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Abstract

Many economic and financial applications require the forecast of a random variable

of interest over several periods into the future. The sequence of individual forecasts, one

period at a time, is called a path-forecast, where the term path refers to the sequence

of individual future realizations of the random variable. The problem of constructing a

corresponding joint prediction region has been rather neglected in the literature so far:

such a region is supposed to contain the entire future path with a prespecified probability.

We develop bootstrap methods to construct joint prediction regions. The resulting regions

are proven to be asymptotically consistent under a mild high-level assumption. We compare

the finite-sample performance of our joint prediction regions to some previous proposals

via Monte Carlo simulations. An empirical application to a real data set is also provided.
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1 Introduction

When predicting a random variable, a point forecast alone is often considered insufficient. In

addition, a statement about the uncertainty contained in the point forecast, as expressed by a

prediction interval, may also be desired.

This is similar to the situation where a point estimator of a population parameter alone is

considered insufficient; and where a statement about the uncertainty contained in the point

estimate, as expressed by a confidence interval, is also desired.

Constructing a prediction interval for a random variable is inherently more difficult than

constructing a confidence interval for a population parameter.

In the latter problem, typically, a central limit theorem can be applied to argue that an esti-

mator of the parameter has, approximately, a normal distribution for large sample sizes. This

allows for the construction of standard, normal-theory confidence intervals described in any ba-

sic statistics text book. The use of bootstrap methods as an alternative is ‘only’ motivated by

higher-order considerations: standard methods already result in confidence intervals that are

consistent, that is, have coverage probability equal to the nominal level 1− α asymptotically.

In the former problem, no central limit theorem can be applied to argue that the difference

between a point forecast and the random variable of interest has, approximately, a normal

distribution for large sample sizes.1 Therefore, standard normal-theory prediction intervals are

only valid, even asymptotically, under restrictive parametric assumptions. The use of bootstrap

methods as an alternative is motivated by first-order considerations already: they result in

prediction intervals that are consistent under very general assumptions where standard, normal-

theory prediction intervals fail.

How to apply the bootstrap to construct prediction intervals that are not only asymptot-

ically consistent but also have good finite-sample properties is not a trivial problem. But it can

be considered solved by now to a satisfactory degree; for example, see De Gooijer and Hyndman

(2006, Section 12) for an overview.

The discussion up to this point only applies to a single (future) random variable. In many

applications, however, a random variable of interest is predicted up to H periods into the

future. For example, one might predict future inflation for the next H = 12 months. A path

refers to the sequence of future realizations 1 to H periods into the future. A path-forecast

refers to the sequence of corresponding forecasts 1 to H periods into the future.

On the one hand, one can constructH marginal prediction intervals by using a given method

to construct a prediction interval repeatedly, one period at a time. But, by design, probability

statements then only apply marginally, one period at a time: the prediction interval at a

specific horizon h, for some 1 ≤ h ≤ H, will contain the random variable h periods into the

future with prespecified probability 1− α.

On the other hand, a more general problem is the construction of a joint prediction region

that will contain the entire future path with the desired probability 1 − α. For example, if

1For example, such an assumption is made by Jordà and Marcellino (2010).
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one would like to know how high inflation might rise over the next H = 12 months, with

probability 1− α, one needs to construct a joint prediction region for the future path at level

1−α as opposed to stringing together 12 marginal prediction intervals, each one at level 1−α.
It should be clear that stringing together marginal prediction intervals for horizons h = 1

up to h = H, each one at level 1− α, will not result in a joint prediction region that contains

the entire future path with probability 1−α. Instead, apart from pathological cases, the joint

coverage probability will be strictly less than 1 − α, and decreasing in H. Denote by Eh the

event that the random variable at h periods in the future will fall into its prediction interval. If

the events {Eh}Hh=1 are independent of each other, then stringing together marginal prediction

intervals results in a joint prediction region that will contain the entire future path with

probability (1− α)H only.2

Unfortunately, the method of stringing together marginal prediction intervals for horizons

h = 1 up to h = H is still widely in use, such as in the fan charts for GDP growth and CPI

inflation published by the Bank of England and the Central Bank of Norway.3

The construction of joint prediction regions for future paths of a random variable of interest

has been rather neglected in the forecasting literature so far. Two notable exceptions are

Jordà and Marcellino (2010) and Staszewska-Bystrova (2010). The former work proposes an

‘asymptotic’ method that relies on the overly strong assumption that forecast errors have,

approximately, a normal distribution. The latter work proposes a bootstrap method that is of

heuristic nature only. Therefore, neither of the proposed methods appears entirely safe to use

in practice.

In this paper, we propose a bootstrap method to construct joint predictions regions that

are proven to contain future paths of a random variable of interest with probability 1− α, at

least asymptotically, under a mild high-level assumption.

In addition, we also consider the more general problem of constructing joint prediction

regions that will only contain all elements of future paths up to a small number k− 1 of them

with probability 1−α. If the maximum forecast horizon H is large, the applied researcher may

deem the criterion that all elements of the future path must be contained in the joint prediction

region with probability 1 − α as too strict. For example, when H = 24, it may be deemed

acceptable that up to k−1 = 2 elements of the future path may fall outside the joint prediction

region; thus requiring that ‘only’ at least 22 of the 24 elements — or at least 90% of the 24

elements — of the future path be contained in the joint prediction region with probability

1−α. The choice of k must be made by the applied researcher, not by the statistician. But it

will be useful to the applied researcher to have a method available that can handle any desired

value of k. In particular, the choice k = 1 yields a ‘standard’ joint prediction region that must

2In practice, the events {Eh}
H
h=1 are typically not independent of each other. Stringing together marginal

prediction intervals then results in a joint prediction region that will contain the entire future path with proba-

bility somewhere between (1− α)H and 1− α. The exact probability is a function of the dependence structure

of the events {Eh}
H
h=1.

3 Several examples can be found at http://www.bankofengland.co.uk/publications/inflationreport/

and http://www.norges-bank.no/english/inflationreport/.
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contain all elements of a future path with probability 1− α.

The remainder of the paper is organized as follows. Section 2 contains some background

results that are useful for setting the stage. Section 3 describes our method to construct

joint prediction regions and compares it to some previous proposals in the literature. Section 4

studies finite-sample performance via Monte Carlo simulations. Section 5 provides an empirical

application to real data. Finally, Section 6 concludes. All mathematical proofs and some

further background results are collected in an appendix.

2 Background Results

Our motivating problem is the construction of a joint prediction region for a future path of

a random variable of interest. However, the proposed methodology applies more generally to

the construction of a joint prediction region of an arbitrary random vector that has not been

observed yet.

In explaining the methodology, it will be convenient to start with the special case of a single

random variable that has not been observed yet.

2.1 Single Forecast

First, consider a single random variable y with mean µ ≡ E(y). This special case makes it

easier to explain some fundamental concepts before considering the more general case of a

random vector with H elements.

One may wish to predict y or to estimate µ. Denote the forecast of y by ŷ and the estimator

of µ by µ̂. Often times, the two are actually the same, that is ŷ = µ̂; for example, in the context

of linear regression models. Therefore, in terms of a (point) forecast of y compared a (point)

estimate of µ, there often is no difference at all.

But what if one desires an ‘uncertainty interval’ in addition? Such an interval should contain

the random variable y or its mean µ, respectively, with a prespecified probability 1 − α. (To

be careful, this probability only exists before computing the interval from a frequentist view

point, at least for the mean µ.) Now the two solutions are fundamentally different and the

former interval will have to be wider due to the additional randomness contained in the random

variable y compared to its mean µ. To make this distinction apparent in the notation, we prefer

to call the solution to the former problem a prediction interval and the solution to the latter

problem a confidence interval. In doing so, we are in agreement with De Gooijer and Hyndman

(2006, p.460):

Unfortunately, there is still some confusion in terminology with many authors by

“confidence interval” instead of “prediction interval”. A confidence interval is for

a model parameter, whereas a prediction interval is for a random variable. Almost

always, forecasters will want prediction intervals — intervals which contain the true

values of future observations with [a] specified probability.
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It is also useful to point out that there is a duality between a confidence interval for µ and

a hypothesis test for µ. For concreteness, consider the two-sided hypothesis testing problem

H0 : µ = µ0 versus H1 : µ 6= µ0 . (1)

If a level α test is available for this problem, for every value of µ0, then a two-sided confidence

interval CI for µ at level 1− α can be constructed by inverting the hypothesis test as follows:

CI ≡ {µ0 : µ0 is not rejected by the hypothesis test} . (2)

That is, the collection of values µ0 not rejected by the test at significance level α constitutes a

confidence interval with confidence level 1 − α. Conversely, a hypothesis test for problem (1)

can be carried by inverting a two-sided confidence interval for µ: one simply rejects H0 at

significance level α if and only if (iff) the value µ0 is not contained in the confidence interval

with confidence level 1− α.

Analogously, there is a duality between a one-sided confidence interval for µ and a one-sided

hypothesis test for µ; the details are straightforward.

On the other hand, there is no duality between a prediction interval for y and a hypothesis

test for y. This is because y is a random variable and not a (non-random) parameter and

hypothesis tests on such random quantities do not exist. In particular, the testing problem

H0 : ŷ − y = 0 versus H1 : ŷ − y 6= 0 (3)

is nonsensical. The quantity ŷ − y is a random variable. If its distribution is continuous,

then ŷ − y will be different from zero with probability one, irrespective of the ‘quality’ of the

forecast ŷ.4

2.2 Path-Forecast

More generally, consider a random vector Y ≡ (y1, . . . , yH)′ of interest with mean µ ≡
(µ1, . . . , µH)′ = E(Y ). For the purposes of this paper, Y will typically correspond to the

values of a random variable one to H periods into the future; that is, to a future path of a

random variable. But the discussion below applies to any random vector. The underlying

probability mechanism is denoted by P.

One can wish to predict Y or to estimate µ. Denote the forecast of Y by Ŷ and the

estimator of µ by µ̂. (When Y corresponds to a future path of a random variable, Ŷ is also

called a path-forecast.) Again, often times, the two are actually the same, that is, Ŷ = µ̂; for

example, in the context of linear regression models. Therefore, again, in terms of a (point)

forecast of Y compared to a (point) estimate of µ, there often is no difference at all.

What if one desires the extension of an ‘uncertainty interval’ for a univariate quantity to

a ‘(joint) uncertainty region’ for a multivariate quantity? In the most stringent case, such a

region should contain the entire random vector Y or its mean µ, respectively, with a prespecified

4Nevertheless, a testing problem of this sort is considered by Jordà et al. (2010, Subsection 2.1).
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probability 1− α. Again, the two solutions are fundamentally different and the former region

will have to be larger (in volume) due to the additional randomness contained in Y compared

to its mean µ.

Again, there is a duality between a joint confidence region for the parameter µ and a

hypothesis test for µ. In the multivariate setting, the testing problem is inherently of a two-

sided nature:

H0 : µ = µ0 versus H1 : µ 6= µ0 . (4)

If a level α test is available for this problem, for every value of µ0, then a joint confidence

region JCR for µ at level 1−α can be constructed by inverting the hypothesis test as follows:

JCR = {µ0 : µ0 is not rejected by the hypothesis test} . (5)

That is, the collection of values not rejected by the test at significance level α constitutes a joint

confidence region with confidence level 1−α. Conversely, a hypothesis test for problem (4) can

be carried out by inverting a joint confidence region for µ: one simply rejects H0 at significance

level α iff the value µ0 is not contained in the joint confidence region with confidence level

1− α.

Again, on the other hand, there is no duality between a joint prediction region for Y and a

hypothesis test for Y . In particular, the testing problem

H0 : Ŷ − Y = 0 versus H1 : Ŷ − Y 6= 0 , (6)

where 0 ≡ (0, 0, . . . , 0)′, is nonsensical. The quantity Ŷ − Y is a random vector. If its

distribution is continuous, then Ŷ − Y will be different from the vector zero with probability

one, irrespective of the ‘quality’ of the forecast Ŷ .5

A potential complication with joint regions arises when uncertainty statements concerning

the individual components yh or µh, respectively, are desired. For example, this is typically the

case when a joint prediction region for Y is to be constructed in addition to a path-forecast Ŷ .

One desires lower and upper bounds for each component yh in such a manner that the entire

vector Y be contained in the implied rectangle with probability 1− α. This is a trivial task if

the underlying joint prediction region is already of rectangular form. But this is not true for

all methods to compute joint regions; many methods result in regions of elliptical form instead.

The most prominent example is the Scheffé joint region, dating back to Scheffé (1953, 1959).

The Scheffé joint confidence region for µ is obtained by inverting the classical F -test. Let

Σ̂(µ̂) denote an estimated covariance matrix of µ̂. Then the joint confidence region is given

by

JCR ≡
{
µ0 : (µ̂− µ0)

′
[
Σ̂(µ̂)

]−1
(µ̂− µ0) ≤ χ2

H,1−α

}
, (7)

where χ2
H,1−α denotes the 1 − α quantile of the chi-square distribution with H degrees of

freedom. The use of this joint confidence region is usually justified by a central limit theorem

5Nevertheless, a testing problem of this sort is considered by Jordà et al. (2010, Subsection 2.2).
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implying an approximate multivariate normal distribution of µ̂ with mean µ. Such a central

limit theorem will hold under mild regularity conditions; for example, see White (2001).

The Scheffé joint prediction region for Y is obtained similarly. Define the vector of prediction

errors by Û ≡ Ŷ −Y and let Σ̂(Û) denote an estimated covariance matrix of this vector. Then

the joint prediction region is given by

JPR ≡
{
X : (Ŷ −X)′

[
Σ̂(Ŷ )

]−1
(Ŷ −X) ≤ χ2

H,1−α

}
. (8)

The use of this joint prediction region is only justified if Û has approximately a multivariate

normal distribution with mean zero. This is a strong additional assumption, which is often

violated in practice. A central limit theorem can typically be applied to argue that an estimator

has, approximately, a normal distribution for large sample sizes. But a central limit theorem

can never be applied to argue that a forecast error has, approximately, a normal distribution

for large sample sizes. This point is illustrated via a simple example in Remark 3.2 below.

If the joint region is of elliptical form and statements concerning the individual components

are desired, the joint region has to be ‘projected’ on the axes of RH . This action implies a

larger rectangular joint region: namely, the smallest rectangle, with sides parallel to the axes

of RH , that contains the original elliptical region. As a result, if the elliptical region has joint

coverage probability 1− α, then the implied rectangular region has joint coverage probability

larger than 1 − α. Therefore, such a projection method is generally overly conservative. If

statements concerning the individual components are desired, it is better to construct ‘direct’

rectangular joint regions instead; that is, joint regions that are designed to be of rectangular

form to begin with.

Remark 2.1. It will be useful to illustrate these concepts in simple, parametric setup. Assume

Y ≡ (Y1, Y2)
′ ∼ N(µ, I2), where µ = (µ1, µ2)

′ and I2 is the identity matrix of dimension two.

Therefore, Y1 and Y2 are independent with Yh ∼ N(µh, 1). The goal is to construct a joint

confidence region for µ. The point estimator for µ is simply given by the observed random

vector, that is, µ̂ ≡ Y .

The Scheffé joint confidence region is obtained by inverting the classical F -test. It is a

circle centered at Y with radius
√
χ2
2,1−α, where χ2

2,1−α denotes the 1 − α quantile of the

chi-square distribution with two degrees of freedom. For example, when α = 0.05, the radius

is
√
5.99 = 2.45. The implied rectangular joint confidence region, obtained by projecting the

circle on the two axes, is a square with center Y and half length 2.45.

On the other hand, a ‘direct’ rectangular joint confidence region is given by

[
Y1 ± d2,1−α

]
×
[
Y1 ± d2,1−α

]
,

where d2,1−α is the 1 − α quantile of the random variable max{|Y1 − µ1|, |Y2 − µ2|}. These

quantiles are not commonly tabulated, but can be easily simulated to arbitrary precision. For

example, when α = 0.05, then d2,0.95 = 2.24.
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The ‘direct’ rectangular joint confidence region is thus a square with center Y and half

length 2.24. Therefore, it is smaller than the implied rectangular joint confidence region by

the Scheffé method.

The Scheffé region itself has a smaller volume than the ‘direct’ rectangular region when

α = 0.05, namely

2.452 · π = 18.86 < 20.07 = (2 · 2.24)2 .

But when a rectangular region is needed in the end, projecting the Scheffé region on the axes

results in a larger region compared to the ‘direct’ rectangular region. An illustration is provided

in Figure 1.

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Figure 1: An illustration of Remark 2.1. One observes µ̂ = Y = (0.0, 0.0) and wishes to

construct a joint confidence region for µ with confidence level 1− α = 0.95. The solid ellipse

is the Scheffé joint confidence region: a circle with radius 2.45. The solid rectangle is the

implied (that is, projected on the axes) rectangular joint confidence region: a square with half

length 2.45. The dashed rectangle is the ‘direct’ rectangular joint confidence region: a square

with half length 2.24.
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The stringent joint regions discussed so far control the probability of containing the entire

vector of interest to be (at least) equal to 1 − α. Equivalently, they control the probability

of missing at least one component of the vector to be (at most) equal to α. Borrowing from

the multiple testing literature, the latter probability can be termed the familywise error rate

(FWE); for example, see Romano et al. (2008). So for a joint confidence region (JCR) for µ,

FWE ≡ P{At least one of the µh not contained in the JCR} , (9)

whereas for a joint prediction region (JPR) for Y ,

FWE ≡ P{At least one of the yh not contained in the JPR} . (10)

Jordà et al. (2010, Section 2.2) argue that controlling the FWE can be too strict:

For example, in a prediction of a path of monthly inflation over the next two years,

control of the FWE would result in rejection of such paths as when the trajectory

of inflation is [almost] correctly predicted for 23 periods but the prediction of the

last month is particularly poor.

The decision whether the FWE is too strict or not in a given application has to be made

by the applied researcher, not by the econometrician. It is the job of the econometrician to

provide the applied researcher with an alternative tool in case his decision is against control

of the FWE. Jordà et al. (2010) propose as an alternative to control the false discovery rate

(FDR). Unfortunately, this proposal is actually equivalent to control of the familywise error

rate in the context of joint confidence regions and joint prediction regions. The explanation of

this fact is a bit lengthy and can be found in Appendix B.

Although control of the FDR is not a meaningful alternative, it is possible to construct joint

confidence regions as well as joint prediction regions based on a generalized error rate that is

meaningful in the context of joint regions. The solution is to use the generalized familywise

error rate (k-FWE).

For a joint confidence region (JCR) for µ,

k-FWE ≡ P{At least k of the µh not contained in the JCR} , (11)

whereas for a joint prediction region (JPR) for Y ,

k-FWE ≡ P{At least k of the yh not contained in the JPR} . (12)

As a special case, the choice k = 1 gives back the FWE. On the other hand, any choice

k ≥ 2 results in a less stringent error rate.

As will be discussed in Section 3, the larger the value of k the smaller the resulting joint

region. Consequently, by being willing to miss a small number of components in the joint

region, the applied researcher can obtain more precise bounds in return.
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Since the number of components, H, is known, control of the k-FWE immediately gives

control on the probability of the proportion of components not contained in the joint region.

Take the example of a path-forecast with H = 24 components, as when predicting monthly

inflation for the next two years. Then the choice k = 3 allows for a proportion of missed

components up to 10%. This is because one or two missed components, out of the H = 24, do

not constitute a violation of the 3-FWE criterion, but three or more missed components do.

The next section details how the k-FWE, which includes the FWE as a special case, can

be controlled in practice. It only does this in the context of a joint prediction region for Y .

The method is analogous in the context of a joint confidence region for µ and is detailed in

Romano and Wolf (2005, 2007) already.

Because the method is based on quantiles of random variables whose cumulative distribution

function may not be invertible, the following remark is in order.

Remark 2.2. If the cumulative distribution function of a random variable is not invertible,

then its quantiles are not necessarily uniquely defined. For concreteness, we adopt the following

definition for quantiles in this paper.

LetX be a random variable with cumulative distribution function F (·). Then, for λ ∈ (0, 1),

the λ quantile of (the distribution) of X is defined as inf{x : F (x) ≥ λ}.

3 Joint Prediction Regions Based on k-FWE Control

The goal is to construct a joint prediction region for a future path controls the k-FWE, for an

arbitrary integer 1 ≤ k < H. In particular, the special choice k = 1 corresponds to control of

the FWE.

Any formal analysis has to be put into a suitable framework. To this end, we borrow some

notation from Jordà et al. (2010). We start out by discussing the case of a univariate time

series, which simplifies the notation and makes it easier to focus on the methodology.

3.1 Univariate Time Series

One observes a univariate time series {y1, . . . , yT } generated from a true probability mecha-

nism P and wishes to predict the future path YT,H ≡ (yT+1, . . . , yT+H)′. At time t, denote

a forecast h periods ahead by ŷt(h). Then a path-forecast for YT,H is given by ŶT (H) ≡
(ŷT (1), . . . , ŷT (H))′. Denote the vector of prediction errors by ÛT (H) ≡ (ûT (1), . . . , ûT (H))′ ≡
ŶT (H) − YT,H . Finally, σ̂T (h) denotes a prediction standard error, that is, a standard error

for ûT (h): it is an estimator of the unknown standard deviation of the random variable ûT (h).

We further assume a generic method to compute a vector of bootstrap prediction errors

Û∗
T (H) ≡ (û∗T (1), . . . , û

∗
T (H))′, based on artificial bootstrap data {y∗1, . . . , y∗T , y∗T+1, . . . , y

∗
T+H}

generated from an estimated probability mechanism P̂T .
6 Such bootstrap forecast errors can

6The estimated probability mechanism has subscript T because it is a function of the observed data

{y1, . . . , yT }.
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be computed in many different ways. We shall not enter this debate here; the goal is to provide

a generic procedure to construct a joint prediction region where application-specific details are

up to the applied researcher. Finally, σ̂∗T (h) denotes a bootstrap prediction standard error,

that is, a standard error for û∗T (h).

We now briefly illustrate these concepts. The observed data are {y1, . . . , yT }. The applied

researcher selects a suitable ‘null’ model, fits it to the data, and then uses the fitted model

to make the predictions ŷT (h), for h = 1, . . . , H. To be concrete, assume he uses an ARIMA

model. The fitted model also provides prediction standard errors σ̂T (h). Next, the applied

researchers generates bootstrap data {y∗1, . . . , y∗T , y∗T+1, . . . , y
∗
T+H}. To this end, he can use a

parametric bootstrap, based on the ARIMA model fitted from the original data; this would be

a suitable approach if he believes that his null model is correctly specified. Alternatively, he

can use a nonparametric time series bootstrap (say a blocks bootstrap or a sieve bootstrap);

this would be a suitable approach if he believes that his null model might be misspecified.7

Not making use of the stretch {y∗T+1, . . . , y
∗
T+H}, he computes forecasts ŷ∗T (h) and prediction

standard errors σ̂∗T (h). Finally, he computes û∗T (h) ≡ ŷ∗T (h)− y∗T+h.

Our high-level assumption below is based on the two vectors of standardized prediction errors

ŜT (H) ≡ (ûT (1)/σ̂T (1), . . . , ûT (H)/σ̂T (H))′ and Ŝ∗
T (H) ≡ (û∗T (1)/σ̂

∗
T (1), . . . , û

∗
T (H)/σ̂∗T (H))′,

respectively. Denote the probability law under P of ŜT (H)|yT , yT−1, . . . by ĴT . Also denote the

probability law under P̂T of Ŝ∗
T (H)|y∗T , y∗T−1, . . . by Ĵ

∗
T . In the asymptotic framework, T tends

to infinity whereas H remains fixed.

Assumption 3.1. ĴT converges in distribution to a non-random continuous limit law Ĵ .

Furthermore, Ĵ∗
T consistently estimates this limit law: ρ(ĴT , Ĵ

∗
T ) → 0 in probability, for any

metric ρ metrizing weak convergence.

Expressed in words, Assumption 3.1 states that, as the sample size T increases, the condi-

tional distribution of the vector of standardized bootstrap prediction errors Ŝ∗
T (H) becomes a

more and more reliable approximation to the (unknown) conditional distribution of the vector

of true standardized prediction errors ŜT (H).

We next specify the forms of the joint prediction regions for YT,H , first for the two-sided

case and then for the one-sided case.

Some further notation is required. Suppose X ≡ (x1, . . . , xH)′ is a vector with H compo-

nents. First, for k ∈ {1, . . . , H}, k-max(X) returns the kth-largest value of the xh. So, if the

elements xh, 1 ≤ h ≤ H, are ordered as x(1) ≤ · · · ≤ x(H), then k-max(X) ≡ x(H−k+1). Second,

for k ∈ {1, . . . , H}, k-min(X) returns the kth-smallest value of the xh; that is, k-min(X) ≡ x(k).

Third, |X| denotes the vector
(
|x1|, . . . , |xH |

)′
.

Let dmax
|·|,1−α

(k) denote the 1 − α quantile of the random variable k-max
(
|ŜT (H)|

)
. Then a

two-sided joint prediction region for YT,H that exactly controls the k-FWE is given by

[
ŷT (1)± dmax

|·|,1−α(k) · σ̂T (1)
]
× · · · ×

[
ŷT (H)± dmax

|·|,1−α(k) · σ̂T (H)
]
. (13)

7For an overview of nonparametric time series bootstrap methods, the reader is referred to Bühlmann (2002),

Lahiri (2003), and Politis (2003).
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The implication is that the probability that the region (13) will contain at least H − k + 1

elements of YT,H is (at least) equal to 1−α in finite samples. This property follows immediately

from the definition of dmax
|·|,1−α

(k).

The problem is that this ideal region is not feasible, since the constant dmax
|·|,1−α

(k) is unknown.

It has to be estimated in practice by dmax,∗
|·|,1−α

(k), which is defined as the 1 − α quantile of the

random variable k-max
(
|Ŝ∗

T (H)|
)
. This quantile can typically not be derived analytically, but

it can be simulated to arbitrary precision from a sufficiently large number of bootstrap samples;

see Algorithm 3.1 below.

Then a two-sided joint prediction region for YT,H that asymptotically controls the k-FWE

is given by

[
ŷT (1)± dmax,∗

|·|,1−α
(k) · σ̂T (1)

]
× · · · ×

[
ŷT (H)± dmax,∗

|·|,1−α
(k) · σ̂T (H)

]
. (14)

The implication is that the probability that the region (14) will contain at least H − k + 1

elements of YT,H is (at least) equal to 1− α asymptotically.

The modifications to the one-sided case are as follows; we only present the feasible regions.

Let dmax,∗
1−α (k) denote the 1 − α quantile of the random variable k-max

(
Ŝ∗
T (H)

)
. Then a

one-sided lower joint prediction region for YT,H that asymptotically controls the k-FWE is

given by

[
ŷT (1)− dmax,∗

1−α (k) · σ̂T (1),∞
)
× · · · ×

[
ŷT (H)− dmax,∗

1−α (k) · σ̂T (H),∞
)
. (15)

Let dmin,∗
α (k) denote the α quantile of the random variable k-min

(
Ŝ∗
T (H)

)
. Then a one-sided

upper joint prediction region for YT,H that asymptotically controls the k-FWE is given by

(
−∞, ŷT (1)− dmin,∗

α (k) · σ̂T (1)
]
× · · · ×

(
−∞, ŷT (H)− dmin,∗

α (k) · σ̂T (H)
]
. (16)

Note here that dmin,∗
α (k) is generally a negative number so that, for each component h, the

upper end of the corresponding interval is indeed larger than the prediction ŷT (h).

As is clear from the definitions, the multipliers dmax,∗
|·|,1−α

(k), dmax,∗
1−α (k), are both monotonically

decreasing in k, while the multiplier dmin,∗
α (k) is monotonically increasing in k. Consequently,

the larger the value of k, the smaller in volume are the regions (14)–(16); for an illustration, see

Subsection 5.1. (When we speak of ‘volume’ for the one-sided regions (15)–(16), we implicitly

refer to the relevant lower or upper ‘half volumes’, since the entire volume is always infinite,

of course.)

The following proposition formally establishes the asymptotic validity of these feasible boot-

strap joint prediction regions.

Proposition 3.1. Under Assumption 3.1, each of the joint prediction regions (JPRs) (14)–(16)

for YT,Hsatisfies

lim sup
T→∞

k-FWE ≤ α , (17)

where

k-FWE ≡ P{At least k of the yT+h not contained in the JPR} . (18)
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The following algorithm details how to compute the three multipliers dmax,∗
|·|,1−α

(k), dmax,∗
1−α (k),

and dmin,∗
α (k) in practice. The algorithm assumes a generic bootstrap method, chosen by the

applied researcher, to generate bootstrap data and standardized bootstrap prediction errors.

In particular, such a bootstrap method is based on an estimated probability mechanism P̂T .

Algorithm 3.1 (Computation of the JPR Multipliers; Univariate Case).

1. Generate bootstrap data {y∗1, . . . , y∗T , y∗T+1, . . . , y
∗
T+H} from P̂T .

2. Not making use of the stretch {y∗T+1, . . . , y
∗
T+H}, compute forecasts ŷ∗T (h) and prediction

standard errors σ̂∗T (h).

3. Compute bootstrap prediction errors û∗T (h) ≡ ŷ∗T (h)− y∗T+h.

4. Compute standardized bootstrap prediction errors ŝ∗T (h) ≡ û∗T (h)/σ̂
∗
T (h) and let

Ŝ∗
T (H) ≡

(
ŝ∗T (1), . . . , ŝ

∗
T (H)

)′
.

5. Compute k-max∗|·| ≡ k-max
(∣∣Ŝ∗

T (H)
∣∣), k-max∗ ≡ k-max

(
Ŝ∗
T (H)

)
, and k-min∗ ≡ k-min

(
Ŝ∗
T (H)

)
.

6. Repeat this process B times, resulting in statistics {k-max∗|·|,1, . . . , k-max∗|·|,B},
{k-max∗1, . . . , k-max∗B}, and {k-min∗1, . . . , k-min∗B}.

7. Compute the corresponding empirical quantiles:

7.1 dmax,∗
|·|,1−α

(k) is the empirical 1−α quantile of the statistics {k-max∗|·|,1, . . . , k-max∗|·|,B}.
7.2 dmax,∗

1−α (k) is the empirical 1− α quantile of the statistics {k-max∗1, . . . , k-max∗B}.
7.3 dmin,∗

α (k) is the empirical α quantile of the statistics {k-min∗1, . . . , k-min∗B}.

In an application, the number of bootstrap samples, B, should be chosen as large as possible;

at the very least B ≥ 1, 000.

Remark 3.1. Proposition 3.1 only addresses asymptotic consistency. It does not address finite-

sample performance. To ensure best-possible finite-sample performance the applied researcher

should make an effort to match the bootstrap distribution Ĵ∗
T as close as possible to the true

distribution ĴT . How this is to be done in detail depends on the particular bootstrap method

chosen by the applied researcher. Many papers have been written on this problem already; for

example, see De Gooijer and Hyndman (2006, Section 12).

We confine ourselves to the general statement that model parameters which have to be

estimated from the original data {y1, . . . , yT } to compute the forecasts ŷT (h) and the prediction

standard errors σ̂T (h) should be re-estimated from the bootstrap data {y∗1, . . . , y∗T } to compute

the forecasts ŷ∗T (h) and the prediction standard errors σ̂∗T (h). It may be tempting, say in order

to save computing time, to simply use the estimated model parameters from the original data

{y1, . . . , yT } to compute the forecasts ŷ∗T (h) and the prediction standard errors σ̂∗T (h). But

such an approach does not reflect the fact that the true model parameters are unknown and

generally leads to bootstrap prediction errors that are too small in magnitude.
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3.2 Multivariate Time Series

Compared to the special case of a univariate time series, the methodology does not change in

any fundamental way in the general case of a multivariate time series, as in the case of VAR

forecasting. Mainly, the notation becomes more complex.

One observes a K-variate time series {Z1, . . . , ZT } generated from a true probability mech-

anism P and wishes to predict the next stretch of H observations for a particular component

of Zt. Assume without loss of generality that one wishes to predict the first component of Zt

and write Zt ≡ (yt, z2,t, . . . , zK,t)
′.

In this more general case, the forecast of yT+h, denoted by ŷT (h) again, will be a function

of {Z1, . . . , ZT } instead of a function of {y1, . . . , yT } only; and similarly for the corresponding

prediction standard error σ̂T (h).

Artificial bootstrap data {Z∗
1 , . . . , Z

∗
T , Z

∗
T+1, . . . , Z

∗
T+H} are generated from an estimated

probability mechanism P̂T . In particular, K-variate VAR models appear a popular choice to

this end with applied researchers; more generally, SVAR, VECM, or SVECM models can also

be used; for example, see Lütkepohl (2005).

Denote Z∗
t ≡ (y∗t , z

∗
2,t, . . . , z

∗
K,t)

′. The forecast of y∗T+h, denoted by ŷ∗T (h) again, will be

a function of {Z∗
1 , . . . , Z

∗
T } instead of a function of {y∗1, . . . , y∗T } only; and similarly for the

corresponding prediction standard error σ̂∗T (h).

Assumption 3.1 continues to be based on the two vectors of standardized prediction errors

ŜT (H) ≡ (ûT (1)/σ̂T (1), . . . , ûT (H)/σ̂T (H))′ and Ŝ∗
T (H) ≡ (û∗T (1)/σ̂

∗
T (1), . . . , û

∗
T (H)/σ̂∗T (H))′,

respectively. Only that now, more generally, ĴT denotes the probability law under P of

ŜT (H)|ZT , ZT−1, . . .; and Ĵ
∗
T denotes the probability law under P̂T of Ŝ∗

T (H)|Z∗
T , Z

∗
T−1, . . .

Having detailed how the quantities of interest are defined and computed in the more general

case, the methodology outlined in the case of a univariate time series applies verbatim.

The various forms of the joint prediction regions are still given by (14)–(16) and Proposi-

tion 3.1 continues to hold.

The following algorithm details how to compute the three multipliers dmax,∗
|·|,1−α

(k), dmax,∗
1−α (k),

and dmin,∗
α (k) in practice. The algorithm assumes a generic bootstrap method, chosen by the

applied researcher, to generate bootstrap data and standardized bootstrap prediction errors.

In particular, such a bootstrap method is based on an estimated probability mechanism P̂T .

Algorithm 3.2 (Computation of the JPR Multipliers; Multivariate Case).

1. Generate bootstrap data {Z∗
1 , . . . , Z

∗
T , Z

∗
T+1, . . . , Z

∗
T+H} from P̂T .

2. Not making use of the stretch {Z∗
H+1, . . . , Z

∗
T+H}, compute forecasts ŷ∗T (h) and prediction

standard errors σ̂∗T (h).

3. Identical to Algorithm 3.1.
...

7. Identical to Algorithm 3.1.
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3.3 Comparison with Previous Methods

Jordà and Marcellino (2010) propose an alternative ‘asymptotic’ method to construct a joint

prediction region for YT,H that controls the FWE.8 It is based on the assumption that

√
T
(
ŶT (H)− YT,H |ZT , ZT−1, . . .

) d→ N(0,ΞH) , (19)

where
d→ denotes convergence in distribution, and on the availability of a consistent estimator

Ξ̂H
P→ ΞH , where

P→ denotes convergence in probability.

The proposed joint prediction region is given by

ŶT (H)± P



√
χ2
h,1−α

h



H

h=1

, (20)

where P is the lower-triangular Cholesky decomposition of Ξ̂H/T , satisfying PP
′ = Ξ̂H/T ,

and the quantity to the right of P is a H × 1 vector whose hth entry is given by
√
χ2
h,1−α/h.

This approach is problematic for several reasons.

First, assumption (19) implies that the conditional distribution of the vector of prediction

errors ÛT (H) ≡ ŶT (H)− YT,H is approximately multivariate normal with mean zero, at least

for large T . Such a result appears overly strict. The conditional distribution of a prediction

error depends on the conditional distribution of the random variable to be predicted. If the

latter distribution is non-normal, which is the case in many applications, then the former

distribution is generally non-normal as well.

Second, assumption (19) implies in addition that the conditional covariance matrix of the

vector of prediction errors ÛT (H) ≡ ŶT (H)− YT,H vanishes asymptotically. This appears un-

realistic. While, under mild regularity conditions, the variance of an estimator of a population

parameter vanishes asymptotically, the same is not true for the variance of a prediction error.

Even if all model parameters are known, a future observation cannot be predicted perfectly

because of its random nature.

Remark 3.2. To illustrate the first two points, consider the simple AR(1) model

yt = ν + ρyt−1 + ǫt , (21)

where |ρ| < 1 and the errors {ǫt} are independent and identically distributed (i.i.d.) with mean

zero and finite variance σ2ǫ . At time T , the forecast of yT+1 is given by

ŷT (1) ≡ ν̂ + ρ̂yT , (22)

where ν̂ and ρ̂ are suitable, consistent estimators of ν and ρ. The forecast error is given by

ûT (1) = ν̂ + ρ̂yT − yT+1 . (23)

8They use the term joint confidence region instead of joint prediction region.
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As T tends to infinity, the conditional distribution of ûT (1) converges weakly to the uncon-

ditional distribution of −ǫT+1 (which does not depend on T ). This distribution is neither

necessarily normal nor does its variance vanish. As a result, assumption (19) does not hold in

this simple example.

Third, Jordà and Marcellino (2010) initially consider the following rectangular joint predic-

tion region:

ŶT (H)± P



√
χ2
H,1−α

H
1H


 , (24)

where 1H is a H × 1 vector of ones. It is derived by an application of Bowden’s (1970) lemma

to an elliptical joint prediction region based on Scheffé’s (1953, 1959) method:

{
Ỹ : T (ŶT (H)− Ỹ )′Ξ̂

−1

H (ŶT (H)− Ỹ ) ≤ χ2
H,1−α

}
. (25)

As we have explained above, deriving a rectangular joint confidence region from an initial joint

confidence region of elliptical form is suboptimal in terms of the volume of the rectangular

joint confidence region.

Fourth, Jordà and Marcellino (2010) arrive at their final joint prediction region (20) by

‘refining’ the initial joint prediction region (24) by a step-down recursive procedure that is

entirely ad-hoc and lacks a theoretical justification.

Fifth, a counter-intuitive feature of the joint prediction region (20) is that its width is not

necessarily (weakly) monotonically increasing in the forecast horizon h; for an example, see

Subsection 5.1. The reason is that the multipliers
√
χ2
h,1−α/h can be strictly monotonically

decreasing in h, at least for commonly used values of α, as illustrated in Figure 2.

Since there is no proof of asymptotic validity, under realistic conditions, of the method

proposed by Jordà and Marcellino (2010), the method is not trustworthy to use in practice.

Staszewska-Bystrova (2010) proposes an alternative bootstrap method to construct a joint

prediction region for YT,H that controls the FWE. In a nutshell, the method works as fol-

lows. Conditional on the observed data, one generates B bootstrap path-forecasts Ŷ ∗,b
T (H), for

b = 1, . . . , B. One then discards αB of these bootstrap path-forecasts: namely those Ŷ ∗,b
T (H)

that are ‘furthest’ away from the original path-forecast ŶT (H), where the distance between

two H × 1 vectors is measured by the Euclidian distance.9 Finally, the joint prediction region

is defined as the envelope of the remaining (1− α)B bootstrap path-forecasts; as a result. Al-

though this neighboring paths (NP) method seems to perform well in some simulation studies,

there are several concerns.

First, the method is purely heuristic. No proof of asymptotic validity, under some suitable

high-level assumption, is provided.

Second, the method seems restricted to (V)AR models, since it uses the backward represen-

tation of a (V)AR model to generate the bootstrap path-forecasts; see Thombs and Schucany

9Staszewska-Bystrova (2010) also considers other distance measures, but concludes that the Euclidean dis-

tance seems to work best.
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Figure 2: Plot of the Jordà and Marcellino (2010) multipliers
√
χ2
h,1−α/h used in their Scheffé

joint prediction region (20), for H = 12 and α = 0.1.

(1990) for an early use of this representation in AR models. As an additional restriction, a

problem of the backward representation when the forward errors are non-normal, is that even

if the forward errors are independent, the backward errors are not independent, but merely

uncorrelataed; Pascual et al. (2001) point this out already. Hence, using Efron’s (1979) boot-

strap on the residuals in the backward representation, as proposed by Staszewska-Bystrova

(2010), may not be generally valid.

Third, the method is in the spirit of Efron’s (1979) percentile method that amounts to

“looking up the wrong tails of a distribution”; see Hall (1992, Sections 1.3 and 3.4) for a

discussion. Theoretical arguments suggest that such a method can only work well when the

conditional distribution of the vector of forecast errors is symmetric around zero, as would be

the case for a multivariate normal distribution. The performance of the method may suffer

when prediction errors are, conditionally, skewed or have non-zero mean. Staszewska-Bystrova

(2010) only considers normal errors with mean zero in the data generating processes (DGPs)

of her simulation study. On the other hand, the joint prediction regions we propose in Sub-

sections 3.1 and 3.2 are based on Hall’s percentile-t method, which has a sound theoretical

foundation and is more generally valid than Efron’s percentile method; again see Hall (1992,

Sections 1.3 and 3.4).

Fourth, since the joint prediction region is given by the envelope of the (1 − α)B not-

discarded bootstrap path-forecasts Ŷ ∗,b
T (H), the region typically has a jagged shape, which is

unattractive; for an example, see Subsection 5.1.

Last but not least, it is not clear whether the methods of Jordà and Marcellino (2010) and
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Staszewska-Bystrova (2010) can be generalized to construct a joint prediction region for YT,H

that controls the k-FWE for k ≥ 2; see (12). By offering a method to construct rectangular

joint prediction regions for YT,H that control the k-FWE for arbitrary k ≥ 1, we provide

applied researchers with a more flexible and versatile tool.

Remark 3.3 (Property of Balance). Under a mild additional assumption not covered by

Assumption 3.1, our bootstrap joint prediction regions (14)–(16) can be easily seen to have

the desirable property of being balanced, at least asymptotically.

A rectangular joint prediction region for the future path YT,H is balanced if the probability

that yT+h will be contained in its implied (simultaneous) prediction interval is the same for all

h = 1, . . . , H.10

For concreteness, focus on the joint prediction region (14) whose implied prediction interval

for yT+h is given by [ŷT (h)± dmax,∗
|·|,1−α

(k) · σ̂T (h)]. Then the probability

P

{
yT+h ∈

[
ŷT (h)± dmax,∗

|·|,1−α
(k) · σ̂T (h)

]}
(26)

is the same for all h = 1, . . . , H, asymptotically, under the additional assumption that the

marginal distribution of
ŷT (h)− yT+h

σ̂T (h)
(27)

is the same for all h = 1, . . . , H, asymptotically.11

A joint prediction region that is balanced implicitly treats all forecasts ŷT (h) as equally

important, since the probability that the k-FWE criterion will be violated is evenly spread out

over all forecast horizons h.

Another way to argue that balance is a desirable property is to consider the following

(extremely) unbalanced joint prediction region for YT,H :

PIT (1)× (−∞,∞)× . . .× (−∞,∞) , (28)

where PIT (1) is a marginal prediction interval for yT+1 with level 1 − α. Although this joint

prediction region is clearly perverse, it nevertheless has the property of containing the entire

future path YT,H with the desired probability 1 − α (as long as PIT (1) has the property of

containing yT+1 with probability 1− α).

It appears at least doubtful whether the property of balance could be established for the

joint prediction regions proposed by Jordà and Marcellino (2010) and Staszewska-Bystrova

(2010).

10For a discussion of the concept of balance in the alternative contexts of joint confidence regions and multiple

testing, the reader is referred to Beran (1988a,b) and Romano and Wolf (2010).
11For example, this additional assumption holds if the time series {y1, . . . , yT , yT+1, . . . , yT+H} is generated

by an ARIMA model with i.i.d. errors, for any reasonable way to compute the forecasts ŷT (h) and the prediction

standard errors σ̂T (h).
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4 Monte Carlo Simulations

This section compares the finite-sample performance of various methods to construct joint

prediction regions. We restrict ourselves to univariate forecast procedures. To this end, we

use AR(p) models with various lag lengths p that are first assumed to be known. Later this

assumption is relaxed and p is chosen in a data-dependent fashion.

Before we present the details of the Monte Carlo setup, we need to be specific about how

we estimate the model, compute the prediction standard errors, and generate the bootstrap

data.

4.1 Preliminaries

The general AR(p) model is given by

yt = ν + ρ1yt−1 + . . .+ ρpyt−p + ǫt , (29)

where the errors {ǫt} are i.i.d. with mean zero and finite variance σ2ǫ . It can be alternatively

expressed as

yt = ν + ρyt−1 + ψ1∆yt−1 + . . .+ ψp−1∆yt−p+1 + ǫt , (30)

to bring out the role of the largest autoregressive root ρ ≡ ρ1 + . . . + ρp. Here, ∆ is the

first-difference operator. The parameters of formulations (29) and (30) are related by

ρ1 = ρ+ ψ1 , ρj = −ψj−1 + ψj for 2 ≤ j ≤ p− 1 , ρp = −ψp−1 . (31)

The usefulness of by bias-corrected estimators when making forecasts based on AR(p) mod-

els has been long recognized and goes back to Kilian (1998).12

Let ρ̂OLS denote the usual OLS estimator of ρ based on formulation (30). We employ the

following bias-corrected estimator of ρ:

ρ̂BC ≡ ρ̂OLS +
1 + 3 ρ̂OLS

T
; (32)

for example, see White (1961). The corresponding bias-corrected estimators of (ν, ψ1, . . . , ψp−1)

are obtained by regressing yt − ρ̂BCyt−1 on (1,∆yt−1, . . . ,∆yt−p−1) via OLS. By relation (31),

we obtain in turn the bias-corrected estimators of formulation (29), denoted by (ν̂BC , ρ̂1,BC , . . . , ρ̂p,BC).
13

The corresponding, centered residuals ǫ̂t, for p+ 1 ≤ t ≤ T , are obtained as follows:

ǫ̂t ≡ ǫ̂t,BC − 1

T − p

T∑

l=p+1

ǫ̂l,BC with ǫ̂t,BC ≡ yt− ν̂BC − ρ̂1,BC ·yt−1− . . .− ρ̂p,BC ·yt−p . (33)

12Kilian (1998) considers the construction of confidence intervals for impulse response functions, not the

construction of prediction intervals for future observations. But his bias correction has since been successfully

applied to the latter problem as well; for example, see Clements and Taylor (2001).
13Of course, other bias corrections can be employed as well, such as the bootstrap bias correction of

Kilian (1998) or the analytic bias correction of Roy and Fuller (2001), though the reader is referred to

http://www.math.umbc.edu/∼anindya/errata.pdf for an errata concerning the latter reference.
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The residual variance is

σ̂2ǫ ≡ 1

T − 2p− 1

T∑

t=p+1

ǫ̂2t , (34)

where the number of estimated parameters, p + 1, is subtracted from the ‘sample size’ of the

residuals, T − p, in the numerator in the spirit of the usual definition of the residual variance

in a linear regression model.

The forecasts ŷT (h) are computed in the usual fashion.

The prediction standard errors σ̂T (h) are computed in the usual Box-Jenkins fashion. To

this end, consider the MA(∞) representation that is equivalent to the AR(p) model with param-

eters (ν̂BC , ρ̂1.BC , . . . , ρ̂p,BC), and denote the parameters of this MA(∞) model by (θ̂0, θ̂1, θ̂2, . . .),

with θ̂0 ≡ 1. Then compute

σ̂T (h) ≡ σ̂ǫ

√
θ̂20 + . . .+ θ̂2h−1 . (35)

Remark 4.1. It is well-known that the usual Box-Jenkins prediction standard errors (35) are

somewhat too small in magnitude in finite samples, since they do not account for the estimation

uncertainty in the model parameters (θ̂0, θ̂1, θ̂2, . . .). However, this is not really a problem for

our bootstrap approach as long as we use the same method to compute the bootstrap prediction

standard errors; see Equation (37). Since the bias contained in the prediction standard errors

is, approximately, the same in the real world compared to the bootstrap world, the resulting

mistakes, approximately, cancel out and one still obtains joint prediction regions with very

good finite-sample properties; see Subsection 4.3.

Bootstrap data {y∗1, . . . , y∗T , y∗T+1, . . . , y
∗
T+H} are generated according to Pascual et al. (2001)

as follows.

First, draw ǫ∗p+1, . . . , ǫ
∗
T+H i.i.d. from the empirical distribution of ǫ̂p+1, . . . , ǫ̂T .

Second, let y∗t = yt, for 1 ≤ t ≤ p and then

y∗t = ν̂BC + ρ̂1,BC · y∗t−1 + . . .+ ρ̂p,BC · y∗t−p + ǫ∗t , for p+ 1 ≤ t ≤ T . (36)

Third, generate y∗t , for T+1 ≤ t ≤ T+H, analogously to (36), but conditional on {yt−p+1, . . . , yT }
rather than on {y∗t−p+1, . . . , y

∗
T }.

An implication of the method of Pascual et al. (2001) is that the stretch {y∗T+1, . . . , y
∗
T+H}

is not a continuation of the stretch {y∗1, . . . , y∗T }. This feature appears counter-intuitive at

first, but it allows for bootstrap forecasts conditional on the (relevant) past of the original

data rather than on the (relevant) past of the bootstrap data, which is clearly desirable.

Remark 4.2. Thombs and Schucany (1990) propose an alternative method to generate boot-

strap data {y∗1, . . . , y∗T , y∗T+1, . . . , y
∗
T+H}, based on the backward representation of an AR(p)

model. Their method ensures that y∗t = yt, for t − p + 1 ≤ t ≤ p, so that the stretch

{y∗T+1, . . . , y
∗
T+H} is also a continuation of the stretch {y∗1, . . . , y∗T }. However, it only applies

to AR(p) models with normal forward errors ǫt. The method of Pascual et al. (2001) applies
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much more widely; in particular to AR(p) models with possibly non-normal forward errors ǫt.

Since the assumption of normal forward errors ǫt is often violated in practice, we opt for the

method of Pascual et al. (2001).

Denote the bias-corrected estimators of (ν, ρ1, . . . , ρp) computed from the stretch {y∗1, . . . , y∗T }
by (ν̂∗, ρ̂∗1,BC , . . . , ρ̂

∗
p,BC).

The bootstrap residual variance σ̂2,∗ǫ is computed analogously to (34).

The bootstrap forecasts ŷ∗T (h) are computed conditional on {yt−p+1, . . . , yT } rather than on

{y∗t−p+1, . . . , y
∗
T }.

The bootstrap prediction standard errors σ̂∗T (h) are computed in the same way as the

‘original’ prediction standard errors σ̂∗T (h). To this end, consider the MA(∞) representation

that is equivalent to the AR(p) model with parameters (ν̂∗BC , ρ̂
∗
1.BC , . . . , ρ̂

∗
p,BC), and denote the

parameters of this MA(∞) model by (θ̂∗0, θ̂
∗
1, θ̂

∗
2, . . .), with θ̂

∗
0 ≡ 1. Then compute

σ̂∗T (h) ≡ σ̂∗ǫ

√
(θ̂∗0)

2 + . . .+ (θ̂∗h−1)
2 . (37)

4.2 Monte Carlo Setup

First, we consider an AR(1) model with ν = 0 and with ρ ≡ ρ1 ∈ {0.9, 0.5,−0.5,−0.9}. The

order p = 1 is assumed to be known. The sample size is T ∈ {100, 400}. The errors ǫt are

i.i.d. according to one of the following three distributions:

• (ǫt ∼ N(0,1)) Standard normal.

• (ǫt ∼ t3) A t-distribution with 3 degrees of freedom, standardized to have variance one.

• (ǫt ∼ χ2
3) A chi-square distribution with 3 degrees of freedom, centered to have mean

zero and standardized to have variance one.

Second, we consider an AR(2) model with ν = 0 and (ρ1, ρ2) ∈ {(1.85,−0.75), (1.25,−0.75),

(−0.65, 0.15), (−0.7,−0.2)}. The order p = 2 is assumed to be known. The sample size is

T ∈ {100, 400}. The errors ǫt are i.i.d. according to one of the above three distributions.

Third, we consider an AR(2) model with ν = 0 and (ρ1, ρ2) ∈ {(1.85,−0.75), (1.25,−0.75),

(−0.65, 0.15), (−0.7,−0.2)}. The order p = 2 is assumed to be unknown and is estimated from

the data using the Bayesian information criterion (BIC) optimizing over the set {1, 2, . . . , 5}.14
This is the case both in the ‘real’ world and in the bootstrap world.15 The sample size is

T ∈ {100, 400}. For compactness, we only consider errors ǫt that are i.i.d. standard normal.

14The BIC is known to be a consistent information criterion, unlike the Akaike information criterion (AIC), say.

Therefore, in terms of Assumption 3.1, using the BIC to estimate the order of an AR(p) model is asymptotically

equally valid as using the true order.
15As a result, it is possible that a different order is used in the ‘real’ world compared to the bootstrap world.
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The following four methods to construct JPRs are compared:

• (Joint Marginals) String together H marginal, two-sided symmetric bootstrap predic-

tion intervals for yT+h, each with coverage level 1− α.

• (Scheffé) The ‘asymptotic’ Scheffé JPR (20) of Jordà and Marcellino (2010).

• (NP Heuristic) The neighboring-paths heuristic bootstrap JPR of Staszewska-Bystrova

(2010).

• (k-FWE JPR) Our two-sided bootstrap JPR (14).

The nominal k-FWE level is α = 0.1. We consider k ∈ {1, 2, 3} for k-FWE JPR. All other

methods only use k = 1. The forecast horizon is H ∈ {6, 12, 24}. The number of bootstrap

samples for k-FWE JPR and NP Heuristic is B = 1, 000 always.

All empirical coverages are computed from 1,000 generated data sets {y1, . . . , yT }, each with

100 corresponding, independent continuations {yT+1, . . . , yT+H}. As a result, the empirical

coverages are based on a total of 100,000 repetitions each, and are thus highly accurate.

4.3 Results

In each case, we report the proportion of times that the k-FWE criterion is not violated. The

thus obtained empirical coverages are then compared to the nominal coverage level given by

1− 0.1 = 0.9 = 90%.

The results for the AR(1) model with p = 1 known are presented in Tables 1 and 2. The

results for the AR(2) model with p = 2 known are presented in Tables 3 and 4. The results for

the AR(2) model with p = 2 unknown and estimated using the BIC are presented in Table 5.

The various results can be summarized as follows:

• Joint Marginals always undercovers and its performance gets worse as the maximum

forecast horizon H increases. This behavior is as expected and has been demonstrated

before by Jordà and Marcellino (2010) and Staszewska-Bystrova (2010) already.

Nevertheless, it is worth repeating the underlying message one more time: stringing

together marginal prediction intervals does not result in a valid joint prediction region

for the entire future path.

• The performance of Scheffé ranges from acceptable to horrible. For example, in the

AR(1) model, the performance is acceptable for ρ = 0.9, where the empirical coverage is

(reasonably) close to 90%; on the other hand, the performance is horrible for ρ = −0.9,

where the coverage is, basically, equal to 0%.

In general, the performance of Scheffé seems to decrease both in the largest autoregressive

root — given by ρ in the AR(1) model and by ρ1 + ρ2 in the AR(2) model — and in

the maximum forecast horizon H. In the vast majority of cases, the empirical coverage

is unacceptably far away from the nominal level.

As a consequence, Scheffé cannot be recommended for application in practice.
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• The performance of NP Heuristic is quite good when the largest autoregressive root

is close to one. Otherwise, the performance is acceptable: the empirical coverage is

generally somewhat less than the nominal level and it decreases in the maximum forecast

horizon H, even for T = 400.

• The performance of k-FWE JPR is the best of all methods: it ranges from good to

excellent. There can be some mild undercoverage when T = 100 and H = 24; but in

almost all cases, the empirical coverage is very close to the nominal level. In particular,

the performance is remarkably stable both over the maximum forecast horizon H and

over the value of k in the k-FWE criterion.

• There does not appear to be a noticeable penalty to not knowing the AR model order p.

When p is estimated from the data using the BIC, the empirical coverages are generally

quite close to the corresponding coverages for known p, even for T = 100 already.

Remark 4.3. Our simulation results for Scheffé in the context of the AR(1) model are in gen-

eral agreement with corresponding results reported by Jordà and Marcellino (2010, Table III).

They consider an AR(1) model with autoregressive coefficient ρ ∈ {0.5, 0.6, 0.7, 0.8, 0.9},
without stating the sample size T , the distribution of the errors, whether the order p = 1 is

known or estimated from the data, and by which method the model parameters are estimated.

At any rate, Jordà and Marcellino (2010) also find that the performance of Scheffé decreases

with the value of ρ and is poor when ρ is not close to one. For example, for H = 12 and ρ = 0.5,

they report an empirical coverage of 33.3% for a nominal coverage level of 68% and an empirical

coverage of 80.2% for a nominal coverage level of 95%.

Jordà and Marcellino (2010) do not consider any negative values of ρ, where we observe the

worst performance of Scheffé; nor do they consider any values H > 12.
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Nominal Coverage 1− α = 90%

ǫt ∼ N(0, 1) ǫt ∼ t3 ǫt ∼ χ2
3

ρ = 0.9 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 66.7 53.3 38.2 71.1 58.6 43.6 69.3 56.2 41.3

Scheffé 86.6 85.9 84.9 86.9 85.5 83.6 88.7 87.7 86.5

NP Heuristic 90.1 90.6 90.9 88.9 88.1 86.6 90.6 90.7 90.4

1-FWE JPR 90.3 90.0 89.7 90.1 89.5 88.8 89.8 90.3 90.1

2-FWE JPR 90.2 89.6 89.4 90.3 89.4 88.2 90.1 90.0 89.9

3-FWE JPR 89.8 89.3 89.2 89.9 89.7 88.3 90.3 89.3 90.2

ρ = 0.5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 57.8 35.6 14.6 61.5 40.3 18.7 62.1 41.1 19.5

Scheffé 78.2 68.0 54.6 77.8 65.1 47.7 80.1 68.4 51.9

NP Heuristic 88.2 86.9 84.2 86.3 82.9 75.1 89.1 87.7 84.2

1-FWE JPR 89.8 89.0 88.0 89.3 87.8 84.0 89.8 88.2 85.8

2-FWE JPR 90.1 89.2 88.9 90.2 88.9 87.2 90.0 89.8 89.4

3-FWE JPR 89.9 89.5 89.3 90.0 90.2 88.5 90.3 89.3 90.2

ρ = −0.5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 58.6 36.6 15.3 62.2 41.1 19.7 62.6 41.4 19.2

Scheffé 08.1 00.1 00.0 20.3 05.4 01.0 15.7 02.6 00.1

NP Heuristic 87.6 85.7 82.3 85.8 82.2 75.0 87.9 85.9 81.1

1-FWE JPR 89.8 89.1 88.6 89.3 87.9 84.0 88.7 87.8 84.9

2-FWE JPR 89.9 89.4 89.3 90.2 89.4 87.3 89.5 89.3 88.7

3-FWE JPR 89.7 89.8 89.5 90.4 90.2 88.5 90.3 89.9 89.4

ρ = −0.9 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 67.9 55.2 40.7 71.9 60.4 46.4 71.1 58.8 44.1

Scheffé 00.1 00.0 00.0 00.3 00.1 00.0 00.4 00.1 00.0

NP Heuristic 87.9 87.6 88.1 87.0 85.9 84.6 87.9 87.3 86.7

1-FWE JPR 90.0 89.8 90.4 89.8 89.3 88.3 89.5 89.4 89.2

2-FWE JPR 90.0 89.6 89.4 90.2 89.5 88.0 90.0 89.5 89.9

3-FWE JPR 89.9 89.7 89.3 90.0 89.5 88.1 90.1 89.8 89.8

Table 1: AR(1), Known Order, T = 100: Empirical Coverages.
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Nominal Coverage 1− α = 90%

ǫt ∼ N(0, 1) ǫt ∼ t3 ǫt ∼ χ2
3

ρ = 0.9 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 68.5 55.2 38.3 72.2 60.5 44.6 69.8 57.0 40.5

Scheffé 88.1 88.0 87.9 89.0 88.3 87.5 90.0 89.7 89.4

NP Heuristic 89.2 88.5 87.9 88.6 87.8 86.5 89.3 88.9 88.5

1-FWE JPR 90.0 90.0 89.9 90.1 90.1 89.8 90.0 90.2 89.8

2-FWE JPR 89.9 89.9 89.6 90.3 90.2 89.7 90.0 89.9 89.9

3-FWE JPR 90.0 90.0 89.9 90.1 90.1 89.9 90.1 90.0 90.0

ρ = 0.5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 58.1 34.8 12.8 60.9 38.6 16.0 60.2 37.9 15.3

Scheffé 80.8 70.5 51.3 80.7 68.3 47.8 81.3 69.3 49.3

NP Heuristic 89.0 87.7 85.5 88.3 86.4 82.6 89.2 88.1 86.2

1-FWE JPR 89.8 89.8 89.6 90.1 89.9 88.8 89.9 89.7 88.8

2-FWE JPR 89.9 89.7 89.5 90.3 90.3 89.4 89.8 89.9 89.6

3-FWE JPR 89.9 89.7 89.9 90.2 90.2 90.0 90.1 90.0 90.1

ρ = −0.5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 57.8 34.8 12.9 61.2 38.8 15.9 61.5 39.6 16.6

Scheffé 07.1 00.4 00.0 20.0 04.1 00.4 14.0 01.6 00.1

NP Heuristic 88.5 87.3 84.6 88.3 86.2 82.3 88.7 87.3 85.0

1-FWE JPR 89.9 89.9 88.8 90.0 89.8 89.0 89.8 89.7 88.7

2-FWE JPR 89.9 89.9 89.8 90.3 89.9 89.6 89.9 89.8 89.4

3-FWE JPR 90.0 90.1 89.9 90.2 90.1 90.2 90.2 90.1 89.7

ρ = −0.9 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 68.4 55.4 38.8 72.6 60.9 45.3 71.4 59.0 42.6

Scheffé 00.1 00.0 00.0 00.1 00.0 00.0 00.1 00.0 00.0

NP Heuristic 88.6 87.9 86.8 88.4 87.4 85.8 88.8 87.8 86.8

1-FWE JPR 89.9 90.0 90.2 90.2 90.2 89.8 90.0 90.2 89.7

2-FWE JPR 89.8 90.1 90.0 90.3 90.3 89.7 89.9 89.9 89.8

3-FWE JPR 89.9 90.0 89.8 90.0 90.1 90.0 90.0 90.0 89.7

Table 2: AR(1), Known Order, T = 400: Empirical Coverages.
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Nominal Coverage 1− α = 90%

ǫt ∼ N(0, 1) ǫt ∼ t3 ǫt ∼ χ2
3

(ρ1, ρ2) = (1.75,−0.85) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 73.6 60.8 45.7 76.9 64.9 50.3 75.7 63.4 49.0

Scheffé 79.0 73.8 55.8 84.0 79.4 61.2 86.7 82.3 63.8

NP Heuristic 89.1 90.2 91.4 87.9 87.9 86.8 89.6 90.1 90.4

1-FWE JPR 89.0 88.2 87.2 89.0 87.6 86.6 88.6 88.6 87.2

2-FWE JPR 88.9 88.3 87.3 89.3 88.0 86.4 88.9 88.7 87.8

3-FWE JPR 88.8 88.8 88.2 89.5 88.4 86.6 89.3 88.9 88.3

(ρ1, ρ2) = (1.25,−0.75) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 63.9 46.9 28.4 69.1 53.9 35.9 68.1 52.3 33.5

Scheffé 60.7 21.9 05.6 67.9 32.4 13.3 68.9 29.9 10.1

NP Heuristic 88.6 88.2 87.8 87.1 85.5 81.9 88.7 87.8 86.5

1-FWE JPR 90.0 89.6 89.5 89.7 88.5 86.5 89.3 89.3 88.1

2-FWE JPR 90.1 89.4 89.3 90.0 88.7 86.7 89.8 89.5 88.7

3-FWE JPR 89.8 89.6 89.2 90.2 89.6 87.0 90.2 89.0 89.2

(ρ1, ρ2) = (−0.65, 0.15) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 63.9 48.2 30.6 67.6 52.9 35.5 67.6 52.1 33.8

Scheffé 03.6 00.2 00.0 09.1 02.0 00.3 07.2 00.8 00.1

NP Heuristic 88.1 87.7 87.6 86.4 84.6 81.1 88.2 87.2 85.3

1-FWE JPR 90.1 89.7 89.8 89.5 88.7 86.3 89.1 88.9 87.6

2-FWE JPR 89.8 89.2 89.2 90.2 89.4 87.5 89.8 89.3 89.2

3-FWE JPR 89.6 89.4 88.5 90.1 89.3 87.3 89.9 89.6 89.0

(ρ1, ρ2) = (−0.7,−0.2) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 60.7 39.9 18.1 64.6 45.2 23.8 64.5 44.6 22.3

Scheffé 01.8 00.1 00.0 06.9 01.0 00.2 04.1 00.2 00.0

NP Heuristic 88.2 87.3 85.3 86.2 83.8 78.2 87.9 86.2 82.1

1-FWE JPR 88.8 89.4 88.9 89.2 87.8 84.3 88.8 88.0 85.3

2-FWE JPR 89.7 89.4 89.4 90.0 88.9 86.0 89.3 88.6 87.4

3-FWE JPR 89.7 89.7 89.5 90.3 90.0 88.0 90.5 89.9 88.9

Table 3: AR(2), Known Order, T = 100: Empirical Coverages.
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Nominal Coverage 1− α = 90%

ǫt ∼ N(0, 1) ǫt ∼ t3 ǫt ∼ χ2

(ρ1, ρ2) = (1.75,−0.85) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 75.9 63.2 46.4 78.9 67.5 51.7 76.9 64.5 48.2

Scheffé 80.2 76.1 56.5 86.2 82.7 65.5 88.4 85.5 89.9

NP Heuristic 89.2 89.0 88.6 89.1 88.4 87.2 89.3 89.1 88.3

1-FWE JPR 89.8 89.8 89.7 90.2 89.9 89.6 89.9 89.7 89.4

2-FWE JPR 89.9 89.6 89.5 90.3 90.1 89.3 89.8 89.7 89.4

3-FWE JPR 90.0 89.7 89.7 90.0 90.0 89.6 90.0 89.9 89.0

(ρ1, ρ2) = (1.25,−0.75) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 65.3 47.2 25.8 69.8 53.8 33.5 68.5 51.9 30.9

Scheffé 62.5 20.0 03.2 72.0 33.2 10.7 72.0 28.4 06.3

NP Heuristic 88.8 87.9 86.5 88.5 87.4 84.9 89.0 87.9 86.0

1-FWE JPR 89.9 89.9 90.0 90.1 90.1 89.5 89.8 89.9 89.6

2-FWE JPR 89.9 89.8 89.8 90.3 90.2 89.5 89.8 89.8 89.4

3-FWE JPR 90.0 89.7 89.7 90.0 90.1 89.6 90.0 90.0 89.8

(ρ1, ρ2) = (−0.65, 0.15) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 64.1 47.2 26.6 67.8 52.1 31.8 67.3 51.0 30.6

Scheffé 03.2 00.1 00.0 09.8 01.3 00.1 06.7 00.5 00.0

NP Heuristic 88.8 88.0 86.1 88.2 87.0 84.2 88.7 87.7 86.3

1-FWE JPR 89.9 89.7 90.1 90.2 90.1 89.3 89.8 90.0 89.5

2-FWE JPR 89.9 89.8 89.9 90.3 90.2 89.7 90.0 89.8 89.6

3-FWE JPR 90.0 89.9 89.7 90.0 90.1 90.0 90.0 89.9 89.8

(ρ1, ρ2) = (−0.7,−0.2) H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 59.8 37.3 14.8 64.0 42.6 19.2 63.5 42.1 18.9

Scheffé 01.7 00.1 00.0 06.7 00.5 00.1 03.7 00.1 00.0

NP Heuristic 88.7 87.8 85.4 88.2 86.6 83.4 88.6 87.3 85.2

1-FWE JPR 89.9 89.8 89.9 89.9 89.9 88.9 89.8 89.8 88.7

2-FWE JPR 90.1 89.8 89.8 90.1 89.9 89.1 89.9 89.5 89.1

3-FWE JPR 90.0 90.0 89.8 90.0 90.2 90.1 90.2 90.0 89.6

Table 4: AR(2), Known Order, T = 400: Empirical Coverages.
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Nominal Coverage 1− α = 90%

T = 100, ǫt ∼ N(0, 1) T = 400, ǫt ∼ N(0, 1)

(ρ1, ρ2) = (1.75,−0.85) H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 72.1 61.8 49.2 76.2 64.5 48.0

Scheffé 87.9 86.0 64.4 89.2 88.8 66.1

NP Heuristic 89.2 91.5 93.1 89.8 90.7 90.5

1-FWE JPR 90.4 90.5 89.6 89.8 89.7 87.6

2-FWE JPR 90.4 89.8 89.7 89.9 89.8 89.7

3-FWE JPR 90.0 90.3 89.0 90.0 89.7 89.6

(ρ1, ρ2) = (1.25,−0.75) H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 63.6 46.1 27.0 65.3 47.1 25.5

Scheffé 63.7 23.2 07.5 66.5 21.6 04.2

NP Heuristic 87.9 86.7 85.8 88.8 87.8 86.0

1-FWE JPR 90.0 89.4 89.3 89.9 89.8 89.9

2-FWE JPR 90.2 89.5 89.5 89.9 89.9 89.8

3-FWE JPR 89.8 89.5 89.3 89.9 89.8 89.7

(ρ1, ρ2) = (−0.65, 0.15) H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 65.1 48.9 30.4 64.5 47.2 26.2

Scheffé 02.6 00.2 00.0 02.9 00.1 00.0

NP Heuristic 88.8 87.9 86.8 89.1 88.0 86.1

1-FWE JPR 90.4 90.1 89.7 90.0 90.0 89.7

2-FWE JPR 90.5 89.9 89.8 90.1 90.0 90.0

3-FWE JPR 89.7 89.7 89.6 90.0 89.8 89.8

(ρ1, ρ2) = (−0.7,−0.2) H=6 H=12 H=24 H=6 H=12 H=24

Joint Marginals 59.9 39.5 18.2 59.6 37.3 14.9

Scheffé 03.0 00.1 00.0 01.9 00.1 00.0

NP Heuristic 87.8 86.9 85.3 88.7 87.7 85.5

1-FWE JPR 89.4 89.3 88.7 89.9 89.8 89.8

2-FWE JPR 89.2 89.4 89.8 90.0 90.0 90.0

3-FWE JPR 89.4 89.7 89.8 90.0 90.1 89.9

Table 5: AR(2), BIC Order Selection: Empirical Coverages.
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Figure 3: Quarterly data on US real gross domestic product (in 2005 chained dollars) from

Q1/1947 until Q3/2001. The upper panel displays the raw data and the lower panel displays

the first differences of the logarithmic data (in percent).

5 Empirical Application

The goal of this section is to compare the various joint prediction regions for a set of real data.

To this end, we downloaded quarterly data on US real gross domestic product from Q1/1947

until Q3/2011, made freely available by the Federal Reserve Bank of St. Louis.16 The data

are seasonally adjusted and expressed in billions of chained 2005 dollars. Figure 3 displays the

raw data as well as the first differences of the logarithmic data (in percent). We take the latter

series as our series of interest with a total of 258 observations. The task then is to forecast

log quarter-to-quarter growth for the next H quarters and to compute corresponding joint

prediction regions. We choose H = 12, which corresponds to a maximum forecast horizon of

three years. The nominal coverage is given by 1− α = 90%.

16The data can be downloaded at http://research.stlouisfed.org/fred2/series/GDPC1/.
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We use the AR(p) methodology described in Section 4 to compute bootstrap joint prediction

regions, where the lag order p is assumed to be unknown and estimated from the (bootstrap)

data using the BIC. Of course, a more ‘complex’ methodology could be used instead, such as

a multivariate forecasting model based on additional macroeconomic variables (for example,

see Stock and Watson, 2001) or a nonlinear forecasting model (for example, see Potter, 1995).

The goal of this section, however, is not necessarily to find the single best forecasting model

for the given data set but to see how the various joint prediction regions behave relative to

each other for a common, simple and reasonable forecasting model, such as the AR(p) model.

5.1 Illustration Exercise

We first illustrate the salient features of the various joint prediction regions by using the last

T = 120 quarters (or 30 years) to forecast the not-yet observed future path ranging from

Q4/2011 until Q3/2014. We do not use the entire data set, since the assumption of stationarity

is doubtful, given that the overall volatility seems to have decreased after 1980.

The lag order for the original data estimated by the BIC is p̂ = 1. The initial model fitted

via OLS is given by

ŷt+1 = 0.318 + 0.542 · yt . (38)

Using the bias correction (32) yields the following final model used for forecasting purposes:

ŷt+1 = 0.304 + 0.564 · yt . (39)

Figure 4 compares Scheffé, NP-Heuristic, and 1-FWE JPR.17 The main findings are as

follows:

• Scheffé has a substantially smaller volume than the other two regions: this is not surpris-

ing given the simulation results of the previous section, where it was seen that Scheffé

typically undercovers by a substantial amount.

• A further, counter-intuitive feature of Scheffé is that its width is non-monotonic in the

forecasting horizon h: the width is largest for h = 7 and monotonically decreases after

that, if only slightly.18

• Although NP Heuristic and 1-FWE JPR are comparable in terms of their volume, an

unattractive feature of NP Heuristic is its jagged shape, which is a result of the underlying

methodology; see Subsection 3.3.

Figure 5 compares 1-FWE JPR, 2-FWE JPR, and 3-FWE JPR. As implied by theory, the

volume of k-FWE JPR decreases in the value of k. Therefore, if the applied researcher is

willing to miss up to one (or two) elements of the future path in the joint prediction region

(with prespecified probability 90%), he obtains a smaller and more informative region in return.

17The number of bootstrap samples for NP-Heuristic and k-FWE JPR is B = 10, 000.
18The width of Scheffé at forecast horizon h can be decreasing in h, for large values of h, since the multipliers√
χ2
h,1−α/h used in the Scheffé joint prediction region (20) are strictly monotonically decreasing in h for α = 0.1;

see Figure 2.
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Figure 4: Path-forecast and various joint prediction regions for US log real GDP growth.

The forecast period ranges from Q4/2011 until Q3/2014. The nominal coverage is given by

1− α = 90%.
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Figure 5: Path-forecast and various joint prediction regions for US log real GDP growth.

The forecast period ranges from Q4/2011 until Q3/2014. The nominal coverage is given by

1− α = 90%.
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5.2 Backtest Exercise

Although the previous exercise serves to illustrate the salient features of the various joint

prediction regions, it does not address their performance in terms of coverage. First, the

future data ranging from Q4/2011 until Q3/2014 have not been observed yet (at the time

of writing this paper). Second, even when these data become eventually known, they only

correspond to a single instance of a future path; to compute meaningful empirical coverages

a large number of such paths are needed.

Therefore, we resort to the following backtest exercise, for a given method to construct

a joint prediction region (JPR) designed to control the k-FWE:

• Using the stretch {yt, . . . , yt+119} only, compute the JPR for the next H = 12 periods.

• Compare the computed JPR against the path (yt+120, . . . , yt+131)
′ to check whether all

but at most k − 1 elements of the path are contained in the JPR. If the answer is yes,

call the outcome a ‘success’.

• Do this for t = 1, . . . , 258− 120− 12 = 126.

• Report the empirical coverage as the fraction of ‘successes’ out of these 126 ‘trials’.

This means that we use a rolling window of 120 quarters to compute a JPR for the next path

of H = 12 quarters. Since only ‘past and present’ information is used to forecast the ‘future’,

we get a fair assessment of a method’s out-of-sample performance in this way. Although

the assessment is fair, it is not overly accurate, since the empirical coverage is based on 126

out-of-sample ‘trials’ only, which are not even independent of each other.

The results are presented in Table 6.19 It is seen that Joint Marginals and Scheffé undercover

by a substantial amount while NP Heuristic and k-FWE JPR perform very well to well. These

findings are line with those of the Monte Carlo simulations of the previous section.

Nominal Coverage 1− α = 90%

Method Empirical Coverage

Joint Marginals 64.6

Scheffé 73.2

NP Heuristic 89.7

1-FWE JPR 89.9

2-FWE JPR 85.1

3-FWE JPR 87.3

Table 6: Empirical Out-Of-Sample Coverages for US Log Real GDP Growth.

19The number of bootstrap samples for NP-Heuristic and k-FWE JPR is B = 5, 000.
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6 Conclusions

Many economic and financial applications require the forecast of a random variable of interest

over several periods into the future, that is, one needs to forecast an entire future path. In

addition to the resulting path-forecast, one often would also like to compute a corresponding

joint prediction region. Such a region is supposed to contain the entire future path with a

prespecified probability 1− α.

In this paper, we have proposed bootstrap joint prediction regions of three different shapes:

one-sided lower, one-sided upper, and two-sided. This way, the applied researcher can choose

the most suitable shape for the task at hand. Furthermore, the joint prediction regions are

completely generic in that they allow the applied researcher to select whichever methods are

deemed most appropriate by him to make forecasts, compute prediction standard errors, and

generate bootstrap data.

Compared to two previous proposals in the literature, our bootstrap joint prediction regions

have two important advantages. First, they are proven to be asymptotically consistent under

a realistic, mild high-level assumption. Second, they enjoy superior finite-sample properties,

as demonstrated via Monte Carlo simulations.

As an additional bonus, we also offer generalized joint prediction regions obtained by the

bootstrap. Such regions are not required to contain the entire future path (with prespecified

probability 1 − α) but only the entire future path up to a small, user-defined number of

elements (with prespecified probability 1 − α). If the maximum forecast horizon is large, it

may be deemed acceptable by the applied researchers that a small number, like one or two,

of elements of the future path fall outside the joint prediction region. In return, he will then

obtain a smaller and more informative region.
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A Proofs

Proof of Proposition 3.1: We prove the stated result for the joint prediction region (15).

The proofs for the joint prediction regions (14) and (16) are completely analogous.

Let L̂T denote a random variable with distribution ĴT and let L̂ denote a random variable

with distribution Ĵ . By Assumption 3.1 and the continuous mapping theorem, k-max(L̂T )

converges weakly to k-max(L̂), whose distribution is continuous. Our notation implies that

the conditional sampling distribution under P of k-max(ŜT (H)) is identical to the distribu-

tion of k-max(L̂T ). By similar reasoning, the conditional sampling distribution under P̂T of

k-max(Ŝ∗
T (H)) also converges weakly to the distribution of k-max(L̂). To then show that

P
{
k-max(ŜT (H)) ≤ d∗1−α(k)

}
→ 1− α (40)

is similar to the proof of Theorem 1 of Beran (1984).

Since by definition of the k-FWE and the construction of the joint prediction region (15),

k-FWE = 1− P
{
k-max(ŜT (H)) ≤ d∗1−α(k)

}
, (41)

the proof that the stated result (17) holds for the joint prediction region (15) now follows

immediately from (40).

B Generalized Error Rates, Multiple Testing, and Joint Con-

fidence/Prediction Regions

The goal of this appendix is to explain why control of the false discovery rate (FDR) is actually

equivalent to control of the familywise error rate (FWE) in the context of joint confidence

regions and joint prediction regions.

In doing so, we first need to discuss some concepts from the literature on multiple testing.

In a multiple testing problem one considers H individual hypotheses of the kind

H0,h : µh = µ0,h vs. H1,h : µh 6= µ0,h . (42)

(For concreteness, we consider two-sided hypotheses here; one could also consider one-sided

hypotheses instead.) The goal is to make individual decisions, in terms of rejecting or not,

concerning each H0,h while controlling a prespecified error rate.

Denote by I(P) the set of true null hypotheses, that is,

I(P) ≡ {h : H0,h is true} . (43)

The most stringent error rate is the familywise error rate (FWE), defined as the probability

of rejecting at least one true null hypothesis:

FWE ≡ P{Reject at least one of the H0,h : h ∈ I(P)} . (44)
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It is worth to pause a moment here and to note that the FWE in the context of multiple testing

only depends on the set of true null hypotheses. This is in contrast to definition (9) where

the FWE depends on all components µh. The reasons is that in the context of constructing a

joint confidence region for µ, there are no true and false parameters µh; they are all ‘true’ and

of interest. Similarly for the definition (10) of the FWE in the context of constructing joint

prediction regions: all components yh are ‘true’ and of interest.

When control of the FWE is deemed too stringent in the context of multiple testing, one

can control generalized error rates instead. Such generalized error rates are more liberal in

terms of rejecting true null hypotheses and, in return, offer a greater ability to reject false null

hypotheses.

The most popular generalized error rate, to date, is the false discovery rate (FDR). It is

the expected value of the false discovery proportion (FDP). When applying a multiple testing

procedure there will be a (random) total number of R rejections out of the H individual

decision problems. Out of these R total rejections, there will be F false rejections (that is,

rejections of true null hypotheses). Then one defines

FDP ≡ F

R
and FDR ≡ E(FDP) , (45)

with FDP ≡ 0 in case there are no rejections at all. Control of the FDR amounts to ensuring

that FDR ≤ γ, for some prespecified (small) value γ ∈ (0, 1).

Crucially, the definitions of the FDP and the FDR in the context of multiple testing rely

on the notion of a subset of true hypotheses out of the universe of all H hypotheses. But the

equivalent of such a subset does not exist in the context of a joint confidence region for µ:

all components µh are ‘true’ and of interest. Therefore, controlling the FDR is nonsensical in

such a context. In particular, whenever there are any components µh at all not contained in

the joint confidence region, the FDP is automatically equal to one. And so control of the FDR

is actually equivalent to control of the FWE. The reason is that ensuring that E(FDP) ≤ γ is

equivalent to ensuring that

P{At least one µh not contained in the JCR} ≤ γ . (46)

For the same reason, control of the FDR is equivalent to control of the FWE also in the

context of constructing a joint prediction region for Y .

Remark B.1. As an aside, the FDR is, arguably, more popular than it deserves to be. Many

applied researchers do not really understand this error rate and the implications when it is

applied to a set of data. Since the FDR is the expected value of the FDP, little can be said

about the realized value of the FDP after applying a multiple testing method which controls

the FDR to a set of data. On the other hand, many applied researchers seem to believe that the

realized FDP can be at most γ. But such belief is just as valid as believing that the realization

of random variable drawn from the standard normal distribution can be at most zero (since

the standard normal distribution has expected value zero).
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If a statement concerning the realized FDP is the goal, one should control the FDP instead

in the sense of ensuring that

P{FDP > γ} ≤ α . (47)

In this way one can be 1 − α confident that the realized FDP is at most γ. The reader is

referred to Korn et al. (2004) and Romano et al. (2008) for a more detailed discussion.

Although control of the FDR is not a meaningful alternative, it is possible to construct

joint confidence regions as well as joint prediction regions based on a generalized error rate

that is meaningful in these contexts. The solution is to use the generalized familywise error

rate (k-FWE). Start with the context of multiple testing. For an integer k ≥ 1, the definition is

k-FWE ≡ P{Reject at least k of the H0,h: h ∈ I(P)} . (48)

As a special case, the choice k = 1 gives back the FWE. On the other hand, any choice k ≥ 2

results in a less stringent error rate.

Realizing that in the contexts of estimating and forecasting, all components are ‘true’ and of

interest, the definition of the k-FWE can easily be adapted as already described in (11)–(12).

For a joint confidence region (JCR) for µ,

k-FWE ≡ P{At least k of the µh not contained in the JCR} ,

whereas for a joint prediction region (JPR) for Y ,

k-FWE ≡ P{At least k of the yh not contained in the JPR} .
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