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Abstract

We develop a tractable dynamic general equilibrium model with a continuum of
heterogeneous industries, each comprising a finite number of strategic price-setting
firms. Firms in each industry collude on profit-maximizing markups, taking as
given the behavior of all other industries. The strategic behavior of firms jointly
determines the resource misallocation in each state, which in turn determines ag-
gregate consumption in each state and the representative agent’s marginal utility.
Markups in any one particular industry can either be procyclical or countercyclical
depending on the risk aversion of the representative agent and the correlation of
sector-specific productivity with aggregate consumption. General equilibrium in
the model is shown to exist under general conditions. Oligopolistic competition
endogenously generates misallocation dynamics and may amplify aggregate tech-
nological shocks. This amplification channel is strongest when the dispersion of
markups is countercyclical. Initial empirical tests support the importance of this
novel channel for understanding aggregate fluctuations.
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1 Introduction

How does industry-level market power influence aggregate fluctuations? Neo-Keynesian

models in the spirit of Rotemberg and Woodford (1992) show how markups, if they are

on average countercyclical, transmit aggregate demand shocks over time. In a static set-

ting, more recent papers illustrate how the cross-sectional dispersion of markups across

industries can generate a misallocation of resources and thereby welfare losses (see e.g.,

Bilbiie et al. (2008)).1 An intriguing possibility is that if resource misallocation, in turn,

affects industry markups, there could be a dynamic feedback between these two effects

and aggregate fluctuations may be amplified or dampened by inter-industry differences

in market power. To explore this possibility, we develop a general equilibrium model in

which oligopolistic intra-industry competition generates markup dispersion across indus-

tries, misallocation, and time varying aggregate fluctuations in the economy.

Of course, for this dispersion channel to be relevant in practice, markups need to

vary both over time and across industries. We provide first pass evidence that they do.

We estimate a panel of price-cost margins (PCM) for 451 industries between 1959 and

2009 using the NBER manufacturing productivity database of Bartelsman and Gray.2

Figure 1 plots the first and second moment of the cross-sectional PCM distribution

from 1959 to 2009 corresponding to the relevant summary statistics in Neo-Keynesian

models and the misallocation literature, respectively. Both first and second moments

exhibit significant time series variation and, moreover, average market power and its

dispersion have increased over time. This suggests that the importance of this channel

may have increased. There is also considerable variation of markups across industries and,

more interestingly, differences in how industry markups covary with the business cycle.

Figure 2 plots the histogram of time-series correlation coefficients of industry markups

with aggregate economic activity (GDP). Some industries exhibit strong countercyclical

markup while others exhibit strong procyclical markups.3

Our paper is built on the seminal framework of Rotemberg and Woodford (1992).

For our purposes, a limitation of their model – which assumes symmetric industries –

1Although this misallocation strand of literature is quickly expanding, the point that dispersion of
markups may be more important than their actual levels from a welfare perspective dates back to Lerner
(1934).

2While (average) price cost margins only correspond to precise markup estimates under special as-
sumptions, e.g, if labor is the only factor input and production is constant returns to scale, they should be
interpreted as a reasonable first pass proxy (see Nekarda and Ramey (2012) for more advanced methods).
We discuss limitations of our approach and suggestions for future work in our empirical section.

3See also Bils et al. (2012), who provide evidence on variation of relative markups of durables and
non-durables over the business cycle.
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Figure 1. This graph plots the first two moments, i.e., mean and volatility, of the empirical price cost
margin distribution from 1958 to 2009 based on 459 industries included in the NBER manufacturing
productivity database of Bartelsmann and Gray. For the purpose of this graph, both moments are
calculated assuming equal weights for each industry. See Section 6.2 for data description and precise
definitions.
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Figure 2. This graph plots a histogram of the distribution of markup cyclicality across industries.
Specifically, the term ρ∆y∆m(z) refers to the time-series correlation coefficient of yearly log markup
changes of a particular industry z with yearly log GDP changes. Since the average industry features
ρ∆y∆m(z) > 0, the evidence suggests slightly procyclical markups.

is that there is never any markup dispersion across industries. We therefore extend

their framework to allow for cross sectional variation of industry concentration, and

variations in productivity across industries and over time. This extension allows us to
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generate dynamic variation of markups levels and markup dispersion, microfounded by

strategic behavior at the industry level. These dynamics translate into time-varying

misallocations and represent an endogenous source of aggregate fluctuations which feed

back into the firms’ intra-industry optimization problems. A key effect is that, in general,

misallocation amplifies technological shocks. The amplification channel is strongest if

markup dispersion is countercyclical, i.e., if there is high dispersion in states of poor

technological conditions (recessions).

To be more specific, we study a discrete time, infinite horizon general equilibrium

economy with a continuum of industries (sectors), each of which is defined by a produc-

tion technology. Within each industry, a finite number of identical strategic firms hire

labor to produce a homogeneous good. The price of the good in each industry is de-

termined by the outcome of an infinitely repeated pricing game. A representative agent

consumes all goods, supplies all labor, and owns all the firms; thus all profits are valued

by her preferences over consumption. We allow industries to differ cross-sectionally, both

in their number of firms and their exposure to productivity shocks. These sources of

heterogeneity, which are not present in Rotemberg and Woodford (1992), allow us to

capture sector-specific strategic behavior, generate heterogenous markups, and analyze

how idiosyncratic productivity shocks are transmitted to the aggregate economy. Firms

in each industry maximize profits subject to intertemporal incentive compatibility con-

straints: In each period, each firm weighs the value of high short-term profits that can be

obtained by aggressive pricing against the long-term profits that are obtained when all

firms cooperate. In general equilibrium, the representative agent’s consumption bundle

depends on the output produced in each industry. This consumption affects the repre-

sentative agent’s valuation of each industry’s profits and therefore feeds back into firms’

ability to sustain collusion. Thus, while each industry takes the macro dynamics as given,

industries jointly affect these macro dynamics. Our paper therefore provides a tight link

between strategic industry behavior and aggregate outcomes.

Our theoretical contribution is three-fold. First, focusing on one industry, we char-

acterize markups and derive conditions under which they are procyclical versus coun-

tercyclical. Countercyclical markups are often associated with oligopolistic competition,

based on the risk-neutral setting of Rotemberg and Saloner (1986). In their framework,

high product demand in good times increases firms’ incentives to undercut competitors

to reap immediate rewards; therefore equilibrium markups narrow in good times. Our

paper shows that this intuition can be overturned if the representative agent’s valuation

of future profits are countercyclical. Indeed, in our framework these valuations can be
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endogenously countercyclical as determined by the preferences of a risk averse represen-

tative consumer. If valuations are sufficiently low in good times, then the present value of

future cooperation is higher in booms, making procyclical markups possible. Within our

model the intertemporal valuation effect can overturn the paradigm of countercyclical

markups if the representative agent’s intertemporal elasticity of substitution is low.4 In

general, the cyclicality of markups is therefore ambiguous.

While the cyclicality of the “average industry” is ambiguous, following the previous

logic, we also show that one can decompose an industry’s profit variations into a system-

atic (i.e., correlated with aggregates) and an idiosyncratic component and that the source

of ambiguity lies in the systematic component. Markups are always countercyclical with

respect to the idiosyncratic component i.e., controlling for the aggregate shock. This is

natural, since there is no valuation or discount effect present for idiosyncratic shocks. A

general implication of our analysis, consistent with the data, is that we should expect

considerable variations in how industries markups vary with the business cycle.

Our second, and main, theoretical contribution is to analyze how the heterogeneous

oligopolistic industry-level firm behavior may amplify technological shocks or even be

the main source of aggregate volatility in the economy. These effects arise because of

the feedback between industries in general equilibrium. Small changes in a few indus-

tries may become amplified if they affect other industries’ ability to sustain collusive

outcomes through the effects they have on the representative agents future valuation

of consumption. In several examples we show that the amplification effects can indeed

be drastic. We also highlight that shock amplification occurs whenever the endogenous

cross-sectional dispersion of markups is higher in recessions than in good times, and that

dampening of shocks is also theoretically possible in equilibrium, if markup dispersion is

sufficiently procyclical.

Our third contribution is technical: We characterize the existence and qualitative

behavior of equilibrium in our model. Given the complete generality of our set-up,

allowing for full heterogeneity across industries and states, existence of equilibrium is by

no means clear, a priori. Our main result in this part of the paper is Proposition 4, which

shows the existence of equilibrium under minimal assumptions.

While the industry outcome given the behavior of all other industries is uniquely

determined; multiple, qualitatively very different equilibria are consistent with industry-

4With constant relative risk aversion, this is isomorphic to requiring the coefficient of relative risk
aversion to be high.
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optimizing behavior. These arise because of the cross–sectional heterogeneity in our

economy. If all industries were identical, equilibrium would be unique and efficient (see

Proposition 5). The possibility of multiple equilibria in our model are reminiscent of the

sunspot literature. However, multiple equilibria in our model are not due to self-fulfilling

beliefs about demand; instead they arise as subgame perfect equilibrium outcomes from

the strategic, rational, behavior of firms taking as given the (endogenous) valuation

of future cash flows. This source of multiplicity driven by the representative agent’s

endogenous valuation is thus novel.

Although the main objective of our study is theoretical, we also provide a short

discussion about the empirical implications of our model. We focus on the cyclicality

of industry markups across the business cycle, and on aggregate shocks in the economy,

and show some initial results for the latter. Especially, using the NBER manufacturing

productivity database, we show that markup variations—defined in an appropriate way—

is significantly (statistically and economically) positively related to aggregate shocks to

consumption and GDP, with an R2 of 17% and 11%, respectively. We believe that this

discussion may serve as a basis for future empirical work.

1.1 Literature

We are certainly not the first researchers to address these issues and to explore micro

foundations of macro shocks. Further, as our approach straddles multiple fields, it draws

on various literatures including the industrial organization literature, the literature on

misallocations and the literature on the propagation of macro shocks.

Our partial equilibrium results are most closely is related to the Industrial Organiza-

tion literature on strategic competition over the business cycle (see, e.g., Chevalier and

Scharfstein, 1995, Chevalier and Scharfstein, 1996, and Bagwell and Staiger, 1997). In

particular, the partial equilibrium setup of Bagwell and Staiger (1997) highlights that

procyclicality of markups may arise in a risk-neutral setting if expected future demand

growth-rates are higher in boom times. In contrast to our paper, procyclicality is not

driven via lower discount rates (as in our setup), but through even higher future (cash

flow) growth rates in expansions. Further, dal Bo (2007) introduces i.i.d. interest rate

fluctuations into the risk-neutral model of Rotemberg and Saloner (1986). Since the de-

mand function is assumed to be constant and the interest rate process is exogenous, the

paper cannot address pro- or countercyclicality of markups. Overall, our model takes this

literature as a starting point, but extends the approach to allow for multiple industries
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and endogenous pricing of risk in an economy with risk averse agents.5

Since misallocations are the source of inefficiencies in our general equilibrium frame-

work, our paper connects to a growing recent literature highlighting the welfare cost of

variable markups. The formal expression for the welfare cost in our model is similar

to the distortions that arise in sticky-price models in the spirit of Calvo (1983).6 As

Bilbiie et al. (2008) point out, the fundamental economics behind this can be traced

back to early essays of Lerner (1934) and Samuelson (1949). Misallocations via variable

markups have become particularly relevant for the literature on international trade since

competition from abroad naturally affects industries in a heterogeneous way (see Epifani

and Gancia (2011), Holmes et al. (2004), Edmond et al. (2012), and Dhingra and Mor-

row (2012)). From a modeling point, the literature on misallocations also highlights the

special role of CES preferences under monopolistic condition in that market outcomes

are efficient due to markups synchronization (see in particular Bilbiie et al. (2008) and

Dhingra and Morrow (2012)). Instead, our paper shows that inefficiencies can arise even

in settings with CES preferences (and inelastic labor supply) by allowing for oligopolistic

competition with heterogeneous industries. This allows us to keep the tractability and

standard aggregation results of CES, while being able to match relevant heterogeneity

across industries.

Empirical studies suggest that losses from misallocation can be quantitatively large;

at least in emerging market countries. Hsieh and Klenow (2009) estimate static losses

ranging from 30%− 50% in China and 40%− 60% in India. In a dynamic setting, Peters

(2012) considers the joint effect of misallocation, endogenous entry (see also Bilbiie et al.

(2012)) and incentives to innovate (see also Kung and Schmid (2012)). Using a sample

of manufacturing firms in Indonesia, he finds that a large proportion of the welfare gains

from reducing barriers to entry results from the effect on the equilibrium growth rate

rather than the reduction in (static) misallocation.

Since our paper combines real technology shocks with the just described endogenous

misallocations, our paper also relates to an extensive literature on business cycles (e.g.,

Kydland and Prescott, 1982; Long and Plosser, 1983; Gabaix, 2011; Acemoglu et al.,

2011). In contrast to the real business cycle literature, however, significant aggregate

fluctuations may arise even when aggregate “technological” shocks are small. A recent

5The asset pricing implications of our framework are analyzed in a companion paper. Opp et al.
(2012) show that industry characteristics (product demand, industry concentration and markups) should
be informative about a firm’s expected returns and volatility in the stock market.

6In contrast to sticky-price models, however, prices in our model are fully flexible and are determined
endogenously as the outcome of a strategic game in each sector.
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strand of literature has aimed at explaining how technological shocks at the individual

firm or industry level do not diversify out, but may affect aggregate productivity. Gabaix

(2011) notes that if the distribution of firm size is heavy-tailed, firm-specific shocks may

indeed affect aggregate productivity. Acemoglu et al. (2011), suggest that inter-sectoral

input-output linkages between industries may lead to “cascades effects” where a shock in

one industry spreads through the economy and thereby becomes an aggregate shock. In

our setup, such “cascade effects” may arise through the channel of the pricing kernel even

if there is no direct input-output linkage between sectors. The mechanism in our model

is also quite different, more along the lines suggested in Jovanovic (1987), who shows

that idiosyncratic shocks may not cancel out in strategic games with a large number of

players. We develop examples, in which aggregate productivity is close to constant across

states, but because it varies at the sectoral level, the strategic behavior of firms leads to

aggregate shocks in equilibrium. We believe that this provides an important mechanism

for understanding the sources of aggregate fluctuations in the economy.

Our results highlight how strategic interaction between firms can generate endogenous

fluctuations. These results are related to Gali (1994) and Schmitt-Grohe (1997) who,

building on Woodford (1986) and Woodford (1991), study stationary sunspot equilibria

in models with markups and investments. Both papers focus on the symmetric case with

monopolistic competition, in which case the multiplicity of equilibria arises because of

self-fulfilling expectations about future growth rates.7 In contrast, our model features

a unique equilibrium under symmetric behavior, i.e., homogeneous industries. Our key

contribution is to allow for multiple, heterogeneous sectors in which multiple equilibria

and welfare distortions arise from dispersion of markups in the cross-section.

The rest of the paper is organized as follows. In Section 2 we present the economic

framework of the model. The equilibrium analysis of each industry and their joint effect

on aggregate outcomes is presented in Section 3. Section 4 shows the existence of general

equilibrium under general conditions, and Section 5 analyzes how oligopolistic competi-

tion can amplify, and even cause aggregate fluctuations. All proofs are delegated to the

Appendix.

7In Jaimovich (2007), sunspot equilibria and countercyclical markups arise via entry and exit decisions
(also see Jaimovich and Floetotto (2008)).

7



2 Model Framework

2.1 Physical Environment

Consider an infinite horizon, discrete time, discrete state economy in which time is in-

dexed by t ∈ Z+ and the time t state of the world is denoted by st ∈ {1, 2, . . . S}.8 Each

period there is a transition between states which is governed by a Markov process with

time invariant transition probabilities:

P(st+1 = j|st = i) = Φi,j. (1)

Here, Φi,j refers to the element on the ith row and jth column of the matrix Φ ∈ RS×S
+ .

We assume that Φ is irreducible and aperiodic, so that the process has a unique long-term

stationary distribution.

2.1.1 Production

There is a continuum of industries, indexed by z ∈ [0, 1], each consists of N(z) ≥ 1

identical strategic firms that produce and sell a unique non-storable consumption good.

The nature of the strategic environment is discussed in Section 2.2. The production

technology for each good z at time t is linear in labor with stochastic productivity

A (z, t) = Ast (z) (1 + g)t. Here, with some abuse of notation, Ast (z) represents a state-

dependent and sector-specific productivity component whereas g ≥ 0 represents a com-

mon long-term productivity growth rate across all sectors. For ease of exposition, we

set g = 0 in the main text and refer the reader to Appendix B, which shows the minor

modifications necessary for the general case g > 0. Also, for tractability we assume that

A : S × [0, 1]→ R++ is a function that satisfies standard integrability conditions so that

aggregation across industries is possible. Labor is supplied inelastically by a representa-

tive agent, who in each period allocates her one unit of human capital across industries,

earning a competitive wage, w (t), in return.9

8Here, Z+ = {0} ∪ N = {0, 1, . . .} is the set of non-negative integers. Also, we follow the standard
convention that R+ is the set of nonnegative real numbers, whereas R++ is the set of strictly positive
real numbers.

9We deliberately shut off the channel of endogenous labor supply to sharpen our findings of factor
misallocation across heterogeneous sectors. Thus, our production factor in fixed supply could also be
interpreted as “land” that has to be allocated to different sorts of crops (industries). We deliberately
excluded physical capital accumulation from our model, to avoid the issue of disentangling effects of
dynamic investment decisions from the effects of markups.
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2.1.2 Preferences / Demand

The representative agent possesses iso-elastic preferences over aggregate consumption

with risk aversion parameter γ, i.e., EIS is 1
γ
, and subjective discount factor δ, i.e.,

U = E

[
∞∑
t=0

δt
C(t)1−γ

1− γ

]
, (2)

where C(t) represents the Dixit-Stiglitz CES consumption aggregator of goods (see Dixit

and Stiglitz, 1977).10 Thus,

C(t) =

(∫ 1

0

c(z, t)
θ−1
θ dz

) θ
θ−1

. (3)

The parameter θ > 1 is the (constant) elasticity of substitution across goods. We note in

passing that preferences with a more general state dependent utility specification are also

covered by our specification.11 The CES specification leads to standard period-by-period

demand functions as a function of prices p(z, t) and total income y (t):12

c(z, t) =
y (t)

p(z, t)θP (t)1−θ , (4)

where P (t) ≡
(∫ 1

0
p(z, t)1−θdz

) 1
1−θ

can be interpreted as the ideal price index. Total

income, y (t) , is derived from wages, and distribution of firm profits, π(z, t), across all

sectors z:

y (t) = w (t) +

∫ 1

0

π(z, t)dz, (5)

π(z, t) =

[
p(z, t)− w (t)

A (z, t)

]
c(z, t). (6)

10See van Binsbergen (2007) or Ravn et al. (2006) for using CES preferences in a dynamic context.

11Consider the more general C̃(t) =
(∫ 1

0
vst(z)c(z, t)

θ−1
θ dz

) θ
θ−1

as in Opp (2010). The state dependent

“taste” function vs(z) can then easily be reduced to the case where vs(z) ≡ 1, by transforming the
productivity, As(z) 7→ vs(z)

(θ−1)/θAs(z). Such a transformation can be interpreted as a numeraire
change, where the amount of a unit of goods is redefined in each state. A state dependent taste function
could, for example, represent an agent’s higher utility of an umbrella in a rainy state than in a sunny
state of the world.

12The demand functions c (z, t) yield maximal C (t) given an arbitrary price vector p (z, t) and income
y (t). They are obtained via simple first-order conditions.
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Going forward, we will normalize the nominal price index P (t) to 1. (This is without

loss of generality, since the wage rate w (t) is a free variable.) Hence, income, wages, and

profits are measured in units of aggregate consumption; in particular y (t) = C (t).

2.2 Strategic Environment

Within each industry z, N (z) identical firms play a dynamic Bertrand pricing game with

perfect public information as in Rotemberg and Saloner (1986) taking as given the be-

havior of all other industries. The timing of the stage game in each period, t, is as follows.

First, the state, st is revealed. Then all firms i ∈ {1, 2, . . . N (z)} in industry z simulta-

neously announce their gross markup, M (i)(z, t). For tractability, we express each firm’s

strategy in terms of gross markups instead of prices, satisfying p(i)(z, t) = M (i)(z, t) w(t)
A(z,t)

.

Consumers demand the product from the producer with the lowest markup. If all firms

announce the same M , total demand in sector z is evenly shared between all N (z) firms.

The firms then go out and hire workers to meet demand.

Each industry z coordinates on the symmetric, subgame perfect equilibrium outcome

that maximizes the present value of industry profits. Due to symmetry, the equilibrium

gross markup function of each firm i satisfies: M (i)(z, t) = M(z, t), with the associated

industry price

p(z, t) = M(z, t)
w (t)

A (z, t)
. (7)

While the equilibrium outcome of this game is in general non-trivial (see Section 3.3),

the two polar cases of a monopoly, i.e., N (z) = 1, and perfect competition provide useful

bounds.

If the industry is served by a monopolist, he maximizes industry profits (equation 6)

subject to consumer demand (equation 4) which leads to an optimal markup of:

Mm(z, t) = Mm =
θ

θ − 1
. (8)

If, on the other hand, N(z) is infinite, then we expect prices to be set competitively. In

this case, the markup is 1. If the number of firms is finite but greater than one, we ex-

pect equilibrium markups to be somewhere in between the competitive and monopolistic

prices, i.e., M ∈
[
1, θ

θ−1

]
.
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3 Partial Equilibrium Analysis

Before proceeding with our formal equilibrium analysis, it is convenient to transform our

growing economy into a time-invariant economy in which outcomes only depend on time

t through the state at time st. The resulting implications and other normalizations are

presented in Section 3.1.

Our partial equilibrium analysis consists of two parts. First, for an arbitrary exoge-

nous distribution of markups across industries, we characterize aggregate consumption,

and show that it together with a measure of aggregate markups determines the efficiency

losses in the economy (Section 3.2). Second, given the aggregate consumption and ag-

gregate markup dynamics, we solve for the partial equilibrium outcome of one sector z

in the economy, i.e., the optimal state-contingent markups (Section 3.3).

3.1 Preliminaries

We focus on equilibria which are time invariant in that equilibrium outcomes are the

same at t1 and t2 if the states are the same, i.e., if st1 = st2 . Hence, we introduce the

following notation for equilibrium markups (and similarly for other variables):

M(z, t) = Mst(z). (9)

The focus on time invariant equilibria is natural in the stationary environment, since

we prove that optimizing firm behavior in one particular industry is endogenously time

invariant provided that all other industries exhibit time-invariant behavior. Moreover, it

is ensured that (at least) one time-invariant equilibrium exists (see Proposition 4). We

want to emphasize that this formulation does not impose any restriction on off-equilibrium

path behavior.

For ease of exposition, we decompose productivity shocks As (z) into the functions

αs(z) and Ās where α : S × [0, 1] and the vector Ā ∈ RS
+. Specifically,

αs(z) ≡ As (z)θ−1∫ 1

0
As(z)θ−1dz

=

(
As (z)

Ās

)θ−1

, where (10)

Ās ≡
[∫ 1

0

As(z)θ−1dz

] 1
θ−1

. (11)
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Here, Ā represents the average productivity shock to the economy and αs(z) captures

the industry productivity shock relative to the economy. In other words, changes in α(z)

across states are idiosyncratic shocks to individual industries, whereas changes in Ā are

systematic shocks. We can also view α(z) as an S-vector, α(z) ∈ RS.

As a result of the normalization, the average relative industry state is equal to one, i.e.,∫ 1

0
αs(z)dz = 1. Now instead of specifying A, we can equivalently specify the function

of idiosyncratic shocks, α, and the vector of systematic shocks, Ā ∈ RS
++. Given the

previous argument, the exogenous variables in the economy can then be represented by

the tuple E = (α, Ā,N,Φ, θ, γ, δ).

3.2 Aggregate Consumption

Aggregate consumption is an important endogenous variable. As outlined above, we

will first treat the outcome of the strategic game for each industry and each state as

exogenously given, as summarized by the gross markup functions for each industry, Ms(z).

Together with the exogenous functions, αs(z) and Ās, the real outcome in the economy

or the consumer’s consumption bundle is completely determined, state-by-state. We will

use aggregate consumption in two ways. First, as a measure of welfare and second as a

determinant of the pricing kernel which governs the valuation of risky cash flows.

3.2.1 Misallocations and Aggregate Markups

This section illustrates the intuition of Lerner (1934) within the concrete setup of our

model, i.e., the state-by-state misallocations caused by markup heterogeneity. For ease

of exposition, we introduce two statistics of the cross-sectional markup distributions for

the macro-economy in each state s:

M̄s = G1−θ (Ms) , (12)

ηs =

(
G−θ (Ms)

G1−θ (Ms)

)θ
≤ 1. (13)

where Gp (Ms) =
(∫

αs(z)Ms (z)p dz
) 1
p refers to the p-th order cross-sectional power

mean of Ms (z).13 These statistics capture distinct elements of the cross-sectional markup

13Notice that by construction
∫ 1

0
αs(z)dz = 1, so we interpret α as a weighting measure where each

industry obtains a weight according to its relative productivity.
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distribution, and are jointly sufficient in describing the aggregate economy. The variable

M̄s captures the notion of aggregate market power, i.e., an appropriate average markup

across industries. The variable ηs captures the (inverse of) heterogeneity of markups

across industries. By Jensen’s inequality, ηs is bounded above by one (obtained when all

industries charge the same markup) and is decreasing in the heterogeneity of markups.14

Thus, ηs can be interpreted as a measure of allocative production efficiency.

Lemma 1. Given the functions Ms, αs and Ās, aggregate consumption, Cs, real income

ys, in state s are given by:

Cs = ys = Āsηs. (14)

The fraction of real income that is derived from labor income is given by:

ωs =
1

ηsM̄s

. (15)

The outcome in state s is Pareto efficient if Ms(z) ≡ ks for all z, so that ηs = 1.

From equation 14, aggregate consumption only depends on the exogenous aggregate

shock Ās and allocative efficiency ηs implied by the markup distribution. As long as

markups do not vary across industries in each state (i.e., Ms(z) ≡ ks for all z and

s), the allocation of labor to industries is efficient so that aggregate consumption, i.e.,

potential output, is given by the aggregate shock Ās. In all such economies, relative

goods prices match the perfectly competitive and hence efficient outcome. Allocative

efficient economies can only differ in terms of the decomposition of income, i.e., the

fraction of income derived from labor ωs and from firm profits, which are redistributed

to the representative agent. An important benchmark case is the monopolistic economy,

in which ks = θ
θ−1

and ω = θ−1
θ

. The greater the cross-sectional dispersion of markups,

the greater the misallocations, so that ηs falls.

3.2.2 Valuation

To value claims, we assume that a complete market of Arrow-Debreu securities is traded

in zero net supply, in addition to the stocks of the firms. The unique one-period stochastic

discount factor (“pricing kernel” or valuation operator) of the time-invariant economy,

SDF , can be decomposed the subjective discount factor, δ, the (exogenous) productivity

14This follows from the fact that Gp (x̃) > Gq (x̃) for any non-degenerate random variable x̃ as long
as p > q.
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component and the (endogenous) misallocation factor.

SDFt+1 = δ

(
Cst+1

Cst

)−γ
= δ

(
Āst+1

Āst

)−γ (
ηst+1

ηst

)−γ
. (16)

Since time-t profits of a firm depend only on the state, s, the information about the

firm’s future profits can be summarized in an S-vector, π, where πs is the profit in state

s. As a result, the present value of expected future firm profits in each state s can be

conveniently summarized in an S-vector:

V = Θπ, (17)

where the valuation operator Θ is defined as:

Θ = Λ−1
m (I − δΦ)−1Λm − I, (18)

Here, Λm is a diagonal matrix, with the marginal utility in state s, ms = C−γs , as its sth

diagonal element and I is the S × S identity matrix.15 The valuation operator Θ has

strictly positive elements. This simply represents the fact that higher profits in some state

s strictly increases the present value of future profits, Vs′ , in all states s′ = 1, . . . , S.16

3.3 Industry equilibrium

Understanding strategic price setting behavior in one industry z is the first step towards

endogenizing the entire markups function M . We therefore characterize, as a function of

industry and aggregate characteristics, when firms in a specific industry behave competi-

tively, when monopolistic markups can be sustained, and when the outcome is neither of

these extremes. Since each industry is small compared with the aggregate economy, firms

in industry z take the dynamics of all other industries as exogenously given, i.e., they

take M as exogenously given for all z′ 6= z. In particular, the S × 2 matrix consisting of

the vectors C and M̄ are jointly sufficient in describing the economic environment.

It is helpful to write real firm profits in sector z as a function of the choice variable

15The expression for Θ follows from solving the expression V ≡ δΛ−1
m ΦΛm(π + V ) for V .

16Recall that Φ is irreducible, so each state will be reached with positive probability, regardless of the
initial state.
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Ms (z) and the exogenous variables C, M̄ and α (z).

πs (z) = Csαs (z) M̄ θ−1
s

Ms (z)− 1

Ms (z)θ
.17 (19)

While Cs and M̄s are macro variables and hence affect all industries in a systematic

fashion, the idiosyncratic productivity shock αs (z) affects by definition only industry z.

Note that industry z profits depend positively on the aggregate market power M̄s since

goods are substitutable (with θ > 1).

Following Abreu (1988), we are interested in industry equilibria that generate the

highest industry profits sustainable by credible threats. We restrict attention to sym-

metric, pure strategy subgame perfect equilibria of the infinitely repeated stage game

described in Section 2.2. Firms condition their action at time t on the entire history of

past actions of industry z and states up to time t. The relevant history of each industry

z, ht is defined as the entire sequence of markups, states, and aggregate variables:

ht =
{{
M (i)(z, τ)

}N(z)

i=1
, sτ , M̄sτ , Csτ

}t
τ=0

, (20)

with h0 representing the empty history. Thus, a time-t, industry-z strategy for firm i

is a mapping from ht−1 × S to a chosen markup, M i(z, τ), f it : ht−1 × S → R++, (i.e.,

f it ∈ R
ht−1×S
++ ). Here, the second parameter, s ∈ S, represents time t information about

the state, which is available for the firm. A strategy for firm i is a sequence of time τ

strategies, {f iτ}
∞
τ=0.

The entire set of subgame perfect equilibria can be enforced with the threat of the

worst possible subgame perfect equilibrium. In this case, the most severe punishment

is given by the perfectly competitive outcome, i.e., zero profits forever after a devia-

tion. Therefore, any subgame perfect equilibrium must satisfy the following incentive

constraints for each state s,

πs (z) + Vs (z)

N (z)
≥ πs (z) . (21)

That is, the share of discounted present value of profits under collusion, πs+Vs
N

, must

be greater or equal to the best-possible one period deviation of capturing the entire

industry demand πs and zero profits thereafter. Industry profit maximization subject to

this incentive constraint represents the only friction in our economy.18

17This equation follows from Lemma 1.
18We are implicitly assuming that firms can coordinate within an industry to achieve this best outcome
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In the maximum profit equilibria, in each state, s, firms in an industry choose the

vector of state contingent markups to maximize the value function, Vs (z), given the

value maximizing behavior in each of the other states of the world, V−s (z), and subject

to incentive compatibility (equation 21),

Vs (z) = arg max
Ms

: Vs (z) |V−s (z) , (22)

for all s. Here, Ms maps to Vs via (19,17).

Within our model’s setting, finding the solution to the optimization problem (22)

is actually quite straightforward. First, we note that Equation 19 provides a bijection,

πs ↔ Ms, where 1 ≤ Ms ≤ θ
θ−1

, 0 ≤ πs ≤ πms ≡ ζCsαs (z) M̄ θ−1
s , and ζ ≡ (θ−1)(θ−1)

θθ

is a constant. Thus, the dynamic equilibrium can be viewed as a linear programming

problem in which firms choose profits instead of prices, and replace Ms in (22) with πs.

The specific form of this corresponding linear programming problem makes it clear that

the solution is the same for each state, and the optimization therefore collapses to a static,

state independent, linear programming problem. Put differently, choosing an incentive

compatible profit vector which maximizes firm value in state 1, i.e., V1 (z) = ιT1 Θπ (z)

also maximizes firm value in all other states.19

Proposition 1. Given aggregate consumption C and the average markup M̄ , the industry

equilibrium outcome π(z) (or equivalently M(z)) is uniquely determined by the solution

to the following linear program.

π (z) = arg max
π̂(z)

ιT1 Θπ̂ (z) , s.t., (23)

π̂ (z) ≤ πm (z) , (24)

0 ≤ (Θ− (N (z)− 1) I) π̂ (z) , (25)

Equilibrium profits in state s are either given by monopoly profits, πms (z), or the IC

constraint in state s binds, i.e., πs (z) = ιTs Θπ(z)
N(z)−1

.

Going forward, it will be important to understand when the incentive constraint binds,

and so markups deviate from the maximal. This is because, as we have observed, Pareto

with this equilibrium selection mechanism. This trivially rules out any outcomes where markups are
higher than θ

θ−1 , and outcomes where markups are lower than necessary. We do not, however, assume
that firms can coordinate across industries, since in a large economy there are many industries and global
coordination therefore typically is not possible.

19Here, ι1 is the first column of the identity matrix I.
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inefficiencies arise if markups differ across industries. To measure the “tightness” of the

monopolistic incentive constraint, we introduce the “tightness” vector, Γ (z), with ele-

ment s denoting the s-state ratio of the present value of industry profits under monopoly

markups to monopoly profits:

Γs (z) =
πms (z) + V m

s (z)

πms (z)
= 1 +

V m
s (z)

πms (z)
. (26)

If Γs1 > Γs2 the incentive to deviate in state s1 is smaller than in state s2, i.e., the present

value of collusion is high relative to current period profits.

Lemma 2. The tightness vector satisfies:

Γ (z) = (Λ−1
κ(z)(I − δΦ)−1Λκ(z))1, (27)

where Λκ(z) = diag(κ (z)), and the vector κ (z) has elements:

κs (z) = πms (z)ms = ζM̄s
θ−1

C1−γ
s αs (z) . (28)

The variable κs captures an important determinant of the incentive to cheat in a cer-

tain state, Γs. It consists of the state component of the industry profit, πms (z), weighted

by marginal utility in state s, ms = C−γs . We also define the minimum, κ(z) = mins κs(z).

Substituting in the definition of πms (z) reveals that κs (z) is increasing in the idiosyncratic

industry productivity αs (z), whereas the net dependence on aggregate consumption Cs

depends on the EIS, i.e., 1
γ
. If γ > 1 (γ < 1), the variable κs (z) is decreasing (increasing)

in aggregate consumption. This is because aggregate consumption is not only a driver

of profits (as in the risk-neutral case), but also influences the marginal utility (discount

rate) due to risk aversion. If the discount rate channel dominates, procyclical markups

may occur as the example following Proposition 2 reveals.

Using the definition of the tightness vector, we are now able to derive closed-form

expressions for the threshold number of firms that leads to perfect competition and the

monopoly outcome, respectively. Intuitively, for a small number of firms N (z) ≤ Nm (z),

the monopoly outcome is sustainable in all states, while too many firms in one industry,

N (z) > N c, generates the competitive outcome in all states. In between, markups may

vary across states. This intuition is formalized in the following proposition.

Proposition 2. Given aggregate consumption C and the average markup M̄ , equilibrium
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profits in state s, πs (z), satisfy:

πs (z) = πms (z) for N (z) ≤ Nm (z),

πs (z) ∈ (κ(z)Cγ
s , π

m
s (z)] for N (z) ∈ (Nm (z) , N c),

πs (z) = κ(z)Cγ
s for N (z) = N c,

πs (z) = 0 for N (z) > N c.

where the respective threshold values satisfy Nm (z)
def
= mins (Γs (z)) and N c def

= 1
1−δ .

The different regions are best shown in a stylized example which highlights the intu-

ition for our results. Assume that aggregate consumption satisfies C = (1, 2, 4)T , that ag-

gregate markups are competitive in all states, M̄ = (1, 1, 1)T , and that α(z) =
(

1
2
, 3

4
, 1
)T

.

For simplicity, assume that the economy is i.i.d. with all states being equally likely.

Finally, assume preference parameters of δ = 8/9, γ = 2, and θ = 2. Is is easy to show

that the tightness vector in this example satisfies:

Γ(z) = (7, 9, 13)T . (29)

Thus, monopoly markups are sustainable for N(z) ≤ Nm(z) = 7.20 Given δ, the number

of firms necessary to induce the competitive outcome is Nc = 9. Figure 3 plots state-

contingent profits in the left panel and the corresponding state-contingent markups as

a function of the number of firms, confirming the four cases in Proposition 2.

It is useful to explain the intuition for why the example exhibits procyclical markups,

i.e., M1(z) ≤ M2(z) ≤ M3(z). In general, state-contingent markups arise because the

incentive to cheat is higher in some states of the world than others. This incentive depends

on the comparison between current-period profits and the present value of future profits

(see equation 21). Since current period profits are higher in good states of the world,

the incentive to cheat is higher in better states unless this effect is overwhelmed by

the present value of future profits, Vs. Due to our i.i.d. specification in this example,

expected future profits are equal across states. Nonetheless, the present value of future

(monopoly) profits is higher in good states of the world, i.e., V m
1 (z) < V m

2 (z) < V m
3 (z).

This valuation effect is driven by countercyclical discount rates that arise from a high

marginal utility of consumption in worse states of the world. Since the EIS < 1, this

valuation effect is sufficiently strong, so that the incentive to reap the short-term profits

20Recall that aggregate markups are competitive even if a zero measure of industries are non-
competitive. Thus, there is no inconsistency in having one non-competitive industry in an economy
that in aggregate is competitive.
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Figure 3. This graph plots the state contingent profits and markups of one particular industry given
aggregate consumption of C = (1, 2, 4)

T
, aggregate markups of M̄ = (1, 1, 1)T , and the relative industry

state of α (z) = (2, 3, 4)
T

. If there are fewer than 7 firms in the industry, monopoly markups are
sustainable in all states. Increasing the number of firms further causes the incentive constraint in state
1 to bind first, then in state 2 and finally, at NC = 9, all markups collapse discontinuously to the
competitive outcome, i.e., 1.

is highest in bad states of the world, leading to procyclical markups.21

Also consider a slight perturbation of the example by considering the knife-edge of

log utility, i.e., γ = EIS = 1. In this case, κs (z) is only a function of the idiosyncratic

productivity shock αs (z). With respect to the idiosyncratic component, the conventional

result of Rotemberg and Saloner (1986) applies: markups are countercyclical. For an in-

dustry with shocks α(z) =
(

1
2
, 3

4
, 1
)T

countercyclicality with respect to the idiosyncratic

component also translates into “overall countercyclical” markups. In contrast, an indus-

try with shocks α(z) =
(
1, 3

4
, 1

2

)T
will exhibit “overall procyclical markups”. Thus, our

setup allows for heterogeneous cyclicality of industries consistent with the stylized facts

presented in Figure 2.

To summarize, while the exact conditions for pro-/ countercyclicality are certainly

special to our setup, the fundamental asset pricing implications for industrial organiza-

tion hold more generally. If discount rates for risky assets are countercyclical, then the

conventional wisdom of overall countercyclical markups following Rotemberg and Saloner

21This valuation effect in this example is so strong that it also outweighs the procyclical idiosyncratic
component of profits α (z).
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(1986) may be overturned. Moreover, we want to emphasize that this set of results is

not driven by industry heterogeneity and should even hold in a setup with homogeneous

firms (such as in Rotemberg and Woodford, 1992).

Even with the generality of our setup, we are able to put a lot of structure on the

industry equilibrium outcome. Intuitively, the threshold number of firms that allows the

monopoly outcome is directly linked to Γ (z). It is determined by the state in which

the incentive to deviate is the highest, i.e., the state in which Γ (z) attains its minimum.

The maximum number of firms beyond which collusion completely breaks down is simply

given by N c def
= 1

1−δ , i.e., it only depends on the growth adjusted discount rate. Quite

surprisingly, the threshold value is independent of industry characteristics as captured by

α (z) and aggregate properties such as aggregate consumption C or the average markup

M̄ .22 Moreover, we are able to derive an analytical formula for the profits of any industry

z with N c firms.

What remains is to characterize the solution for industries with Nm (z) < N (z) < N c

firms. For a special case, this region is empty, i.e., Nm (z) = N c.

Lemma 3. If κs (z) = k for all s and some arbitrary constant k , the threshold value for

the monopoly outcome is given by N c, i.e., Nm (z) = N c.

In such industries markups are never state dependent (regardless of the number of

firms in the industry), since they are neither state dependent in the monopolistic case,

nor in the competitive case. One benchmark specification delivers this scenario: If the

representative agent has log utility, i.e., γ = 1, and all industries are homogeneous, i.e.,

if As(z) ≡ Ās, for all z and s, and N(z) ≡ N , then κs (z) = k for all s and z.23 As

a result, all industries in the economy either behave like a monopolist or are perfectly

competitive. Except for this knife-edge case, the region between Nm (z) and N c is non-

empty, and represents the economically most interesting region, since it gives rise to

state-contingent markups.

Proposition 3. For an industry in which Nm (z) < N (z) < N c,

22At N c, the incentive constraint is characterized by the indifference condition of a risk-neutral firm

that compares the shared perpetuity value under collusion, π∗(z)
1−δ

1
Nc , and the best possible one-period

deviation, π∗ (z).
23By homogeneity, we obtain Ms (z) = M̄s and αs(z) = 1. Since γ = 1, κs does not depend on C. In

turn, this will also imply that M̄s does not depend on C. Thus, M̄s = Mm (for N ≤ N c), so that κs = 1
θ ,

or, M̄s = 1 (for N > N c) so that κs = ζ. Proposition 5 implies that this is the unique equilibrium
outcome.
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1. There will be at least one state in which monopolistic profits are obtained, πs(z) =

πms (z) for some s.

2. Equilibrium profits, πs (z) , are decreasing in N (z) for each s, as are markups.

3. Equilibrium profits, πs (z), are increasing in αs′(z), for each s, s′, as are markups.

4. Equilibrium profits and markups depend continuously on all parameters (N , C, M̄ ,

Φ, α, and Ā).

It is straightforward to verify properties 1, 2, and 4 in Figure 3. Thus, given that the

aggregate variables of the economy C and M̄ are known, the choice of state-contingent

markups in a specific industry z is exactly characterized.

4 General Equilibrium

We show the existence of general equilibrium in which firms in each industry choose

optimal markups given the (optimal) markups chosen by firms in all other industries.

Recall that the economy’s environment is characterized by the tuple E , i.e., by the real

variables α : S × [0, 1] → R+, N : [0, 1] → N, g ≥ 0, Ā ∈ RS
++, the irreducible

aperiodic stochastic matrix, Φ ∈ RS×S
++ , and the preference parameters, γ, θ, and δ̂.

We note that a given equilibrium is completely characterized by the markup function,

M : S × [0, 1]→
[
1, θ

θ−1

]
, together with E , since all other real and financial variables can

be calculated from M using (7) and (12-19). This motivates the following

Definition 1. General Equilibrium in economy E is given by a markup function M :

S × [0, 1]→
[
1, θ

θ−1

]
for which,

1. M̄ and C are defined by Equations 12 and 14,

2. For all z, M(z) is the solution to the maximization problem given by Equations 23-

25, where πm(z) in the optimization problem is given by Equation ??.

We note that the existence and uniqueness of the second part of the definition is

guaranteed by Proposition 1, industry by industry, i.e., given M̄ and C there is a unique

optimal markup function. It is a priori unclear, however, whether there exists a general
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equilibrium, i.e., whether both parts can be solved simultaneously. In other words, both

the mappings, M 7→ (M̄, C) (part 1) and (M̄, C) 7→ M ′ (part 2) are well defined, but it

is unclear whether M can be chosen such that the second step maps to the same markup

function that was used in the first step, i.e., such that M ′ = M .

It turns out that we are able to prove the existence of equilibrium under very general

conditions. Specifically, we assume that the functions N and α are Lebesgue measurable

functions, and impose the following technical condition:

Condition 1. For all s, for almost all z, c0 ≤ αs(z) ≤ c1 for constants, 0 < c0 ≤ c1 <∞.

We now have the following general result:

Proposition 4. General equilibrium exists in any economy that satisfies Condition 1.

Thus, only the technical conditions of integrability and boundedness of productivity func-

tions across industries is needed to ensure the existence of equilibrium. The generality of

this existence result is a priori quite surprising. In static general equilibrium models with

imperfect competition, additional conditions in the form of quasi-concavity of firms’ profit

functions, and uniqueness of market clearing price functions given a productive alloca-

tion, are typically needed to show the existence of general equilibrium (see Gabszewicz

and Vial, 1972; Marschak and Selten, 1974; and Benassy, 1978). These conditions are

indeed satisfied in our model, as seen in Section 2.1. Instead, the major challenge is the

dynamic setting, where the move from a static to a dynamic Bertrand game between

firms drastically enlarges the strategy space. Since all firms are intertwined through the

effects their actions have on the pricing kernel, showing the existence under general condi-

tions seems out of reach. Previous literature (e.g., Rotemberg and Woodford, 1992; Gali,

1994; and Schmitt-Grohe, 1997) has avoided the issue by assuming complete symmetry,

in which case the state space collapses. Of course, the focus on symmetric economies

also restricts the type of effects that may arise, e.g., in terms of efficiency losses.

The reason why existence is still provable in our setting is the special structure of

the model. The key property is that the game played between firms is simple enough so

that we can completely characterize their behavior under general parameter values and

show that this behavior has some needed properties. Specifically, the structure of firms’

constrained optimization problems in equations 23 - 25 allows us to show uniqueness and

uniform continuity of industry outcomes with respect to all parameters. This follows

from two properties of the optimization problem. First, the objective function is linear.
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Second, the IC constraints have a specific form such that (i) for any number of firms

less than the competitive threshold, N < N c, the domain of optimization is uniformly

bounded, closed, convex with nonempty interior, (ii) for industries with N = N c the

domain is a closed bounded line, and (iii) for industries with N > N c the domain contains

a single point, the origin. These properties imply well behaved (unique and uniformly

continuous) outcomes industry-by-industry, which in turn implies that the mapping M 7→
(M̄, C) 7→M ′ is continuous (in the function space L1).

Technically, the proof of Proposition 4 depends Schauder’s fixed point theorem.24

Specifically, it is shown in the proof of Proposition 4 that the space of markup functions

is compact and convex, which via Schauder’s theorem then guarantees the existence of a

fixed point, i.e., an equilibrium. Details are given in the proof.

We note that Proposition 4 makes no claim about equilibrium uniqueness — a subject

that will be explored further in the next section.

5 Endogenous Misallocation Dynamics

In this section we analyze the properties of general equilibrium with a sequence of ex-

amples. These qualitative examples are meant to deliver the main economic intuition for

our results, without any attempt towards a real world calibration.25 In particular, Sec-

tion 5.1 shows how strategic competition can endogenously amplify technological shocks.

In Section 5.2 we discuss conditions for equilibrium uniqueness and reveal how industry

heterogeneity might produce multiple equilibria. Finally, we present various comparative

statics in Section 5.3.

5.1 Shock Amplification

In general equilibrium, the decisions of firms in one part of the economy affect aggregate

consumption and hence the pricing kernel and thereby the decisions of all other firms

in the economy. Thus, in equilibrium, technological shocks are transmitted through

the oligopolistic interaction between firms. To illustrate the mechanism of our model,

consider the simple economy described in Table 1, with three distinct types of industries,

I1, I2 and I3, and S = 2 states. Here, all industries with z ∈ Ij belongs to industry type

24We use this because we have a continuum of industries.
25We discuss empirical implications in Section 6.
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Type, j Ij N A1 A2 α1 α2

1 z ∈ [0, 0.02) 19 0.25 1 0.8728 1
2 z ∈ [0.02, 0.81) 19 1 1 1.0026 1
3 z ∈ [0.81, 1] 1 1 1 1.0026 1
Ā Ā1 = 0.974 Ā2 = 1

Φ =

[
0.7 0.3
0.3 0.7

]
γ = 6, θ = 1.1, δ = 0.95.

Table 1. Economy with three industries and two states.

j. With a slight abuse of terminology, we will call the Ij sets “industries,” although each

set represents many identical industries. Thus, there is one very small industry (I1), one

large industry (I2) and one medium-sized industry (I3). The first two industries have

many firms, N = 19, but they will still not be perfectly competitive, since N c = 1
1−δ = 20.

The third industry is monopolistic, so that it will be charge the markup θ
θ−1

regardless

of the behavior in the first two industries.

Columns 4 and 5 in Table 1 describe the absolute productivity shocks, A, in the

two states. We see that only the very small first industry experiences any variation in

productivity across the two states. The aggregate variation in productivity will therefore

be small. In columns 6 and 7, we show the decomposition of the absolute productivity

shocks into relative and aggregate components, α and Ā (see equations 10 and 11). The

effect on aggregate productivity of the first industry’s shock is about 2.5%, since aggregate

productivity is 0.974 in the low-productivity state and 1 in the high-productivity state.

This would also be the aggregate consumption in the two states in an efficient outcome.

Note that the shock to industry 1 also affects the relative productivity in industries 2

and 3, since α is normalized to sum to one across industries, state by state.

Before analyzing the equilibrium in this economy, it is instructive as a reference case

to study the economy which is identical to that in Table 1, except for that A1 = 1 in

industry 1. This is thus an economy with no productivity shocks, neither idiosyncratic

nor aggregate, and it follows that Ā1 = Ā2 = 1 and αs(z) ≡ 1 in this reference economy.

One easily verifies that the monopolistic outcome, in which markups M ≡ θ
θ−1

= 11 are

chosen by all firms in all states, is feasible in this case (this also follows as a consequence

from Lemma 3, since N ≤ N c in all industries), leading to the efficient outcome where

C1 = Ā1 = 1, C2 = Ā2 = 1.
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The situation is different for the economy given in Table 1. The fully monopolistic

outcome is no longer feasible, because it does not satisfy the IC constraints for firms in

industry 2. Instead, an equilibrium is given by the following markups:

Markups s = 1 s = 2

M(I1) 1.580 11

M(I2) 1.465 11

M(I3) 11 11

(30)

leading to aggregate consumption

C1 = 0.795, C2 = 1.

Thus, the small productivity shock (≈ 2.5%) leads to a significant decrease in equilibrium

output (≈ 20%) in state 1.

The intuition for why amplification occurs in this example is exactly in line with our

main theme in this paper, that technological shocks that are small in aggregate — in

that they only affect a few industries — change the strategic behavior of firms in other

industries through the effect they have on the pricing kernel.

This mechanism is explained in Figure 4, focusing on the behaviors of industries 1

and 2.26 In the upper part of the figure, the reference economy with identical industries

is shown, in which case monopolistic profits are feasible for both industries. In the lower

part of the figure, the economy in Table 1 is shown. Line A shows the relevant IC

constraint in state 1, given the pricing kernel in the monopolistic outcome. Monopolistic

profits are indeed feasible in industry 1 (lower left figure), but infeasible in industry 2

(lower right figure). Thus, the lower productivity in industry 1, through its effect on the

pricing kernel, affects the outcome in sector 2, which moves the IC constraint in state 1 to

line B. This in turn changes the pricing kernel even further, making monopolistic profits

in industry 1 infeasible and further changing the outcome in industry 2, moving to lines

C in the two industries, and generating further feedback effects. The ultimate effect of

this mechanism is that the equilibrium moves to line D in the two figures, substantially

26Industry 3 is always monopolistic. The reason that it is still important for the example is that
substantial efficiency losses only occur when there is high variability in markups across sectors. If
industry 3 was not present then the economy would always be close to efficient, since markups would be
the same for the vast majority of industries in each state — almost identical to the markups charged in
industry 2. In contrast, when industry 3 is present and industry 2 charges low markups, efficiency will
be low.

25



Markups in Industry 1

1

1


2


 2

 

 

Incentive Compatible Payoffs

Feasible Payoffs

Markups in Industry 2

1

1


2


 2

Markups in Industry 1

1

1


2


 2

 

 

A
B
C
D

Markups in Industry 2

1

1


2


 2

 

 

A
B
C
D

Figure 4. In each of the 4 panels, we plot incentive compatible and feasible profits (scaled by monopoly
profits) in both states of the world. Feasibility refers to the upper bound imposed by monopoly profits
in each state, i.e., πs/π

m
s = 1. Incentive compatibility in both states is governed by two lines. The

upper line refers to the IC constraint in state 2. The lower one refers to the IC constraint in state 1.
The upper 2 panels refer to the benchmark economy with identical industries. The outcome in industry
1 (2) is plotted on the left (right). In both industries and states monopolistic profits are sustainable.
Below: We only plot the relevant IC constraint in state 1. Monopolistic profits violate IC constraint in
state 1 for industry 2 (line A), in turn changing the IC constraints in state 1 for industry 1 (line B). The
resulting equilibrium (line D) is substantially different.

different from monopolistic equilibrium in the reference economy.

5.2 Uniqueness

Our general existence result (see Proposition 4) makes no claims with regards to unique-

ness. We will show in this section that there may be multiple equilibria whenever a

nonzero measure of firms fails the condition of perfect competition. Uniqueness of equi-
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libria can, however, be proved for the important benchmark case of homogeneous indus-

tries.

Proposition 5. If industries in the economy E are homogeneous, i.e., if As(z) ≡ Ās, for

all z and s, and N(z) ≡ N for all z, then the equilibrium is unique.

Of course, it is also immediate the outcome with homogeneous industries is Pareto ef-

ficient, i.e., Cs = Ās. While uniqueness of aggregate consumption follows directly from

Proposition 1 as Ms (z) = M̄s, Proposition 5 also implies uniqueness of state-contingent

markups M̄s.

As a result of this proposition, multiplicity of equilibria must be driven by industry

heterogeneity and the implied feedback from aggregate consumption to the pricing kernel.

Indeed, it can be verified that the heterogeneous economy E parameterized in Table 1

exhibits (exactly) one more equilibrium supported by the equilibrium markups:

Markups s = 1 s = 2

M(I1) 11 2.104

M(I2) 11 2.605

M(I3) 11 11

(31)

and leading to aggregate consumption

C1 = 0.974, C2 = 0.884.

Again, aggregate fluctuations are endogenously determined. However, despite the same

technology specification, the second equilibrium is very different from the first one. First,

although the state with low productivity is the first, aggregate output is the lowest in the

second state in this second equilibrium. There is thus a second way to ensure that firms do

not deviate from equilibrium strategies, namely to decrease the attractiveness of state 2.

We note that the first equilibrium leads to higher output than the second equilibrium

in state 2 (1 versus 0.884), whereas the second equilibrium dominates in state 1 (0.974

versus 0.795). It is indeed easily verified that the second equilibrium Pareto dominates

the first in expected utility terms, regardless of the current state.

It turns out that there are multiple equilibria even in the reference economy with no

productivity shocks, i.e., in which A1 = 1 also for the first industry. In such an economy,

sector heterogeneity is purely driven by the differing number of firms in industries 1 and
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2 compared to industry 3.

One can verify that

Markups s = 1 s = 2

M(I1) 11 1.634

M(I2) 11 1.634

M(I3) 11 11

(32)

with aggregate consumption.

C1 = 1, C2 = 0.830,

is also an equilibrium. Moreover, a third equilibrium (symmetrically) exists in which

markups and consumption are low in state 1. Since productivity (idiosyncratic and

aggregate) is constant across states in this case, aggregate fluctuations in this equilibrium

are completely endogenous, and the COST is infinite. Thus, truly endogenous business

cycles can arise as a result of strategic competition in our model if sectors differ purely in

the number of firms. If all sectors were completely homogeneous, the equilibrium markup

in each state of the world would be the same and the equilibrium would be unique (see

Proposition 5).

We note that equilibrium multiplicity in models with markups, in the form of sta-

tionary sunspot equilibria, have also been generated in Gali (1994) and Schmitt-Grohe

(1997). The analysis in Gali (1994), especially, has similarities to ours in that he assumes

linear production technologies and also covers the case with inelastic labor supply. How-

ever, his mechanism is different from ours. Since he focuses on the symmetric case with

monopolistic competition, there is no role for heterogeneity in markups across firms, and

the corresponding inefficiencies such heterogeneity creates. Instead the multiplicity of

equilibria arises because of self-fulfilling expectations about future growth rates. In our

setup, industry homogeneity implies uniqueness as it prohibits efficiency losses due to

cross-sectional variation of markups and hence shuts down the feedback channel through

the pricing kernel.

5.3 Comparative Statics

The equilibrium outcome may be very sensitive to small changes in some parameter

values, whereas it is remarkably stable in other aspects. The results together suggest that
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cross economy (e.g., cross country) comparisons need to be carefully designed to capture

meaningful relationships when studying the determinants of an economy’s dynamics.

We show that the equilibrium outcome may be extremely sensitive to small differences

in long-term growth rates, g, and specifically that small differences can have large welfare

effects by taking the economy from a Pareto efficient, perfectly competitive, outcome to

one in which some industries are competitive and others are not. We study a modified

version of our workhorse example given in Table 2. There are now 20 firms in each

Type, j Ij N A1 A2 α1 α2

1 [0, 0.2) 20 1 1 0.972 0.972
2 [0.2, 0.6) 20 1 2 0.972 1.041
3 [0.6, 1] 20 2 1 1.041 0.972
Ā Ā1 = 1.33 Ā2 = 1.33

Φ =

[
0.7 0.3
0.3 0.7

]
γ = 6, θ = 1.1, δ = 0.95,

Table 2. Modified economy with three industries and two states.

industry, that the asymmetry in industry sizes is not as large as in the previous example,

and that there are productivity variations across states also in the large industries. It is

straightforward to verify that there is an equilibrium with aggregate consumption

C1 = C2 = 1.19,

and markups

Markups s = 1 s = 2

M(I1) 11 11

M(I2) 11 4.44

M(I3) 4.44 11

(33)

and that the efficiency therefore is ηs = Cs
Ās
≡ 1.19

1.33
= 0.89, about 11% below the Pareto

efficient outcome in both states.

Now, in an identical economy as the one in Table 2, except for that δ = 0.949 instead

of 0.95, only the competitive outcome is an equilibrium, leading to M ≡ 1 and efficient
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consumption

C1 = C2 = 1.33.

This follows immediately since N > N c = 1
δ

in all industries. Thus, the discontinuity

of markups close to N c, analyzed in Section 3.3, leads to extreme sensitivity of the

equilibrium outcome when there is a substantial number of industries in which the number

of firms close to N c. Surprisingly, the mass of firms that are perfectly competitive in our

economy, λ({z : Ms(z) = 1,∀s}), only depends on the exogenous subjective discount

factor δ and the exogenous distribution of firms.

Suppose now that we relax the exogeneity assumption with regards to the number of

firms and allowed for free entry with zero entry costs. Then, the discontinuity of firms’

value function in the number of other competing firms also implies that free entry into

each industry would not necessarily drive the economy to the efficient or competitive

outcome. For a potential entrant, knowing that, on entering, industry profits would

drop to zero means that he does not have a strict incentive to enter. For example, the

outcome with N = 20 firms in each industry and aggregate consumption in Table 2 is

an equilibrium in the economy with zero costs of entry. By this logic, even though the

number of firms in each industry is exogenously given in our economy, the feedback effects

between market power and industry equilibrium may be robust to alternate specifications.

6 Empirics

6.1 Testable Predictions

Our theory has testable predictions for both the individual industry behavior as well

as their joint effect on aggregate economic activity in general equilibrium. The partial

equilibrium results suggest that the analysis of markup cyclicality should disentangle

the systematic component of industry demand/ profits and the idiosyncratic component.

While the systematic “average” industry might exhibit procyclical (via the channel of

discount rates) or countercyclical markups, the predictions with regards to idiosyncratic

shocks, α (z) are unambiguous: If an industry is relatively procyclical, i.e., αs (z) in-

creasing with Cs (z), then this industry will exhibit relatively countercyclical markups

compared to the average industry. One can test these predictions by relating the cross-

sectional distribution of markup cyclicality (see Figure 2) to idiosyncratic demand /

productivity proxies and the number of firms in a sector.
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Our main general equilibrium result relates variation in aggregate economic activity

to variations in allocative efficiency and technological shocks, i.e., Ct = Atηt. Since

empirical studies are mostly concerned about growth, it is useful to express this identity

as:

∆c = ∆a+ ∆e (34)

where ct = log (Ct), a = log(Ā) and e = log(η) and ∆ refers to first differences. From

this expression, it is immediate that amplification of technological shocks, i.e., greater

consumption volatility than suggested by technological condition (σ∆c > σ∆a), occurs if

and only if

ρ∆a∆e > −
1

2

σ∆e

σ∆a

(35)

where ρ∆a∆e measures the coefficient of correlation between ∆a and ∆e. As a result, two

factors can give rise to amplification: a high variation in efficiency relative to the variation

in productivity ( σ∆e

σ∆a
) or a high positive correlation between efficiency and productivity

(ρ∆a∆e), i.e., countercyclical dispersion of markups. Both these factors are quite intuitive.

The just described partial and general equilibrium predictions are both in principle

testable. While a rigorous examination is beyond the scope of this paper, we provide

a first-pass empirical inspection of the decomposition that is at the heart of this paper

(see equation 34). Variation in consumption growth should be explained by variations

in allocative efficiency and technological growth. Since consumption and output are

equivalent in our theory, we will also use GDP growth ∆y as a measure of aggregate

economic activity.

6.2 Data

To compute the time series of misallocations, we require a panel data set with markups

for a large number, ideally all, industries in an economy. The requirement of a large

cross-section of industries makes it impossible to use state-of-the-art estimation tech-

niques for markups, that work well for one particular industry. Instead, we make use

of the standard NBER manufacturing productivity database by Bartelsman and Gray

containing valuable information on 459 industries between 1959 and 2009. We exclude

8 discontinued industries leaving us with 451 industries.27 We use (average) price cost

margins (see Aghion et al. (2005)) as a proxy for markups. Thus, the empirical markup

27Our results are virtually equivalent when we include those industries until their year of discontinu-
ation.
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M̂t (z) estimate for industry z at time t is calculated as follows:

M̂t (z) = 1 + PCM (z) = 1 +
Value added (z) − Payroll (z)

Value of Shipment (z)
(36)

While this proxy is subject to shortcomings, such as not differentiating between marginal

and average costs, it represents a reasonable proxy for a large scale study as ours.28 This

procedure allows us to generate a large panel data set of markups as required by our

theory.

Next, we need to compute the empirical “weight” of each industry, i.e. a proxy for

αt (z):

α̂t (z) =
Value of Shipment (z)Ms (z)

451∑
z′=1

Value of Shipment (z′)Ms (z′)

.29 (37)

We can now compute the proxies for the relevant aggregate markup variables, M̂t and η̂t

(see equations 12 and 13) given the discrete analog of the non-linear power mean:

Gp (Ms) =

(
451∑
z=1

αt (z)Mp (z)

) 1
p

(38)

The estimates η̂t and M̂t are a function of the (free) parameter θ where higher θ translates

into greater misallocations fixing the empirical input M̂t (z) . Intuitively, misallocation

created by a given empirical dispersion of markups is larger if goods are substitutable,

since customers switch to different products.30 While the level of θ should depend on the

level of disaggregation, we use a benchmark value of θ = 4.31

Using sector-specific four factor TFP from the manufacturing database, we can now

also determine a proxy of the aggregate productivity shock weighted by each industry’s

size.

Ât =
451∑
z=1

αt (z)At (z) (39)

28The proxy is consistent with our theory as the production function is constant returns to scale in
labor (see De Loecker (2011)).

29This proxy directly follows from our theory based on rearranging equation 19 for αs (z) =
πs(z)

CsM̄
θ−1
s

Ms(z)
θ

Ms(z)−1 , using π (z) = Value added(z) - Payroll(z) , and setting θ = 1.
30For this result to hold, it is important to understand that this comparative static fixes the distribution

of markups (as given by the data). In contrast, if markups are produced by a model, then smaller
substitutability generates higher monopoly markups and allows for greater dispersion.

31Our results are robust to using different parameters for θ.
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Finally, we obtain yearly NIPA non-durable consumption data and GDP estimates from

the BEA.

1960 1970 1980 1990 2000 2010
-0.04

-0.02

0

0.02

0.04

0.06
C

on
su

m
pt

io
n 

G
ro

w
th

 

 

Change in allocative efficiency
Consumption growth

1960 1970 1980 1990 2000 2010
-6

-4

-2

0

2

4
x 10

-3

Year

A
llo

ca
ti
ve

 E
ff
ic

ie
nc

y 
G

ro
w

th

Figure 5. This figure plots the time-series of yearly (NIPA non-durable) consumption growth ∆c and
changes in allocative efficiency ∆e implied by equation 13 and 38. The data covers the 50-year period
between 1960 and 2009.

In our empirical analysis, we aim to relate these measures of aggregate economic

activity, consumption growth ∆c and GDP growth ∆y, to efficiency growth ∆e and

technological growth ∆a. Figure 5 plots the time series of ∆c and ∆e and reveals a

strong positive correlation (with the exception of the outlier in the final year, i.e., the

2008− 2009 financial crisis). The correlation coefficient is 0.41 including the outlier and

0.54 without the final year. The graph looks similarly if we measure economic activity

with GDP, as also becomes evident from Table 3 in which we also include our TFP

growth proxy as an explanatory variable for both measures of economic activities, ∆c

and ∆y. TFP growth is positively correlated with both measures (see columns 2 and

5). The increase in the R2 in the multivariate regression of economic activity relative to

both univariate regressions (see columns 3 and 6) reveals that allocative efficiency and

the technological growth component capture different sources of variation.

We want to conclude this section with various shortcomings that future empirical

work could address. As mentioned above, we did not consider adjustments for marginal
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∆c ∆c ∆c ∆y ∆y ∆y
Constant 0.025*** 0.022*** 0.023*** 0.032*** 0.028*** 0.029***

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003)
∆e 4*** 4.641*** 4.045*** 4.888***

(1.270) (1.169) (1.771) (1.654)
∆a 0.099*** 0.123*** 0.135*** 0.16***

(0.041) (0.037) (0.055) (0.052)
R2 0.17 0.11 0.33 0.1 0.11 0.25
N 50 50 50 50 50 50

Table 3. Misallocation, TFP, and Aggregate Economic Activity: OLS time-series regressions
from 1960− 2009 (i) with annual consumption growth, ∆c, as the dependent variable in the first three
columns, and (ii) annual GDP growth, ∆y, as the dependent variable in the last three columns. The
variable ∆e refers to the log change in efficiency based on the cross-sectional dispersion of markups
across 451 industries in the NBER manufacturing database (see equation 38). The variable ∆a refers
to the log change in the weighted average TFP of the 451 industries (see equation 39). Standard errors
are in parentheses. *** denotes statistical significance at the 1% level.

costs or capital costs. To the extent that these adjustments are sector specific, our proxies

for markups and dispersion thereof are mismeasured. However, the induced measurement

error should bias our results against finding statistical significance. Also, while our data

captured a large cross-section of industries, our data set only included manufacturing

firms, an important, but not certainly not fully representative part of the economy. We

hypothesize that markup dispersion within a group, i.e., the manufacturing sector, should

be smaller than across all sectors. Thus, our measure of allocative efficiency would be

downward biased. As long as this bias is close to a multiplicative constant, the statistical

significance of our growth regressions would be unaffected. Finally, while our model

assumes no input-output relation between producers, empirical work should take into

account the entire markup chain to determine efficiency losses.

7 Concluding Remarks

We have developed general equilibrium in a dynamic economy with a continuum of dif-

ferent industries, each of which comprises a finite number of firms. The framework is

tractable, and the strategic interaction between firms in each industry is straightforward

to characterize. We establish the existence of general equilibrium and establish dynamic

properties of the economy including equilibrium markups, firm profits and aggregate

consumption.
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The central premise of our model is that firms, maximizing shareholder value, are not

always price takers but can be price setters. High prices in an industry can be sustained

if firms value the future flow of profits over any immediate increases in market share

garnered by undercutting. Of course, the rate at which future profits are discounted

depends both on the representative agent’s preferences and on the behavior of the aggre-

gate economy. Specifically, the misallocation of resources that arises from the equilibrium

cross-sectional dispersion of markups affects aggregate consumption and therefore the

representative agent’s valuation of future profits. This feedback effect between industry

equilibrium and the macro economy is the central intuition in our paper.

The strategic interaction yields various general equilibrium effects that can be inter-

preted in light of the macro-economy. Even in an economy with no aggregate uncertainty,

if the relative productivity of various industries changes, so does their ability to sustain

collusive outcomes. These changes can affect both the level and the volatility of aggregate

consumption; in short our model exhibits endogenous volatility.

An interesting extension of our model would be to consider asset pricing implica-

tions. The sub game perfect industry equilibria that we characterize naturally pins down

the future value of each firms’ cash flows. This of course, is the unlevered equity value

of the firm. With an appropriate calibration, one could generate the relationship be-

tween returns, industry characteristics and the macro economy. We plan to explore these

relationships in future work.

In conclusion, it is worthwhile highlighting how industry heterogeneity drives our re-

sults. In an economy with homogeneous industries as in Rotemberg and Woodford (1992),

the markup in each industry is the same and therefore the equilibrium allocation of labor

is efficient. This also precludes amplification of idiosyncratic industry shocks. Thus,

our extension of their framework to allow for more realism, i.e., industry heterogeneity,

generates a rich set of novel predictions.
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A Proofs

Proof of Proposition 1

As explained in Section 3.1 we focus on time-invariant economies, so that all variables are solely expressed
as state-dependent. Using the expression for prices, ps (z), (see equation 7) and the definitions of αs (z),
Ās and M̄s (see equations 10, 11, and 12), we can solve for nominal prices and the nominal wage rate

via normalizing the price index Ps =
(∫ 1

0
ps(z)

1−θdz
) 1

1−θ
to one.

ws =
Ās
M̄s

, (40)

ps(z) =
Ms (z)

M̄s
αs(z)

1
1−θ . (41)

Finally, plugging the demand function of each sector, cs (z) (see equation 4) into the profit function of
each sector πs (z) (see equation 6) yields an expression for ys via the aggregate budget constraint (see
equation 5)

ys = Āsηs, (42)

where we have used the expression for nominal wages and prices (see equations 40 and 41) and the
definition of ηs (see equation 13). Since the price index is normalized to one, real consumption Cs = ys

Ps
is given by ys. The fraction of income derived by labor income, ωs = ws

ys
, is readily obtained via equations

40 and 42. Real profits following immediately from 4, 6, 40, 41, and 42.

Proof of Proposition 1

The lemma is a special case of the following general lemma (by choosing b = ΘT ιj).

Lemma 4. Consider a strictly positive vector πm ∈ RS++, a strictly positive matrix Θ ∈ RS×S++ , and a

scalar n ∈ R++. Then there is a unique ξ ∈ RS+ so that for all strictly positive b ∈ RS++,

ξ = arg max
x

bTx, s.t.,

x ≤ πm,
0 ≤ (Θ− nI)x.

For each s, the solution has either the first or the second constraint binding, i.e., for each s, ξs = πms or
nξs = Θξs.

Proof : Let x < y denote that x ≤ y and x 6= y. Also, define z = x∨ y ∈ RS , where zs = max(xs, ys)
for all s. Clearly, x ≤ x ∨ y, where the inequality is strict if there is an s such that ys > xs. Finally,
define the set K = {x : 0 ≤ x, x ≤ π∗, nx ≤ Θx}. Note that K is compact.

Now, there is a unique maximal element of K, that is, there is a unique ξ ∈ K, such that for all
x ∈ K such that x 6= ξ, ξ > x. This follows by contradiction, because assume that there are two
distinct maximal elements, y and x, then clearly z = x ∨ y is strictly larger that both x and y. Now,
it is straightforward to show that z ∈ K. The only condition that is not immediate is that Θz ≥ Nz.
However, this follows from Θ(x ∨ y) ≥ Θx ∨Θy ≥ nx ∨ ny = n(x ∨ y) = nz.

Now, since b is strictly positive, it is clear that ξ is indeed the unique solution to the optimization
problem regardless of b. That one of the constraint is binding for each s also follows directly, because
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assume to the contrary that neither constraint is binding in some state s. Then ξs can be increased
without violating either constraint in state s and, moreover, the constraints in all the other states will
actually be relaxed, so such an increase is feasible. Further, since bs > 0, it will also increase the objective
function, contradicting the assumption that ξ is optimal.

Proof of Lemma 2

By definition: V = Λπ (Γ− 1), so from (??), Λπ (Γ− 1) = δΛ−1
m ΦΛm(π + Λπ (Γ− 1)), leading to

Γ−1 =δΛ−1
π Λ−1

m ΦΛmΛπΓ. Now, observing (from (??)) that Λκ = ΛπΛm, the result follows immediately.

Proof of Proposition 2

Let n = N − 1 and K∗(n)
def
= {x : 0 ≤ x, nx ≤ Θx}. Now, nx ≤ (Λ−1

m (I − δΦ)−1Λm − I) is equivalent
to Ny ≤ (I − δΦ)−1y, where y = Λmx ∈ RS+. We first show that K∗(n) = {0} when N > 1

1−δ ,
which immediately implies that the only solution to the optimization problem in Lemma ?? is indeed

the competitive outcome. Define the matrix norm ‖A‖ = supx∈RS\{0}
‖Ax‖
‖x‖ , where the l1 vector norm

‖y‖ =
∑
s |ys| is used. Since Φ is a stochastic matrix, ‖Φi‖ = 1 for all i and using standard norm

inequalities it therefore follows immediately that

‖(I − δΦ)−1‖ =

∥∥∥∥∥
∞∑
0

δiΦi

∥∥∥∥∥ ≤
∞∑
0

δi‖Φi‖ =
1

1− δ
,

and thus ‖(I − δΦ)−1y‖ ≤ 1
1−δ‖y‖. Now, Ny ≤ (I − δΦ)−1y implies that N‖y‖ ≤ ‖(I − δΦ)−1y‖, and

therefore it must be the case that N ≤ 1
1−δ , for the inequality to be satisfied for a non-zero y. Now,

consider the case when N = 1
1−δ . Since y = 1 is an eigenvector to Φ with unit eigenvalue, it is also

an eigenvector to (I − δΦ)−1 with corresponding eigenvector 1
1−δ , leading to x = Λ−1

m 1 = m−1. It is

easy to show that this is the unique (up to multiplication) nonzero solution. Given the properties of Φ,
the Perron-Frobenius theorem implies that this is indeed the only eigenvector with unit eigenvalue, and
therefore also the only eigenvector to (I−δΦ)−1 with eigenvalue 1

1−δ . Now, take an arbitrary y ∈ RS+\{0}
as a candidate vector to satisfy the inequality, i.e., such that z = (I − δΦ)−1y satisfies zi ≥ Nyi = 1

1−δyi
for all i. Then, since ‖(I − δΦ)−1‖ = 1

1−δ , it follows that
∑
i zi ≤

1
1−δ

∑
i yi. The two inequalities can

only be satisfied jointly if zi = 1
1−δyi for all i, and thus y is the already identified eigenvector. Thus,

K∗
(

1
1−δ

)
= {ιm−1, ι ≥ 0}. It follows immediately from the definition of the λ vector that the maximal

ι that satisfies ιm−1
s ≤ π∗s = qsCsαs for all s is mins λs, leading to the given form of the profit vector.

Proof of Lemma 3

If κs = k, the diagonal matrix Λκ becomes Λκ = kI so that we obtain for Γ (see (27)):

Γ = (I − δΦ)−11 =
1

1− δ
1 = N c1. (43)

This is because the eigenvalue of (I − δΦ)
−1

associated with the eigenvector of 1 is given by 1
1−δ (see

Proof of Proposition 2). So, Nm = mins (Γs) = N c.
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Proof of Proposition 3

(1,2) follow from the definition of K in the proof of Lemma ??. It immediately follows that the set K
is decreasing in N and increasing in each of αs, which in turn immediately implies (1,2).

(3) follows from (1), and the fact that πs > 0 for all s when the number of firms is N c.

(4) follows from (1) and that πs = m−1
s πms ms for the s that minimizes µs (see Proposition 3).

(5) follows from the fact that the objective function in Lemma ?? is a continuous function of all pa-
rameters and that (as long as N is strictly below N c) the set K is compact, and depends continuously
on all parameters, in the sense that if K and K ′ are defined for two sets of parameter values, then
D(K,K ′) approaches zero when the parameter values that define K ′ approach those that define K.
Here, D(K,K ′) = supx∈K′ infy∈K |x− y|.

Proof of Proposition 4

Before showing existence, we discuss some invariance results which will be helpful in the proof. We first
note that the following result follows immediately from Proposition 2:

Lemma 5. In any general equilibrium, any two industries with the same N and α have the same
markups, M , and profits, π.

Also, we observe that it is only the distributional properties of N and α that are important for the
aggregate characteristics of an equilibrium. This should come as no surprise given that the aggregate
variables important for industry equilibrium only depend on the distributions. To be specific, we define
the (cumulative) distribution function F : N× [c, C]S → [0, 1], where F (n, s1, . . . , sS) = λ({(z : N(z) ≤
n ∧ α1(z) ≤ s1 ∧ · · · ∧ αS(z) ≤ sS}), and λ denotes Lebesgue measure. Thus, F (n, α1, . . . , αS) denotes
the fraction of industries with number of firms less than or equal to n, and productivities αs(z) ≤ αs
for all s. We say that two economies, E1 and E2, are equivalent in distribution if they have the same

distribution functions, and agree on the other parameters: g, Ā, Φ, γ, θ and δ̂. Also, two outcomes—in
two different economies—are said to be equivalent if any two industries, z and z′ in the first and second
economy, respectively, for which N1(z) = N2(z′) and α1

s(z) = α2
s(z
′) for all s, have the same industry

markups in each state of the world, M1
s (z) = M2

s (z′) for all s.

We then have

Lemma 6. Given two economies that are equivalent in distribution. Then for each equilibrium in one
of the economies there is an equivalent equilibrium in the other.

We now prove the proposition with a fixed point argument, and therefore define a fixed point
relationship for the markup function, M , which ensures that it defines an equilibrium. We define

R
def
= N̄ × [c, C]S , where N̄ = {1, 2, bNcc+ 1}, with elements x = (n, α1, . . . , αS) ∈ R. We will then work

with functions M0 : R→ [0, 1]S , and given such a function, the transformation to the standard markup
function is given by Ms(z) = M0

s (min(N(z), bNcc+ 1), α1(z), . . . , αS(z)). The reason why we work with
the canonical domain, R, rather than S × [0, 1], is that compactness properties needed for a fixed point

argument are easier obtained in this domain. Given a function, M0 : R→
[
1, θ

θ−1

]S
, we define

p0
s = G−θ (Ms) =

(∫
αs(z)Ms (z)

−θ
dz

) 1
−θ

=

(∫
x∈R

xs+1M
0(x)−θdF (x)

) 1
−θ

, (44)

p1
s = G1−θ (Ms) =

(∫
αs(z)Ms (z)

1−θ
dz

) 1
1−θ

=

(∫
x∈R

xs+1M
0(x)1−θdF (x)

) 1
1−θ

. (45)
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It follows immediately that the mapping from M0 to p0 and p1 is continuous (in L1 topology) and since∫
α(z)dz = 1, that p0

s and p1
s lie in [1, θ/(θ − 1)]. From (14), it follows that

Cs = Ās

(
p1

p0

)θ
, (46)

and from (??) that

πms =
1

p1−θ
1

(θ − 1)θ−1

θθ
αsCs =

1

p1−θ
1

(θ − 1)θ−1

θθ
xs+1Cs. (47)

Now, for each z, given πm ∈ RS+, the program in Lemma ?? provides a continuous mapping from πm to

πs ∈
S∏
1

[0, πms ]. (48)

We use (19) to define the operator F , which operates on functions, and which is given by:

M1
s (x) = (F(M0)(x))s = 1 +

p1(s)1−θ

Csxs+1
(M0

s (x))θπs.

Since each operation in (44-48) is continuous, it follows that F is a continuous operator (in L1(R1+S)-

norm). Further, it also follows that if M0
s (x) ∈

[
1, θ

θ−1

]
, then since 0 ≤ π ≤ πm, 1 ≤ M1

s (x) ≤

1 + (θ−1)θ−1

θθ
(M0

s )θ ≤ θ
θ−1 . Define, Z as the set of all functions, M : R→ [1, θ/(θ − 1)]S , such that M is

nonincreasing in its first argument and nondecreasing in all other arguments. Then, from what we have
just shown, together with Proposition 3, it follows that F is a continuous operator that maps Z into
itself. We also have

Lemma 7. Z is convex and compact.

We prove that the set, W , of nondecreasing functions f : [0, 1]→ [0, 1], is convex and compact. The

generalization to functions with arbitrary rectangular domains and ranges, f :
∏N

1 [ai, bi]→
∏M

1 [ci, di],
is straightforward, as is the generalization to functions that are nonincreasing in some coordinates and
nondecreasing on others (as is Z). Convexity is immediate. For compactness, we show that every
sequence of functions fn ∈W , n = 1, 2, . . ., has a subsequence that converges to an element in W . First,
note that W is closed, since a converging (Cauchy) sequence of nondecreasing functions necessarily
converges to a nondecreasing function. To show compactness, define the corresponding sequence of

vectors gn ∈ [0, 1]2
j

, for some j ≥ 1, by gnk = fn(2−jk), k = 0, 1, . . . 2j − 1. Now, since [0, 1]2
j

is
compact it follows that there is a subsequence of {fn}, {fnm} that converges at each point 2−jk, to

some g∗ ∈ [0, 1]2
j

. Define the function hj : [0, 1] → [0, 1] by hj(x) = g∗k, for 2−jk ≤ x < 2−j(k + 1),
which is obviously also in W . Next, take the sequence {fnm}, and use the same argument to find a
subsequence that converges in each point 2−(j+1)k, k = 0, . . . , 2j+1 − 1, and the corresponding function
hj+1(x). By repeating this step, we obtain a sequence of functions in W , hj , hj+1, . . ., such that for
m > j, ∫ 1

0

|hm(x)− hj(x)|dx ≤
∑
k

(gjk+1 − g
j
k)2−j ≤ 2−j .

Thus, hj , hj+1, . . . forms a Cauchy-sequence, which consequently converges to some function h∗ ∈ W .
Take a subsequence of the original sequence of functions, {fnj}, such that

∫
|fnj − hj |dx ≤ 2−j . Then,
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for m > j, since

∫ 1

0

|fnm(x)− fnj (x)|dx =

∫ 1

0

|fnm(x) + hm(x)− hm(x) + hj(x)− hj(x)− fnj (x)|dx

≤
∫ 1

0

|fnm(x)− hm(x)|dx+

∫ 1

0

|fnj (x)− hj(x)|dx

+

∫ 1

0

|hm(x)− hj(x)|dx

≤ 3× 2−j ,

{fnj} is also a Cauchy sequence and converges to h∗ ∈ W . Thus, W is compact and the lemma is
proved. Given Lemma 7 and the continuity of F , a direct application of Schauder’s fixed point theorem

implies that there is a M∗ ∈ Z, such that F(M∗) = M∗. Now, given such a M∗, and its associated πm

defined by (47), and given the functions, N(z) and αs(z), 0 ≤ z ≤ 1, Lemma ?? can be used to construct
Ms(z). Since M and M∗ have the same distributional properties, and C, p0 and p1, only depend on
distributional properties, it immediately follows that M constitutes an equilibrium. We are done.

Proof of Proposition 5

First note that an equivalent formulation of Lemma ?? is the following: Define the sets Vs = {x ∈ RS+ :

xs ≤ πms }, Qs = {x ∈ RS+ : 0 ≤ ((Θ− nI)x)s}, and R = (∩Ss=1Vs) ∩ (∩Ss=1Qs). Then there is a unique
element, r ∈ R, such that for all s, rs = maxq∈R qs. That is, there is a unique element that jointly
maximizes all coordinates of elements in R. Moreover, for each s, such that rs < πms it must be that
rs = 1

n (Θx)s.

For coordinates such that rs < πms , if any number of the πms is replaced by π̂ms > πms , i.e., if Vs
is replaced by V̂s = {x ∈ RS+ : xs ≤ π̂ms }, where π̂ms ≥ πms , and the equality is only allowed to be

strict for coordinates where rs < πms , and R̂ is defined as R = (∩Si=1V̂s) ∩ (∩Si=1Qs), then R̂ = R, and

consequently, r̂ = r where r̂ is the unique maximal element in R̂. To see this, assume that an element
v ∈ R̂ existed such that vs > πms for at least one s. Then since R̂ is convex there must also be an

element, w = λr + (1 − λ)v ∈ R̂, with ws ≤ πms , for all s and ws = πms for one coordinate such that
rs < πms . But then w ∈ R, and it must then be that rs = πms , leading to a contradiction. Thus, no such

element exists, so R̂ = R.

Now, from our discussion in Section 3.3, it follows that in an equilibrium in a homogeneous economy,
all firms must charge the same markups in any state, Ms(z) = M̄s for all z, and that any equilibrium
must be efficient so that Cs = Ās = As(z) and αs(z),= 1 for all s for all z. What is not a priori clear
is whether there may be multiple average markup vectors, M̄ , that constitute an equilibrium. We now
show that this is not the case.

Given an equilibrium in a homogeneous economy, it follows from equation (19), and that Cs = As,
that

1

M̄s
= 1− πs

As
= (1− us). (49)

Here us = πs
As
∈
[
0, 1

θ

]
represents firm profits in state s as a fraction of total output.

It further follows from equation (??) that given such an average markup across industries, the
monopolistic profits as a fraction of total output in one (zero-measure) industry, z, that deviates from

the average markup function is ûs =
π̂ms
As

= ζM̄θ−1
s = ζ(1−us)1−θ. We note that ûs ≥ u for all u ∈

[
0, 1

θ

]
,

and that the inequality is strict except for at û = u = 1
θ .
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Given the homogeneous behavior of all other industries, the firm optimization problem in (23-25)
can be written

û = arg max
û

ιTj Λ−1
A ΘΛAû, s.t., (50)

ûs ≤ ζ(1− us)1−θ, s = 1, . . . , S, (51)

0 ≤
(
Λ−1
A ΘΛA − (N − 1) I

)
û, (52)

where ΛA = diag(Ā1, . . . , Ās). A necessary and sufficient condition for u to be an equilibrium is now
that û = u in the above optimization problem.

Assume that we have found such a u (we know that there exists at least one such u from the existence
theorem). If we can show that u is also the solution to the same program, but where (51) is replaced
by ûs ≤ 1

θ for all s, then we are done, since there is a unique solution for that optimization problem (as
follows from an identical argument as the proof of Lemma 4).

An identical argument as in Lemma 4 implies that for each s, either (51) or (52) binds (or both). For
any s such that (51) binds, it must further be that equilibrium markups in that state are monopolistic,
i.e., u = 1

θ . Thus, relaxing the constraints for those s to ûs ≤ 1
θ does not change the solution to the

problem.

For any other s, where (51) does not bind and (52) binds, we note that since us < 1
θ , us <

ζ(1−us)1−θ, ûs is strictly lower than its bound imposed by (51) for such s. However, from the argument
at the beginning of this lemma, it follows that relaxing the constraint for these coordinates does not
change the solution, so we can relax the constraints to ûs ≤ 1

θ for such s too. Thus, u is also a solution
to the relaxed problem, and is therefore unique. We are done.

B Long Term Growth

When g > 0, we can still solve for time-invariant equilibria through appropriate normalizations. That is,
we focus on equilibria which—except for the constant growth rate g—are time invariant in that outcomes
are the same at t1 and t2 if the states are the same, i.e., if st1 = st2 . In such equilibria, outcomes on the
equilibrium path can be written as:

C (t) = (1 + g)
t
Cst , (53)

y (t) = (1 + g)
t
yst , (54)

w (t) = (1 + g)
t
wst , (55)

π(z, t) = (1 + g)
t
πst (z) , (56)

c(z, t) = (1 + g)
t
cst (z) , (57)

where variables on the right hand side are growth-normalized, time invariant, variables which only
depend on the state, st. We want to emphasize that this formulation does not impose any restriction on
off-equilibrium path behavior. Thus, the equilibria that we exhibit also exist in the broader class.

The focus on time invariant equilibria is natural, since we prove that optimizing firm behavior in
one particular industry is endogenously time invariant provided that all other industries exhibit time-
invariant behavior. Moreover, it is ensured that (at least) one time-invariant equilibrium exists (see
Proposition 4). In such an economy we immediately obtain that markups are time-invariant

M(z, t) = Mst(z). (58)
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It follows from a standard transformation, using the utility representation (equation 2), that growth-
normalized variables can be determined by solving the model for a non-growing economy with a growth-
adjusted personal discount rate, i.e., with

δ̂
def
= (1 + g)1−γδ. (59)

Intuitively, the representative agent’s trade-off between consumption in different times and states is
affected in identical ways by changes in the growth rate and the subjective discount factor. Thus, the

effective discount rate in a growing economy, δ̂, depends on long term growth rates. The importance
of long-term growth rates for asset pricing was recently discussed in Parlour et al. (2011). In that
paper, long-term growth rates are important because they determine how much investors care about
rare disaster events in the far future.
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