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1 Introduction

Understanding the behavior of distress stocks has proved something of a challenge for

financial economists. Earlier thought, going back to at least Fama and French (1992),

suggested that financial distress could perhaps be the source of the higher expected

returns of value stocks. Unfortunately however, most of the recent research seems

to conclude that portfolios of highly distress stocks tend to severely underperform

other stocks.1 At least as surprising is the fact that the estimated loadings of distress

portfolios on standard risk factors, especially on size, are often quite large, rendering

the puzzle even deeper.

This paper re-examines both the evidence and the methodology behind these stud-

ies. Our starting point is the observation that delisting is an extreme event and one

that imposes a lower bound on the expected (and realized) stock return of the firm.

We believe that this is unlikely to be well captured with the simple linear factor model

used in most other studies.

In the next section we show theoretically that accounting for the probability of

this extreme event can dramatically change the properties of expected returns and,

specifically, impact our estimates of any abnormal excess returns for portfolios of highly

distressed stocks, where this probability can be non-trivial. Our theory also implies

there are potentially important biases in the estimated factor loadings.

We then use a Monte-Carlo simulation in Section 4 to illustrate these points quanti-

tatively. Using empirically plausible default probabilities we show how fitting a simple

linear model leads to biased coefficient estimates, and more specifically, to generally

negative portfolio alphas. This is true even though our true underlying data generating

process is assumed to have zero excess returns.

More constructively, these two theoretical sections also suggest a relatively simple

procedure to adjust portfolio returns and estimate the correct excess returns and factor

loadings. Section 5 implements this suggested correction and compares the results with

those from the linear models that are standard in the literature. Our findings confirm

1Some examples include Dichev, (1998), Griffin and Lemmon (2002), Campbell et al (2008) and Garlappi
and Yan (2011). Vassalou and Xing (2004) however reaches the opposite conclusion.
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that the correct excess returns are indeed much smaller than previously estimated and

in many cases not statistically different from zero. In particular, it is no longer true

that the portfolios of the most highly distressed stocks exhibit strongly negative alphas.

Although we find our evidence compelling, there are a few subtle, but potentially

important, issues that we do not entirely resolve in this paper. Perhaps the most

significant has to do with the fact that detecting financial distress is inherently diffi-

cult. It is common in the literature to identify a “distress” or a “default” event, with

stock delistings for performance related reasons, and we will follow this practice here

too. As a result, we will use the terms distress, default, and delisting more or less

interchangeably, although the latter is the more accurate one.

Practically, this means that we will identify highly distressed stocks as those with

a very high probability of being delisted for performance related reasons. Estimating

this probability accurately, then, becomes a significant step in any study of financial

distress. We focus on two alternative measures of these probabilities. The first one

updates the reduced form logit approach introduced by Shumway (2001) and Campbell

et al (2008). For contrast, we also use a more structural measure, building on Merton’s

Distance to Default insights. These two alternative approaches are discussed in Sections

3 and 6, respectively.

Another possible complication has to do with the identification of the exposure of

different stocks and portfolios to distress risk. The importance of separating this ex-

posure into systematic and idiosyncratic components is rarely acknowledged explicitly

in the literature. Nevertheless, this is also paramount to any discussion on the impact

of distress on expected equity returns. In the most extreme case, when defaults are en-

tirely driven by firm-level shocks, they are of little concern for investors and we should

not expect to see any sort of premium or discount on highly distressed stocks.

Section 2 shows formally how allowing for some correlation between default prob-

abilities and the systematic risk factors introduces an additional source of bias in

estimated factor loadings. Interestingly, we can show that the magnitude of this bias

in factor loadings is decreasing with the size of this correlation. Section 3 then sheds

light on the empirical magnitude of this source of bias by explicitly identifying and
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separating idiosyncratic and systematic components of distress.

We now turn to discuss the details of our calculations.

2 The Model with Delisting Returns

We begin by describing our model for the stochastic process for expected stock returns

when delisting events occur and proceed to discuss the theoretical biases in trying to fit

linear factor models to this process. We show that the likely magnitude of these biases

depends on the both the size of the delisting probabilities and their correlation with

the systematic risk factors. We estimate these in Section 3 before using Monte-Carlo

methods to attempt to gauge the magnitudes of these biases in Section 4.

2.1 The Factor Model

Our starting point is the observation that the limited liability of equity investors means

that bankruptcy and stock delistings effectively impose a lower bound on the value of

both actual and expected stock returns. As a result it seems sensible to assume that

the true process for expected excess stock returns on stock i in some arbitrary portfolio

p at time t, denoted rip(t) is given by the expression:2

rip(t) =

{
r̃ip(t) = αp + βpF (t) + εi(t) with prob 1− pi(t)
−δ with prob pi(t)

(1)

where pi(t) is the probability that firm i will delist its stock.

The upper branch of the stochastic process (1), denoted r̃ip(t), describes the familiar

multi-factor linear representation of expected equity returns. Here F (t) is a vector of

priced factors, βp is a vector of (portfolio) factor loadings and εi(t) is idiosyncratic

noise. For most practical applications we can think of F (t) as including the popular

Fama and French (1993) factors although in our empirical analysis we also discuss the

role of momentum factors. If our factor specification is correct, the excess returns αp

will be uniformly 0. Henceforth we will assume this to be the case.

2Although equation (1) is quite general it is common in this literature to work with excess returns over
the market portfolio and not the risk free rate.
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The novelty here is the introduction of the lower branch in equation (1). This

captures the fact that if the stock is delisted, which occurs with time varying probability

pi(t), the expected return is the delisting return −δ. Many theoretical models of

endogenous default effectively imply that δ = 1 although in practice this is probably a

worst case scenario.3

2.2 Systematic Components of Distress

Our second modification to the standard factor model is the explicit discussion of both

systematic and idiosyncratic components to stock delistings. Although this aspect is

occasionally implicit in the literature on financial distress, we are not aware of any

extant attempt to formalize its impact.

By assumption, systematic risk in our model is captured by the vector of factors

F (t). Thus, to the extent that default probabilities have systematic components, it

seems natural to assume that the probability of default for firm i at time t obeys the

following relation:

pi(t) = η0,i + ηf,iF (t) + ξi (2)

This representation explicitly decomposes the probability of delisting, pi(t), into its

idiosyncratic and systematic components. Here η0,i and ξi capture the predictable and

stochastic components, respectively, of firm specific determinants of distress, while ηf,i

summarizes the covariance with systematic variables. Hence, if distress or delisting

probabilities are entirely firm specific we expect that ηf,i = 0. As we show below, the

(plausible) correlation between factor returns and default probabilities can potentially

lead to biased empirical estimates of the factor loadings.4

2.3 Theoretical Biases

Taken together, the two stochastic processes (1) and (2) pose a number of challenges

to many empirical studies on the effects of distress on equity returns. In effect the

typical procedure for most of the existing literature is as follows:

3Some classical examples include Merton (1974) and Leland (1994).
4In our empirical implementation we will also allow for a more general non-linear correlation between

pi(t) and F (t).
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• Estimate default probabilities p̂i(t), usually using firm level data.

• Create portfolios of firms sorted by default probabilities.

• Estimate the linear factor model.

rip(t) = ap + bpF (t) + εi(t) (3)

and compute average excess returns, âp and factor loadings, b̂p, across portfolios.

Unfortunately, if our more general model is true there are two specific problems with

this simple approach:

1. The process for expected returns is not linear, and specifically is truncated from

below.

2. The truncation probabilities are endogenous and correlated with return factors.

Specifically, we will now show that the standard approach generally leads to biased

estimates for both alphas (a′s) and factor betas (b′s).

To see this observe that the correct specification for excess returns for stock i in

equation (1) can be re-written as:

ri(t) = (1− pi(t))(βiF (t) + εi(t)) + pi(t)(−δ) (4)

Combining this expression with that for (2) it follows that we can write the ’true’

excess return process as:

Eri(t) = E[(1− (ηi,0 + ηf,iF (t) + ξi(t)))(βiF (t) + εi(t))− (ηi,0 + ηf,iF (t) + ξi(t))δ]

= −ηi,0δ + ((1− ηi,0)βi − ηf,iδ)F (t)−
nf∑
f=1

nf∑
k=1

ηfβkFf (t)Fk(t) (5)

where the last line assumes that the shocks εi and ξi are idiosyncratic and uncorrelated

with each other. When the (nf ) risk factors are also uncorrelated the last term is

also 0 and the “reduced” form loadings are linked to the “structural” loadings by the

equation:5

bi = (1− ηi,0)βi − ηf,iδ (6)

5Even if factors are somewhat correlated the final term in equation (5) is of second order importance.
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Equation (6) states that we will have two types of potential biases in the linear

factor estimates of returns on distressed portfolios. The first is a standard bias as-

sociated with return truncation, which implies that the linear estimates b̂ will always

be biased towards zero. The second, and possibly offsetting, bias has to do with the

fact that distress is correlated with risk factors. If, plausibly, ηf,i > 0 so that distress

probabilities load positively on risk factors, this source of bias will push the estimated

linear loadings b̂ below the true factor β’s.

Equation (6) also shows that a linear reduced form regression will generally deliver

downward biased estimates of the intercept α. In particular, when the true excess

return is 0 this equation implies a negative estimated α’s, which are equal to:

ai = −ηi,0δ (7)

In this light the well documented underperformance of stocks with a high probability

of delisting may not be very surprising. The question however is how large this bias

can be in practice and how much of this perceived “underperformance” survives after

we correct it. We think both of these findings are potentially of great importance for

the literature on the performance of distressed stocks.

Intuitively equations (6) and (7) suggest a potentially important modifier to Shumway’s

(1997) well-known argument about the role of delisting biases. The addition of delisting

returns on the CRSP sample is clearly important. However, the introduction of these

sharply non-linear events should be modeled with great care. Continuing to assume

that the process for expected stock returns continues to obey a simple linear factor

model creates large potential biases in parameter estimates. In particular, this ap-

proach quite possibly generates sizable, and spurious, negative alphas in high distress

portfolios.

The likely magnitude of these biases depends on the empirical properties of the

stochastic process for the delisting probabilities (2). We study these probabilities in

the next section and then use them to construct a Monte-Carlo simulation in Section

4 that attempts to quantify the sources of bias in estimated excess returns and factor

loadings of linear factor models.
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3 Estimating Default Probabilities

A crucial ingredient in any study of distress or default risk is a measure of the proba-

bility of delisting events, pi(t). In what follows we identify a default event with a stock

delisting for performance-related reasons. Specifically we use the following delisting

flags from the CRSP monthly file: 500, 550, 552, 560, 561, 574, 580, and 584. Ap-

pendix A discusses these classifications and their properties at length. For the sample

period model discussed in this section this classification yields 5,994 delistings out of

almost 200,000 firm-year observations.

3.1 Data Overview

Our data covers the period 1950 to 2011, although most of the analysis focuses on

the period from 1970 on. Firm level data comes from combining quarterly accounting

data from COMPUSTAT with monthly and daily data from CRSP. When quarterly

accounting data is not available, we use annual data.

We use all industrial, standard format, consolidated accounts of USA headquartered

firms in COMPUSTAT. We follow Campbell et al. (2008) and align each company’s

fiscal year with that of the calendar year, and then lag the accounting data by two

months. Our measure of book equity follows Davis, Fama, and French (2000). From

the CRSP monthly and daily file we use all stocks in NYSE, AMEX, and NASDAQ. The

S&P500 index comes from the annual MSP500 file and data on the Fama and French

size and book to market factors come from Ken French’s website. Details about the

data and our approach to construct the key variables are included in Appendix B.

Table I reports the summary statistics for the variables used in our regressions.

3.2 Logistic Regressions

We forecast delisting events using two alternative approaches. For our baseline analysis

we use an updated version of the reduced form logistic model proposed by Campbell

et al (2008). In section 6 we also report the results when we use an implementation

of Estimated Default Frequencies (EDF), proposed by Merton (1974). As we will see

both of these measures offer very good forecasts of delisting events over this period, at
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least at the portfolio level. This is particularly true for our benchmark reduced form

logit model, which is discussed here.

Formally we use maximum likelihood methods to estimate a logistic function on

eight explanatory variables in a pooled estimation across all firm-years. Our method-

ology here differs somewhat from that of Campbell et al. (2008). They use monthly

regressions and focus on predicting the probability of defaulting 12 months ahead, con-

ditional on no default occurring in the 11th month. Instead, we use annual rolling

logit regressions that can be interpreted as estimating the probability of defaulting, at

any time within the next year, given the information available at the beginning of the

year. More precisely, we estimate these rolling regressions on an annual basis starting

in December 1970 up to December 2011 to avoid any look-ahead bias.

Formally we define pi(t) = 1/(1 + exp(−yi(t))), where yi(t) can be approximated

by the following empirical specification:

yi(t) = γ0 + γEXRETAV GEXRETAV Gi(t) + γSIGMASIGMAi(t)

+γPRICEPRICEi(t) + γNIMTAAV GNIMTAAV Gi(t) + γTLMTATLMTAi(t)

+γCASHMTACASHMTAi(t) + γRSIZERSIZEi(t) + γMBMBi(t) (8)

where EXRETAV Gi(t) is a measure of average excess returns over the S&P500 in-

dex, SIGMAi(t) is the volatility of equity returns, MBi(t) is the market to book ratio,

NIMTAAV Gi(t) is a measure of profitability, TLMTAi(t) is a measure of firm lever-

age, CASHMTAi(t) is a measure of cash holdings, RSIZEi(t) is the relative size of

the firm, and PRICEi(t) is the log stock price, capped at $15.

The full sample logistic regression results are shown in Table II. They do not

differ materially from those in Campbell et al (2008). The pseudo R-squared for these

firm level estimates is nearly 40% and all of these financial and accounting ratios are

immensely significant.

3.3 Probability Portfolios

Based on the estimated probabilities p̂i(t) each firm is then ranked and assigned a

percentile on a scale of zero to one-hundred in this empirical distribution. Next we
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form p = 1, ..9 portfolios every year in December and each firm is placed in the correct

percentile portfolio. These portfolios are ranked in a symmetric and increasing order

(1 through 9) as follows:6

• Portfolio 1: Percentiles between 0% and 5%

• Portfolio 2: Percentiles between 5% and 10%

• Portfolio 3: Percentiles between 10% and 20%

• Portfolio 4: Percentiles between 20% and 40%

• Portfolio 5: Percentiles between 40% and 60%

• Portfolio 6: Percentiles between 60% and 80%

• Portfolio 7: Percentiles between 80% and 90%

• Portfolio 8: Percentiles between 90% and 95%

• Portfolio 9: Percentiles between 95% and 100%

Although the portfolio composition is fixed over the course of a calendar year, both

the probabilities and the value-weights on each stock are allowed to fluctuate over the

year with the change in each firm’s accounting variables and returns, respectively.

We use value weights to construct portfolio returns and incorporate the delisting

returns into our portfolio return calculations we also follow Campbell et al. (2008) and

simply use the CRSP delisting return when available or the lagged monthly returns

otherwise.

Average delisting probabilities for each portfolio are computed using equal weights.

Formally, the portfolio’s December-to-December equal-weighted (or average) predicted

probability for portfolio p equals:

p̄p(t) =
∑

p̂ip(t)/Np(t) (9)

where Np(t) is the number of stocks in portfolio p at time t.

6As usual there is a degree or arbitrariness about these classifications. In practice nearly all delistings
come from the stocks ex-ante classified in the percentiles 80-100 so the breakdowns for the first 5 or 6
portfolios are not particularly important. It is sometimes useful to create finer portfolios for the upper
percentiles but there is also a concern that the number of firms in each of them will become quite low,
particularly as so many are then delisted over the calendar year.
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Table III documents the basic patterns of delisting probabilities, stock returns and

other characteristics across our nine delisting portfolios. Average delisting probabilities,

p̄p(t) are quite low for the first four or five portfolios. Excess returns (over the market)

are generally negative for the portfolios with a high probability of delisting. Return

volatility and skewness is also much higher for these stocks. The sharp increase in

return skewness is consistent with our view of delistings as highly non-linear events.

As documented extensively distress portfolios are also generally made of small and low

book-to-market firms.

Figure 2 depicts the time series for the average predicted probabilities of delistings,

p̄p(t) for each portfolio p. As can be seen these probabilities exhibit significant time

variation and are noticeably higher around market downturns, suggesting that there is

a possibly important systematic component to delistings, at least for some portfolios.

3.4 Actual and Predicted Delistings

Before proceeding it is instructive to investigate the accuracy of our estimated average

delisting probabilities. To this effect we also construct a yearly time series of actual

annual delisting events and compute the ex-post delisting frequencies for each portfolio.

This time series is shown in Figure 3 and, visually, it seems to accord remarkably well

with that in Figure 2. Both figures show that delistings are almost entirely concentrated

in the top 3, or perhaps 4, portfolios.

More formally, Table IV reports the results of regressing the actual ex-post delisting

frequencies on our average predicted probabilities, p̂p. Although the quality of fit might

seem poor for the first 3 portfolios it should be noted that there is virtually no variation

in the dependent variable (delistings) here. By contrast for the last 3 or 4 portfolios

where default is concentrated the fit seems much more accurate. For all but the first

three portfolios the estimated coefficients are also very close to 1 as we would expect

if the fit is accurate.7

7No intercept is included in these regressions. This assumes that if we predict a zero probability of
delisting (which never occurs), then we are forcing the actual delisting probability to be zero. Including an
intercept reduces the highest R-squared to 0.66.
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3.5 Systematic Components of Delisting Probabilities

Section 2 shows that when delisting probabilities have a systematic component there

is a potential source of bias in our estimates of the factor loadings. To investigate this

issue we now regress the average predicted portfolio delisting probabilities, p̄p(t), on

the systematic risk factors. Although our baseline representation in equation (2) was

linear we now allow for a more general third-order polynomial expansion. Intuitively

the introduction of square terms may be useful to capture periods of increased volatility,

which coincide with high default probabilities. Allowing for cubic terms can capture

skewness in portfolio probabilities.

To implement this equation empirically we first convert our logit’s annual predicted

probabilities to monthly probabilities using the following formula:

pmthi (t) = 1− (1− panni (t))1/12 (10)

We then estimate the following empirical regression for the average delisting prob-

abilities across portfolios on a third degree polynomial on the four Carhart factors:

p̂p(t) = η0,i + η1,iMKT (t) + η2,iMKT 2(t) + η3,iMKT 3(t)

+ ηb1,iHML(t) + ηb2,iHML2(t) + ηb3,iHML3(t)

+ ηs1,iSMB(t) + ηs2,iSMB2(t) + ηs3,iSMB3(t)

+ ηm1,iMOM(t) + ηm2,iMOM2(t) + ηm3,iMOM3(t)

+ ηbs,iSMB ×HML(t) + ηbm,iHML×MOM(t) + ηsm,iSMB ×MOM(t)

+ ξi (11)

Table V reports both our coefficient estimates and the implied R2 for each of the

nine stock portfolios. Somewhat curiously, in light of the suggestive evidence on the

time variation of delisting probabilities presented earlier, there is remarkably little

evidence of covariance between delisting probabilities and risk factors. In fact almost

all of this covariance comes from exposure to higher order terms in the momentum

factor, and they tend to be sizable only for the last three portfolios.

These findings have two important implications. First, from a practical standpoint,

it suggests that this covariance between factors and probabilities is unlikely to produce

11



a significant bias in our estimates of factor loadings - at least not when using these

baseline logistic default probabilities.

More broadly however, this evidence of little actual systematic risk in delistings

indicates that equity investors should not care very much about these events. As a

result we should not expect to see much risk compensation for them. With this inter-

pretation any empirical findings of negative excess returns in high distress portfolios

must be the result of some form of mis-pricing.8

In the next two sections we investigate the empirical implications of these findings.

We proceed in two complementary steps. First we combine these estimated proba-

bilities with numerical simulation methods to attempt to quantify the likely bias in

empirical estimates. We also propose a return correction that accounts for the non-

linear role of delistings on portfolio returns. Finally, in Section 5 we use this correction

to provide more accurate estimates of factor loadings and excess returns across distress

portfolios.

4 Numerical Simulation

The analysis in the previous two sections raises two questions:

1. Are the theoretical biases in factor loadings and excess returns quantitatively

significant?; and

2. How do we obtain more accurate estimates of these coefficients?

We now tackle both of them.

4.1 Implementation

Suppose that we have a cross-section of firms that is made p = 1, 2..9 portfolios each

made of 250 individual stocks. Each portfolio is ranked in increasing order of default

probabilities, p̄p(t). For simplicity we assume that each firm i in portfolio p has an

equal ex-ante default probability, that is equal to the average probability for the entire

8Of course it is also possible, although unlikely, that we left out an important risk factor from this
regression.
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portfolio. Formally then pi(t) = p̄p(t). Once a stock is delisted, it is excluded from its

portfolio for the rest of the year. We assume that each delisted stock is only replaced

by a new stock at the beginning of the following year.

Assuming firm level stock excess returns follow the stochastic process (1), we can

generate an artificial panel of 504 months of excess stock returns for each stock i in

portfolio p by drawing realizations from the process:

rip(t) =

{
βpF (t) + εip(t) if γp(t) > p̄p(t)
−δ else.

(12)

where γp(t) ∼ U [0, 1].

By construction there are no abnormal excess returns to these returns. The exact

values of the true factor loadings, βp are not particularly important. For consistency,

however we assume that they are also equal to their empirical counterparts (reported

below in section 5).

The law of large numbers implies that the (equally-weighted) average excess returns

of stocks in each portfolio p are given by:9

rp(t) =
∑
i

rip(t) ' (1− p̄p(t))(βpF (t))− p̄p(t)δ (13)

We now use our estimates of the properties of the delisting probabilities p̄p(t) in

Section 3 to inform our choice of the stochastic process for p̄p(t). Specifically we use

two alternative specifications:

• First, we set the value of p̄p(t) for each portfolio p equal to the unconditional

average of the default probabilities shown in Table III.

• Second, we also investigate the role of systematic time-variation in delisting prob-

abilities, by assuming probabilities are instead described by the empirical equation

(11).

As we will see however, the low covariance between factors and probabilities renders

the practical difference between these two implementations also fairly small.10

9For the artificial sample it makes no difference whether we report equal or value-weighted returns.
10To maximize the possibility of finding any significant differences we allow the probabilities p̄p(t) to change

each month as the risk factors evolve over time.
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For each of these cases we then estimate the following reduced form Fama-French

3 factor model to these artificial portfolios11

rp(t) = αp + βp,m ×MKTt + βp,b ×HMLt + βp,s × SMBt + εp(t) (14)

and examine the accuracy of our estimated factor loadings and alphas.

4.2 Findings

Table VI shows our findings for the case when the delisting probabilities are constant.

Panel A reports the true values of the parameters αp and βp used in the data generating

process (12). Panel B shows the estimates from the linear factor model (14).

Clearly the most striking result is the finding of large negative alpha’s for the

last 2 or 3 portfolios where the delisting probabilities are also quite high. These are

quantitatively large and, as we show in the next section, very similar to the estimates

found in the data.

On the other hand the biases in the factor loadings seem negligible. This is perhaps

as expected. We know from equation (6) that when delisting probabilities are constant

(ηf,i = 0 there will be dampening effect equal to 1 − η0 on the estimated coefficients.

Since average delisting probabilities (η0 in this case) are less than 10% for all but the

last portfolio this effect is never large.

Table VII documents the changes when the average probability of default covaries

(plausibly) with the risk factors. We continue to see a clear pattern of sizable neg-

ative alphas on high delistings portfolios. The factor loadings however remain fairly

unchanged and only for the last portfolio do we see some signs that the loadings might

not be very accurately estimated. It seems then that in practice this second source of

bias in estimated factor loadings is not very important either.

Taken together these two tables confirm our impression that linear factor models

are likely to lead to potentially important biases when the underlying process is highly

non-linear, as is likely the case when we focus on portfolios with many delisting stocks.

Most significantly, estimated excess returns can easily, and spuriously, appear large

11We omit momentum because it does not alter the conclusions and allows us to reduce the number of
reported tables.
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and negative for the high delistings portfolios. Biases in factor loadings, however, seem

largely irrelevant.

4.3 Empirical Implications

We now discuss possible corrections to allow for proper identification of the underlying

parameters of the true stochastic process for expected returns.

We start with the observation that although equations (1) or (4) cannot be directly

estimated using linear models on the excess returns ri(t), we can easily re-write it as:

r̃i(t) =
ri(t)− δpi(t)

1− pi(t)
(15)

where by definition (equation (1)) the adjusted excess returns r̃i(t) now follows the

linear factor model12

r̃i(t) = βpF (t) + εi(t) (16)

Only if the delisting probability equals zero will we have the traditional linear factor

regression for unadjusted returns ri(t), which obtains as a special case of this.

This then suggests adopting the following approach to estimate a factor model on

expected equity returns:

1. Estimate the default probability process p̂i(t) for each firm i

2. Use the estimated probabilities to compute the adjusted excess returns as:

r̃i(t) =
ri(t)− δp̂i(t)

1− p̂i(t)
(17)

3. Estimate a linear regression of the adjusted excess returns r̃i(t) on the pricing

factors, F (t).

In practice of course, we will first group stocks into p = 1, 2, ..P portfolios before

estimating the factor model, to reduce estimation and measurement errors.

Table VIII shows how this adjustment works in our artificial panel. It reports the

results of estimating the same Fama-French 3 factor model (14) but using instead the

12Recall that we are normalizing αp = 0 for simplicity
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adjusted excess returns in (17). We see that with this adjustment the estimated alphas

are now essentially equal to its true value of zero across both sets of portfolios.13

Next we investigate the results of implementing this procedure to actual return

data.

5 Portfolio Excess Returns

We now use our theoretical insights to re-examine the empirical evidence on distressed

stocks. As background, we first report the results of estimating a standard linear

factor model on the nine empirical distress portfolios constructed in Section 3. This

confirms that our portfolios exhibit the usual pattern of large negative excess returns

for distressed portfolios. We then report the results of using the theoretical return

correction proposed in the previous section.

5.1 Standard Linear Regressions

Table III documents the basic patterns of stock returns and characteristics across the

nine empirical delisting portfolios. We now use these data to estimate monthly excess

return regressions for four different empirical models: on an intercept (average excess

return), the CAPM, the three-factor Fama-French (1992) regression, and a four-factor

Carhart (1997) regression. Recall that, as is common in this literature, we mean excess

returns over the return over the market portfolio - as measured by the CRSP VWRETD

variable.

The estimated average excess returns for each of these regressions are documented in

Panel A of Table IX. They are very much in line with much of the available evidence

from other authors. In particular we find that portfolios with high probabilities of

delistings - recall that these were fairly negligible for the first 5 or 6 portfolios - average

negative excess returns over the market portfolio. Although these are not statistically

significant they become much larger once we control for the market and, especially,

the Fama-French factors. The last column also shows that much of this “distress”

puzzle seems to be linked to the momentum factor. Controlling for this factor reduces

13Statistically none is significant at 10%.
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abnormal excess returns significantly, to the point where only two portfolios exhibit

statistically significant alphas.

For completeness, Panel A in Table X shows the estimated loadings of each portfolio

on the market, size and book-to-market factors. As we can see there is a significant

size effect across delisting portfolios. Unfortunately however, distressed stocks, which

load strongly on size have sizably negative excess returns. Although this pattern of

loading more strongly on the risk factors can also be observed for the market and HML

the effects are fairly insignificant.

5.2 Non-Linear Model

Panels B for Tables IX and X report the results of incorporating our proposed ad-

justment that explicitly accounts for the non-linearity introduced by an endogenous

probability of delisting.

Formally these panels are constructed from estimating a second set of monthly

excess return regressions but where we now adjust the excess return on portfolio p as

follows:

r̃p(t) =
rp(t)− p̄p(t)δ(t)

1− p̄p(t)
p = 1, 2..9 (18)

Each portfolio’s probabilities, p̄p(t), are the equal-weighted averages of the estimated

annual delisting firm level probabilities using the logit regression (8) and converted

to monthly probabilities using the relation (10). As discussed earlier under the null

hypothesis that returns follow the true stochastic process (1) this adjustment correctly

removes the non-linear component of returns from the factor regressions, and is suitable

to be fitted by a linear factor model.14

Panel B in Table IX shows the estimated alphas corrected for delisting bias. These

are significantly smaller (in absolute value) than those in Panel A for virtually all

models. They are also essentially zero except for a few portfolios when using the

Fama-French model. However these middle portfolios are not where we see a significant

14The delisting return δ(t) is time-varying to capture the fact that these returns are often larger in
magnitude during recessions. The average correlation between yearly delisting return and yearly predicted
delisting probability across portfolios is -0.13.
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incidence of default, suggesting these remaining alphas could be driven by something

other than financial distress.

Panel B in Table X shows the factor loading estimates from the corrected model.

Again, although potentially important in theory these corrections are, in practice,

negligible. As we can see the estimates are nearly identical across both panels and

continue to exhibit a pronounced size effect across delisting portfolios.

To conclude our results confirm our view that estimation bias is an important driver

of the perception that distressed stocks underperform. This result largely, although

perhaps not entirely, survive even after we adjust excess returns for various risk factors.

Based on this evidence the case for a distress “puzzle” seems considerably weaker.

Existing estimates of factor loadings however seem fairly accurate and in particular

the conclusion that highly distress stocks load heavily on size is confirmed.

6 Robustness: Distance to Default

6.1 Estimating Delisting Events

Much about our findings hinges on how closely our portfolios capture the available

information about delistings related to financial distress. Section 3 shows how closely

our estimated probabilities, p̂i(t), capture actual delistings, at least at the portfolio

level where most of the inference about returns is made.

Nevertheless it is useful to examine whether our results are robust to the use of

alternative measures of distress related stock delistings. In this section we address this

issue by using an alternative estimate of the delisting probabilities p̂i(t) that do not rely

on the reduced form logistic regressions in equation (8). Instead we use the approach

suggested by Merton (1974) and estimate a measure of the Moody’s Analytics expected

distance to default (EDF). The computation details are provided in Appendix C.

Figure 4 shows our average cross-sectional distance to default (DD) estimates and

the observed delisting frequencies over the period between 1980 and 2011. The figure

shows that our EDF model is able to mimic the movements in delisting probabilities

quite closely. There are however two reasons why we did not use this method for our
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benchmark estimate. The first drawback of DD estimates is apparent from Figure

4: these estimates do not tract the level of actual delisting frequencies. The second

reason is less obvious but perhaps more significant. Although DD estimates rank stocks

relatively well, it is not necessarily able to correctly predict default probabilities in the

whole sample or across bins.

To address these two issues we work instead with fitted default probabilities implied

by our DD estimates. As before these probabilities are estimated using a logit regression

similar to but now with DD as our single predictor of a delisting event:

pi(t) =
1

1 + exp−γ0−γDDDi(t)

As before we use the estimated probabilities to construct nine portfolios ranked by

delisting probabilities. Figure 5 shows the predicted default probabilities across these

portfolios.

6.2 Excess Return Regressions

This section needs to be finished.

7 Conclusion

This paper shows how non-linearities in returns induced by delisting events can affect

the inference about the behavior of delisting stocks. Because these events are both

extreme and introduce a floor on expected stock returns, the correct factor model is

also non-linear. As a result the estimated alphas and loadings in standard linear models

are biased. We show that although these biases can be significant for excess returns they

are generally quite small for factor loadings. Empirically this occurs largely because

the covariance between delisting events and the systematic risk factors is quite small.

After we correct these biases we see little evidence of underperformance for portfolios

of distressed stocks.
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A Appendix: Delistings

Figure 1 shows the evolution of average delisting returns (both equal and value-

weighted) from 1970 to 2011, for the following non-performance delisting codes:

• 500 - Issue stopped trading on exchange - reason unavailable

• 550 - Delisted by current exchange - insufficient number of market makers

• 552 - Delisted by current exchange - price fell below acceptable level

• 560 - Delisted by current exchange - insufficient capital, surplus, and/or equity

• 561 - Delisted by current exchange - insufficient (or non-compliance with rules

of) float or assets

• 574 - Delisted by current exchange - bankruptcy, declared insolvent

• 580 - Delisted by current exchange - delinquent in filing, non-payment of fees

• 584 - Delisted by current exchange - does not meet exchanges financial guidelines

for continued listing

We remove all delisting returns, δ(t), greater than positive 100%. In addition

all delisting returns are winsorized at the 1-99% to remove outliers. Less than 1%

of the delisting returns - out of 5,994 delisting observations - are missing across the

whole sample period. This is quite low, when compared to Shumway (1997), and

Shumway-Warther (1999), which document about 90% missing data for AMEX-NYSE,

and almost all data missing for NASDAQ, or CRSP(2001) which documented the

availability of about 73% delisting returns in the 500 series. It seems that CRSP

coverage of delisting returns is now almost complete.

The equal-weighted and value-weighted average delisting returns are respectively

-28%, and -30%, for the whole sample period, and -36.5%, and -42.3% for the period

2000-2011. The average delisting returns for the whole sample are consistent with

Shumway (1997), which reports an average delisting return of -29.9%, for the 1962-

1993 sample, for AMEX-NYSE stocks. Interestingly the delisting return δ(t) seems
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to exhibit significant time-variation and is often larger in magnitude during market

downturns.15

Other comments about CRSP delisting codes

• Before 1987, all performance-related and stock-exchange-related delistings were

coded 5. After 1987, CRSP started a more refined breakdown. The original code

5 delistings were initially given 500, and are considered to be mainly performance-

related delistings (there is only a small number of exchange-related delistings).

• The 572 delisting code (liquidation at company request), is now discontinued and

is replaced by the 400 delisting series. The average delisting returns on the 400

series is slightly positive, which may suggest that it does not really reflect negative

company performance.

• About 15% of delisting returns reported by CRSP are exactly 0.

15The average correlation between yearly delisting return and our yearly predicted delisting probability
across portfolios is -0.13.
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B Appendix: Firm Level Data and Variables

This appendix describes in detail how our the variables used in the analysis are con-

structed. All variables codes are for the COMPUSTAT annual file. Quarterly variables

typically have a q appended to the end of their variable names.

• Relative size

RSIZEit = log(SIZEit/TOTV ALt × 1000)

where TOTV ALt is total dollar value of the S&P500 and

SIZEit = PRCit × SHROUTit/1000

• Leverage

TLMTAit = LTit/(SIZEit + LTit)

• Relative cash holdings

CASHMTAit = CHEit/(SIZEit + LTit)

• Market to book ratio

MBit = SIZEit/ADJBEit

• Adjusted book equity (observation removed if negative)

ADJBEit = BEit + 0.1 ∗ (SIZEit −BEit)

• Stock price

PRICEit = log(min{PRCit, 15})

• Excess returns

EXRETAV Git = (1− ψ)/(1− ψ12)× (EXRETit + ..+ ψ11EXRETit−11)

where

EXRETit = log(1 +Rit)− log(1 + VWRETDt)

and VWRETDt is the return on the S&P500 index. Because of the need for an

uninterrupted series any missing variables are set equal to their cross-sectional

means.
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• Return on assets, or profitability

NIMTAAV Git = (1−ψ3)/(1−ψ12)∗(NIMTAit,t−2+ψ
3NIMTAit−3,t−5+..+ψ

9NIMTAit−9,t−11)

where

NIMTAit = NIit/(SIZEit + LTit)

NIMTAit−x,t−x−2 = (NIMTAit−x +NIMTAit−x−1 +NIMTAit−x−2)/3

Because of the need for an uninterrupted series any missing variables are set equal

to their cross-sectional means.

• Return volatility

SIGMAit =

√
252

N − 1

∑
R2
it

where the summation is of daily returns over the past three months and missing

SIGMA observations (when N < 5) are replaced with the cross-sectional mean.

and we use ψ = 2−1/3. Each of these variables is also winsorized at the fifth and

ninety-fifth percentiles across all firm-months. Furthermore, following Campbell et al.

(2008), all observations with missing size, profitability, leverage, or excess return data

are dropped.
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C Appendix: Distance to Default

C.1 Theory

As Merton (1974) shows, the expected distance-to-default for a firm with liabilities D

with maturity T and enterprise value V is given by the formula:

DD =
log V

D + (µ− σ2

2 )T

σ
√
T

(19)

This assumes that default occurs if V < D at time T . In (19), µ and σ are the drift

and instantaneous standard deviation in the stochastic process for asset value, which

follows a geometric Brownian motion.

C.2 Data and Implementation

We consider the sample period 1980 to 2011, which includes 227,237 firm-year ob-

servations, and 4801 delistings16 The EDF estimates are derived annually based on

December’s estimations.

In order to compute the probability of default as defined above, we use an implied

equity premium of 6% so that the drift term is µ = r + 0.06 and solve for the implied

value of the assets of the firm V and its volatility σ using the follow iterative procedure:

• Define E = SIZE as the observed market value of firm equity and let σe =

SIGMA be the standard deviation of equity returns.

• As it is common in the literature define the market value of debt as:

D = DLC︸ ︷︷ ︸
Current debt

+0.5 DLTT︸ ︷︷ ︸
LT debt

and let V = V0 = E +D

• For each year t, solve for the fixed point problem associated with the volatility of

total asset returns, using daily data spanning the period [t-1, t):

1. Start with initial guess V = V0, and construct asset volatility σ = σ0 = V0
E σe.

2. Use these estimated values for σ0 and the data on r, D, and E in the Black-

Scholes formula to obtain the implied valued of the firm V1

16For 1970-2011, we have 268,546, and 5,332 observations, respectively.
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3. Given the updated firm value V1, revise estimated asset volatility σ = σ1

4. Iterate until convergence of σ and V .

Data Adjustments:

We apply the following data adjustments in order to solve for the fixed point prob-

lem for the largest possible sample:

• When data on D is missing, we use D = median(D/(LTQ)) ∗ (LTQ) where the

median is calculated across observations with small non-zeros values of D. We

also replace missing LTQ data by median(LTQ).

• When D or E are large ( > 100, 000), we use D = D/10000, and E = E/10000.

• We also floor the level of σ at 5%.
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Table I: Summary Statistics

This table reports summary statistics for the core variables used in the logistic regressions.
The data are monthly over the period 1950 to 2011.

Variable N Mean Median Std Dev Minimum Maximum

NIMTA 2,611,567 0.000 0.006 0.034 -0.201 0.056
TLMTA 2,611,545 0.431 0.405 0.278 0.008 0.966
EXRET 2,598,310 -0.009 -0.008 0.139 -0.471 0.432
RSIZE 2,611,576 -10.277 -10.396 2.071 -14.661 -5.156
SIGMA 2,611,580 0.542 0.434 0.381 0.099 2.180

CASHMTA 2,592,000 0.094 0.047 0.128 0.000 0.748
MB 2,611,580 2.015 1.480 1.724 0.204 9.821

PRICE 2,611,580 2.031 2.555 0.961 -1.505 2.708
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Table II: Logistic Regression Estimates

This table reports the estimated coefficients for the full sample period (data up to December
2011) for the logistic regression (8).

Parameter Estimate Std Err p-value

CONSTANT -9.794 0.235 <0.0001
EXRETAVG -6.177 0.270 <0.0001

SIGMA 0.326 0.035 <0.0001
MB 0.174 0.010 <0.0001

NIMTAAVG -7.831 0.419 <0.0001
TLMTA 0.978 0.071 <0.0001

CASHMTA -0.909 0.111 <0.0001
RSIZE -0.441 0.018 <0.0001
PRICE -0.579 0.021 <0.0001

N 199,904
Pseudo R-squared 0.389

N - Delisting 4,440
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Table III: Properties of Delisting Portfolios

This table reports summary statistics for the portfolios constructed using the estimated
probabilities of default using the logistic regression (8). Excess returns are over the market
portfolio, defined as the S&P500 index. This data covers monthly data from 1970 until 2011.
Some denoted quantities are annualized.

Annual
average Annual

Annual excess standard
PORTFOLIO Pr(default) RSIZE MB return Skewness deviation

1 0.0003 -5.61 2.41 -0.001 0.438 0.026
2 0.0006 -6.89 2.25 0.008 0.757 0.060
3 0.0009 -7.65 2.23 0.018 0.062 0.071
4 0.0020 -8.53 2.35 0.017 0.092 0.100
5 0.0049 -9.49 2.46 0.001 0.646 0.129
6 0.0151 -10.37 2.60 -0.001 1.383 0.178
7 0.0431 -11.11 2.93 -0.027 1.523 0.234
8 0.0844 -11.57 3.26 -0.031 2.010 0.300
9 0.1669 -11.90 3.38 -0.044 2.334 0.364
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Table IV: Actual and Estimated Delisting Frequencies

This table reports R2 associated with regressing ex-post default frequencies on the average
estimated probabilities of default for nine portfolios. Each portfolio is constructed using the
estimated default probabilities using the logistic regression (8). Logit regressions coefficients
are calculated in December and applied over the entire following year. The predicted proba-
bility estimate over the entire following calendar year is paired with the year’s corresponding
realized default frequency. This annual data is from 1970 until 2011.

PORTFOLIO R-squared Coefficient

1 0.018 1.802
2 0.039 0.258
3 0.071 0.393
4 0.533 0.958
5 0.662 0.962
6 0.854 1.031
7 0.849 1.083
8 0.862 1.153
9 0.901 1.039
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Table V: Systematic Components of Delisting Probabilities

This table reports the results of regressing the average estimated probabilities of default for
nine portfolios on high order polynomials of the Fama-French risk factors. Each portfolio is
constructed using the estimated default probabilities using the logistic regression (8). Sample
period is from 1970 to 2011 at a monthly frequency.

PORTFOLIO
Loadings 1 2 3 4 5 6 7 8 9

CONS 0.00** 0.00** 0.00** 0.00** 0.00** 0.01** 0.04** 0.08** 0.16**
MKT 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.09 0.22
SMB 0.00* 0.00 0.00 0.00 0.00 -0.01 -0.05 -0.09 -0.14
HML 0.00 0.00 0.00 0.00 -0.02* -0.06* -0.17* -0.21 -0.19
MOM 0.00 0.00 0.00 0.00 -0.01 -0.02 -0.06 -0.13 -0.29*

SMB*HML -0.01 -0.01 -0.01 -0.07 -0.24 -0.54 -1.12 0.31 2.49
SMB*MOM 0.00 0.00 0.00 0.00 -0.09 -0.41 -1.44 -1.60 -3.11
HML*MOM 0.00 0.01 0.01 0.02 0.02 0.13 1.27 4.29** 9.16**

MKT2 -0.01 0.00 -0.01 -0.02 -0.03 -0.03 -0.12 -0.40 -1.81
SMB2 -0.01 0.00 -0.01 -0.05 -0.13 -0.36 -0.81 -1.11 -1.20
HML2 0.02 0.02* 0.06** 0.17** 0.32* 0.53 1.52 3.39 7.73*
MOM2 0.01* 0.02** 0.03** 0.08** 0.21** 0.60** 1.65** 3.11** 4.69**
MKT3 -0.05 -0.02 -0.10 -0.20 -0.37 -1.50 -5.30 -9.55 -20.48
SMB3 0.00 -0.04 -0.09 -0.25 -0.61 -0.70 -0.49 1.45 8.42
HML3 -0.05 0.05 0.16 0.50 1.26 3.82 2.42 -12.84 -40.40
MOM3 0.04* 0.04* 0.08* 0.19* 0.55** 1.35* 3.62 5.13 7.90

R-squared 0.05 0.10 0.10 0.13 0.12 0.08 0.09 0.09 0.10

** - 1% significance, * - 5% significance
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Table VI: Simulation Results: Constant Delisting Probabilities

This table reports the results of estimating a linear Fama-French 3 factor model on our
simulated portfolios when the delisting probabilities are constant and equal to their time
series averages for each portfolio. Panel A shows the true factor loadings in the data
generating process (1). Panel B reports the empirical estimates from (14).

PANEL A

True Model Parameters

PORTFOLIO ALPHA MKT SMB HML
1 0 -0.054 -0.067 -0.067
2 0 0.025 0.325 -0.024
3 0 0.063 0.465 0.076
4 0 0.073 0.746 0.037
5 0 0.082 1.042 0.134
6 0 0.172 1.333 0.220
7 0 0.213 1.595 0.155
8 0 0.204 1.897 0.096
9 0 0.130 2.213 0.103

PANEL B

Standard FF Regression Estimates

PORTFOLIO ALPHA MKT SMB HML
1 -0.005 -0.048 -0.045 -0.068
2 0.000 0.023 0.318 -0.042
3 0.002 0.057 0.471 0.075
4 -0.009 0.083 0.729 0.043
5 -0.009 0.084 1.020 0.136
6 -0.020 0.171 1.320 0.188
7 -0.044 0.214 1.573 0.148
8 -0.087 0.201 1.877 0.092
9 -0.191 0.148 2.170 0.101
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Table VII: Simulation Results: Time Varying Delisting Probabilities

This table reports the results of estimating a linear Fama-French 3 factor model on our
simulated portfolios when the delisting probabilities covary with the risk factors according
to the estimates from equation (11). Panel A shows the true factor loadings in the data
generating process (1). Panel B reports the empirical estimates from (14).

PANEL A

True Model Parameters

PORTFOLIO ALPHA MKT SMB HML
1 0 -0.054 -0.067 -0.067
2 0 0.025 0.325 -0.024
3 0 0.063 0.465 0.076
4 0 0.073 0.746 0.037
5 0 0.082 1.042 0.134
6 0 0.172 1.333 0.220
7 0 0.213 1.595 0.155
8 0 0.204 1.897 0.096
9 0 0.130 2.213 0.103

PANEL B

Standard FF regression

PORTFOLIO ALPHA MKT SMB HML
1 0.009 -0.060 -0.061 -0.069
2 -0.006 0.001 0.322 -0.064
3 0.009 0.081 0.451 0.086
4 -0.006 0.063 0.746 0.033
5 -0.007 0.080 1.042 0.146
6 -0.008 0.161 1.315 0.216
7 -0.021 0.196 1.559 0.157
8 -0.042 0.180 1.886 0.098
9 -0.073 0.086 2.133 0.033
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Table VIII: Simulation Results: Estimating Adjusted Returns

This table reports the results of estimating a linear Fama-French 3 factor model on
our simulated portfolios to the excess returns, adjusted according to (17). Panel A
shows the results when the underlying true delisting probabilities are constant. Panel B
shows the results when the underlying true delisting probabilities covary with the risk factors.

PANEL A

Constant Probabilities

PORTFOLIO ALPHA MKT SMB HML
1 -0.004 -0.048 -0.045 -0.068
2 0.000 0.023 0.318 -0.042
3 0.003 0.057 0.471 0.075
4 -0.007 0.083 0.729 0.043
5 -0.004 0.084 1.021 0.136
6 -0.005 0.172 1.322 0.189
7 0.000 0.214 1.579 0.149
8 0.001 0.202 1.891 0.092
9 -0.010 0.151 2.203 0.103

PANEL B

Time Varying Probabilities

PORTFOLIO ALPHA MKT SMB HML
1 0.009 -0.060 -0.061 -0.069
2 -0.006 0.001 0.322 -0.064
3 0.010 0.081 0.451 0.087
4 -0.005 0.063 0.747 0.033
5 -0.005 0.081 1.043 0.147
6 -0.002 0.163 1.318 0.217
7 -0.001 0.202 1.566 0.158
8 -0.003 0.195 1.908 0.107
9 0.005 0.120 2.192 0.073
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Table IX: Excess Returns Across Delisting Portfolios

This table reports the average excess returns overt the market portfolio as well as the excess
return over three different empirical models: the CAPM, the three-factor Fama-French
(1992) regression, and a four-factor Carhart (1997) regression. Panel A uses raw portfolio
returns while Panel B adjusts portfolio returns for delisting events. Each portfolio is
constructed using the estimated default probabilities using the logistic regression (8).
Sample period runs monthly from 1970 until 2011.

PANEL A

Standard FF regression

FF CARHART
PORTFOLIO CONSTANT CAPM 3-FACTOR 4-FACTOR

1 -0.001 0.002 0.007* 0.000
2 0.008 0.002 -0.001 0.001
3 0.018 0.010 -0.001 0.005
4 0.017 0.005 -0.008 0.000
5 0.011 -0.004 -0.026*** -0.012
6 -0.005 -0.027 -0.058*** -0.027**
7 -0.027 -0.055 -0.086*** -0.049**
8 -0.031 -0.062 -0.095*** -0.046
9 -0.044 -0.074 -0.111** -0.064

*** - 1% significance, ** - 5% significance, * - 10% significance

PANEL B

Adjusted return regression

FF CARHART
PORTFOLIO CONSTANT CAPM 3-FACTOR 4-FACTOR

1 -0.001 0.002 0.007* 0.000
2 0.008 0.003 -0.001 0.001
3 0.018 0.010 0.000 0.005
4 0.017 0.005 -0.007 0.001
5 0.012 -0.002 -0.025*** -0.010
6 0.000 -0.022 -0.053*** -0.022
7 -0.013 -0.040 -0.072*** -0.033
8 -0.001 -0.032 -0.064* -0.013
9 0.024 -0.006 -0.044 0.010

*** - 1% significance, ** - 5% significance, * - 10% significance
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Table X: Factor Loadings Across Delisting Portfolios

This table reports the loading on the market, size and book-to-market factors for the
excess returns overt the market portfolio for each delisting portfolio. Panel A uses raw
portfolio returns while Panel B adjusts portfolio returns for delisting events. Each portfolio
is constructed using the estimated default probabilities using the logistic regression (8).
Sample period runs monthly from 1970 to 2011.

Panel A

Standard FF regression

PORTFOLIO MKT HML SMB
1 -0.054 -0.067 -0.063
2 0.025 -0.024 0.325
3 0.063 0.076 0.465
4 0.073 0.037 0.746
5 0.082 0.134 1.042
6 0.171 0.220 1.330
7 0.210 0.158 1.587
8 0.199 0.102 1.877
9 0.126 0.117 2.159

Panel B

Adjusted return regression

PORTFOLIO MKT HML SMB
1 -0.054 -0.067 -0.063
2 0.025 -0.024 0.325
3 0.063 0.076 0.465
4 0.073 0.037 0.746
5 0.082 0.134 1.042
6 0.172 0.220 1.333
7 0.213 0.155 1.595
8 0.204 0.096 1.897
9 0.130 0.103 2.213
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Figure 1: Delisting Returns

This figure shows the observed delisting returns over the period 1970-2011.
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Figure 2: Estimated Probabilities for the Logistic Model

This figure shows the estimated delisting probabilities p̂i(t) from the benchmark logistic
model in equation 8).
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Figure 3: Estimated Probabilities for the Logistic Model

This figure shows the ex-post delisting frequencies for the 9 portfolios constructed using the
estimated default probabilities, p̂i(t), using the benchmark logistic model in equation 8.
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Figure 4: Expected Default Frequencies and Actual Delistings

This figure shows the average cross-sectional estimated EDF (left axis) and the actual delist-
ings (right axis) over the period 1980-2011.

41



Figure 5: Predicted Probabilities of Default, per EDF portfolio, 1980-2011

This figure shows the average cross-sectional estimated EDF (left axis) and the actual delist-
ings (right axis) over the period 1980-2011.
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