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Abstract

Time-of-use (TOU) electricity pricing has attracted attention as a potential policy

to reduce peak electricity demand and thus address the engineering and environmental

challenges associated with electricity production. However, convincing evidence of its

effectiveness is lacking in the literature. In this paper, we analyze short-run household

responses to a large-scale field deployment of TOU pricing. Households that breached a

usage threshold were forced to switch from a flat-rate plan to one with a high electricity

price during peak hours (noon through 8pm on weekdays) and a low price during all

other hours. Features of the program implementation give rise to multiple natural

experiments that we exploit within a regression discontinuity framework. We find that,

after being switched to TOU, large households substantially reduced total electricity

consumption during the summer months. However, some of the responses we find are

inconsistent with static utility maximization. For example, households reduced their

off-peak consumption at some times of the year when rates were such that a static

optimizer should have unambiguously increased off-peak consumption. This indicates

either that they were subject to additional constraints or were responding to incentives

other than contemporaneous prices.
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1 Introduction

Electricity consumption will be inefficiently high if rates do not reflect the associated social

costs. While the most obvious social cost is environmental harm, a more subtle source of

inefficiency in electricity markets is the mismatch between wholesale production costs, which

can fluctuate widely by the minute, and the fixed retail rates faced by most consumers. Due

to this second issue, price-based policies to achieve efficient levels of consumption would

entail charging rates that vary in real time. In part because consumers are not accustomed

to prices that fluctuate at such a great frequency, there has been a reluctance to adopt

such measures.1 Time-of-use (TOU) electricity pricing, in contrast, divides electricity use

into just two or three blocks according to the time of day at which it is consumed, and

applies higher rates to blocks corresponding to historically high-cost times. It is a small step

towards aligning retail electricity prices with marginal production costs, and has the crucial

advantage of being easy for consumers to understand and, in principle, respond to.

In this paper, we study short-run household responses to a large-scale mandatory resi-

dential TOU program, and seek to draw lessons about TOU’s potential as a tool to achieve

efficiency in electricity markets. Such potential could be realized in several ways. First, and

of most concern to utilities, TOU could induce a reduction in peak consumption. Shed-

ding peak load is desirable for utilities from a cost-containment perspective, and desirable

more generally to the extent that it reduces reliance on dirtier generation sources. Second,

though this is not an explicit goal of the policy, TOU might induce a general conservation

effect depending on how the rates are set, which again would lead to a reduction in both

production and environmental costs. Finally, TOU could provide a platform for regulators

and rate-setters both to familiarize consumers with time-varying rates and to learn about

the dimensions along which consumers respond to rate changes. This would be valuable in

terms of guiding future policies aimed at correcting both sources of inefficiency.

We find evidence that the TOU program induced some efficiency improvements. Specif-

ically, we find that, after being switched to TOU, the largest households in our sample

substantially reduced their total electricity consumption in the summer months. The timing

1As noted by Joskow and Wolfram (2012), a 2010 survey conducted by the Federal Energy Regulatory
Commission found that only about one percent of U.S. residential customers face a time-varying rate structure
of any kind.
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of this conservation effect is especially noteworthy, since the social value of usage reductions

is highest during the peak summer usage season. However, this conservation effect was not

exclusive to on-peak times of day, but rather reflects roughly proportional decreases in on-

peak and off-peak usage. In fact, we find little evidence of load shifting across all household

sizes in any summer months, and only weak evidence of load shifting in winter and spring

months. Moreover, we find that, after being switched to TOU, the smaller households in

our sample moderately increased their total electricity usage in some summer months. We

provide speculation as to the incentives and decision-making processes that may have led to

these responses, but cannot at this time formally test these hypotheses against one another.

Nonetheless, we propose that the very questions that our results raise and the models of

consumer behavior that they can rule out provide important insights to regulators wishing

to pursue further policy innovations.

The TOU program that we study is the first large-scale residential field deployment of

its kind. The program, implemented by a utility in the northeastern United States, forced

households to switch irrevocably to a TOU tariff after breaching a monthly usage threshold.

The threshold was initially set at 4000 kilowatt hours (kWh) per 30-day billing month in

November 2006, and was reduced to 3000kWh in January 2008 and finally to 2000kWh in

January 2009. The program thus targeted very large electricity users at first, but covered

more moderate users over time as the threshold was lowered. It is the mandatory nature of

the program that gives rise to a natural experimental setting, which we exploit within the

regression discontinuity framework. We use monthly billing data on total usage and total

expenditure for over 20,000 households between 2006 and 2011 to estimate treatment effects

with a clear, causal interpretation.

We make contributions to the literature evaluating household responses to electricity

rates along several dimensions. First, the mandatory nature of the program design elimi-

nates concerns over selection effects that are present in evaluations of programs based on

voluntary participation. Second, the field deployment of the program provides us with a

natural experimental setting as well as a large sample size. Together, these features of the

program facilitate a clear and transparent research design that permits the estimation of

causal treatment effects that are free of the small-sample and selection concerns inherent
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in many past studies. Finally, we develop a simple, reduced-form method to overcome a

common deficiency in electricity billing data: since utilities have no need to meter usage by

time of day when total usage is billed at a flat rate, it is usually impossible to retrieve the

historical on-peak/off-peak breakdown of control households’ usage. Our method uses data

from multiple sources to estimate separate treatment effects for on-peak and off-peak usage.

While the mandatory nature, field deployment, and size of the program make our setting

unique, we are not the first to examine the potential of time-varying prices to improve

efficiency. An early theoretical literature described how incentives to reduce peak usage would

translate into more efficient capital deployment.2 Making use of technological developments

(via high-frequency metering), some small field trials were implemented in the 1970s to study

the potential of TOU pricing to shift load. Of particular relevance is Hausman, Kinnucan,

and McFadden (1979), who estimated a demand system on data derived from 199 households

that participated in a utility-run trial program of TOU pricing in Connecticut from October

1975 to October 1976. The dramatic financial incentives induced households to shift from

peak to off-peak usage, and also led to overall energy conservation.3

More recently, several studies have evaluated consumer responses to more granular forms

of time-varying pricing, mostly in limited experimental settings.4 Of note are two studies

that rely on randomized assignment to control and treatment to isolate the impact of time-

varying pricing on usage. Wolak (2006) considers the impact of critical-peak pricing, whereby

consumers receive rebates for conservation on a selected number of high-price electricity days

and pay a standard rate at other times. Households assigned to the treatment group reduced

usage by 12% compared to control groups during pricing events. Allcott (2011) evaluates the

2Steiner (1957) and Williamson (1966) are two of the most frequently-cited examples from this body of
previous work.

3Treatment households were exposed to on-peak, intermediate, and off-peak prices of 16 cents/kWh, 3
cents/kWh and 1 cent/kWh, respectively, while control households faced a schedule on which they were
charged time-invariant prices between 6.25 and 3.24 cents/kWh (with this flat rate decreasing with monthly
usage). Due to the magnitude of the price changes, the period of maximum usage for treated households
shifted from peak hours to off-peak hours. In addition, total usage declined by 5 percent for treated house-
holds.

4Even when set optimally, TOU rates are too coarse to capture more than a small fraction of wholesale
price fluctuations, as the small number of different rate periods within a given day and the fact that the rates
are set for months at a time foreclose the possibility of transmitting high-frequency price signals to retail
customers. Borenstein (2005) and Jessoe and Rapson (2012a) show that TOU prices can at most capture
6 to 13 percent of wholesale price variation. For this reason, economists tend to favor prices that are more
timely and granular, such as real-time pricing.
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impact of real-time pricing, whereby the retail price of electricity varies hourly based upon

day-ahead wholesale prices. He finds that households exhibited a price elasticity of -0.1 on

average, and conserved electricity on net.5 While our work is most closely related to these

studies, our program setting and research design differentiates us from this strand of the

literature along two dimensions: the regime change we study arose out of the rate-setting

process and applied (with few exceptions) to the entire residential customer base, establishing

a natural as opposed to a framed experimental setting, in the taxonomy of Harrison and List

(2004); and the regime change was permanent.

2 Program Design and Data

We have obtained data from an electric distribution company in the northeastern United

States that implemented a mandatory residential time-of-use program beginning in 2006.

Prior to the introduction of this program, most residential customers were billed according

to a seasonal flat rate, with the price of electricity varying seasonally but remaining constant

within a day. However, approximately 12% had chosen to be placed instead on a seasonal

TOU rate, with the price of electricity varying seasonally and within a day.6 The program

that we study was introduced in order to increase the take-up of this TOU rate by making

it mandatory for high-use customers.

The TOU program was intended to provide customers with an economic incentive to

shift electricity consumption from peak to off-peak periods and to invest in energy efficient

technologies to reduce usage in the long run. One reason that TOU pricing was favored

over other time-varying pricing programs was the recognition that, to effectively induce

customers to shift load, a rate must be simple and readily understood. The rationale for the

mandatory nature of the program was the concern that households opting into the TOU rate

would mostly be those not needing to modify usage in order to reduce expenditure, so that

5Faruqui and Sergici (2010) provide a meta-analysis of 15 additional time-varying pricing pilots and
experiments, including those with time-of-use, critical-peak, and real-time pricing components, conducted
by utilities over the past decade. They find that households responded to these programs by reducing usage
in general, though the magnitude of the response depended on the presence of enabling technologies and
other factors. Further, they find that TOU programs induced reductions in on-peak usage of between 3%
and 6%.

6In the analysis that follows, we exclude these voluntary adopters.

5



continuing to make adoption purely voluntary would have had little effect on system-wide

peak consumption.

Under the policy, when a residential customer’s electricity usage in any 30-day billing

period exceeded a pre-determined threshold, the customer would be automatically placed

onto TOU pricing. Further, this threshold would be lowered annually. Beginning November

2006, a household would be placed on TOU pricing by January of 2008 if usage in any

30-day billing period exceeded 4000 kWh. This threshold applied until December 31, 2007,

following which a 3000 kWh threshold was introduced. Under the 3000 kWh threshold, a

customer would be switched onto the TOU rate within six months of exceeding the 3000

kWh threshold. The threshold was lowered to 2000 kWh beginning in January of 2009, after

which households exceeding the threshold would be switched onto TOU pricing within 6

months of exceeding the threshold.7

To inform customers of this program, the utility engaged in a limited education and

outreach initiative in 2006. The goals of this campaign were to highlight (i) the equitability

in this cost recovery program and (ii) the potential bill savings to customers should they

shift load from peak to off-peak hours. The reason for the limited scope of the outreach

effort was the assumption that most people understand the idea behind TOU pricing, as

many retail products – e.g. phone service – are based on peak pricing structures.

The residential TOU rate plan charges a high per-kWh rate at on-peak times (noon

through 8pm on weekdays) and a low per-kWh rate at off-peak times (all other times and

days). Both rates are higher during the summer season (June through September inclusive)

than during other seasons. Besides the seasonal rate changes on June 1 and October 1 of

each year, the utility also makes periodic rate adjustments, often on January 1 and July 1 of

each year. Table 1 shows the TOU rates that were in effect over the period of our analysis,

and compares them to the corresponding non-TOU rates.8 Although revenue neutrality is

generally an overarching goal of utilities and regulators when planning rate design changes,

7It should be noted that households suffering from a serious illness or other life threatening situation
necessitating the use of specialized electrical devices could apply to be exempted from this program.

8Until 2009, the summer non-TOU tariff had an increasing-block structure, with the first 500 kWh of
usage in a billing month charged at a base “headblock” per-kWh rate and the remaining usage in that billing
month charged at a higher “tailblock” per-kWh rate. The tailblock rate actually exceeded the TOU on-peak
rate in the summer of 2008. We will revisit this point when interpreting our results below.
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we do not know how the utility attempted to achieve this or what other issues they considered

when setting these individual rates.

To evaluate the effect of this policy change on total usage, total expenditure, and load

shifting, we rely on two separate datasets. Our first dataset contains monthly billing data

from June 2006 to September 2011 on total usage, total expenditure, and rate class for a

sample of about 35,000 households. This sample is made up of two groups of households, and

was constructed based on usage levels in September 2010: the first group is the population

of households with usage above 1500kWh in that month; and the second group is a random

selection, of similar size as the first group, of households with usage between 1300 and

1500kWh in that month.9 This is our primary dataset, which we employ to estimate our

main results on the effect of mandatory TOU pricing on total electricity usage and total

electricity expenditure.

A shortcoming of our primary billing dataset is that we cannot directly observe the on-

peak/off-peak breakdown of household total usage. While we are able to use the billling

data to impute this breakdown for households on TOU pricing (as discussed in Section 5.1),

this imputation is not possible for households on a flat rate tariff. To estimate peak and

off-peak usage for non-TOU households, we therefore rely on our second dataset, referred to

as the load profile data. The load profile data comprise hourly usage data between January

2006 and October 2011 for a random sample of 1,300 households present for between 2 and

48 months. Using these data, we can directly calculate the ratio of peak to off-peak usage

on a monthly basis for the flat rate households in this sample. We can then use these data

to estimate the peak-to-off-peak usage ratio for certain non-TOU households in our primary

billing dataset. This allows us to also assess the effect of TOU pricing on peak and off-peak

usage separately.

We present a summary of some of our data in the following section. In order to frame

this summary, we must first introduce some aspects of our experimental design and related

concepts.

9The year 2010 was chosen for this rule so that the included households would be most representative
of the utility’s current customer base. September was chosen because it corresponded to the annual system
peak that year.
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3 Experimental Design

The purpose of this section is to explain in detail how the TOU program we study gives rise

to a regression discontinuity experimental design. However, it should be noted at the outset

that only part of our empirical strategy exploits this experimental design. A question of

particular interest that we would like to address is whether the mandatory switch to time-of-

use pricing induced households to reduce their electricity usage during on-peak hours. But,

as noted above, we only observe total electricity usage (and total electricity expenditure) in

our primary billing dataset. We can construct on-peak and off-peak usage on a monthly basis

from the hourly usage data in our sencondary load profile dataset, but this sample contains

only a small number of households and has a limited panel structure. As the following

discussion will make clear, we require data on a large number of households that are present

for a large number of consecutive months to leverage the experimental design. Only our

billing dataset fulfills these requirements. Our primary empirical strategy will therefore be

to identify changes in total usage and total bills that were caused by the switch to TOU by

using the billing data to exploit the experimental setting. We will then use information from

the load profile data to calculate the effects on peak and off-peak usage that are implied by

these changes. We will describe the various components of our empirical strategy in more

detail, as well as present the corresponding results, in the next two sections.

The key feature of the regression discontinuity design in general is that assignment to

the treatment group is triggered by crossing some threshold. In the neighborhood of the

threshold, assignment to the treatment group is effectively random, since idiosyncratic factors

will push some individuals over the threshold but not others. Therefore, differences in

outcomes between individuals on either side of the threshold can be interpreted as causal

treatment effects. On the surface, the TOU program we study corresponds directly to

this type of setting, since crossing a usage threshold determines a household’s TOU status.

However, two features of the program complicate the analogy: the sequential lowering of the

threshold over time; and the varying lag across households between crossing a threshold and

receiving the TOU treatment.

We address these complications first of all by separating our dataset into three distinct ex-

periments based on the program design: one each corresponding to the 4000kWh, 3000kWh,
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and 2000kWh thresholds. For each of these three experiments, we divide our sample into

three time periods: the pre-experiment period; the qualification period; and the treatment

period. The qualification period for a given experiment encompasses a subset of the months

in which a household, by the rules of the program, should trigger its eventual assignment

to the TOU treatment group by having total usage in excess of the threshold for that ex-

periment in any 30-day billing period. The treatment period is the focus of our analysis,

and encompasses selected months in which at least some households that crossed a threshold

during the qualification period (“crossers”) have been switched to TOU. The pre-experiment

period is defined residually as the set of months before the qualification period back to the

beginning of our sample.

We choose the qualification period to be the summer months of the corresponding cal-

endar year. The first motivation for this restriction is that the households that first cross

a threshold in the summer begin to be switched to TOU pricing by the fall. If we were to

extend the qualification period to capture households that first cross a threshold in the fall,

there would be an overlap between the qualification and treatment periods, which would

raise the possibility of endogeneity between the variable determining treatment status (i.e.

usage during the qualification period) and the TOU treatment itself.

The second motivation for restricting the qualification period to summer months only is

that this maximizes the number of households included in the experiment. Given the first

motivation, if we were to extend the qualification period to capture households that first

cross the threshold early in the year, we would have to end the qualification period at the

point that these households start to be switched on to TOU, which typically happens in the

summer. This would force us to exclude a large number of households, since the households

in our dataset generally have substantial usage peaks in the summer months, and these

months are therefore associated with a large volume of households crossing the threshold for

the first time.10

10Neither of these issues is a concern for the 4000kWh experiment, since there are no households in our
analysis that were switched to TOU before February 2008, which was after the 4000kWh threshold was no
longer binding and the 3000kWh threshold was already in place. We therefore define the qualification period
for the 4000kWh experiment as the full set of months for which the 4000kWh threshold was in place, namely
November 2006 through December 2007. The qualification period for the 2000kWh experiment includes
the summer months of 2009 only, though the 2000kWh threshold remained binding in later years as well.
It would be possible to define a separate and additional 2000kWh experiment with a qualification period
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We choose the treatment period for a given experiment to be the set of months following

the qualification period for which there is a substantial difference between crossers and non-

crossers in their propensity to be treated. Though, by rule, all crossers should be switched to

TOU pricing within six months of crossing a threshold for the first time, some are switched

more quickly than this, some experience delays of several months before being switched, and

a few are never switched within the timeframe covered by our sample.11 At the same time,

non-crossers in a given experiment may eventually receive the TOU treatment by virtue of

being a crosser in a different experiment.12 We therefore expect the propensity to be treated

to increase over time for both groups, and thus for the difference in this propensity across

groups to be substantial for a limited window only.

Unlike in a canonical “sharp” regression discontinuity setting, the preceding discussion

demonstrates that crossing a usage threshold in the TOU program under consideration is

not a perfect determinant of being in the treatment group in any given treatment-period

month. Instead, each of the three individual experiments should be viewed as having been

generated by the Fuzzy Regression Discontinuity (FRD) design, where the “fuzziness” refers

to the imperfection of the crosser/non-crosser distinction as a predictor of a household’s

TOU status in a given experiment.

As in the general regression discontinuity framework, we will assume that a household’s

crossing status is exogenous in the neighborhood of the threshold for a given experiment.

corresponding to the summer months of 2010, but we have not explored this in detail, since the subsequent
treatment period would be truncated due to our sample ending in the middle of 2011.

11The long delays between crossing and switching and the failure to switch some qualifying households
altogether appear to be most frequently due to technical and administrative difficulties associated with
installing requisite metering equipment. A small number of crossers were switched to TOU but eventually
allowed to revert to a non-TOU rate due to a medical exemption; these households have been removed from
the analysis. It is possible that some of the crossers that were never switched to TOU were granted a medical
exemption pre-emptively, but we cannot observe this.

12For example, a household that did not cross the 3000kWh threshold in 2008 might cross the 2000kWh
threshold early in 2009 and be switched to TOU on that basis shortly thereafter, potentially even before some
of the 3000kWh crossers are switched. Also, while we exclude households from a given experiment that have
already received the TOU treatment before the end of the qualification period, we do not exclude households
that were crossers in a previous experiment that had not yet received the treatment. It is therefore possible
that a non-crosser in a given experiment will receive the treatment due to having been a crosser in an earlier
experiment. Note that customers could also voluntarily opt in to a TOU pricing regime at any time, so
that it is theoretically possible that we could see a household that is never a crosser in any experiment but
is nonetheless on TOU. However, we have removed all voluntary switchers from our analysis, since such
self-selection into treatment would violate the experimental design and prevent us from identifying causal
effects.
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And as in the general framework, this will allow us to interpret differences in outcomes

between crossers and non-crossers as causal treatment effects – but only after adjusting

for the propensity for each group to be treated. These treatment effects can be estimated

consistently only for treatment months in which a sufficiently high proportion of crossers is on

TOU relative to the proportion of non-crossers on TOU (i.e. in which the crosser/non-crosser

distinction is a strong instrument for treatment status).

Before turning to a more precise discussion of how we implement the estimation of these

treatment effects, we present summary statistics for households close to the threshold in the

qualifying period for each of the three experiments in Table 2.

4 Treatment Effects for Total Usage and Total Bills

4.1 Methods

We begin by comparing crossers to non-crossers along several dimensions, separately for

each month in the entire sample and separately by experiment. Specifically, for a given

experiment, we estimate

Yi = βY t
0 + βY t

1 Ci + βY t
2 f

(
X̃i

)
+ βY t

3 Ci×f
(
X̃i

)
+ εY t

i (1)

individually for each month (t) and for various dependent variables Y . The variable Ci is

a dummy variable for whether household i is a crosser. The variable X̃i is the “forcing

variable” that determines whether household i is a crosser. More precisely, X̃i is household

i’s maximum total usage across all 30-day billing periods during the qualification period

net of the threshold qualifying level of kilowatt hours for a given experiment. Under the

rules of the program, if X̃i is strictly greater than zero, household i is a crosser and is thus

supposed to receive the TOU treatment eventually.13 Both of these variables are constant

13Formally, let Xit be household i’s total electricity usage in month t. Further, let usage on a standardized
30-day-billing-period basis be Ẍit ≡ Xit/dit×30, where dit is the number of total days actually in the billing

period corresponding to household i’s bill in month t. Then X̃i ≡
(

max
t∈Q
{Ẍit} − X̄

)
, where Q is the set of

months in the qualification period and X̄ is the threshold; and Ci ≡ 1

{
X̃i > 0

}
, where 1{} is the indicator

function.
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within households for a given experiment.14

The dependent variables we consider are total usage, total bills, and a dummy variable

TOUit indicating whether household i was on TOU pricing (i.e. was treated) in month t.

Specification (1) allows for a flexible relation between the outcome variable of interest and

the forcing variable through the function f(·), and allows this relation to differ for crossers

and non-crossers.15 The parameter βY t
1 measures the effect of being a crosser on the level of

outcome variable Y in month t as the distance from the threshold approaches zero, and is

interpreted as the Intent to Treat effect (ITT).16

The fuzzy regression discontinuity treatment effect for outcome Y in any month t in the

treatment period for a given experiment is defined as

τY t
FRD ≡

βY t
1

βTOUt
1

. (2)

That is, the treatment effect for the outcome of interest is the ratio of the ITT for the outcome

of interest to the ITT for the propensity to be treated. It can be estimated by applying two-

stage least squares to the following system of equations for any outcome variable Y in a

given treatment-period month t:

Yi = τY t
0 + τY t

1 TOUi + τY t
2 f

(
X̃i

)
+ τY t

3 Ci×f
(
X̃i

)
+ ωY t

i (3)

TOUi = βTOUt
0 + βTOUt

1 Ci + βTOUt
2 f

(
X̃i

)
+ βTOUt

3 Ci×f
(
X̃i

)
+ εTOUt

i , (4)

where τ̂1,2SLS is numerically equivalent to inserting the ITTs estimated via specification (1)

into equation (2). Note that we apply two-stage least squares as a computational convenience,

14The households included in these regressions are only those with a value of the forcing variable X̃i within
a selected bandwidth around zero, i.e. households “close to” the threshold. For the results that we present
below, we first use a wide bandwidth to visually examine the data, then use an optimal bandwidth for each
experiment to estimate the treatment effects. The optimal bandwidth selection is discussed in more detail
in Section A.1.

15For the results that we present below, we first define f(·) as a fourth-order polynomial to visually
examine the data, then as linear to estimate the treatment effects. Within the optimal bandwidth for each
experiment, we have not found alternatives to the linear form to qualitatively affect our estimated treatment
effects.

16These are causal effects by virtue of our assumption that, as the distance from the threshold approaches
zero, a household’s crossing status is exogenous. This assumption is discussed and evaluated in Section A.2.
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not because we are attempting to address endogeneity concerns.17 Nonetheless, there is a

useful analogue to be drawn between our setting and an instrumental variables (IV) setting:

just as weak instruments can lead to biased IV estimates, so too will our ability to estimate

treatment effects consistently be hampered when crossing status is a weak predictor of TOU

status. As discussed in the previous section, this concern will guide our precise definition of

the treatment period for each experiment.

4.2 Results

We begin by visually examining the propensity to be treated, total billed amount, and

total usage on each side of the threshold for each experiment. Specifically, we estimate

specification (1) for selected months following the qualification period for each experiment,

including households within a very wide range around the threshold and allowing the relation

between the outcome variable of interest and the forcing variable to have a separate quartic

form on each side of the threshold. This provides a first look at whether the relation exhibits

a discontinuity at the threshold (i.e. an intent to treat effect), and allows us to diagnose any

non-linearities in the relation that may complicate the identification of any discontinuity.

We then restrict specification (1) to be linear in the forcing variable and its interac-

tion with crossing status, and include only households within a narrower, optimally-chosen

bandwidth around the threshold.18 This is the form that we use to identify ITTs for each

dependent variable for several months before, during, and after the qualification period. To

present the large set of results in as compact a form as possible, we graph time series of

the set of estimated coefficients from (1) for each of the three dependent variables. More

specifically, for dependent variable Y , we graph β̂Y t
0 – the estimate of outcome Y in month

17A household’s time-of-use status in a given treatment-period month depends on its crossing status in
the preceding qualification period and on unobservable factors. However, crossing status is exogenous at
the threshold by assumption, and the unobservable factors are ostensibly exogenous issues related to various
meter installation and administrative hurdles faced by the utility. Further, as mentioned previously, we have
excluded all voluntary adopters from the analysis. We therefore do not consider concerns about endogeneity
between TOU status and either total expenditure or total usage to be present.

18The method used to determine the optimal bandwidth is described in Section A.1. A larger bandwidth
leads to more precise estimates of the discontinuity. However, a larger bandwidth also means that households
further away from the threshold are being used to identify the discontinuity at the threshold, which can
impart a bias; and this bias can be large if the relation is highly non-linear around the threshold. We choose
an optimal bandwidth for a given experiment to apply uniformly for the estimation of all ITTs and treatment
effects in each month of the treatment period for that experiment.
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t for a non-crosser exactly at the threshold – and β̂Y t
0 + β̂Y t

1 – the same for a crosser exactly

at the threshold – for every month, also indicating when the difference between the two is

statistically significant.

It should be noted that the number of parameters that we estimate separately across

treatment months and experiments raises difficulties for the assessment of their statistical

significance. In general, as the number of hypotheses tested increases, so does the likelihood

of witnessing a rare occurence and rejecting a hypothesis by sheer chance. We do not make

any corrections for this “simultaneous inference” problem. Instead, in our discussion of

results in this and the following section, we focus on broad patterns that have the strongest

statistical support, and avoid drawing conclusions based on conventional assessments of the

statistical significance of individual estimates.

4.2.1 4000kWh Experiment

Figure 1 shows the estimated propensity to receive the TOU treatment for crossers and

non-crossers in the 4000kWh experiment in July 2008. Being a crosser (i.e. being to the

right of the threshold) is clearly a strong predictor of having received the TOU treatment

by July 2008, as illustrated by the dramatic discontinuity at the threshold. However, it is

not a perfect indicator, as some non-crossers just to the left of the threshold – i.e. whose

maximum 30-day usage during the 4000kWh qualification period was very close but did not

exceed the 4000kWh threshold – have a small but positive propensity to be treated (due

to having crossed the 3000kWh threshold early in 2008). Likewise, a few crossers still had

not received the TOU treatment by July 2008, as indicated by the high but less than 100

percent propensity to be treated for households to the right of the threshold.

Figure 2 graphs the analogous discontinuity for each individual month between June

2006 and January 2009 based on a linear specification and the optimal bandwidth for the

4000kWh experiment of 600kWh.19 The months between the vertical lines delineate the

qualification period, and the months further to the left are the pre-experiment period. Since

we restrict our sample to households that never received the treatment before the end of the

19The bandwidth is symmetric, so encompasses households with a value of the forcing variable between
-600kWh and 600kWh. Note that the data in Figure 1 have been smoothed for ease of presentation, so that
each point represents several households. The point for July 2008 in Figure 2 is based on straight lines of
best fit through the first 7-8 points on each side of the threshold in Figure 1.
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qualification period, the propensity to be on time-of-use pricing is zero for both crossers and

non-crossers throughout the pre-experiment and qualification periods by construction.20

The propensity for crossers to be on TOU pricing increases sharply in February 2008,

and continues to increase thereafter. The propensity for non-crossers to be treated remains

low until the summer of 2008, but jumps sharply in August and September of that year.

This corresponds to households that crossed the 3000kWh threshold early in 2008 being

switched to TOU on that basis. By November 2008, the difference in the propensity to be

treated across the 4000kWh crossers and non-crossers is too small to support the consistent

estimation of treatment effects for total bills and total usage. We therefore choose to limit

the treatment period for the 4000kWh experiment to February 2008 through October 2008

inclusive.

Figure 3 shows the estimated total billed amount on each side of the 4000kWh threshold

in July 2008. The graph illustrates a dramatic discontinuity, suggesting that a crosser at the

threshold had a substantially lower electricity bill than a non-crosser at the threshold (by

about $100). While the relation exhibits some non-linearity, particularly for very high levels

of the forcing variable, Figure 3 provides fairly clear evidence that this difference is indeed

the result of a discontinuity, as opposed to a highly non-linear but continuous relation over

the entire range.

Figure 4 shows the estimated ITTs on the total bill over time. The large discontinuity

illustrated in Figure 3 for July 2008 is also present for the other summer months in 2008.

However, no such discontinuity is present for other months in the treatment period. Figure 4

also illustrates that the estimated total bill was nearly identical for crossers and non-crossers

at the threshold throughout the pre-experiment and qualification periods. Such balance on

pre-determined covariates is consistent with the intent to treat being randomly assigned at

20In the case of the 4000kWh experiment, this restriction is mostly vacuous, since there was no mandatory
TOU program in place before the qualification period for the 4000kWh experiment (and thus no way to
administer the treatment on a non-voluntary basis) and since, as has been mentioned previously, we have
removed voluntary TOU households from our sample. Households with a value of the forcing variable
substantially higher than the upper bandwidth cut-off of 600kWh are more likely to have crossed the 4000kWh
threshold for the first time early in 2007, and such households were required to have been switched to TOU
before the end of 2007. A few of these households were indeed switched in late 2007, but most were not
switched until February 2008, along with most of those crossing for the first time in the summer of 2007.
The delay in rolling out the program for these larger households (that are not included within the bandwidth
we consider in any case) appears to be due to unforeseen technical and administrative issues by the utility.
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the threshold, and as such is an important component of a valid experimental design. In this

specific case, it supports the proposition that the large ITTs we find in the summer of 2008

are not spuriously caused by some systematic difference in summer usage patterns between

crossers and non-crossers.

Figure 5 shows estimated total usage on each side of the 4000kWh threshold in July

2008. Though less dramatic than that for the total billed amount, the graph illustrates a

discontinuity for total usage as well. Again, the graph does not suggest that the difference

can be attributed to non-linearities in the relation between the forcing variable and the

outcome variable.

Figure 6 shows the estimated ITTs on total electricity usage over time for the 4000kWh

experiment. Total usage was nearly identical throughout the pre-experiment and qualifica-

tion periods, and remained so for most of the treatment period as well. Only in the summer

of 2008 was there a significant difference in total usage, when crossers at the threshold had

lower usage in June and July than non-crossers at the threshold.21

Table 3 shows the treatment effects, adjusted for the propensity to be treated, on total

usage and total bills for each month in the 4000kWh treatment period. To give a better

sense of magnitudes, Table 3 presents each treatment effect as a percentage of the level of the

respective variable for non-TOU households at the threshold.22 As was foreshadowed by the

ITTs discussed above, we find that the switch to time-of-use pricing caused very large and

statistically significant drops in total electricity expenditure in the summer months of 2008 –

by more than 20% in each of the four months and as much as 30% in July. This is matched by

21Again, the absence of significant differences in total usage between crossers and non-crossers during
the pre-experiment and qualification periods indicates that the differences in June and July 2008 are not
driven by pre-existing differences between the groups. In this case, it also indicates that non-crossers were
not purposely restraining their usage during the qualification period to avoid crossing the threshold, which
would violate the random assignment assumption. Figure 6 does show that non-crossers at the threshold
had slightly lower total usage than crossers in early 2007, but this difference is not statistically significant.
Section A.2 discusses manipulation of the forcing variable in more detail, and tests for such manipulation
more formally.

22That is, each entry shows τ̂Y t
1 /τ̂Y t

0 ×100 from a separate two-stage least squares application of equations
(3)-(4). Note that we calculate standard errors for the treatment effects based on non-parametric bootstrap
methods. While the robust 2SLS covariance matrix is asymptotically valid, we opt to report bootstrapped
standard errors for the total usage and total expenditure treatment effects for consistency with the on-peak
and off-peak treatment effects that we present below, since the method we use to calculate these latter effects
(to be discussed in Section 5.1) necessitates the retrieval of standard errors through bootstrap methods. We
discuss the bootstrap methods that we employ in Section A.3.
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statistically significant declines in total electricity usage in June and July of a proportionately

smaller but nonetheless substantial 9-10%. In the remaining treatment months, the effects

for both variables are estimated imprecisely, and are smaller in magnitude.

4.2.2 3000kWh Experiment

Figures 7 through 12 show the same series of ITTs for the 3000kWh experiment as discussed

above for the 4000kWh experiment. The propensity of 3000kWh crossers to be treated in

July 2009 exhibits some extreme non-linearities throughout the upper range of the forcing

variable; the sources of this non-linearity are unknown, but neither is it suggestive of an

invalid design.23 Crossing is a reasonably strong predictor of receiving the TOU treatment

between October 2008 and November 2009 inclusive, which is the set of months we therefore

define as the 3000kWh treatment period.

Crossers have slightly lower bills and usage than non-crossers at the threshold in October

and November 2008. However, this difference is also present in October and November

2007, suggesting that there may be some systematic difference in autumn electricity usage

between crossers and non-crossers. We therefore do not focus on the first two months of the

treatment period. As in the 4000kWh experiment, crossers at the 3000kWh threshold have

lower bills than non-crossers in the summer months of the treatment period. However, unlike

the 4000kWh experiment, the difference in summer bills is small and is not accompanied by

any significant difference in total summer electricity usage.

Table 4 shows the treatment effects on total bills and total usage for the 3000kWh

experiment. For parsimony and consistency across experiments, the table only includes

the 3000kWh treatment months in 2009 corresponding to the months in 2008 for which

treatment effects could be estimated for the 4000kWh experiment in Table 3. Between July

and October 2009 inclusive, TOU caused a drop of 7-12% in total bills. The effects on total

bills in other treatment months and on total usage in all months are negligible in magnitude

and significance.

23The bandwidth we choose for the 3000kWh experiment is 400kWh on either side of the threshold. This
corresponds to the first 6-7 bins on either side of the threshold in Figures 7, 9, and 11. The relations are
approximately linear over this range in each case.
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4.2.3 2000kWh Experiment

Figures 13 through 18 show the same series of ITTs for the 2000kWh experiment as discussed

above for the 4000kWh and 3000kWh experiments. The propensity of 2000kWh crossers

to be treated is positive but low in October and November 2009, directly following the

qualification period. It then jumps above 60 percent in December 2009 and remains at about

that level until November 2010. The propensity for 2000kWh non-crossers remains negligible

for this period. This is sensible, as the 2000kWh threshold remained in place in 2010 as well,

and it is unlikely that non-crossers in the summer of 2009 would exceed the same threshold

later in 2009 or early in 2010. On the other hand, summer high temperatures were higher and

occurred later in the year in the northeast in 2010 compared to 2009. Consistent with this, the

propensity for households that did not cross the 2000kWh threshold in the summer of 2009

to be treated jumps to about 60 percent in December 2010, corresponding to many of them

eventually crossing the same threshold late in the summer of 2010. Altogether, crossing in

the summer of 2009 is a reasonably strong predictor of receiving the TOU treatment between

December 2009 and November 2010 inclusive, which is the set of months we therefore define

as the 2000kWh treatment period.24

As with the previous two experiments, we see some significant differences between the

total bills of crossers and non-crossers in the summer months at the 2000kWh threshold.

However, while this difference is negative in July 2010, consistent with July 2008 in the

4000kWh experiment and July 2009 in the 3000kWh experiment, it is positive in September

2010, in contrast to both of the previous experiments. Further, we see a significant ITT

outside the summer months, in contrast with the previous two experiments, with the total

bill of crossers at the threshold lower than that of non-crossers in March 2010. Crossers also

had significantly lower total usage in July 2010 than non-crossers at the threshold, followed

by significantly higher total usage in August through October 2010.25

Table 5 shows the treatment effects on total bills and total usage for the 2000kWh

24The bandwidth for the 2000kWh experiment is 80kWh, which corresponds with the first 4 bins on either
side of the threshold in Figures 13, 15, and 17. This is a substantially smaller bandwidth than for the
previous two experiments, which reflects the much greater density of consumers with usage in this range.

25Both the total bill and total usage of crossers at the threshold were slightly higher than those of non-
crossers in May 2009, at the beginning of the 2000kWh qualification period. The sources of these small
differences are not obvious, but we do not consider them to be indicative of a systematic difference between
crossers and non-crossers that would affect the interpretation of the treatment period results.
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experiment. Again, only February through October 2010 are shown, for consistency with

Tables 3 and 4. TOU caused a 5% drop in total usage in July 2010, but increases in total

usage of 5-10% in each of the following three months. This pattern is matched by the effects

for total bills, though only the drop in July is significant. There is also suggestive evidence

that TOU caused drops in total bills of about 5-7% in the spring months of 2010.

4.2.4 Summary

These estimated treatment effects on total usage and total bills will serve as the foundation

of our estimates of treatment effects on peak and off-peak usage, to be discussed in the

following section. But they point to some interesting and potentially important conclusions

in themselves, which we attempt to synthesize here.

An encouraging observation is that TOU caused sizeable reductions in total usage in the

summer months by the largest households. This is a desirable effect from the perspective of

engineering and environmental goals, even if these largest households represent a very small

proportion of the overall customer base. Further, TOU caused substantial bill reductions

for large households in the summer. This follows naturally from the lower usage, but is

also due in part to the increasing-block structure of the non-TOU tariff that was in place in

the summers of 2008 and 2009, as shown in Table 1. The high tailblock rate that applied

to most of the consumption of these large households implies that the switch to TOU was

likely associated with a significant “rate-class discount” – i.e. that bills would be lower

under TOU without any change to total usage or its timing. In other words, given the same

underlying household behavior, the effects on total bills would not have been as dramatic if

the utility had set a lower non-TOU tailblock rate or a higher TOU on-peak rate in these

months. Nonetheless, lower expenditure is a desirable effect from the perspective of consumer

satisfaction, regardless of its underlying sources.

On the other hand, a disappointing conclusion that emerges consistently across the three

experiments is that TOU caused very little change in either total expenditure or total us-

age outside the summer months. This strongly suggests that there were also no effects on

underlying on-peak and off-peak consumption in these non-summer months, which will be

largely confirmed by the results presented below.
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Finally, the smallest households examined exhibit a curious reversal in their response

to TOU. As with the largest households, they display an encouraging drop in total bills

and total usage due to TOU in July 2010. However, these negative TOU treatment effects

turned disconcertingly and substantially positive for both variables in the late summer and

unusually warm autumn of 2010.

5 Implied Treatment Effects for On-Peak and Off-Peak

Usage

5.1 Methods

We cannot estimate treatment effects for on-peak and off-peak usage directly because we do

not observe these variables in our billing dataset. However, we can take advantage of our

load profile data and observed rates to calculate implied treatment effects for on-peak and

off-peak usage that are consistent with the estimated effects for total usage and total bills.

We first note that we can use the structure of customers’ electric bills to impute a

household’s on-peak and off-peak usage for months that it is on TOU. When household

i is on TOU, its total billed amount E in month t is

EitT = pontTx
on
itT + pofftT xoffitT + ftT (5)

where T indicates the TOU pricing regime and xon and xoff represent the household’s on-

peak and off-peak usage respectively.26 That is, bills depend on a fixed fee f , and on on-peak

and off-peak per-kWh charges of pon and poff respectively. Combining this with the fact

that on-peak and off-peak usage must sum to the household’s observed total usage, X, i.e.

Xits = xonits + xoffits (6)

(for either pricing regime s ∈ {T,N}), gives two equations in two unknowns. This allows us

26We index usage and bills by T because, even though a household is on only one pricing regime in a
given month in reality, we wish to contemplate how a household’s behavior would change in a given month,
varying the pricing regime only.
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to solve for on-peak and off-peak usage as functions only of variables that we observe:

xonitT =
EitT − ftT − pofftT XitT

pontT − p
off
tT

and xoffitT =
pontTXitT − ftT − EitT

pontT − p
off
tT

. (7)

Note that this imputation is, unfortunately, impossible for non-TOU household-months,

as the non-TOU rate is the same for on-peak and off-peak usage, and the non-TOU analogues

to the expressions in (7) are hence undefined. Instead, we develop an alternative strategy to

estimate on-peak and off-peak usage levels for non-TOU household-months employing our

load profile dataset.

Specifically, we first define the peak-to-off-peak usage ratio for non-TOU household-

months as

x̌itN ≡
xonitN

xoffitN

, (8)

where N indicates the non-TOU pricing regime. Along with total usage, this ratio fully

determines on-peak and off-peak usage levels, since, using equations 6 and 8,

xonitN =
x̌itN

1 + x̌itN
×XitN and xoffitN =

1

1 + x̌itN
×XitN . (9)

We then estimate this ratio for representative non-TOU households by making use of our

load profile dataset, in which we observe on-peak and off-peak usage for a small sample of

households. To do so, we first calculate x̌ according to equation 8 for all non-TOU household-

months, then calculate sample means by calendar month and household size.27 We use total

usage as a proxy for household size, and we choose the ranges of total usage over which to

calculate sample means according to the range spanned by the non-TOU households in our

billing data for a given treatment month of a given experiment. We discuss this estimation

in more detail in Section A.4.

27Our motivation for considering household size and time of year is that we believe them to be important
factors determining households’ on-peak usage intensity. For households with electric air conditioning and
gas or oil heating, which accurately describes most homes in the northeast, the summer months will naturally
have higher on-peak usage intensity corresponding to daytime air conditioning. And this will be especially
true of larger households, with larger living spaces to cool. Of course, many other factors will also be
important determinants of inter-household differences in on-peak usage intensity, but we wish to restrict
ourselves to variables that we observe in both our billing and load profile datasets.
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With observed rates and levels of total usage and total expenditure, equation (7) can

be used to calculate on-peak and off-peak usage for any TOU household-month. Likewise,

observed levels of total usage and the load profile estimates of the peak-to-off-peak usage

ratio can be inserted into equation (9) to calculate on-peak and off-peak usage for any

non-TOU household-month.28 Our goal, though, is to calculate on-peak and off-peak usage

levels specifically for treated and non-treated households exactly at the threshold for a given

experiment for the corresponding treatment-period months. To accomplish this, we use

the 2SLS estimates of the respective levels of total usage and total expenditure for a given

treatment month. That is, we set XitT = τ̂Xt
0 + τ̂Xt

1 and EitT = τ̂Et
0 + τ̂Et

1 in equation (7); and

we use XitN = τ̂Xt
0 in equation (9) along with the load profile estimate ˆ̌xtN . For the levels

of on-peak and off-peak usage calculated with these estimates, we interpret the difference

between the level for a treated household at the threshold and the level for a non-treated

household at the threshold as a treatment effect consistent with the treatment effects for

total usage and total bills.29

5.2 Results

5.2.1 4000kWh Experiment

Table 6 presents the implied treatment effects for on-peak and off-peak usage for the 4000kWh

experiment. Consistent with the effects on total usage and total bills, TOU’s effects on peak

and off-peak usage are limited to the summer months for the most part. The switch to TOU

caused substantial declines in on-peak usage in June and July 2008, by about 13%. However,

TOU also caused significant though proportionately smaller declines in off-peak usage in the

same months. There is also weak evidence of a decrease in on-peak usage in February 2008.

28We observe the rate variables in these equations and the peak-to-off-peak usage ratio on a calendar-month
basis. In contrast, we observe total usage and total bills on a billing-month basis, i.e. for billing periods
that are comprised of parts of consecutive calendar months as determined by the billing cycle that a given
household is on. Wherever necessary, we can make use of billing cycle information to align calendar-month
and billing-month variables according to the procedure discussed in Section A.5.

29A possible alternative to the final step of this method would be to calculate the imputed and estimated
on-peak and off-peak usage levels for every household-month in our billing sample, and then to apply the
2SLS estimation procedure to these constructed data series. We have not pursued this alternative because
we consider our preferred method to be a more efficient estimation procedure.
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5.2.2 3000kWh Experiment

Table 7 presents the implied treatment effects on peak and off-peak usage for the 3000kWh

experiment. Corresponding to the absence of any TOU effect on total usage for these house-

holds, there is no evidence of any TOU effect on either on-peak or off-peak usage. However,

Table 7 does provide suggestive evidence that TOU did not cause a decline in on-peak or

off-peak usage in the summer of 2009: the treatment effects are almost uniformly positive,

though they are estimated very imprecisely, and a joint test against this one-sided alternative

cannot be rejected at conventional significance levels.

5.2.3 2000kWh Experiment

Table 8 presents the implied treatment effects on peak and off-peak usage for the 2000kWh

experiment. Once again, TOU’s effects on peak and off-peak usage are limited to the summer

months. The drop in total usage in July 2010 caused by TOU appears to be more heavily

weighted towards a decline in off-peak usage. On the other hand, the increases in total usage

in September and October 2010 do not appear to be disproportionately driven by either on-

peak or off-peak usage: the conclusion that can be most strongly supported is that TOU

caused a decline in neither on-peak nor off-peak usage in either month.

5.2.4 Load Shifting

Load shifting refers to the displacement of some on-peak usage to off-peak hours, or in other

words, the substitution of off-peak for on-peak consumption. Such substitution is precisely

how economists would predict households to respond to TOU in principle: increasing the

on-peak price and decreasing the off-peak price steepens the budget constraint, and, other

things equal, should lead utility-maximizing consumers to choose less on-peak consumption

and more off-peak consumption. We will pursue this type of consumer theory line of analysis

in the following section, but first present estimates of how much load shifting was actually

induced by the TOU program.

To summarize the degree of load shifting implied by the on-peak and off-peak treatment

effects, we calculate non-parametric elasticities of substitution. That is, we calculate the

percentage change in the peak-to-off-peak usage ratio between a TOU and a non-TOU
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household at the threshold for a one percent increase in the ratio of the on-peak rate to

the off-peak rate, and we do so based on the treatment effects we have estimated and on

observed rates, rather than by relying on a model.30

We can calculate such implied elasticities of substitution for any treatment month of

any experiment. However, for parsimony and in an attempt to identify broad trends, we

have focused on two times of year: a winter-spring shoulder period, encompassing February

through April; and an extended summer period, encompassing May through October. For

each of these two periods, we calculate the average elasticity of substitution (i.e. the elasticity

based on the average across months of the underlying variables, rather than the average of

monthly elasticities) for each experiment separately.

The average elasticities of substitution for the February-April period are presented in

Table 9. There is very weak evidence of a moderate degree of load shifting across the

three experiments, but the estimated elasticities are statistically insignificant at conventional

levels. The average elasticities of substitution for the May-October period are presented in

Table 10. In this period, the point estimate of the elasticity of substitution is largest in

absolute value for the largest households, but still implies a drop by less than one tenth of

one percent in the peak-to-off-peak usage ratio for a one percent increase in the peak-to-

off-peak price ratio.31 Further, the estimated elasticities of substitution are insignificantly

different from zero for all three experiments, and the point estimates are positive for smaller

households. That is, moderate degrees of reverse load shifting in the summer months cannot

be ruled out.

Curiously, the period in which we see any evidence of load shifting is precisely the period

in which we saw no evidence of effects on total bills or total usage. This may indicate

that households treat their overall level of early spring electricity consumption as largely

non-discretionary, but are nonetheless able to make small changes to its timing over the

course of the day that are statistically indiscernible in Tables 6-8. This may also indicate

that households treat the timing of their summer electricity consumption across hours of

30Formally, we calculate σ = %∆ˆ̌xN→T /%∆p̌N→T , where p̌T ≡ ponT /poffT and p̌N = 1.
31Based on the rates in Table 1, the TOU peak-to-off-peak price ratio was about 1.5 on average in the

summer of 2008, or 50% higher than the non-TOU peak-to-off-peak price ratio. Combined with the point
estimate of the 4000kWh elasticity of substitution for this period, this implies that TOU induced an average
drop in the peak-to-off-peak usage ratio of about 4%.
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the day as largely non-discretionary. We leave further interpretation and discussion of these

estimates for the following section.

6 Interpretation

In this section, we take a closer look at the rates in Table 1 from the perspective of the

consumption possibilities they afford to households on each rate plan.32 We present three

budget frontiers for July of 2008: based on non-TOU rates and the level of expenditure of

the non-TOU household at the 4000kWh threshold (from the respective application of the

2SLS estimation); based on TOU rates and the expenditure of the non-TOU household at

the threshold; and based on TOU rates and the expenditure of the TOU household at the

threshold.

Figure 19 shows the first two of these budget constraints for the 4000kWh experiment

(i.e. for July 2008). The TOU rates/non-TOU expenditure frontier represents the theoretical

consumption possibilities available to a household that is switched to TOU pricing and retains

the same level of electricity expenditure as before the switch. That is, it represents the set

of on-peak/off-peak bundles that a static utility maximizing household would choose from.

Surprisingly, this budget frontier lies completely above the budget frontier corresponding

to the same total bill but non-TOU rates. This is driven by the fact that, as shown in

Table 1, the non-TOU tailblock rate (the marginal price of both on-peak and off-peak usage

faced by these high-consumption households) exceeded both the TOU off-peak and on-peak

rates.33 This implies that, regardless of the starting non-TOU bundle, that same bundle

would entail lower expenditure under TOU rates.

With any standard utility function, the optimal bundle implied by these budget con-

straints will involve an unambiguously higher level of off-peak consumption in the TOU

scenario relative to the non-TOU scenario. What we see instead, as discussed above, is sup-

32These rates, and thus the analysis in this section, reflect fixed and delivery charges only. They do not
include generation charges which may differ depending on the generation supplier that each household has
selected. Approximately one-half of customers face a non-TOU generation charge, and thus the analysis
holds unchanged for them. However, we anticipate that for households on bundled rate with the utility as
provider, which imposes a small TOU price gradient, the qualitative conclusions will not change.

33All budget constraints account for the fact that households lose the low headblock rate when switched
to TOU. This causes a small inward shift of the TOU frontier.
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port for precisely the opposite conclusion: that TOU did not cause an increase in off-peak

consumption in July 2008. In fact, as shown in Figures 19 and 20, the imputed TOU bun-

dle lies not only within the TOU rates/non-TOU expenditure frontier, but also within the

original non-TOU frontier.

One potential hypothesis that could explain this outcome is that households were not

responding only to contemporaneous rates, but were also making durable goods investments

in response to expected future rates. Alternatively, consumers may have been adjusting

on-peak consumption in response to some combination of contemporaneous rates, expected

rates, and other incentives, but at the same time, faced technological or attention constraints

that prevented them from adjusting off-peak usage separately from on-peak usage.

7 Conclusion

This paper describes a large-scale deployment of time-varying electricity pricing among large

residential electricity customers in the northeastern United States. The policy was imple-

mented as part of a statewide energy plan which sought to (among other goals) decrease

strain on the electricity grid during hours of peak load. It is, to our knowledge, the first

field deployment of such a residential pricing policy in the United States that went beyond

voluntary adoption; rules were set whereby high-use households would be mandated onto

the TOU rate plan.

An important feature of the analysis is the natural experiment that arises from the struc-

ture and implementation of the program. Customers were placed on the TOU rate automat-

ically after breaching the active threshold, creating an appropriate setting in which to apply

a regression discontinuity design. This differentiates our research design from most recent

existing studies of time-varying electricity pricing, which rely on framed field experiments in

which participants are aware of their participation.34 Thus, our paper offers a novel estimate

of how residential consumers behave when exposed to a TOU pricing plan. We also propose

a simple method for overcoming a common data shortcoming in this setting: we combine

34We refer here to the taxonomy of field experiments proposed by Harrison and List (2004). Wolak (2006),
Allcott (2011), and Jessoe and Rapson (2012b) are examples of recent studies of the effect of time-varying
pricing that are based on framed field experiments.
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our baseline estimates from the regression discontinuity design with a secondary data source

on customer load profiles in order to estimate peak and off-peak usage reductions and the

elasticity of substitution which they imply.

Our results reveal that some consumers exhibit responses that are consistent with the

policymakers’ goals and expectations. The largest treated households reduced total usage

during summer months by approximately 9 percent, including reductions during peak hours

specifically of about 13 percent. Were similar responses also observed in smaller households,

the overall capital efficiency gain associated with the program could have been quite large,

as the need for oft-idle reserve capacity would have diminished. Unfortunately, this is not

the case. The smaller households in our experiments exhibit mixed responses. Households

treated at the 2000kWh threshold first reduced their usage in summer months, but then

increased it (relative to control) in subsequent months.

Some of our results are not easily explained by standard economic models of consumer

choice. For example, the standard model of static utility maximization unambiguously pre-

dicts that treated households at the 4000kWh threshold ought to have increased their off-peak

usage, yet we can reject all but the smallest of increases. While we may conjecture a number

of hypotheses for the responses we observe more generally, our main conclusion is that more

research is needed to understand the mechanisms that underpin consumer behavior in this

setting.
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Figures and Tables

Table 1: Electricity Rates, Cents per kWh

Non-TOU TOU

Headblock Tailblock On-Peak Off-Peak

2008

Jan. 7.9 10.9 6.9
Jun. 7.9 11.8 11.4 7.6
Jul. 8.6 12.6 12.0 8.1
Oct. 8.6 11.5 7.5
2009

Jan. 8.8 13.5 6.9
Jun. 8.9 10.9 14.0 7.3
Jul. 8.6 10.6 13.6 7.2
Oct. 8.2 12.3 6.7
2010

Jan. 9.2 12.6 7.5
Jun. 9.6 14.0 7.5
Oct. 9.2 12.6 7.5

Notes: Prices include distribution, transmission, and delivery charges plus fees only. Actual customer bills
also include generation charges, which can vary by customer-chosen supplier. Generation charges account
for about 55-65% of the total bill. The headblock is the first 500kWh of total usage in the billing month.

Table 2: Summary Statistics, July of the Qualification Period

Total
Usage
(kWh)

Total
Bill ($)

Crossers
(%) N

4000kWh Experiment (2007) 3,309 382 0.339 1,096
[751] [91] [0.473]

3000kWh Experiment (2008) 2,766 333 0.331 2,010
[387] [50] [0.471]

2000kWh Experiment (2009) 1,494 166 0.421 1,576
[287] [31] [0.494]

Notes: Standard deviations are in square brackets. The households included for each experiment are those
within an optimally-chosen bandwidth around the threshold; see the text for details.

29



Figure 1: Intent to Treat Effect, Propensity to be Treated, 4000kWh Experiment, July 2008

Notes: Data are smoothed into bins of width 80kWh.

Figure 2: Intent to Treat Effects, Propensity to be Treated, 4000kWh Experiment, 600kWh
Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Figure 3: Intent to Treat Effect, Total Bill, 4000kWh Experiment, July 2008

Notes: Data are smoothed into bins of width 80kWh.

Figure 4: Intent to Treat Effects, Total Bill, 4000kWh Experiment, 600kWh Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Figure 5: Intent to Treat Effect, Total Usage, 4000kWh Experiment, July 2008

Notes: Data are smoothed into bins of width 80kWh.

Figure 6: Intent to Treat Effects, Total Usage, 4000kWh Experiment, 600kWh Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Table 3: Treatment Effects (%), 4000kWh Experiment, 600kWh Bandwidth
Total
Usage

Total
Bill N

Feb. 2008 -6.21 -4.73 1,106
(5.85) (5.42)

Mar. 2008 1.41 2.28 1,107
(5.91) (5.45)

Apr. 2008 4.04 4.27 1,106
(6.07) (5.54)

May 2008 -3.97 -2.88 1,108
(5.54) (5.12)

Jun. 2008 -9.24 ** -21.50 *** 1,105
(4.69) (4.19)

Jul. 2008 -9.85 *** -30.06 *** 1,105
(3.73) (2.96)

Aug. 2008 -5.39 -26.15 *** 1,107
(4.04) (3.08)

Sep. 2008 -2.11 -22.31 *** 1,095
(5.82) (4.36)

Oct. 2008 11.71 -3.75 1,105
(13.02) (9.97)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated. Each estimate is from a separate
regression, and is the estimated TOU treatment effect as a percentage of the estimated non-TOU level at
the threshold for the respective dependent variable. Of the 1,105 households included in the regressions for
July 2008, 373 are crossers; and the distribution of households is similar in other months.
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Figure 7: Intent to Treat Effect, Propensity to be Treated, 3000kWh Experiment, July 2009

Notes: Data are smoothed into bins of width 60kWh.

Figure 8: Intent to Treat Effects, Propensity to be Treated, 3000kWh Experiment, 400kWh
Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Figure 9: Intent to Treat Effect, Total Bill, 3000kWh Experiment, July 2009

Notes: Data are smoothed into bins of width 60kWh.

Figure 10: Intent to Treat Effects, Total Bill, 3000kWh Experiment, 400kWh Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Figure 11: Intent to Treat Effect, Total Usage, 3000kWh Experiment, July 2009

Notes: Data are smoothed into bins of width 60kWh.

Figure 12: Intent to Treat Effects, Total Usage, 3000kWh Experiment, 400kWh Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Table 4: Treatment Effects (%), 3000kWh Experiment, 400kWh Bandwidth
Total
Usage

Total
Bill N

Feb. 2009 -0.66 -2,05 2,011
(4.59) (4.04)

Mar. 2009 1.35 -0.62 2,012
(4.37) (3.84)

Apr. 2009 -0.37 -2.43 2,011
(3.97) (3.48)

May 2009 1.71 -0.09 2,009
(3.93) (3.45)

Jun. 2009 6.26 -0.13 2,009
(4.65) (4.20)

Jul. 2009 -0.33 -10.14 *** 2,010
(3.91) (3.45)

Aug. 2009 2.98 -7.28 ** 2,009
(3.38) (2.97)

Sep. 2009 0.22 -9.01 *** 2,009
(3.83) (3.32)

Oct. 2009 -8.49 -11.60 ** 2,007
(6.23) (5.54)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated. Each estimate is from a separate
regression, and is the estimated TOU treatment effect as a percentage of the estimated non-TOU level at
the threshold for the respective dependent variable. Of the 2,010 households included in the regressions for
July 2009, 665 are crossers; and the distribution of households is similar in other months.
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Figure 13: Intent to Treat Effect, Propensity to be Treated, 2000kWh Experiment, July
2010

Notes: Data are smoothed into bins of width 20kWh.

Figure 14: Intent to Treat Effects, Propensity to be Treated, 2000kWh Experiment, 80kWh
Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Figure 15: Intent to Treat Effect, Total Bill, 2000kWh Experiment, July 2010

Notes: Data are smoothed into bins of width 20kWh.

Figure 16: Intent to Treat Effects, Total Bill, 2000kWh Experiment, 80kWh Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Figure 17: Intent to Treat Effect, Total Usage, 2000kWh Experiment, July 2010

Notes: Data are smoothed into bins of width 20kWh.

Figure 18: Intent to Treat Effects, Total Usage, 2000kWh Experiment, 80kWh Bandwidth

Notes: The qualification period is the set of months between the vertical lines.
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Table 5: Treatment Effects (%), 2000kWh Experiment, 80kWh Bandwidth
Total
Usage

Total
Bill N

Feb. 2010 -2.24 -5.44 1,574
(4.85) (4.11)

Mar. 2010 -4.52 -7.18 * 1,570
(4.55) (3.86)

Apr. 2010 -1.25 -4.60 1,574
(4.51) (3.77)

May 2010 1.99 -2.02 1,574
(4.49) (3.74)

Jun. 2010 -0.63 -3.19 1,574
(3.54) (3.22)

Jul. 2010 -5.17 * -6.44 ** 1,576
(3.07) (2.85)

Aug. 2010 4.68 * 3.12 1,574
(2.56) (2.38)

Sep. 2010 5.60 ** 3.91 1,575
(2.63) (2.38)

Oct. 2010 9.34 ** 4.78 1,576
(4.22) (3.60)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated. Each estimate is from a separate
regression, and is the estimated TOU treatment effect as a percentage of the estimated non-TOU level at
the threshold for the respective dependent variable. Of the 1,576 households included in the regressions for
July 2010, 664 are crossers; and the distribution of households is similar in other months.
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Table 6: Implied Treatment Effects (%), 4000kWh Experiment, 600kWh Bandwidth
On-Peak
Usage

Off-Peak
Usage

Feb. 2008 -9.81 * -4.90
(5.76) (6.07)

Mar. 2008 -0.48 2.07
(6.09) (6.06)

Apr. 2008 2.46 4.57
(6.68) (6.13)

May 2008 -6.51 -3.08
(6.29) (5.54)

Jun. 2008 -13.27 * -7.68 *
(6.80) (4.46)

Jul. 2008 -12.45 * -8.78 **
(6.35) (3.46)

Aug. 2008 -6.64 -4.86
(6.13) (3.99)

Sep. 2008 -4.83 -1.01
(8.11) (5.57)

Oct. 2008 7.16 13.39
(13.80) (13.03)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated. Each estimate is from a separate
application of the method discussed in the text, and is the estimated TOU treatment effect as a percentage
of the estimated non-TOU level at the threshold for the respective variable.

42



Table 7: Implied Treatment Effects (%), 3000kWh Experiment, 400kWh Bandwidth
On-Peak
Usage

Off-Peak
Usage

Feb. 2009 -3.32 0.32
(4.70) (4.72)

Mar. 2009 -0.86 2.13
(4.66) (4.41)

Apr. 2009 -2.19 0.26
(4.42) (3.98)

May 2009 1.32 1.85
(4.43) (3.93)

Jun. 2009 5.53 6.55
(5.89) (4.51)

Jul. 2009 -1.50 0.16
(5.18) (3.72)

Aug. 2009 5.14 2.03
(4.50) (3.33)

Sep. 2009 4.49 -1.54
(5.33) (3.79)

Oct. 2009 -8.00 -8.67
(7.09) (6.16)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated. Each estimate is from a separate
application of the method discussed in the text, and is the estimated TOU treatment effect as a percentage
of the estimated non-TOU level at the threshold for the respective variable.
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Table 8: Implied Treatment Effects (%), 2000kWh Experiment, 80kWh Bandwidth
On-Peak
Usage

Off-Peak
Usage

Feb. 2010 -6.89 -0.51
(5.23) (4.86)

Mar. 2010 -5.50 -4.17
(5.15) (4.48)

Apr. 2010 -2.15 -0.94
(5.12) (4.46)

May 2010 -0.10 2.72
(5.22) (4.42)

Jun. 2010 0.69 -1.14
(4.56) (3.44)

Jul. 2010 -4.00 -5.66 *
(3.96) (3.05)

Aug. 2010 5.23 4.43
(3.64) (2.75)

Sep. 2010 9.18 ** 4.09
(4.00) (2.90)

Oct. 2010 7.65 9.98 **
(4.92) (4.34)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated. Each estimate is from a separate
application of the method discussed in the text, and is the estimated TOU treatment effect as a percentage
of the estimated non-TOU level at the threshold for the respective variable.
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Table 9: Implied Average Elasticities of Substitution, February through April
4000kWh Experiment (2008) -0.059

(0.051)
3000kWh Experiment (2009) -0.032

(0.022)
2000kWh Experiment (2010) -0.046

(0.033)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated.

Table 10: Implied Average Elasticities of Substitution, May through October
4000kWh Experiment (2008) -0.083

(0.089)
3000kWh Experiment (2009) 0.018

(0.030)
2000kWh Experiment (2010) 0.014

(0.034)

Notes: Standard errors (in parentheses) are based on a non-parametric bootstrap with 1,000 replications.
Significance at the 1% (***), 5% (**), and 10% (*) levels is indicated.
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Figure 19: Budget Lines, Utility Maximization, 4000kWh Experiment, July 2008

Figure 20: Budget Lines, Expenditure Minimization, 4000kWh Experiment, July 2008
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Figure 21: Sensitivity to Bandwidth, 4000kWh Experiment, Total Bill, July 2008

Figure 22: Density of Forcing/Running Variable, 4000kWh Experiment

Note: Data are smoothed into bins of width 20kWh. Separate quadratic predictions on each side.
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Figure 23: Peak-to-Off-Peak Usage Ratio by Total Usage for Non-TOU Households in the
Load Profile Sample, Calendar Month of July, pooled over 2006-2011
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A Appendix

A.1 Bandwidth

The trade-off involved with increasing the bandwidth is as follows: on the positive side, the

precision of the estimate is improved; on the negative side, a bias is imparted on the estimate

of the effect at the threshold by including observations further away from the threshold. As

discussed by Lee and Lemieux (2010), when the relationship between the forcing variable

and the outcome variable is approximately linear on both sides of the threshold, the bias

concern becomes less prominent (and, therefore, the optimal bandwidth exercise less useful).

Lee and Lemieux (2010) suggest a plug-in rule-of-thumb bandwidth that we implement in

order to derive the optimal bandwidths used in the text and figures. Imbens and Kalyanara-

man (2012) provide a completely data-driven approach to selecting an optimal bandwidth,

which we propose to implement in the future. In either case, we wish to adopt a uniform

bandwidth for every month, dependent variable, and estimator (ITT or treatment effect)

for a given experiment. To do so, we apply the two-stage rule-of-thumb procedure with a

quartic form common to each side of the threshold repeatedly for various treatment months

of a given experiment and the ITT specification with total usage and total expenditure as

dependent variables. From the set of optimal bandwidth estimates thus produced, we infor-

mally choose one in the lower range to apply uniformly in the estimation of all ITTs and

treatment effects for that experiment.

Figure 21 shows the ITT on the total bill in July 2008 for the 4000kWh experiment, with

95% confidence bounds, for bandwidths ranging from 200kWh to 3200kWh. The graph shows

a rapid tightening of the confidence interval and relative stability in the absolute magnitude

of the point estimate up to a bandwidth of about 1000kWh; followed by a decrease in the

absolute magnitude of the point estimate and moderate tightening of the confidence interval

thereafter. Correspondingly, as shown in Figure 3, beyond a value of the forcing variable

of about 1000kWh to the right of the threshold, the relation with expenditure becomes

quite non-linear, indicating, along with Figure 21, that bias is becoming a more prominent

concern than precision. On the other hand, Figure 15 shows a nearly linear relation over

a very wide range for the 2000kWh experiment. Indeed, we find little variation in point

estimates as we increase the bandwidth for this experiment, though neither do we find a

dramatic improvement in the precision of the treatment-period estimates. Unsurpisingly, we
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also do not find the optimal bandwidth exercise to be very worthwhile for this experiment,

as the rule-of-thumb estimate varies widely by month and outcome variable.

A.2 Manipulation of the Forcing Variable

In order for our Fuzzy Regression Discontinuity treatment effect estimates to be valid, a

household’s crossing status during the qualification period must be exogenous to the de-

pendent variables of interest during the treatment period. For example, there must be no

systematic differences across the groups that would lead to some households being both less

likely to have crossed the 4000kWh threshold in 2007 and less likely to have had lower bills

in the summer of 2008. One possible difference could arise if some large households were

able to manipulate their usage in order to avoid crossing the 4000kWh threshold in 2007,

but then did not engage in such manipulation in 2008, perhaps because breaching the lower

3000kWh threshold would have been too difficult to avoid.

If there were “bunching” in the density of households just below the threshold, this

might indicate that a substantial number of households were able to manipulate their usage

along these lines in order to avoid crossing. However, it would seem reasonable to assume

that households have only imprecise control over their exact usage in any 30-day billing

cycle, since precise control would likely require sophisticated equipment for monitoring and

regulating usage. And as described by Lee and Lemieux (2010), any such lack of precise

control implies that assignment (to the group of crossers or non-crossers, in our case) is “as

good as random” at the threshold.

We present visual evidence that supports the exogeneity assumption in Figure 22 for

the 4000kWh experiment, and additional figures that we have suppressed to save space

provide similar evidence for the 3000kWh and 2000kWh experiments as well. McCrary

(2008) suggests a more formal test, which we propose to implement in the future.

A.3 Bootstrapped Standard Errors

We use nonparametric bootstrap methods to perform statistical inference at several points

in our analysis. The treatment effects for total usage and total bills are estimated in levels

but reported as percent changes, the standard errors for which are calculated via bootstrap.

Inference on imputed treatment effects for on-peak and off-peak usage, and the substitution

elasticities which they imply, are also retrieved via bootstrap. These statistics are calculated
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from estimates derived from two different datasets, making analytical solutions for standard

errors difficult (if not impossible) to retrieve. Bootstrap methods allow us to circumvent

these challenges, and in this section we describe the sampling method that we have used.35

Let us first discuss the estimation of standard errors for the 2SLS treatment effects spec-

ifications, which rely solely on the billing dataset. Let wi denote the full time series of data

for household i, wi = (Xi, Ei, TOUi, Ci, X̃i) (corresponding to the notation in equation 1,

where Y referred generically to either total usage (X), total expenditure (E), or the treat-

ment indicator (TOU)). We draw a bootstrap sample of size N by sampling w1, . . . , wN with

replacement at the household level from the subsample of the billing dataset corresponding

to the optimal bandwidth restriction for a given experiment. Denoting the bootstrap sample

by w∗1, . . . , w
∗
N , we calculate an estimate, θ̂∗, of the vector of parameters of interest, θ, and

repeat this for B separate bootstrap samples.36 Given the B bootstrap estimates, θ̂∗1, . . . , θ̂
∗
B,

we calculate the bootstrap estimate of the variance-covariance matrix according to

V̂Boot(θ̂) =
1

B − 1

B∑
b=1

(
θ̂∗b −

¯̂
θ∗
)(

θ̂∗b −
¯̂
θ∗
)′

(10)

where
¯̂
θ∗ = B−1

∑B
b=1 θ̂

∗
b .

For the analyses that draw upon both the billing data and the load profile data, an

additional layer of simulation is required. The billing data bootstrap sample is as described

above, and we follow an identical protocol for the load profile bootstrap sample. Note

that we draw with replacement at the household level for the load profile samples despite

using the pooled estimation method outlined in Section A.4, allowing us to account for

within-household variation in an appropriate (conservative) way. Let vit correspond to an

observation for load-profile household i in month t, such that vit = (x̌it, Xit,month). Recall

that we use the load profile data to calculate sample means of the peak-to-off-peak usage

ratio (x̌) by calendar month and various ranges of total usage.

Having retrieved B bootstrap samples by once again sampling with replacement, we

randomly create pairs of billing and load profile bootstrap samples such that each of the

samples is used once (as is appropriate for independent draws).37 Together, these allow us to

calculate B bootstrap estimates, γ̂∗, of the true parameter vector γ. Having now retrieved B

35In both notation and procedure, what follows draws upon Cameron and Trivedi (2009).
36For all of the estimates in the text, we draw B = 1000 bootstrap samples.
37See Efron and Tibshirani (2009), pp88-90.
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bootstrap estimates θ̂∗1, . . . , θ̂
∗
B and γ̂∗1 , . . . , γ̂

∗
B, we are able to combine individual parameters

as necessary to calculate B draws from the distribution of peak and off-peak usage changes

and the corresponding substitution elasticities. We then calculate the second moment of the

distribution of these random variables non-parametrically as in equation 10.

A.4 Estimation of the Peak-to-Off-Peak Usage Ratio

As discussed in Section 5.1, the information we wish to obtain from the load profile data,

conceptually, is the peak-to-off-peak usage ratio for a representative non-TOU household

for a given treatment month of a given experiment. We have explored various methods

for implementing the estimation of this parameter, and have presently settled on simply

estimating sample means by calendar month for ranges of total usage. One concern that this

simple approach mitigates is the sparseness of data in the load profile dataset in the total

usage ranges we are most interested in. This sparseness is illustrated in Figure 23, which

shows that most observations in the load profile data for all months of July between 2006

and 2011 inclusive correspond to total monthly usage below 1500kWh.

We therefore pool all household-month observations to maximize the number at our dis-

posal, and calculate sample means by month-of-year, but not for month and year separately,

and not for month-year combinations. This has the disadvantage of treating a calendar

month in one year symmetrically with other years, which may not be warranted if average

temperatures over a season vary from year to year; but it at least improves the precision

of the month estimates by pooling observations across years and households. We choose to

calculate sample means over fairly wide ranges of total usage rather than estimate a para-

metric relation over such ranges or the entire range because no such relation is apparent from

Figure 23 or its counterpart for other calendar months. Further, the sparseness of the data

corresponding to high usage levels would make such estimation susceptible to overfitting.

Finally, it should be noted that the load profile households are, in general, not present in

the sample for a long enough period to facilitate controlling for intra-household variation.

For a given treatment month of a given experiment, we examine the distribution of total

usage in that treatment month across all non-TOU households in the billing data with a level

of the forcing variable within the bandwidth for that experiment. We then define the range

of interest as that between the 5th and 95th percentiles of this distribution, and calculate the

sample mean of the peak-to-off-peak usage ratio over this range and for the calendar month
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corresponding to the given treatment month in the load profile data. Finally, we use this

sample mean (adjusted for billing cycle, as discussed in the following section) as an input to

equation (9) when carrying out the final step of the procedure discussed in Section 5.1 to

estimate non-TOU on-peak and off-peak usage levels at the threshold.

A.5 Billing Cycles

There were 17 distinct billing cycles for residential customers over the period covered by

our dataset. Each billing cycle corresponds to a given day of the month (which can change

by a couple of days in either direction depending on month and year, due to weekends and

holidays) on which the meter is read and the billing period for customers on that billing cycle

closes. For customers on billing cycle 1, the total usage and total bill data for “July 2008”,

for example, correspond to usage that mostly happened in the calendar month of June; on

the other hand, for customers on billing cycle 17, total usage and total bill data for “July

2008” correspond to usage that mostly happened in the calendar month of July. There is

thus heterogeneity in our billing data in what “July 2008” (and every other month) refers

to. This is relevant because we only have rate information on a calendar-month basis. So

the total bill in “July 2008” depends on a weighted average of the rates that were in place in

the calendar month of June and those that were in place in the calendar month of July, with

the appropriate weight depending on which billing cycle a household is on. We describe here

how we retrieve billing cycle weights by household-month, and how we apply the weights

thus retrieved to align variables observed on a calendar-month basis with variables observed

on a billing-month basis.

We reconstruct the total billed amount for all non-TOU household months based on the

observed rates, total usage, and the unknown weight; then solve for the weight that exactly

aligns the reconstructed total billed amount with the observed total billed amount for each

individual household-month. (We cannot do the same for TOU household-months because

we do not observe the on-peak/off-peak breakdown of total usage. We can also not perform

the calculation for months in which there was no rate change from the previous month.)

A few households chronically had weights outside the sensible 0-1 range in the months for

which weights could be calculated, and have been dropped completely from all analysis; a

few remaining households occasionally had a month with a nonsensical weight, in which case

it was just the single household-month observation that was dropped.
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Finally, we calculate average billing cycle weights by billing cycle-month-year group over

all household-months we could calculate the initial weights for; fill in the missing month-

years (i.e. months across which there were no rate adjustments) with annual averages; then

apply the appropriate billing cycle-month-year average to every corresponding non-TOU and

TOU household-month. (We observe which billing cycle each household was on in September

2010, and know that households are supposed to always stay on the same billing cycle.)

We need to account for billing cycles in the imputation of on-peak and off-peak usage

for the TOU household at the threshold and the estimation of the same for the non-TOU

household at the threshold. The observed rates are for calendar months, and the estimation of

x̌ for representative non-TOU households in the load profile dataset has also been performed

(by necessity, due to the lack of billing cycle information on the households in the load profile

sample) on a calendar-month basis. Meanwhile, the households used in the 2SLS estimation

of treatment effects are on heterogeneous billing cycles, so that “July” actually includes a

small part of the calendar month of June for some households and a larger part for other

households. We align billing-month estimates with calendar-month rates and peak-to-off-

peak usage ratio estimates by taking a weighted average of the latter across the relevant

months. For consistency with the rest of the procedure we use to estimate on-peak and off-

peak treatment effects, the weight we use in the calculation must be the billing cycle weight

for a non-TOU or a TOU household (as appropriate) at the threshold. This is furnished by

once more applying 2SLS estimation to equations (3)-(4), this time with average billing cycle

weights as the outcome variable of interest.
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