of true GDP, namely GDPr and GDF;, but true
GDP is never observed, even after the fact. Hence we never see the “forecast er-
rors,” which complicates matters significantly but not hopelessly. In particular, in
this section we work under quadratic loss and show that a quasi-Bayesian calibra-
tion based on informed judgment is feasible and credible, and simultaneously, that
the efficacy of GDP combination is robust to the precise weights used.

2.1 Basic Results and Calibration

First assume that the errors in GDPr and GDP; growth are uncorrelated. Consider
the convex combination’

GDP: = A GDPg + (1 —A) GDP,,

2 Weale et al. also consider serial correlation and time-varying volatility in GDP measurement er-
rors, as well as time-varying correlation between expenditure- and income-side GDP measurement
eITOorS.

3 Throughout this paper, GDP, GDP; and GDP refer to growth rates.
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where A € [0, 1].* Then the associated errors follow the same weighting,
ec =Aeg+(1—A)ey,

where ec = GDP — GDP¢, e = GDP — GDPg and ¢; = GDP — GDP;. Assume that
both GDPg and GDP; are unbiased for GDP, in which case GDF¢ is also unbiased,
because the combining weights sum to unity.

Given the unbiasedness assumption, the minimum-MSE combining weights are
just the minimum-variance weights. Immediately, using the assumed zero correla-
tion between the errors,

o2 =A*cE+(1—2)*c?, (1)

where 62 = var(ec), 6z = var(eg) and 67 = var(e;). Minimization with respect to
A yields the optimal combining weight,

2
1
=l = @)

ol +op 1+¢%

where ¢ = og/0j.
It is interesting and important to note that in the present context of zero correla-
tion between the errors,

var(eg) +var(er) = var(GDPg — GDP;). 3)

The standard deviation of GDPr minus GDP; can be trivially estimated. Thus, an
expression of a view about ¢ is in fact implicitly an expression of a view about not
only the ratio of var(eg) and var(ey), but about their actual values. We will use this
fact (and its generalization in the case of correlated errors) in several places in what
follows.

Based on our judgment regarding U.S. GDPg and GDP; data, which we will
subsequently discuss in detail in section 2.2, we believe that a reasonable range for
¢ is ¢ € [.75,1.45], with midpoint 1.10.% One could think of this as a quasi-Bayesian
statement that prior beliefs regarding ¢ are centered at 1.10, with a 90 percent prior
credible interval of [.75, 1.45]. In Figure 1 we graph A* as a function of ¢, for
¢ € [.75,1.45]. A* is of course decreasing in ¢, but interestingly, it is only mildly
sensitive to ¢. Indeed, for our range of ¢ values, the optimal combining weight
remains close to 0.5, varying from roughly 0.65 to 0.30. At the midpoint ¢ = 1.10,
we have A* = 0.45.

4 Strictly speaking, we need not even impose A € [0, 1], but A ¢ [0, 1] would be highly nonstandard
for two valuable and sophisticated GDP estimates such as GDPr and GDP;. Moreover, as we shall
see subsequently, multiple perspectives suggest that for our application the interesting range of A
is well in the interior of the unit interval.

3 Invoking equation (3), we see that the midpoint 1.10 corresponds to 67 = 1.30 and o = 1.43,
given our estimate of std(GDPg — GDP;) = 1.93 percent using data 1947Q2-2009Q3.
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Fig. 1 A* vs. ¢. A* constructed assuming uncorrelated errors. The horizontal line for visual refer-
ence is at A* =.5. See text for details.

It is instructive to compare the error variance of combined GDP, 0'3, to 0',% for a
range of A values (including A = A*, A =0, and A = 1).% From (1) we have:

2 Y
E

¢2

In Figure 2 we graph 62/02 for A € [0,1] with ¢ = 1.1. Obviously the maximum
variance reduction is obtained using A* = 0.45, but even for nonoptimal A, such as
simple equal-weight combination (A = 0.5), we achieve substantial variance reduc-
tion relative to using GDPg alone. Indeed, a key result is that for all A (except those
very close to 1, of course) we achieve substantial variance reduction.

Now consider the more general and empirically-relevant case of correlated errors.
Under the same conditions as earlier,

02 =A*0E+(1—1)267 +2A (1 — A)og, (4)
SO
* O} — Cgr

T 2 2
O; + Op — 20g;

6 We choose to examine Gg relative to 6,%, rather than to 6,2, because GDPg is the “standard” GDP
estimate used in practice almost universally. A graph of cré /o? would be qualitatively identical,
but the drop below 1.0 would be less extreme.
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Fig. 2 oZ/c? for A € [0,1]. We assume ¢ = 1.1 and uncorrelated errors. See text for details.

_ 1-¢p
1+¢2—2¢p’
where o7 = cov(eg,er) and p = corr(eg,e;).

It is noteworthy that — in parallel to the uncorrelated-error case in which beliefs
about ¢ map one-for-one into beliefs about 6¢ and o7 — beliefs about ¢ and p now
similarly map one-for-one into beliefs about 6z and ;. Our definitions of 67 and
o7 imply that

ng = var|GDPj| — 2cov[GDP;,GDP| +var[GDP|, je€ {E,I}. Q)
Moreover, the covariance between the GDPr and GDPF; errors can be expressed as
og1 = cov[GDPg,GDPy| — cov|GDPg,GDP] — cov|GDP;, GDP] +var[GDP]. (6)
Solving (5) for cov[GDP;, GDP] and inserting the resulting expressions for j €
{E,I} into (6) yields
og; = cov|[GDP;,GDPg| — % (var[GDPI] +var[GDPg] — 67 — Gé) NG

Finally, let oz; = pogo; and 6 = ¢>67. Then we can solve (7) for 67:

ok = cov|GDP;,GDPg| — % (var[GDP;] +var[GDPg)) N ®
! po—L1(1+9¢?) D’
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Fig. 3 A* vs. ¢ for Various p Values. The horizontal line for visual reference is at A* = .5. See
text for details.

For given values of ¢ and p we can immediately evaluate the denominator D in (8),
and using data-based estimates of cov|GDP;, GDPg|, var|GDPF], and var|GDPg| we
can evaluate the numerator N.

Based on our judgment regarding U.S. GDPg and GDP; data (and again, we will
discuss that judgment in detail in section 2.2), we believe that a reasonable range for
p is p €[0.30,0.60], with midpoint 0.45. One could think of this as a quasi-Bayesian
statement that prior beliefs regarding p are centered at 0.45, with a 90 percent prior
credible interval of [0.30, 0.60].”

In Figure 3 we show A* as a function of ¢ for p =0,0.3,0.45 and 0.6; in Figure
4 we show A* as a function of p for ¢ = 0.95,1.05,1.15 and 1.25; and in Figure
5 we show A* as a bivariate function of ¢ and p. For ¢ = 1 the optimal weight is
0.5 for all p, but for ¢ # 1 the optimal weight differs from 0.5 and is more sensi-
tive to ¢ as p grows. The crucial observation remains, however, that under a wide
range of conditions it is optimal to put significant weight on both GDPg and GDPF;,
with the optimal weights not differing radically from equality. Moreover, for all

7 Again using GDPg and GDP; data 1947Q2-2009Q3, we obtain for the numerator N = —1.87
in equation (7) above. And using the benchmark values of ¢ = 1.1 and p = 0.45, we obtain for
the denominator D = —0.61. This implies 6; = 1.75 and 6 = 1.92. For comparison, the standard
deviation of GDPg and GDP; growth rates is about 4.2. Hence our benchmark calibration implies
that the error in measuring true GDP by the reported GDPg and GDP; growth rates is potentially
quite large.
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Fig. 4 A* vs. p for Various ¢ Values. The horizontal line for visual reference is at A* = .5. See
text for details.

¢ values greater than one, so that less weight is optimally placed on GDPg under
a zero-correlation assumption, allowance for positive correlation further decreases
the optimal weight placed on GDPg. For a benchmark calibration of ¢ = 1.1 and
p =045 1"~ 041.

Let us again compare 0 to 67 for a range of A values (including A = 1*, 1 =0,
and A = 1). From (4) we have:

ig — 12 + w
o} 0>
In Figure 6 we graph oZ/c2 for A € [0,1] with ¢ = 1.1 and p = 0.45. Obviously
the maximum variance reduction is obtained using 1* = 0.41, but even for nonopti-
mal A, such as simple equal-weight combination (1 = 0.5), we achieve substantial
variance reduction relative to using GDPg alone.

F2A(1—A)

A= e

2.2 On the Rationale for our Calibration

We have thus far implicitly asked the reader to defer to our judgment regarding cal-
ibration, focusing on ¢ € [.75,1.45] and p € [0.30,0.60] with benchmark midpoint
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Fig.5 A" vs. p and ¢. See text for details.

values of ¢ = 1.10 and p = 0.45. Here we explain the experience, reasoning, and
research that supports that judgment.

2.2.1 Calibrating ¢

The key prior view embedded in our choice of ¢ € [.75,1.45], with midpoint 1.10,
is that GDP; is likely a somewhat more accurate estimate than GDPg. This ac-
cords with the results of Nalewaik (2010), who examines the relative accuracy of
the GDPr and GDP; in several ways, with results favorable to GDP;, suggesting
o >1

Let us elaborate. The first source of information on likely values of ¢ is from de-
tailed examination of the source data underlying GDPr and GDP;. The largest com-
ponent of GDP;, wage and salary income, is computed using quarterly data from tax
records that are essentially universe counts, contaminated by neither sampling nor
nonsampling errors. Two other very important components of GDP;, corporate prof-
its and proprietors” income, are also computed using annual data from tax records.®

8 The tax authorities do not release the universe counts for corporate profits and proprietors’ in-
come; rather, they release results from a random sample of tax returns. But the sample they employ
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Fig. 6 02/c? for A € [0,1]. We assume ¢ = 1.1 and p = 0.45. See text for details.

Underreporting and nonreporting of income on tax forms (especially by proprietors)
is an issue with these data, but the statistical agencies make adjustments for misre-
porting, and in any event the same misreporting issues plague GDPg as well as
GDP;, as we discuss below.

In contrast to GDP,, very little of the quarterly or annual data used to compute
GDPg is based on universe counts.” Rather, most of the quarterly GDPg source data
are from business surveys where response is voluntary. Nonresponse rates can be
high, potentially introducing important sample-selection effects that may, moreover,
vary with the state of the business cycle. Many annual GDPg source data are from
business surveys with mandatory response, but some businesses still do not respond
to the surveys, and surely the auditing of these nonrespondents is less rigorous than
the auditing of tax nonfilers. In addition, even the annual surveys do not attempt to
collect data on some types of small businesses, particularly nonemployer businesses
(i.e., businesses with no employees). The statistical agencies attempt to correct some
of these omissions by incorporating data from tax records (making underreporting
and nonreporting of income on tax forms an issue for GDPg as well as GDPy), but
it is not entirely clear whether they adequately plug all the holes in the survey data.

Although these problems plague most categories of GDPg, some categories ap-
pear more-severely plagued. In particular, over most of history, government sta-

is enormous, so the variance of the sampling error is tiny for the top-line estimates. Moreover, the
tax authorities obviously know the universe count, so it seems unlikely that they would release
tabulations that are very different from the universe counts.

9 Motor vehicle sales are a notable exception.



Improving U.S. GDP Measurement: A Forecast Combination Perspective 11

tistical agencies have collected annual source data on less than half of personal
consumption expenditures (PCE) for services, a very large category comprising be-
tween a quarter and a half of the nominal value of GDPg over our sample. At the
quarterly frequency, statistical agencies have collected even less source data on ser-
vices PCE.!0 For this reason, statistical agencies have been forced to cobble to-
gether less-reliable data from numerous nongovernmental sources to estimate ser-
vices PCE.

A second source of information on the relative reliability of GDPg and GDP; is
the correlation of the two measures with other variables that should be correlated
with output growth, as examined in Nalewaik (2010). Nalewaik (2010) is careful to
pick variables that are not used in the construction of either GDPg or GDP,, to avoid
spurious correlation resulting from correlated measurement errors.!! The results are
uniformly favorable to GDP; and suggest that it is a more accurate measure of output
growth than GDPg. In particular, from the mid-1980s to the mid-2000s, the period of
maximum divergence between GDPr and GDP;, Nalewaik (2010) finds that GDP;
growth has higher correlation with lagged stock price changes, the lagged slope of
the yield curve, the lagged spread between high-yield corporate bonds and Treasury
bonds, short and long differences of the unemployment rate (both contemporane-
ously and at leads and lags), a measure of employment growth computed from the
same household survey, the manufacturing ISM PMI (Institute for Supply Manage-
ment, Purchasing Managers Index), the nonmanufacturing ISM PMI, and dummies
for NBER recessions. In addition, lags of GDP; growth also predict GDPg growth
(and GDP; growth) better than lags of GDPg growth itself.

It is worth noting that, as regards our benchmark midpoint calibration of ¢ =
1.10, we have deviated only slightly from an “ignorance prior” midpoint of 1.00.
Hence our choice of midpoint reflects a conservative interpretation of the evidence
discussed above. Similarly, regarding the width of the credible interval as opposed
to its midpoint, we considered employing intervals such as ¢ € [.95,1.25], for which
¢ > 1 over most of the mass of the interval. The evidence discussed above, if inter-
preted aggressively, might justify such a tight interval in favor of GDP;, but again
we opted for a more conservative approach with ¢ < 1 over more than a third of the
mass of the interval.

2.2.2 Calibrating p

The key prior view embedded in our choice of p € [0.30,0.60], with midpoint 0.45,
is that the errors in GDPr and GDP; are likely positively correlated, with a moder-
ately but not extremely large correlation value. This again accords with the results
in Nalewaik (2010), who shows that 26 percent of the nominal value of GDPg and

10 This has begun to change recently, as the Census Bureau has expanded its surveys, but ¢ is
meant to represent the average relative reliability over the sample we employ, so these facts are
highly relevant.

11 For example, the survey of households used to compute the unemployment rate is used in the
construction of neither GDPg nor GDPy, so use of variables from that survey is fine.
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GDP; is identical. Any measurement errors in that 26 percent will be perfectly cor-
related across the two estimates. Furthermore, GDPr and GDP; are both likely to
miss fluctuations in output occurring in the underground or “gray” economy, trans-
actions that do not appear on tax forms or government surveys. In addition, the same
price deflator is used to convert GDPr and GDP; from nominal to real values, so any
measurement errors in that price deflator will be perfectly correlated across the two
estimates.

These considerations suggest the lower bound for p should be well above zero,
as reflected in our chosen interval. However, the evidence favoring an upper bound
well below one is also quite strong, as also reflected in our chosen interval. First, and
most obviously, the standard deviation of the difference between GDPg and GDP;
is 1.9 percent, far from the 0.0 percent that would be the case if p = 1.0. Second, as
discussed in the previous subsection, the source data used to construct GDPFg is quite
different from the source data used to construct GDP;, implying the measurement
errors are likely to be far from perfectly correlated.

Of course, p could still be quite high if GDPg and GDP; were contaminated with
enormous common measurement errors, as well as smaller, uncorrelated measure-
ment errors. But if that were the case, GDPr and GDP; would fail to be correlated
with other cyclically-sensitive variables, such as the unemployment rate, as they
both are. The R? values from regressions of the output growth measures on the
change in the unemployment rate are each around 0.50 over our sample, suggest-
ing that at least half of the variance of GDPgr and GDPF, is true variation in output
growth, rather than measurement error. The standard deviation of the residual from
these regressions is 2.81 percent using GDP; and 2.95 percent using GDPg . For com-
parison, taking our benchmark value ¢ = 1.1 and our upper bound p = 0.6 produces
o7 = 2.05 and o = 2.25. Increasing p to 0.7 produces o; = 2.36 and o = 2.60,
approaching the residual standard error from our regression. This seems like an un-
reasonably high amount of measurement error, since the explained variation from
such a simple regression is probably not measurement error, and indeed some of the
unexplained variation from the regression is probably also not measurement error.
Hence the upper bound of 0.6 for p seems about right.

3 Combination Under Minimax Loss

Here we take a more conservative perspective on forecast combination, solving a
different but potentially important optimization problem. We utilize the minimax
framework of Wald (1950), which is the main decision-theoretic approach for im-
posing conservatism and therefore of intrinsic interest. We solve a game between
a benevolent scholar (the Econometrician) and a malevolent opponent (Nature). In
that game the Econometrician chooses the combining weights, and Nature selects
the stochastic properties of the forecast errors. The minimax solution yields the
combining weights that deliver the smallest chance of the worst outcome for the
Econometrician. Under the minimax approach knowledge or calibration of objects
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like ¢ and p is unnecessary, enabling us to dispense with judgment, for better or
worse.

We obtain the minimax weights by solving for the Nash equilibrium in a two-
player zero-sum game. Nature chooses the properties of the forecast errors and the
Econometrician chooses the combining weights A. For expositional purposes, we
begin with the case of uncorrelated errors, constraining Nature to choose p = 0. To
impose some constraints on the magnitude of forecast errors that Nature can choose,
it is useful to re-parameterize the vector (o7, 0g)’ in terms of polar coordinates; that
is, we let oy = ycos ¢ and o = ysin @. We restrict ¥ to the interval [0, ] and let
¢ € [0, w/2]. Because cos® ¢ +sin? @ = 1, the sum of the forecast error variances
associated with GDPr and GDPF, is constrained to be less than or equal to l/'/z. The
error associated with the combined forecast is given by

o (Y, 9, 2) = ¥ [A7sin” 9+ (1—4)*cos” ] . )

so that the minimax problem is

2
A). 10
we[o,tpr]r}aé[o’ﬂ/z] Arél[}){ll] oc(v,9,1) (10)

The best response of the Econometrician was derived in (2) and can be expressed
in terms of polar coordinates as A* = cos> @. In turn, Nature’s problem simplifies to

max 2(1 —sin® @) sin® ,
ye0,9], p<(0,7/2] v ?) 4

which leads to the solution

o* =arcsin\/1/2, y*=y, A*=1/2. an

Nature’s optimal choice implies a unit forecast error variance ratio, ¢ = og /oy =1,
and hence that the optimal combining weight is 1/2. If, instead, Nature set ¢ = 0
or @ = 7/2, thatis ¢ =0 or ¢ = oo, then either GDPg or GDP; is perfect and the
Econometrician could choose A =0 or A = 1 to achieve a perfect forecast leading
to a suboptimal outcome for Nature.

Now we consider the case in which Nature can choose a nonzero correlation
between the forecast errors of GDPr and GDP;. The loss of the combined forecast
can be expressed as

ot(w,p. 9, 1) = y? [A%sin? @+ (1 —A)*cos® 9 +2A(1 — A)psingcos @] . (12)

It is apparent from (12) that as long as A lies in the unit interval the most devious
choice of p is p* = 1. We will now verify that conditional on p* =1 the solution
in (11) remains a Nash Equilibrium. Suppose that the Econometrician chooses equal
weights, A* = 1/2. In this case

oe(y,p* 0, A% ) = y° [4+2smfpcos<p}
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We can deduce immediately that y* = . Moreover, first-order conditions for the
maximization with respect to ¢ imply that cos? ¢* = sin? * which in turn leads to
¢* = arc siny/1/2. Conditional on Nature choosing p*, y*, and ¢*, the Econome-
trician has no incentive to deviate from the equal-weights combination A* = 1/2,
because

RV P9 M) = LA+ (1= +22(1-2)| = ¥
In sum, the minimax analysis provides a rational for combining GDPr and GDP;
with equal weights of L = 1/2.

To the best of our knowledge, this section’s demonstration of the optimality of
equal forecast combination weights under minimax loss is original and novel. There
does of course exist some related literature, but ultimately our approach and results
are very different. For example, a branch of the machine-learning literature (e.g.,
Vovk (1998), Sancetta (2007)) considers games between a malevolent Nature and a
benevolent “Learner.” The learner sequentially chooses weights to combine expert
forecasts, and Nature chooses realized outcomes to maximize the Learner’s forecast
error relative to the best expert forecast. The Learner wins the game if his forecast
loss is only slightly worse than the loss attained by the best expert in the pool, even
under Nature’s least favorable choice of outcomes. This game is quite different and
much more complicated than ours, requiring different equilibrium concepts with
different resultant combining weights.

4 Empirics

We have shown that combining using a quasi-Bayesian calibration under quadratic
loss produces A close to but less than 0.5, given our prior means for ¢ and p. More-
over, we showed that combining with A near 0.5 is likely better — often much better
— than simply using GDPg or GDP; alone, for wide ranges of ¢ and p. We also
showed that combining under minimax loss always implies an optimal A of exactly
0.5.

Here we put the theory to work for the U.S., providing arguably-superior com-
bined estimates of GDP growth. We focus on quasi-Bayesian calibration under
quadratic loss. Because the resulting combining weights are near 0.50, however,
one could also view our combinations as approximately minimax. The point is that
a variety of perspectives lead to combinations with weights near 0.50, and they sug-
gest that such combinations are likely superior to using either of GDPg or GDF;
alone, so that empirical examination of GDP¢ is of maximal interest.
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Fig. 7 U.S. GDP¢ and GDPr Growth Rates. GDP¢ constructed assuming ¢ = 1.1 and p = 0.45.
GDFc is solid and GDP is dashed. In the top panel we show a long sample, 1947Q2-2009Q3. In
the bottom panel, we show a recent sample, 2006Q1-2009Q3. See text for details.

4.1 A Combined U.S. GDP Series

In the top panel of Figure 7 we plot GDF¢ constructed using A = 0.41, which is
optimal for our benchmark calibration of ¢ = 1.1 and p = 0.45, together with the
“conventional” GDPg. The two appear to move closely together, and indeed they
do, at least at the low frequencies emphasized by the long time-series plot. Hence
for low-frequency analyses, such as studies of long-term economic growth, use of
GDPg, GDP; or GDPF¢ is not likely to make a major difference.

At higher frequencies, however, important divergences can occur. In the bottom
panel of Figure 7, for example, we emphasize business cycle frequencies by fo-
cusing on a short sample 2006-2010, which contains the severe U.S. recession of
2007-2009. There are two important points to notice. First, the bottom panel of
Figure 7 makes clear that growth-rate assessments on particular dates can differ in
important ways depending on whether GDP¢ or GDPg is used. For example, GDPg
is strongly positive for 2007Q3, whereas GDF¢ for that quarter is close to zero, as
GDP; was strongly negative. Second, the bottom panel of Figure 7 also makes clear
that differing assessments can persist over several quarters, as for example during
the financial crisis episode of 2007Q1-2007Q3, when GDPr growth was consis-
tently larger than GDP¢ growth. One might naturally conjecture that such persistent
and cumulative data distortions might similarly distort inferences, based on those
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Fig. 8 Inferred U.S. Recession Regime Probabilities, Calculated Using GDPc vs. GDPg. Solid
lines are posterior median smoothed recession regime probabilities calculated using GDP¢, which
we show with 90 percent posterior intervals. Dashed lines are posterior median smoothed recession
regime probabilities calculated using GDPg. The sample period is 1947Q2-2009Q3. Dark shaded
bars denote NBER recessions. See text and appendix for details.

data, about whether and when the U.S. economy was in recession. We now consider
recession dating in some detail.

4.2 U.S. Recession and Volatility Regime Probabilities

Thus far we have assessed how combining produces changes in measured GDP.
Now we assess whether and how it changes a certain important transformation of
GDP, namely measured probabilities of recession regimes or high-volatility regimes
based on measured GDP. We proceed by fitting a regime-switching model in the
tradition of Hamilton (1989), generalized to allow for switching in both means and
variances, as in Kim and Nelson (1999a),

(GDPt - Iis#,) = ﬁ (GDPt—l - .uvsm,l) + OCs, & (13)
& ~ iidN(0,1)
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Fig. 9 Inferred U.S. High-Volatility Regime Probabilities, Calculated Using GDFc vs. GDPg.
Solid lines are posterior median smoothed high-volatility regime probabilities calculated us-
ing GDPc, which we show with 90 percent posterior intervals. Dashed lines are posterior me-
dian smoothed high-volatility regime probabilities calculated using GDPg. The sample period is
1947Q2-2009Q3. Dark shaded bars denote NBER recessions. See text and appendices for details.

Sur ~ Markov(Py), sor ~ Markov(Ps).

Then, conditional on observed data, we infer the sequences of recession probabili-
ties (P(su = L), where L (“low”) denotes the recession regime) and high-volatility
regime probabilities (P(sg, = H), where H (“high”) denotes the high-volatility
regime). We perform this exercise using both GDPr and GDF¢, and we compare
the results.

We implement Bayesian estimation and state extraction using data 1947Q2-
2009Q3.!% In Figure 8 we show posterior median smoothed recession probabilities.
We show those calculated using GDP¢ as solid lines with 90 percent posterior in-
tervals, we show those calculated using GDPg as dashed lines, and we also show
shaded NBER recession episodes to help provide context. Similarly, in Figure 9 we
show posterior median smoothed volatility regime probabilities.

Numerous interesting substantive results emerge. For example, posterior median
smoothed recession regime probabilities calculated using GDFc tend to be greater

12 We provide a detailed description in Appendix 7.
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than those calculated using GDPf, sometimes significantly so, as for example during
the financial crisis of 2007. Indeed, using GDFc one might date the start of the
recent recession significantly earlier than did the NBER. As regards volatilities,
posterior median smoothed high-volatility regime probabilities calculated by either
GDPg or GDP¢ tend to show the post-1984 “great moderation” effect asserted by
McConnell and Perez-Quiros (2000) and Stock and Watson (2002). Interestingly,
however, those calculated using GDPg also show the “higher recession volatility”
effect in recent decades documented by Bloom et al. (2009) (using GDPg data),
whereas those calculated using GDP¢ do not.

For our present purposes, however, none of those substantive results are of first-
order importance, as the present paper is not about business cycle dating, low-
frequency vs. high-frequency volatility regime dating, or revisionist history, per
se. Indeed, thorough explorations of each would require separate and lengthy pa-
pers. Rather, our point here is simply that one’s assessment and characterization
of macroeconomic behavior can, and often does, depend significantly on use of
GDP¢ vs. GDPg. That is, choice of GDP¢ vs. GDPg can matter for important tasks,
whether based on direct observation of measured GDP, or on transformations of
measured GDP such as extracted regime chronologies.

5 Extensions

Before concluding, we offer sketches of what we see as two important avenues for
future research. The first involves real-time analysis and nonconstant combining
weights, and the second involves combining from a measurement error as opposed
to efficient forecast error perspective.

5.1 Vintage Data, Time-Varying Combining Weights, and
Real-Time Analysis

It is important to note that everything that we have done in this paper has a retro-
spective, or “off-line,” character. We work with a single vintage of GDPr and GDF;
data and combine them, estimating objects of interest (combining weights, regime
probabilities, etc.) for any period ¢ using all datar = 1,...,T. In all of our analyses,
moreover, we have used time-invariant combining weights. Those two characteris-
tics of our work thus far are not unrelated, and one may want to relax them eventu-
ally, allowing for time-varying weights, and ultimately, a truly real-time-analysis.
One may want to consider time-varying combining weights for several reasons.
One reason is of near-universal and hence great interest, at least under quadratic
loss. For any given vintage of data, error variances and covariances may naturally
change, as we pass backward from preliminary data for the recent past, all the way
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through to “final revised” data for the more distant past.'> More precisely, let ¢ in-
dex time measured in quarters, and consider moving backward from “the present”
quarter t = T. At instant v € T (with apologies for the slightly abusive notation), we
have vintage-v data. Consider moving backward, constructing combined GDP esti-
mates GDF( ;. k=1,...co. For small , the optimal calibrations might be quite far
from benchmark values. As k grows, however, p and ¢ should approach benchmark
values as the final revision is approached. The obvious question is how quickly and
with what pattern should an optimal calibration move toward benchmark values as
k — oo. We can offer a few speculative observations.

First consider p. GDP; and GDPg share a considerable amount of source data
in their early releases, before common source data are swapped out of GDP; (e.g.,
when tax returns eventually become available and can be used). Indeed Fixler and
Nalewaik (2009) show that the correlation between the earlier estimates of GDF;
and GDPg growth is higher than the correlation between the later estimates. Hence
p is likely higher for dates near the present (small k). This suggests calibrations with
p dropping monotonically toward the benchmark value of 0.45 as k grows.

Now consider ¢. How ¢ should deviate from its benchmark calibration value of
1.1 is less clear. On the one hand, early releases of GDF; are missing some of their
most informative source data (tax returns), which suggests a lower-than-benchmark
¢ for small k. On the other hand, early releases of GDPg growth appear to be noisier
than the early releases of GDP; growth (see below), which suggests a higher-than-
benchmark ¢ for small k. All told, we feel that a reasonable small-k calibration of ¢
is less than 1.1 but still above 1.

Note that our conjectured small-k effects work in different directions. Other
things equal, bigger p pushes the optimal combining weight downward, away from
0.5, and smaller ¢ pushes the optimal combining weight upward, toward 0.5. In any
particular data set the effects could conceivably offset more-or-less exactly, so that
combination using constant weights for all dates would be fully optimal, but there
is of course no guarantee.

Several approaches are possible to implement the time-varying weights sketched
in the preceding paragraphs. One is a quasi-Bayesian calibration, elaborating on the
approach we have taken in this paper. However, such an approach would be more
difficult in the more challenging environment of time-varying parameters. Another
is to construct a real-time data set, one that records a snapshot of the data available
at each point in time, such as the one maintained by the Federal Reserve Bank of
Philadelphia. The key is to recognize that each quarter we get not simply one new
observation on GDPg and GDP;, but rather an entire new vintage of data, all the
elements of which could (in principle) change. One might be able to use the differ-
ent data vintages, and related objects like revision histories, to infer properties of
“forecast errors” of relevance for construction of optimal combining weights across
various k.

One could go even further in principle, progressing to a truly real-time analysis,
which is of intrinsic interest quite apart from addressing the issue of time-varying

13 This is the so-called “apples and oranges” problem. To the best of our knowledge, the usage in
our context traces to Kishor and Koenig (2011).
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combining weights in the above “apples and oranges” environments. Tracking vin-
tages, modeling the associated dynamics of revisions, and putting it all together to
produce superior combined forecasts remains an outstanding challenge.'* We look
forward to its solution in future work, potentially in the state-space framework that
we describe next.

5.2 A Model of Measurement Error

In parallel work in progress (Aruoba et al. (2011)), we pursue a complementary
approach based on a state-space model of measurement error. The basic model is

Gprs,] |1 €
(o] = [1oon 14

GDP, = By + B1GDP_ + 1, (14)

where & = (g, €)' ~WN(0,X¢), N, ~ WN(O, G%), and & and 7, are uncorrelated
at all leads and lags. In this model, both GDPr and GDP; are noisy measures of the
latent true GDP process, which evolves dynamically. The expectation of true GDP
conditional upon observed measurements may be extracted using optimal filtering
techniques such as the Kalman filter.

The basic state-space model can be extended in various directions, for example to
incorporate richer dynamics, and to account for data revisions and missing advance
and preliminary releases of GDP;."> Perhaps most important, the measurement er-
rors € may be allowed to be correlated with GDP, or more precisely, correlated with
GDP innovations, 1;. Fixler and Nalewaik (2009) and Nalewaik (2010) document
cyclicality in the “statistical discrepancy” (GDPg — GDP;), which implies failure of
the assumption that & and 1), are uncorrelated at all leads and lags. Of particular
concern is contemporaneous correlation between 1), and &. The standard Kalman
filter cannot handle this, but appropriate modifications are available.

14 Nalewaik (2011) makes some progress toward real-time analysis in a Markov-switching envi-
ronment.

15 The first official estimate of GDP; is released a month or two after the first official estimate
of GDPg, so for vintage v the available GDPy data might be {GDPEI tT:_ll , whereas the available
GDPy vintage might be {GDP} t},T;lz. Note that for any vintage v, the available GDP; data differ
by at most one quarter from the available GDPg data.
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6 Conclusions

GDP growth is a central concept in macroeconomics and business cycle monitoring,
so its accurate measurement is crucial. Unfortunately, however, the two available
expenditure-side and income-side U.S. GDP estimates often diverge. In this paper
we proposed a technology for optimally combining the competing GDP estimates,
we examined several variations on the basic theme, and we constructed and exam-
ined combined estimates for the U.S.

Our results strongly suggest the desirability of separate and careful calculation
of both GDPgr and GDP;, followed by combination, which may lead to different
and more accurate insights than those obtained by simply using expenditure-side or
estimates alone. This prescription differs fundamentally from U.S. practice, where
both are calculated but the income-side estimate is routinely ignored.

Our call for a combined U.S. GDP measure is hardly radical, particularly given
current best-practice “balancing” procedures used at various non-U.S. statistical
agencies to harmonize GDP estimates from different sources. We discussed U.K.
GDP balancing at some length in the introduction, and some other countries also use
various similar balancing procedures.'® All such procedures recognize the potential
inaccuracies of source data and have a similar effect to our forecast combination
approach: the final GDP number lies between the alternative estimates.

Other countries use other approaches to combination. Indeed Australia uses an
approach reminiscent of the one that we advocate in this paper, albeit not on the
grounds of our formal analysis.!” In addition to GDPg and GDP;, the Australian
Bureau of Statistics produces a production-side estimate, GDPp, defined as total
gross value added plus taxes and less subsidies, and its headline GDP number is
the simple average of the three GDP estimates. We look forward to the U.S. pro-
ducing a similarly-combined headline GDP estimate, potentially using the methods
introduced in this paper.
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Appendix
7 Estimation of U.S. Recession Probabilities

Here we provide details of Bayesian analysis of our regime-switching model.

7.1 Baseline Model

We work with a simple model with Markov regime-switching in mean and variance:
(GDPf_uS‘ut) :ﬁ(GDPt*l _.uswq)"'Gsmgt (15)

& ~1idN(0,1)
Sur ~ Markov(Py), soi ~ Markov(Ps), (16)

where P, and Ps denote transition matrices for high and low mean and variance
regimes,

P“_|: Puy 1_pﬂH:|
l=pu  Pu

l_pO'L pO'L

Overall, then, there are four regimes:

PO':|: pGH l_pGH:|’

Si=1if sy, =H, s =H 7
Sy =2if sy =H, sg: =L
Si=3if sy =L, ss:=H
Sy =4if sy =L, s¢; = L.

For t = 0 the hidden Markov states are governed by the ergodic distribution associ-
ated with P, and Py.

7.2 Bayesian Inference

Priors. Bayesian inference combines a prior distribution with a likelihood function
to obtain a posterior distribution of the model parameters and states. We summarize
our benchmark priors in Table 1. We employ a normal prior for yy, a gamma prior
for puy — yp, inverted gamma priors for oy and oy, beta priors for the transition
probabilities, and finally, a normal prior for 8. Our prior ensures that gy > yy and
thereby deals with the “label switching” identification problem.
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Table 1 Prior Choices and Posterior Distributions

Prior GDPg GDP¢

Choice Median 5% 95% Median 5% 95%
- Gamma) - - - - - -
Uy - 3,50 [3.03 4.12] 3.76 [2.97 4.28]
ur Normal(0,0.5) 1.25 [0.34 2.29] 0.82 [0.17 1.64]
oy InvGamma(2,2) 4.82 [4.35 543] 4.64 [4.2]1 5.13]
oy InvGamma(l,2) 1.92 [1.55 2.34] 1.71 [1.74 2.05]
B Normal(0,1)  0.31 [0.17 0.45] 0.37 [0.27 0.53]
Puy Beta(25,5) 091 [0.82 0.96] 0.92 [0.85 0.96]

[ [

[ [

[ [

P Beta(25,5) 0.79 [0.64 0.87] 0.80 [0.67 0.88]
Doy Beta(25,5) 0.91
Doy Beta(25,5) 0.89

0.83 0.96] 0.91
0.81 0.95] 091

0.83 0.96]
0.85 0.95]

For u;, the average growth rate in the low-growth state, we use a prior distribu-

tion that is centered at 0, with standard deviation 0.70 percent. Note that a priori
we do not restrict the average growth rate to be negative. We also allow for (mildly)
positive values. We choose the prior for py — ty, such that the mean difference be-
tween the average growth rates in the two regimes is 2.00 percent, with standard
deviation 1.00 percent. Our priors for the transition probabilities py, and ps are
symmetric and imply a mean regime duration between three and 14 quarters. Fi-
nally, our choice for the prior of the autoregressive parameter 3 is normal with zero
mean and unit variance, allowing a priori for both stable and unstable dynamics of
output growth rates.
Implementation of Posterior Inference. Posterior inference is implemented with
a Metropolis-within-Gibbs sampler, building on work by Carter and Kohn (1994)
and Kim and Nelson (1999b). We denote the sequence of observations by GDP;.r.
Moreover, let S;.7 be the sequence of hidden states, and let

GZ(IU,H,,U,L, GchLvﬁ)lv and ¢:(p#H3pMLap0L7pGH)/'

Our Metropolis-within-Gibbs algorithm involves sampling iteratively from three
conditional posterior distributions. To initialize the sampler we start from (8°, ¢°).
Algorithm: Metropolis-within-Gibbs Sampler

Fori=1,...,N:

1. Draw S’ﬁTl conditional on 6%, ¢!, GDP;.7. This step is implemented using the
multi-move simulation smoother described in Section 9.1.1 of Kim and Nelson
(1999D).

2. Draw ¢"*! conditional on ', S|}, GDP;.7. If the dependence of the distribution
of the initial state S| on ¢ is ignored, then it can be shown that the conditional
posterior of ¢ is of the Beta form (see Section 9.1.2 of Kim and Nelson (1999b)).
We use the resulting Beta distribution as a proposal distribution in a Metropolis-
Hastings step.
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3. Draw 6"*!, conditional on ¢'*!, S't!, GDP;.7. Since our prior distribution is
nonconjugate, we are using a random-walk Metropolis step to generate a draw
from the conditional posterior of 6. The proposal distribution is N(6',cQ).

We obtain the covariance matrix 2 of the proposal distribution in Step 3 as fol-
lows. Following Schorfheide (2005) we maximize the posterior density,

p(6,0|GDPy.7) < p(GDPy.7|6,0)p(6,9),

to obtain the posterior mode (6,¢). We then construct the negative inverse of the
Hessian at the mode and let €2 be the submatrix that corresponds to the parameter
subvector 6. We choose the scaling factor ¢ to obtain an acceptance rate of ap-
proximately 40 percent. We initialize our algorithm choosing (6°, ¢°) in the neigh-
borhood of (6,¢) and use it to generate N = 100,000 draws from the posterior
distribution. '

Posterior Estimates. Table 1 also contains percentiles of posterior parameter dis-
tributions. The posterior estimates for the volatility parameters and the transition
probabilities are similar across GDPg; and GDPc. However, the posterior estimate
for yy is higher using GDPg than using GDP¢, while the opposite is true for .
Moreover, the differential between high and low mean regimes is bigger in the case
of GDF¢, all of which can influence the time-series plot of the recession probabili-
ties.

The Markov-switching means capture low-frequency shifts while the autoregres-
sive coefficient captures high-frequency dynamics. Thus, the presence of the autore-
gressive term may complicate our analysis, because we are trying to decompose the
GDP measurement discrepancy into both low- and high-frequency components. As
a robustness check, we remove the autoregressive term in (15) and estimate an iid
model specification. Although the posterior estimates for p; change, the remaining
parameters are essentially identical to Table 1. The smoothed recession probabilities
remain nearly identical to Figure 8.

References

Aruoba, B. (2008), “Data Revisions are not Well-Behaved,” Journal of Money,
Credit and Banking, 40, 319-340.

Aruoba, S.B. and F.X. Diebold (2010), “Real-Time Macroeconomic Monitoring:
Real Activity, Inflation, and Interactions,” American Economic Review, 100, 20—
24,

Aruoba, S.B., EX. Diebold, J. Nalewaik, F. Schorfheide, and D. Song (2011), “Im-
proving GDP Measurement: A Measurement Error Perspective,” Manuscript in

18 We performed several tests confirming that our choice of N yields an accurate posterior approx-
imation.



Improving U.S. GDP Measurement: A Forecast Combination Perspective 25

progress, University of Maryland, University of Pennsylvania and Federal Re-
serve Board.

Barker, T., F. van der Ploeg, and M. Weale (1984), “A Balanced System of National
Accounts for the United Kingdom,” Review of Income and Wealth, 461-485.

Bates, J.M. and C.W.J. Granger (1969), “The Combination of Forecasts,” Opera-
tions Research Quarterly, 20, 451-468.

Beaulieu, J. and E.J. Bartelsman (2004), “Integrating Expenditure and Income Data:
What To Do With the Statistical Discrepancy?” FEDS Working Paper 2004-39.
Bloom, N., M. Floetotto, and N. Jaimovich (2009), “Really Uncertain Business Cy-

cles,” Manuscript, Stanford University.

Byron, R. (1978), “The Estimation of Large Social Accounts Matrices,” Journal of
the Royal Statistical Society Series A, 141, Part 3, 359-367.

Carter, C.K. and R. Kohn (1994), “On Gibbs Sampling for State Space Models,”
Biometrika, 81, 541-553.

Diebold, F.X. and J.A. Lopez (1996), “Forecast Evaluation and Combination,” In
G.S. Maddala and C.R. Rao (eds.) Handbook of Statistics (Statistical Methods in
Finance), North- Holland, 241-268.

Faust, J., J.H. Rogers, and J.H. Wright (2005), “News and Noise in G-7 GDP An-
nouncements,” Journal of Money, Credit and Banking, 37, 403—417.

Fixler, D.J. and J.J. Nalewaik (2009), “News, Noise, and Estimates of the “True”
Unobserved State of the Economy,” Manuscript, Bureau of Labor Statistics and
Federal Reserve Board.

Hamilton, J.D. (1989), “A New Approach to the Economic Analysis of Nonstation-
ary Time Series and the Business Cycle,” Econometrica, 57, 357-384.

Kim, C.-J. and C.R. Nelson (1999a), “Has the U.S. Economy Become More Sta-
ble? A Bayesian Approach Based on a Markov-Switching Model of the Business
Cycle,” Review of Economics and Statistics, 81, 608-616.

Kim, C.-J. and C.R. Nelson (1999b), State Space Models with Regime Switching,
MIT Press.

Kishor, N.K. and E.F. Koenig (2011), “VAR Estimation and Forecasting When Data
Are Subject to Revision,” Journal of Business and Economic Statistics, in press.

Mankiw, N.G., D.E. Runkle, and M.D. Shapiro (1984), “Are Preliminary Announce-
ments of the Money Stock Rational Forecasts?” Journal of Monetary Economics,
14, 15-27.

Mankiw, N.G. and M.D. Shapiro (1986), “News or Noise: An Analysis of GNP
Revisions,” Survey of Current Business, May, 20-25.

McConnell, M. and G. Perez-Quiros (2000), “Output Fluctuations in the United
States: What Has Changed Since the Early 1980s?” American Economic Review,
90, 1464-1476.

Nalewaik, J.J. (2010), “The Income- and Expenditure-Side Estimates of U.S. Output
Growth,” Brookings Papers on Economic Activity, 1, 71-127 (with discussion).

Nalewaik, J.J. (2011), “Estimating Probabilities of Recession in Real Time Using
GDP and GDI,” Journal of Money, Credit and Banking, in press.

Sancetta, A. (2007), “Online Forecast Combinations of Distributions: Worst Case
Bounds,” Journal of Econometrics, 141, 621-651.



26 S. Boragan Aruoba et al.

Schorfheide, F. (2005), “Learning and Monetary Policy Shifts,” Review of Economic
Dynamics, 8,392-419.

Solomou, S. and M. Weale (1991), “Balanced Estimates of U.K. GDP 1870-1913,”
Explorations in Economic History, 28, 54—63.

Solomou, S. and M. Weale (1993), “Balanced Estimates of National Accounts When
Measurement Errors Are Autocorrelated: The U.K., 1920-1938,” Journal of the
Royal Statistical Society Series A, 156 Part 1, 89-105.

Statistisches Bundesamt, Wiesbaden (2009), “National Accounts: Gross Domestic
Product in Germany in Accordance with ESA 1995 - Methods and Sources,” Sub-
Jject Matter Series, 18.

Stock, J.H. and M.W. Watson (2002), “Has the Business Cycle Changed and Why?”
In M. Gertler and K. Rogoff (eds.), NBER Macroeconomics Annual, Cambridge,
Mass.: MIT Press, 159-218.

Stone, R., D.G. Champernowne, and J.E. Meade (1942), “The Precision of National
Income Estimates,” Review of Economic Studies, 9, 111-125.

Timmermann, A. (2006), “Forecast Combinations,” In G. Elliot, C.W.J. Granger
and A. Timmermann (eds.), Handbook of Economic Forecasting, North-Holland,
136-196.

Vovk, V. (1998), “A Game of Prediction with Expert Advice,” Journal of Computer
and System Sciences, 56, 153—173.

Wald, A. (1950), Statistical Decision Functions, John Wiley, New York.

Weale, M. (1985), “Testing Linear Hypotheses on National Accounts Data,” Review
of Economics and Statistics, 90, 685-689.

Weale, M. (1988), “The Reconciliation of Values, Volumes, and Prices in the Na-
tional Accounts,” Journal of the Royal Statistical Society Series A, 151 Part 1,
211-221.



