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1 Introduction

Economic development is a joint process of economic growth and economic restructuring.1

It is well known that economic development tends to involve a shift of resources away from

agriculture and towards services. In addition, Imbs and Wacziarg (2003, hereafter IW) show

that there exist "stages of diversification": along the development path: countries appear to

start out with employment concentrated in a few industries and sectors, diversifying until

reaching a certain threshold in income per capita, after which they begin to re-specialize. In

other words, industrial specialization is U-shaped along the development path.

Persistent differences in income per capita across place and across time can be largely

accounted for by differences in productivity — see Barro (1998) and Prescott (1998). The

question in this paper is: can persistent productivity differences across industries account for

observed patterns of economic restructuring along the development path? This is an impor-

tant question: a positive answer implies that a productivity-driven theory of development

may account jointly for economic growth and for the evolution of economic structure.

We address this question using a multi-sector model that highlights TFP growth differ-

ences across sectors and also across manufacturing industries. We show that the pattern

of diversification followed by specialization can be accounted for simply by the dynamics of

industry structure resulting from these differences.

Consider the following intuition. Suppose that markets are competitive, and that there

are two goods that are substitutes in consumption. Then, persistent differences in TFP

growth rates will lead to an increase in the GDP share of the industry with the most rapid

productivity growth, as the good it produces will register a decline in its relative price.2

However, if the economy starts out being specialized in the other industry, then the economy

will diversify until half of resources are devoted to each industry, after which it will appear

1The World Bank (2012) defines economic development as:

Qualitative change and restructuring in a country’s economy in connection with technolog-

ical and social progress. The main indicator of economic development is increasing GNP per

capita (or GDP per capita), reflecting an increase in the economic productivity and average

material wellbeing of a country’s population. Economic development is closely linked with

economic growth.

Note the emphasis on productivity as a driver of economic development.
2Conversely, suppose the goods are complements. Then, persistent differences in TFP growth rates will

lead to an increase in the GDP share of the industry with the slowest productivity growth. As we shall see,

both cases turn out to be empirically relevant.
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to specialize again. The economy will show a "U" shaped pattern of specialization along the

development path.

We develop a multi-industry growth model in which productivity growth rates differ

across industries, and calibrate initial productivity levels so as to reproduce the composition

of manufacturing and the sectorial makeup of each of the countries in the IW dataset in

1963. Then, we allow the structure of the model economies to evolve over time based on

persistent productivity growth differences across industries, calibrated to US data. Along the

development path, the labor shares of different industries evolve due to disparities between

their TFP growth rates. Applying the same non-parametric method as IW to the model-

generated series of industrial diversification, the calibrated model generates the U-shaped

stages of diversification found in IW. Our results hold both within manufacturing and across

broad sectors, and are robust to a number of variations in the calibration procedure. We

conclude that differences in TFP growth across industries can indeed lead to the stages of

diversification, so that productivity growth differences can account for differences in economic

structure along the development path. Thus, an important characteristic of the process of

economic development is the reallocation of resources among industries with different rates

of productivity growth.

Our results do not imply that no factors other than productivity differences might account

for differences in economic structure. However, we show that these alternatives are not

required to generate the observed stylized facts. Future work may sort out the relative

contribution of one or other factor to patterns of economic structure along the development

path. At the same time, we also provide evidence that, as they grow, countries do indeed shift

resources towards manufacturing industries that display more rapid TFP growth, underlining

the empirical relevance of the mechanisms in the paper for understanding the process of

economic development. Notably, our results suggest that goods within manufacturing are

substitutes but that across sectors they are complements, so that within manufacturing

resources should shift towards high-TFP growth industries, whereas across sectors resources

should shift towards low-TFP growth sectors. This is exactly what we find in the data.

Furthermore, the model economy closely matches the link in the data between the shares of

agriculture and services and the level of development.

Our model is close to Ngai and Pissarides (2007, hereafter NP). NP show that persistent

productivity differences across sectors can result in structural change, and study conditions

under which this may occur along a balanced growth path. However, they focus on the

behavior of agriculture and services (as do most studies of structural change), and do not
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study "stages of diversification." We build on their work by performing a rigorous quanti-

tative analysis of the implications of productivity-driven structural change for a large set

of countries. In addition, we find that the restrictions NP identify that are required for a

balanced growth path with structural change do not appear to hold empirically — specifi-

cally, the elasticity of substitution across capital goods is not equal to one — so our analysis

requires the computation of a multi-industry growth model in transition.3 We focus on a

generalization of a balanced growth path — an equilibrium where the initial condition for the

capital stock is chosen so as to satisfy the Euler equation at date zero — which we refer to as

an Euler growth path. However, our results hold even off the Euler growth path.

Acemoglu and Guerrieri (2008, hereafter AG) assume that both productivity growth

rates and capital shares vary across industries. We assume that capital intensity is the

same for all industries in our model (as do NP). This allows us to focus on the productivity

mechanism in our paper. At the same time, we do not find clear evidence that differences

in capital shares are related to the "stages." By contrast, we do find evidence that countries

systematically shift resources between industries and sectors with different rates of TFP

growth, as predicted by the model.

Also related is Ilyina and Samaniego (2012, henceforth IS). The IS model predicts that

R&D-driven TFP growth is the driving force behind structural change, and they conjecture

but do not explore the possibility of a U-shaped specialization pattern over time, not in

relation to GDP per person. Indeed, the literature has not developed an explicit, quantifiable

theoretical model that attempts to account for the stages of diversification in IW.

Duarte and Restuccia (2010) examine the impact of productivity differences across coun-

tries in agriculture and services on aggregate productivity. Our experiment is different: we

assume that the rate of productivity growth in a given industry is constant across countries,

and focus on accounting for economic structure rather than aggregate productivity. Our

model is also much more disaggregated, allowing us to provide a more detailed picture of

industrial structure along the development path at different levels of aggregation. The as-

sumption that the industry TFP growth rate does not vary across countries is driven by the

nature of the experiment, as it allows us to talk of high- and low-TFP growth industries,

and it is also consistent with the finding in Rodrik (2012) that there is unconditional conver-

gence in labor productivity across countries among disaggregated manufacturing industries.

3This is something that to our knowledge has not been done before in an infinite-horizon multi-industry

model with capital accumulation, and our methodology may be of independent interest. Rogerson (2008),

Duarte and Restuccia (2010) and others compute transition dynamics in growth models with many industries:

however, their models do not have capital so there are no intertemporal decisions.
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Still, we perform a variety of robustness checks to examine the importance of this assump-

tion, finding that the results are robust to significant variation in TFP growth rates across

countries.

The rest of the paper is organized as follows. Section 2 describes the link between in-

dustry productivity differences and industrial diversification in a simple heuristic framework.

Section 3 presents a general equilibrium model economy with many industries and character-

izes the equilibrium. Section 4 calibrates the model economy with a focus on manufacturing,

and reports the results concerning the evolution of industrial structure in the model econ-

omy within manufacturing. Section 5 calibrates the economy for several sectors and reports

results concerning sector level specialization. Section 6 discusses extensions and possibilities

for future work.

2 Diversification and TFP Growth differences

We begin by describing the stylized facts of how industrial structure evolves along the devel-

opment path, and by explaining how productivity differences across industries might account

for these facts using a simple model. IW deliver results at the sector level, and also at the

industry level within manufacturing. For heuristic purposes in this section we focus on the

latter.

2.1 Economic structure along the development path

IW use a nonparametric methodology to investigate the relationship between sectorial diver-

sification and income. Manufacturing industry data are drawn from the INDSTAT3 database

distributed by UNIDO, whereas sector-level data are provided by the ILO, and data on ag-

gregate income per capita are from the Penn World Tables. The industry (or sector) share

is defined as the share of manufacturing employment.

IW use the Gini coefficient of industry shares GINIc,t to measure the degree of industrial

concentration in any country c at date t: the more equal the industry shares (i.e. the

lower the Gini), the more diversified the economic structure.4 Then, they apply a procedure

related to robust locally weighted scatterplot smoothing (lowess) to uncover the link between

income per capita GDPc,t and specialization. Specifically, they regress the Gini coefficients

of industrial specialization on income per capita with country fixed effects, using rolling

4IW use a number of other measures of diversification for robustness, as do we.
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income windows.

GINIc,t = α̂c (x) + β̂ (x)GDPc,t + εc,t, GDPc,t ∈ [x−∆/2, x+∆/2] . (1)

The income interval ∆ is fixed in each regression ($5, 000 in 1985 dollars) and the midpoint

x of the interval gradually moves away from the previous income range (the increment across

regressions is $25). Then, they plot the fitted Gini coefficients estimated at the midpoint

of the income interval in each regression. They find a U-shaped relationship between Gini

coefficients and income levels. Their U-shaped relationship is robust across sectors (ILO

data) and within manufacturing (UNIDO data). Figure 1 reproduces their main results.
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Figure 1. IW results. Each point in the Figure is the fitted value α̂c (x) + β̂ (x)x

from equation (1) , where x is GDP per capita. Confidence bands represent

two standard errors of the coefficient β̂ (x) . The left panel is industry concentration

within manufacturing estimated using INDSTAT3 data provided by UNIDO. The

right panel is sectorial concentration across the entire economy estimated using ILO data.

2.2 Productivity and economic structure

To illustrate the main mechanisms in our model, consider the following simple setup. Suppose

there are N competitive industries, with production functions of the form:

yit = AitK
α
itn

1−α
it (2)
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where Ait = Ai0g
t
i . The growth factor gi may vary across industries, but capital shares α

are assumed to be constant to highlight the productivity mechanism. Producers solve the

problem

max
kit,nit

{pityit − wtnit − rtKit} (3)

subject to (2), where pit is the price of good i, wt is the wage and rt is the rental rate of

capital. For now, the series for wt and rt may be arbitrary.

Assume these goods are consumed and that preferences are CES, so that, if yt= {y1t, ..., yNt},

then

u (yt) =

[
N∑

i=1

ξi × y
ε−1
ε

i,t

] ε
ε−1

,
N∑

i=1

ξi = 1 (4)

where ε is the elasticity of substitution among goods.

Let vit be value added in industry i, so vit = pityit where pit is the price of good i. Then

define the growth factor of value added Git as:

Git = vi,t+1/vit.

On the demand side, the consumer’s first order conditions imply pit
pjt

=
(

yj,t
yi,t

) 1

εs ξi
ξj

, so that

Git

Gjt

=

[
pi,t+1
pit

pj,t+1
pjt

]1−ε
. (5)

On the supply side, the optimal capital labor ratio is a constant across industries, so that
Ait
Ajt

=
pjt
pit

.5 Thus, for any industries i and j,
(

pi,t+1
pit

)
÷
(

pj,t+1
pjt

)
=
(

gi
gj

)−1
. In equilibrium (5)

becomes:6
Git

Gjt
=

[
gi
gj

]ε−1
. (6)

Let si,t be the share of manufacturing of industry i at date t. Given shares si,t for

one year t, we can compute shares for the next year t + 1 by multiplying si,t by gε−1i and

5To see this, the conditions can be written pitαyit/Kit = rit and pit(1 − α)yit/nit = wit. Dividing one

condition by the other we get that 1−α
α

(
Kit

nit

)
= wt

rt
. Then, dividing any of these conditions for industry i

by that for j yields the result.
6Notice that, while we defined Git = vi,t+1/vit, (6) would also hold if Git = ni,t+1/nit . to see this,

remember the household’s first order conditions imply that pit
pjt
=
(
yj,t
yi,t

) 1
εs ξs,i

ξs,j
. Plugging in the production

functions and recalling that capital labor ratios are constant across industries yields pit
pjt
=
(
Ajtnjt

Aitn
1−α
it

) 1
εs ξs,i

ξs,j
.

Rearranging, we have that nit
njt

= pityit
pjtyjt

.
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repeating this procedure to get predicted shares for as many years as desired7. Thus, given

initial conditions, a value of ε, and productivity growth factors gi, we can compute model-

generated industry shares of manufacturing, and subject the resulting industry structure to

the same nonparametric methodology as in IW to study whether productivity differences

might be able to generate a U-shaped specialization pattern.

This might occur if "initial" industry composition is skewed towards low-tech industries.

For example, suppose that N = 2 and that "specialization" is measured using the Gini coeffi-

cient. If sjt is the share of industry j, then the Gini coefficient equals 0.5−min {s1t, 1− s1t}.8

Now suppose that g1 < g2. Then, if ε > 1, for a sufficiently low initial share of industry 1 the

economy will start off specialized in industry 1 whereas in all periods thereafter the share of

2 will increase and that of 1 will decrease. Thus, the minimum of the two (s2t) will rise until

it reaches 0.5 and the Gini coefficient has dropped to 0. After this, the minimum of the two

becomes s1t and, as its share continues to decrease, the Gini coefficient rises again. Thus,

for a time, specialization decreases, until s1t drops below half — after which specialization

will begin increasing again. Alternatively, if ε < 1, for sufficiently low initial productivity in

2 the economy will start off specialized in industry 2, whereas in all periods thereafter the

share of 1 will increase, and the same dynamics obtain.

We now examine whether the heuristic model presented above can generate a U-shaped

specialization pattern for the 28 manufacturing industries examined in IW. We use the

initial industry shares in 1963 from the UNIDO employment data, and simulate a time

series of future industry shares until 1992 using equation (6). We then include the same

country-time pairs as IW, so that we have a model-generated unbalanced panel that is of

the same dimensions as that in the IW database. We simulate industry shares for the 28

manufacturing industries in the ISIC revision 2 industry classification used by the UNIDO

INDSTAT3 database, from 1964 until 1992 given the initial share in 1963 drawn from the

UNIDO employment data. To perform this simulation we adopt the value ε = 3.75, which is

estimated in Ilyina and Samaniego (2012) by observing that the logarithm of (6) indicates

that regressing value-added growth rates (or employment growth rates) on TFP growth

rates yields a coefficient equal to ε− 1.9 Finally, TFP growth data are computed using the

7Literally, this procedure would yield shares that do not add to one. To be precise, let zi,t+1 =

gε−1i si,t,Then si,t+1 =
zi,t+1∑

N
n=1 zn,t+1

.
8To see this, note that the Lorenz curve of industry composition when N = 2 is a line joining (0, 0) to

(0.5,min{s1, s2}) and another line joining (0.5,min {s1, s2}) to (1, 1). The Gini coefficient is defined as the

integral of the area above this line.
9To see this, consider that (6) is equivalent to logGi = α + (ε− 1) log gi + ǫi where α = logGj − log gj
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NBER manufacturing productivity database. Note that the NBER industry classification

is 4-digit SIC. We use Domar weights to convert NBER SIC industry TFP growth data

into ISIC revision2 data (see Table 5 in the Appendix for values). The value of gi is the

industry average over time. GDP per-capita data are drawn directly from the data for each

country-year combination.10

For the sector level results, we calibrate the basic model independently. We take the man-

ufacturing sector value of gi to equal the average value in the NBER productivity database.

Then we calibrate gi for the other sectors using their inverse price growth rates relative to the

price of manufacturing, using price data drawn from the US Bureau of Economic Analysis.

2.3 Basic Model: Results

We regress Gini coefficients generated from our TFP growth simulation on income per capita

for countries and periods, following the IW methodology. Our results display a similar U-

shaped relation between sector concentration and income levels: see Figure 2. In addition, in

the case of manufacturing, the turning point is roughly $9, 000, as found by IW, something

that lends weight to the empirical relevance of the productivity mechanism. Across broad

sectors, the turning point is a bit lower, around $6, 000.

for some arbitrary industry j and ǫi is any unmodeled noise in the relationship. IS estimate this coefficient

using the industry TFP and value-added data reported in Jorgenson et al (2007).
10It is worth mentioning that the correlation between the NBER productivity values and US industry

employment growth in the UNIDO database is 0.46**.

9



2 4 6 8 10 12 14 16

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74
NBER TFP Growth Simulation

G
in

i

Income in $1,000
2 4 6 8 10 12 14 16

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58
ILO TFP Growth Simulation

G
in

i

Income in $1,000

Figure 2. Industry structure along the development path in the simple model.

The left panel is the relationship between income and specialization within

manufacturing reported in IW. The right panel is the same relationship in the

pseudo-data generated using equation (6) .

As a robustness check, we use an alternative way of measuring TFP growth rates for

manufacturing. Using the UNIDO dataset, we compute the TFP growth rates for the 28

UNIDO manufacturing industries in the United States using the following equation:11

ln(TFPit) = ln(Yit)− (1− α) ln(Lit)− α ln (Kit) (7)

where Yit is the production index, Lit is the total amount of labor and Kit is capital used in

industry i at time t. See the Appendix for details.

Also we compute industry price growth rates as a robustness check, so that equation (5)

rather than (6) dictates industry dynamics. The price index is computed using value added

11It is an important part of the experiment that industry TFP growth rates be the same across countries:

all that varies are initial conditions. When we used this procedure to measure industry TFP growth rates

in different countries we found that the estimated values in some countries were sometimes absurdly high.

We interpret this as indicating that the input data in those countries are likely mismeasured. This implies

that we cannot reliably estimate country-specific industry growth rates using the UNIDO data: however,

this does not affect the usefulness of the reported initial conditions, which do not depend on input data.
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divided by the production index from the UNIDO dataset.12 Both TFP and price growth

rates (in Table 6, see Appendix) are averages over the period 1963−1992 and assumed to be

the same for all countries. TFP growth rates computed this way are highly correlated with

those derived from the NBER data, with a correlation coefficient of 0.6 (significant at the 5

percent level). The TFP growth and price growth series based on UNIDO data are highly

negatively correlated with a coefficient of −0.9 (significant at the 5 percent level). All of this

is encouraging as to the robustness of the productivity measures.

We simulate industry shares following equation (5) for UNIDO price growth and (6) for

TFP growth and apply nonparametric methodology to model simulated Gini coefficients on

income. Again, we obtain a U-shape in both cases, see Figure 3.
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Figure 3. IW nonparametric regression using simulated industry concentration measures

based on equation (6) using UNIDO TFP growth rates, and based on

equation (5) using UNIDO price growth rates.

There are several reasons why the above results might not extend to the "full" growth

model. First, manufacturing can be separated into capital goods and non-capital goods,

which serve different purposes and which may hence have different elasticities of substitu-

tion. Second, the share of capital goods within manufacturing will be determined by agents’

investment behavior, whereas the share of non-capital goods will be determined by their

consumption behavior. Third, capital also includes structures, which are built by the con-

struction sector but which is not part of manufacturing. Fourth, the basic model does not

12Recall that value added vit = pityit. The assumption is that growth in the UNIDO industrial production

index proxies for growth in yit.
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generate a series for income per capita: we simply took the data values as given. The general

equilibrium model addresses all of these issues to see whether productivity differences can

account for the observed evolution of economic structure along the development path within

an integrated theoretical framework.

3 Model Economy

We now develop a general equilibrium multi-industry growth model to test whether the

mechanisms described above can generate stages of diversification at the industry or sector

levels.

3.1 Preferences and Technology

Time is discrete and there is a [0, 1] continuum of agents. In the baseline economy, there are

S sectors, each of which produces an aggregate of I industries. Let Is be the set of industries

that supplies sector s. We focus on the case in which each industry supplies only one sector,

so that Is ∩ Is′ = ∅, ∀s 
= s′. Note that this is without loss of generality, as one could have

two industries identical in all ways that are distinguished by the fact that they provide a

given good to two different sectors.

We assume that sectors s ∈ {1, ..., S − 1} produce consumption goods. Only one sector,

S, produces capital goods.13 Now for each sector s ∈ {1, ...S}, the production function has

the CES form:

yst =

[
∑

i∈Is

ξi × u
εs−1
εs

s,i,t

] εs
εs−1

,
∑

i∈Is

ξi = 1, s = 1, ..., S (8)

where usit is use of good i by sector s, ξi is the weight on good i, and εs is the elasticity of

substitution among goods within sector s.

Agents consume a CES aggregate ct of the output of the different consumption sectors:

ct =

[
S−1∑

s=1

ζsy
ε−1
ε

st

] ε
ε−1

.

Finally, agents have isoelastic preferences over ct and discount the future using a factor

β < 1, so that:
∞∑

t=0

βt c
1−θ
t − 1

1− θ
. (9)

13We abstract from intermediate goods. As we discuss later, the results are robust to allowing for inter-

mediates.
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They are endowed with one unit of labor every period which they supply inelastically, and

start period zero with capital K0. Let qst be the price of the sector aggregate s, with rt

as the interest rate and wt as the wage. Agents choose expenditure on each good so as to

maximize (9) subject to the budget constraint

S∑

s=1

qstyst ≤
S∑

s=1

∑

i∈Is

rtKit +
S∑

s=1

∑

i∈Is

wtnit (10)

and the capital accumulation equation

Kt+1 = ySt + (1− δ)Kt. (11)

On the supply side, each industry features a Cobb-Douglas production function:

yit = AitK
α
itn

1−α
it , Ait = Ai0g

t
i (12)

where gi = Ai,t+1/Ait is the TFP growth factor of industry i and Ai0 is given. Producers

maximize profits

max
nit,Kit

{pityit − wtnit − rtKit} (13)

subject to (12), where pit is the output price of industry i at time t. Capital and labor are

freely mobile across sectors.

3.2 Equilibrium

The producers’ first order conditions imply that the capital labor ratio is constant across

industries, which implies that Aitpit = Ajtpjt. Thus, as in related models, goods that experi-

ence rapid productivity growth display a decline in their relative price. This result, combined

with the consumer’s first order conditions implies that the ratio of value added pityit in any

two industries in the same sector s depends on preference parameters and the productivity

terms.
pityit
pjtyjt

=

(
ξs,i
ξs,j

)εs (Ait

Ajt

)εs−1

=
nit
njt

∀s (14)

Notice that the same relationship holds for the ratio of employment — just as with the basic

model — except that it only holds comparing industries that are in the same sector.

Define the growth factor of employment (or value added) in industry i as

Git ≡
ni,t+1
ni,t

=
pi,t+1yi,t+1
pityit

. (15)
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Then, the expression Git/Gjt then denotes the growth of employment (or value added) in

industry i relative to industry j. Using (14) we have that

Git

Gj,t
=

(
gi
gj

)εs−1

∀s. (16)

Consequently, within sectors, structural change depends on relative TFP growth factors gi
gj

and on the elasticity of substitution εs. For comparing industries across sectors requires

characterizing shifts in expenditure across sectors, as well as investment behavior.

3.3 Sectorial and Aggregate Growth

Notice that in equilibrium we can aggregate the industries in a given sector into a sectorial

production function. To see this, define qst as the price index for final goods in sector s, so

that

qstyst =
∑

i∈IS

pitAitk
α
t nit

where kt is the equilibrium capital-labor ratio, which is common across industries. Define

input use in sector s as Kst =
∑

i∈Is
Kit and nst =

∑
i∈Is

nit. Then, define a sectorial

production function:

yst = AstK
α
stn

1−α
st , Ast = As0ḡ

t
s (17)

The problem of the sector firm and the industry firms can be combined as

max
nit

qst

[
∑

i∈Is

ξi × (Aitk
α
t nit)

εs−1
εs

] εs
εs−1

− rtkt
∑

nit − wt

∑
nit (18)

The first order conditions imply that:

nj
ni

=

(
ξj
ξi

)ε(
Ai

Aj

)1−ε
(19)

We also have that
∑

i ni = ns by definition, so we can use (19) write ni in terms of ns.

Substituting this back into the problem (18), we have

max
nit

qstAstk
α
t ns − rknst − wnst

where

Ast =

[
∑

i∈I

ξ
εs

s,i × A
εs−1

it

] 1

εs−1

=

[
∑

i∈I

ξ
εs

s,i × A
εs−1

i0 g
t(εs−1)
i

] 1

εs−1

(20)
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and

ḡs =
∏

i∈Is

g
xit/Xst

i (21)

where

xit = ξεss,iA
εs−1
it , Xst =

∑

i∈Is

xit.

Since the total production of consumption sectors ct =
[∑S−1

s=1 ζsy
ε−1
ε

st

] ε
ε−1

, we can also

aggregate all the consumption goods production sectors. Then we have that

ct = ActK
α
ctn

1−α
ct , Act =

[
S−1∑

s=1

ζεs ×A
ε−1

st

] 1

ε−1

(22)

As a result, the aggregate behavior of the model economy with many sectors is the same

as that of a 2-sector economy that produces ct using technology (22) and produces capital

goods using technology (17). In the consumption goods sector, firms maximize

max
Kct ,nct

{
pctActK

α
ctn

1−α
ct − rtKct − wtnct

}

where Act =

[
S−1∑

s=1

ζεs × A
ε−1

st

] 1

ε−1

whereas in the capital goods sector:

max
Kht

,nht

{
phtAhtK

α
htn

1−α
ht

− rtKht − wtnht

}

where Aht =

[
∑

i∈IS

ξεSi ×A
εS−1

it

] 1

εS−1

Consumers choose consumption ct and investment ht to solve:

max
ct,ht

{
∞∑

t=0

βt c
1−θ
t − 1

1− θ

}
(23)

s.t. pctct + phtht ≤ rtKt + wt (24)

Kt+1 = Kt (1− δ) + ht (25)

K0 given. (26)

In equilibrium, capital and labor markets must clear at all dates, so

ct = ActK
α
ctn

1−α
ct (27)

ht = AhtK
α
htn

1−α
ht

Kt = Kht +Kct (28)

nct + nht = 1 (29)
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It will be convenient to set pht = 1∀t, so that consumption goods prices pct are expressed

relative price to the price of capital goods.

Solving the 2-sector problem and using the equilibrium conditions, we obtain expressions

for labor shares in the capital goods sector nht and the consumption goods’ sector nct = 1−nht

along an unbalanced growth path14. These turn out to be functions only of the productivity

growth rates gi, parameters, and of the equilibrium growth rate of aggregate consumption

gct =
pc,t+1ct+1

pctct
which is endogenous. This will be true at all dates except possibly date zero,

where nht is determined by the initial condition K0.

Define real GDP as yt = ht + pctct. Notice it is measured in units of capital.

Proposition 1 Equilibrium exists and is unique. In equilibrium, the growth factors of total

capital K,capital per capita k, and total output y depend on the growth factors of TFP in the

consumption and capital sectors and on the growth factor of consumption sector (as well as

parameters):

gkt =
kt+1
kt

=
Kt+1

Kt

= g
1

1−α

Aht

(
rt
rt+1

) 1

1−α

(30)

and

gyt =
yt+1
yt

= g
1

1−α

Aht

(
rt
rt+1

) α
1−α

(31)

where GDP is defined as yt = ht+pctct and the equilibrium interest rate is rt =

(
gAht−1
gAct−1

)1−θ
gθct−1

β
−

1 + δ for t > 0. At date zero, r0 is determined by market clearing given K0.

Proposition 2 The model economy converges to a balanced growth path where in each sector

lim
t→∞

Ast = Ajt where j =

{
argmaxi∈Is {Ai} if εs > 1

argmini∈Is {Ai} if εs < 1
,

and

lim
t→∞

Act = Ajt where j =

{
argmaxs<S {As} if ε > 1

argmins<S {As} if ε < 1
.

14We do not focus on the balanced growth path (BGP), because BGP results understate the impact of

productivity differences on stages of diversification. One reason is that we ruled out SoD among capital

producing industries when assuming Cobb-Douglas production (which leads to constant growth rate and is

required for the existence of BGP) in the capital sector. Moreover, from our estimations of the elasticity of

substitution for both capital and non-capital manufacturing sectors, we find the elasticities of substitution

in both sectors are not statistically different from each other, and the elasticity of substitution of capital

sector is statistically different from one. So we abandon C-D production function in capital sector. Instead,

we use CES function for capital sector and focus on an unbalanced growth path in this paper.
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Recalling that the only endogenous variable that affects rt for t > 0 is gct,15 Proposition

1 implies that we can compute the equilibrium for th multi-industry model economy in

transition, provided we can derive the series for gct. The economy with many consumption

goods sectors will asymptotically converge to an economy with one consumption sector which

has either the highest or lowest TFP growth rate depending on the elasticity of substitution.

The same occurs within the capital goods sector. As a result, the expression rt converges to

some constant r and, although in general the model does not possess a balanced growth path

(see Ngai and Pissarides (2007)), it converges to one. This suggests that the equilibrium may

be computed by finding a sufficiently good approximation to the series for gct. In the limit,

since by assumption εs 
= 1 for all s ≤ S, one industry will end up dominating each sector.

However, we wish to study the behavior of the model economy in transition, where sectors

are relatively diversified.

4 UNIDO Calibration: Manufacturing

In the remainder of the paper we will focus on a particular type of equilibrium. Observe

that the capital stock will be set to satisfy the Euler equation (30) at all dates except date

zero. In other words, the investment share of the model economy will in general be smooth

over time, except between dates zero and one. The model will be calibrated to the available

data and, since the initial year in which data for a given country become available has no

economic content, it is difficult to justify why the first year we have data for (generally 1963)

happens to be the only date when the intertemporal optimization (30) is not satisfied. For

this reason, we focus on an equilibrium where this does not occur.

Definition 3 An Euler Growth Path (EGP) is an equilibrium and an initial condition K0

such that equation (30) holds at date zero.

The Euler growth path is a generalization of a balanced growth path which may exist

in models that do not exhibit balanced growth. For our benchmark results, we calibrate

the model to match an Euler growth path by matching the composition of manufacturing

but not necessarily its size. Details are in the Appendix. Nonetheless, it is important to

underline that our results concerning the structure of the economy turn out not to hinge on

whether we focus on an Euler growth path: results on the equilibrium calibrated to match

the initial conditions in the data are almost indistinguishable.

15In general, at t = 0, the value of r0 is determined by market clearing and the value of K0.
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Table 1: Sectors and Industries in the model economy

Industries

Sector Services, etc Agriculture UNIDO Construction

Services, etc X - - -

Agriculture - X - -

Capital Manufacturing - - X X

Non-Cap Manufacturing - - X -

Calibrating the model economy requires a choice of industries, and values of the following

parameters and variables.

1. Technological parameters α, δ.

2. Preference coefficients ξs,i, ζ i, β.

3. Elasticities of substitution εs for s ≤ S, and ε, the elasticity across consumption sectors

4. The intertemporal elasticity parameter θ.

5. Productivity growth values gi.

6. Productivity initial conditions Ai0.

We provide two selections of industries. In this section, we calibrate the model so as

to focus on the "stages" in manufacturing in the UNIDO data. In the following section,

we disaggregate the non-manufacturing sector further to focus on the "stages" across broad

sectors in the ILO data. We calibrate the model twice because the data required for the

ILO sector calibration are available for fewer countries. We refer to them as the UNIDO or

manufacturing calibration and the ILO or sector calibration. Details are provided below. The

simulation requires computing transition dynamics in a model without a balanced growth

path, and the procedure is described in the Appendix for the interested reader.

For the UNIDO calibration, we group all industries into four sectors: Agriculture, Ser-

vices, Capital and Non-capital manufacturing. Agriculture, services and non-capital manu-

facturing sectors produce consumption goods, and the capital sector only produces capital

goods. Industries include agriculture, services, the 28 UNIDO manufacturing industries, and
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Table 2: Capital good-producing manufacturing industries

Industry ISIC code

Wood products 331

Furniture, except metal 332

Fabricated metal products 381

Machinery, except electrical 382

Machinery, electric 383

Transport equipment 384

Prof. & sci. equip. 385

Other manufactured prod. 390

construction (see Table 1). Thus, the agriculture and services industries only contain one

industry. The UNIDO industries serve either the capital or the non-capital manufacturing

sectors. We assigned an industry to the capital sector if the US NIPA tables count it in their

"fixed asset" tables (see Table 2). Construction serves capital sector too. The initial shares

of agriculture, services, manufacturing and construction sectors out of GDP are derived from

World Development Indicators data (WDI).16

1. We assume that δ = 0.06 as in Greenwood et al (1997): this is a standard values in

models in which the productivity of the investment technology exceeds that in the

consumption sector. We use a standard value for the capital share, α = 0.3.

2. To calibrate the utility weights ξs,i, it should be noted that in a sense these weights

are arbitrary, as they depend on the exact unit of measurement for good i.17 Thus,

without loss of generality, we set ξs,i =
1
Is

, where Is is the number of industries in

sector s. The same applies to ζ i, so ζ i =
1

S−1
. We set β = 0.95, a standard value.

3. For each sector, equation (16) is equivalent to logGi = α + (ε− 1) log gi + ǫi where

α = logGj − log gj for some arbitrary industry j and ǫi is any unmodeled noise in

16For countries with missing data, we use predicted values computed by regressing sector shares on income,

income squared and UNIDO industry shares in the manufacturing sector for all countries and years in our

sample.
17For example, if I measure apples and get ξs,apples = 2 (and Aapples,0 = 3), I could choose to measure

apples in units of "half an apple" and then ξs,apples = 1 (and Aapples,0 = 1.5).
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the relationship. We regress U.S. value added growth rates on TFP growth rates18

for capital and non-capital manufacturing goods respectively, finding that they were

not statistically significantly different: εnoncapmanuf = εcapital. Pooling the data, we

estimate that εnoncapmanuf = εcapital = 3.73. Across sectors, we use the value ε = 0.3,

which is the estimate in Ngai and Pissarides (2004). We will examine other values of

ε ∈ [0.1, 0.9] and find results to be visually indistinguishable, as the value of ε has

negligible impact on what occurs within the manufacturing sector.

4. The preference parameter θ is calibrated so that in the long run the investment share of

GDP converges to 12 percent, which is roughly the share in the US: investment shares

in transition turn out not to be very different. This implies that θ = 3: typical values

used in calibration fall in the range θ ∈ [1, 5],19 so it is encouraging that our value falls

in the middle.

5. Productivity growth values gi are drawn from the NBER productivity database, as

described in Section 2. We use the average value over the period 1963-1992. See

Table 5. To calibrate the growth factors of the consumption goods sectors, first we use

equation (20) to compute TFP growth in the capital sector (excluding construction)

over the period 1963-1992, and get the average value g̃h = 1.0241. According to NIPA,

the relative price of construction has risen at a rate of 0.0109 each year relative to other

capital. This means the growth factor of construction sector gconstruction = g̃h/e
0.0109 =

1.0130. For the services sector, the relative price of services has risen at a rate of

0.0103 each year relative to other capital. This means the growth factor of services

sector gservices is then g̃h/e
0.0103 = 1.0136. For agriculture, we have that the relative

price of agriculture has dropped at a rate of 0.004 each year relative to other capital.

So the growth factor of the agricultural sector is gagriculture = g̃h/e
−0.004 = 1.0282.

6. For the initial productivities of the capital and consumption sectors, we initially set

Acapital,0 = 1 and Aconsumption,0 = 1. The former is a normalization, and the latter is

without loss of generality because the size of the non-investment sectors is independent

of the level of Aconsumption,0 = 1.20 Then, using (14) and (20), for the capital sector

18We use data from Jorgenson et al (2007): although they are a little more disaggregated, we want a value

estimated at roughly the same level of aggregation as the UNIDO data. The UNIDO data themselves are

too few so we were unable to obtain a good estimate from them directly.
19Growth models tend to use θ = 1, whereas asset pricing studies tend to use larger values. For an example

with θ = 5, see for example Jermann (1998).
20Proof available upon request.
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Table 3: Calibrated Parameters: Baseline Model

gconstruction gservices gagriculture εcapital εconsumption

1.0130 1.0136 1.0282 3.73 0.3

εnoncapmanuf θ δ α β

3.73 3 0.06 0.3 0.95

industries i ∈ IS, we set initial TFP to equal Ai0 =
[

ni0∑
ξ
εS
i ni0

] 1

εS−1 , thus matching the

initial share of capital industries in each country. For the consumption sectors, set As0

(where s ∈ {services, agriculture and non-capital manufacturinġ}) so as to match the

initial share of that sector in each country: As0 =
[

ns0∑
ζεns0

] 1

ε−1

. Finally, for industry

productivity in non-capital manufacturing, we have again that Ai0 =
[

ni0As0∑
ξεsi ni

] 1

εs−1 .

Industry shares are drawn from UNIDO and sector shares are based on the WDI.21

Finally, we multiply Ai0 in all industries and sectors by a country-specific constant so

that the country GDP per head relative to US GDP per head in the initial year is the

same as in the data.

4.1 Simulation

For each country we use initial conditions from 196322 as starting points, and simulate the

share of GDP nit of any industry or sector along unbalanced growth path.23

21As mentioned, an adjustment to industry shares is required due to our focus on an EGP: see the Appendix

for details.
22For some countries initial data in 1963 are not available: then we use the earliest available year.
23In our derivations, the model measures GDP in terms of capital goods (remember we normalize capital

goods price to 1 and consumption goods prices are expressed as relative to capital goods price). In the

data, however, GDP is measured in terms of consumption goods, see Greenwood et al (1997). Since in our

model, Aht = pctAct , we can express the GDP growth factor measured in units of consumption using the

formula g̃yt = gyt
gAh
gAc

. This is the notion of GDP we use in the graphs below. The model simulated using

GDP defined in terms of capital goods yields very similar results. An issue here is that the values of Ah0
and Ac0 are arbitrary in the calibration, but not when we wish to express cross-country GDP in common

units. We handle this by assuming that the real GDP data are measured in units of consumption and are

internationally comparable, and then use the model to compute growth rates (which do not depend on GDP
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Figure 4 shows the estimated curve of Gini using industry shares simulated in our baseline

model. We can see that our baseline model is able to capture the U-shape of stages of

diversification very well. Again, the turning point is around $9, 000, as found by IW. Thus,

the results derived using the simple model are robust to allowing the composition and size

of the capital sector to evolve independently of the non-capital manufacturing sector, and

to allowing the model to generate the GDP series as well as just industry structure. It is

notable that, in the full growth model, the re-specialization after the turning point is slower

than the initial specialization, just as in IW.24
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Figure 4. Industry structure along the development path in the full model. The left

panel is the relationship between income and specialization within manufacturing

reported in IW. The right panel is the same relationship in the pseudo-data

generated from the model economy. The range of income is the same as that

reported in IW.

For robustness, we also repeat our calibration using the TFP measures in table 6 which

were derived from the UNIDO data instead of the NBER data. The simulated Gini displays

similar U-shape as our baseline model, and the turning point appears between $8,000 and

$10,000. See Appendix.

levels) extrapolating from initial GDP in the data.
24If we extend the simulated curve from $15,000 to $20,000, the rising right hand side of the curve continues

to increase linearly.
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In the model economy, the concept of capital includes any goods that are durable. Some

items that are not classified in the fixed asset tables may be thought of as durable goods. As

a result we redefined capital in broader terms to include things that could be durable but

are not classified as such (e.g. pottery, iron products, and so on). This raises the number

of capital goods to 15, plus construction. The calibrated parameters using the alternative

classification of capital industry is listed in Table 7 in the Appendix. The simulated industry

shares display similar stages of diversification to our baseline model (see Appendix).

5 ILO Calibration: Broad sectors

IW report how economic structure evolves along the development path for 9 broad sectors,

drawing on data from the ILO. In this section, we will show that TFP growth differences in

our model can explain economic structure through the economy at sector level. We recali-

brate the model economy so that S = 10, where the capital and non-capital manufacturing

sectors are the same as in the UNIDO calibration, whereas the other 8 sectors correspond to

the non-manufacturing sectors in the ILO 1-digit data. Thus, whereas before we had capi-

tal, non-capital manufacturing, agriculture and services, we know disaggregate services into

several new sectors. See Table 4 for the list. Within manufacturing, we still use 28 UNIDO

industries, of which 8 produce capital goods as the UNIDO calibration (Table 2). The de-

finition of the capital goods sector is the same as the UNIDO calibration, i.e. 8 UNIDO

industries and construction. All other sectors in Table 4 produce consumption goods. For

sectorial TFP growth factors, we use the growth in the price of the output of each sector

relative to the price of capital (excluding construction), as before (see Table 4).25 The initial

sector shares are taken from the ILO dataset.26 In our baseline results, we again assume

that ε = 0.3. However, we studied values of ε ∈ [0.1, 0.9], with generally similar results, as

shown below.

Figure 5 shows the estimated link between income and sectoral concentration using the 9

ILO sector shares simulated in our model. It is clear that economic structure at sector level

still displays a U-shape. Again, the turning point is around $9,000 as in the data.

25We take the average growth rate of sectoral relative prices over the period 1963-1992. One exception is

the mining and quarrying sector, which displays very high variance in the relative price. We take the median

value for this sector.
26Again, an adjustment is required due to the focus on an EGP. See Appendix.
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Table 4: ILO Sectors

ILO 1-Digit Classification (9 sectors) Growth Factor g

1 Agriculture, Hunting, Forestry and Fishing 1.0282

2 Mining and Quarrying 1.0196

3 Manufacturing -

4 Electricity, Gas and Water 1.0042

5 Construction 1.0130

6 Wholesale and Retail Trade and Restaurants and Hotels 1.0150

7 Transport, Storage and Communication 1.0157

8 Financing, Insurance, Real Estate and Business Services 0.9978

9 Community, Social and Personal Services 0.9902
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Figure 5. Economic Structure along the Development path: results

for the entire economy, using the ILO 1-Digit Sector Classification.

Within the manufacturing sector (for both capital and non-capital manufacturing indus-

tries), resources will shift towards high-TFP growth industries, as calibrated elasticities of
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substitution are above one. However across sectors, because the elasticity of substitution

across the consumption sectors is less than unity, the model predicts that the economy will

shift resources towards the slowest TFP growth sector. In our calibration, the TFP growth

rate community, social and personal services sector is the lowest. So, if an economy starts

out being specialized in other sectors, e.g., agriculture, then eventually its resources will re-

allocated towards this section of the service sector. During this process of structural change,

the economy displays a U-shaped pattern of stages of diversification. Thus we can see that

persistent TFP growth differences are able to account for stages of diversification not only

within manufacturing sector but also across sectors.27 Again, we repeated the results using

different values of ε, ranging from 0.1 to 0.9. When ε = 0.1, the process of re-specialization

was a bit more more rapid, more closely resembling the original IW results in Figure 5. By

contrast, when ε = 0.9, the process of re-specialization is more slow. The initial diversifica-

tion, however, is similar regardless of the value. See Appendix.

Notice that a strong but testable prediction of the model is that, within manufacturing,

high-TFP industries should begin to dominate, whereas across sectors the opposite should

be the case. We will check this prediction later.

A lot of attention has been devoted to explaining changes in the share of agriculture

and services along the development path — see Ngai and Pissarides (2004, 2007), Rogerson

(2008) and Duarte and Restuccia (2010), among others. Although not designed to do so, the

model matches extremely well the observed changes in the link between agricultural shares

and service shares and income. See Figure 6.28

27We also run the IW regression on the GDP share of agriculture and services in the UNIDO manufacturing

calibration model. The shape of the curves are similar to those in the data. See Appendix for the figures.
28The model does not produce a hump shape in the share manufacturing, which some authors have focused

on (e.g. see Buera and Kaboski (2012)). Pooling lots of countries and using the IW method, the data do

seem to display a hump but it is weak compared to the dramatic rise of services and fall in agriculture, which

the model does reproduce. Duarte and Restuccia (2010) show that a model with our basic mechanisms plus

non-homothetic preferences can reproduce the hump.
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Figure 6. IW regressions for sector shares in data and baseline model

6 Discussion and extensions

In this section we provide some evidence in support of the mechanisms in the paper, and

discuss how the results might extend to modifications of the model.

6.1 Productivity and structural change

As noted, the calibrated economy has two strong predictions:

1. within manufacturing, as countries develop they shift resources towards high-TFP

growth industries;

2. conversely, across broad sectors, as countries develop they shift resources towards high-

TFP growth industries.

To test whether the data support these predictions, we compute a time series for the

weighted average of the measure of industry TFP growth rates oin manufacturing for each

country and at each date. First, we take the NBER productivity numbers gi, and normalize

them so that the mean measure is zero and the standard deviation is one. Then, for each

country at each date, we compute the weighted average TFP growth measure, where the
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weights are the value added shares of each industry in total manufacturing, computed using

UNIDO data. Then, we apply the nonparametric method in IW to this measure, examining

its relationship to real GDP per capita. TFP growth rates are assumed constant in each

industry across time and across countries, so any patterns are solely due to patterns of

specialization among industries with different averege rates of TFP growth.

Figures 7 shows the estimated curve (nonparametric) of manufacturing sector weighted

average TFP growth rate and R&D intensity, respectively. There is a mostly positive re-

lationship with income, indicating that, behind the "stages of diversification", economic

structure shifts towards manufacturing industries with rapid TFP growth, as predicted by

the model. In the ILO data, by contrast, there is a negative relationship, consistent with

the assumption that ε < 1 and as predicted by the model. These results strongly support

the assumption that TFP growth differences can be a driving force behind structure change

along the development path, and it is striking once more that the opposite is happening

within manufacturing and across broad sectors.
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Figure 7 — Trends in average TFP growthwithin manufacturing and across sectors

along the development path.

6.2 Other factors of structural change

In the paper we have focused on productivity differences as the mechanism that drives

structural change. However, there are other theories of long-run structural change that

imply a shift in resources towards particular industries in the long run. As long as countries

begin specialized in industries other than those that dominate in the long run, those models

27



too might display stages of diversification.

At least four general equilibrium frameworks have recently been developed to think about

long-term structural change:

1. Ngai and Pissarides (2007, NP) emphasize persistent productivity differences across

industries, as we do.

2. Ilyina and Samaniego (2012, IS) emphasize productivity differences driven by differ-

ences in desired R&D intensity. This theory is not at odds with that of NP, but digs

deeper as to the underlying causes of TFP growth differences.

3. Acemoglu and Guerrieri (2008, AG) consider both productivity differences and differ-

ences in capital shares. Specifically they predict that TFP growth rates divided by

labor shares determine which industries tend to dominate in the long run.

4. Buera et al (2011) argue that structural change is affected by industry differences in

firm size, with poorer countries less able to finance large-scale technologies.

To see whether structural change appears related to any of the factors of structural

change other than TFP growth rates (R&D intensity, labor intensity, firm size), we repeat

the experiment illustrated in Figure 7 and compute series for the weighted average of each

of these measures (R&D intensity, etc.) for each country over time. Industry R&D intensity

and labor intensity measurements are 3-decade averages of the measures RND and LAB

drawn from Ilyina and Samaniego (2011). The industry firm size is the average number of

employees per establishment in the US over the period 1963-1992, as reported by UNIDO in

INDSTAT3. Again, each measure is normalized so that the mean measure is zero and the

standard deviation is one. Then, as before, weighted averages are computed for each country-

year, where the weights are value added shares of each industry in total manufacturing,

computed using UNIDO data. Finally, we apply the same nonparametric method to these

four measures, examining their relationship to real GDP per capita.

Figure 8 shows the estimated curve (nonparametric) for each of these measures. Average

R&D displays a positive relationship with income within manufacturing, indicating that,

behind the "stages of diversification", economic structure shifts towards industries with

rapid TFP growth, and industries with high R&D intensity. Figure 8 also shows the same

for the broad sectors in the ILO data:29 in this case the trend is downwards, consistent

with the assumption that ε < 1. These results support the assumption that TFP growth

29For most measures, unfortunately we do not have data for sectors outside of manufacturing.
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differences can be a driving force behind structure change along the development path, and

that TFP growth is related to R&D intensity.

Regarding the other measures, AG argue that differences in labor shares could also be a

driving force behind structural change. We also report the estimated curve (nonparametric)

of the weighted average labor intensity in the manufacturing sector. We can see that labor

intensity shows a hump-shaped relationship with income. In particular, labor intensity

declines beyond the income level of $10,000. Thus, structural change seems more closely

linked to productivity differences than to differences in labor shares.30 This justifies our

focus on a model with productivity differences, abstracting from differences in labor shares.

As for firm size, average firm size declines along the development path, which contradicts

the idea that countries are more able to overcome large optimal scales of production as they

develop.31
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Figure 8 — Trends in average firm size, R&D intensity and labor intensity

within manufacturing along the development path.
30More specifically, AG argue that the relevant variable is the productivity growth rate divided by the

labor share. The weighted average of this variable across manufacturing industries is a hump shape with an

upturn towards the right tail.
31This result, however, is consistent with high TFP growth industries having a relatively small firm size,

as found by Mitchell (2002).
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6.3 Intermediate goods

We have abstracted from the existence of intermediate goods. There is a question as to

whether results might change if we allowed for intermediates. For one thing, when there

are intermediate goods, Ngai and Samaniego (2009) point out that TFP growth measures

computed using gross output data (as is the case for the NBER numbers) understate TFP

growth in a value added model.

Consider that the IO matrix is largely diagonal: industries tend to use intermediates

produced within the industry. Let us abstract from the off-diagonal elements. In this case,

the production function is

yit = Ait

(
Kα

itn
1−α
it

)1−β
xβ (32)

where xit are intermediate goods and β is the intermediate goods share. Producers solve the

problem

max
kit,nit,xit

{pityit − wtnit − rtKit − pitxit} . (33)

Solving for optimal use of xit, It is easy to show that this is equivalent to solving

max
kit,nit

{pitỹit − wtnit − rtKit} . (34)

where ỹit = yit − xit is value added in terms of good i, with the value-added production

function

ỹit = pitÃitK
α
itn

1−α
it (35)

Ãit = A
1

1−β

it

[
β

β
1−β − β

1

1−β

]
.

While (35) is of the same form as (12), note that the growth factor of Ãit is equal to g
1

1−β

i > gi.

At the same time, this does not matter for the results. Recall that what affects rates

of structural change in the model is the combination of gi and ε. If we regress the log

value added growth on the log real value-added productivity factor g
1

1−β

i , we would obtain

a different value of epsilon. Recall that (6) is equivalent to logGi = α + (ε− 1) log gi + ǫi

where α = logGj − log gj for some arbitrary industry j and ǫi is any unmodeled noise. If we

use gi instead of g
1

1−β

i , we would have an estimated elasticity ε̃ where ε̃− 1 = (ε− 1) (1− β)

— a lower value, since β < 1. However, structural change within sectors would be driven by

the following relationship

Git

Gjt
=


g

1

1−β

i

g
1

1−β

j



ε̃−1

=

[
gi
gj

] ε̃−1
1−β

=

[
gi
gj

]ε−1
, (36)
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which is exactly equivalent quantitatively to patterns of structural change in our model

without intermediates. Thus, significant off-diagonal elements in the input-output tables

would be required to change our quantitative results.

A similar intuition regards the possibility of adjustment costs in the reallocation of capital

cross industries. Given other parameters, capital adjustment costs could slow the reallocation

of resources across industries. However in the presence of adjustment costs the value of εs
required to match the link between industry growth and TFP growth in the data would be

larger. Thus, results would not be affected.

6.4 Country-Specific Productivity Growth

There are many country factors the literature has related to growth which are not featured

in the model (see for example Barro (1991) or Sala-i-Martin (1997)). Thus, we would not

expect the model to match per capita GDP growth rates around the world.32 Still, one might

ask whether modifying the model so as to match country GDP growth rates might affect the

results regarding economic structure. To check, we add country-specific productivity growth

factor that affects all industries, and calibrate it to match average GDP growth rates in each

country over the sample period. This factor could be interpreted as capturing policies that

affect technological diffusion, trends in policy, or any of the factors commonly included in

growth regressions. When we do this to the baseline model (the manufacturing calibration),

we find that results are almost identical, just that the curve appears slightly stretched to the

right (see Figure 9). From all the experiments discussed in our paper, we can conclude that

the U-shape generated in our TFP growth differences driven model is robust.

32In general we do not find a robust statistically significant correlation between model GDP growth rates

and those in the data, even though in the manufacturing calibration the correlation is generally positive.

Still, it is worth noting that the mean annual growth rate in the model is 1.9%, compared to 2.0% in the

data.
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Figure 9 — Industry structure along the development path.

Account for Country Specific Productivity Growth

The above exercise assumed that gi is constant across countries. It is interesting to

examine whether this assumption is key. To see this, we draw on the finding of Rodrik (2012)

that there is unconditional convergence in productivity across manufacturing industries.33

This would suggest that countries have gict productivity values where gict → gi over time.

Suppose that that

gict = gcgif (xc,t)

where xc,t = Yc,t/YUS,t, the relative GDP gap between country c and the United States. In

the basic model, it should be clear that industry shares of manufacturing sict follow

sict
sjct

=

(
gcgif (xc,t)

gcgjf (xc,t)

)ε−1

=

(
gi
gj

)ε−1

.

Thus the only way in which convergence could affect the results is if the convergence function

f is different across industries. For example, suppose that

gict = gcg
xηc,t
i

In this case, if η > 0, poorer countries have disproportionately more rapid convergence in

high-gi industries, capturing the idea that in high-gi industries there is greater room for

33The finding of Rodrik (2012) relates to labor productivity: however, it is hard to think of reasonable

conditions under which labor productivity would converge while TFP does not.
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catchup. If η < 0, then the reverse is the case — catchup is slow in high-gi industries, as in

the model of Ilyina and Samaniego (2012) where financing constraints limit the R&D that

would be necessary for poor economies to catch up in high-tech industries. η = 0 is the case

explored in the paper.34

We solve the basic model with values η ∈ {−1, 1}. The results show that, although

the exact shape of the curve is sensitive to the value of η, the U-shape in manufacturing is

preserved. Still, the results with η = 1 are better in the sense that when η = −1 the Gini

coefficients are uniformly too high. Thus, the results are robust to allowing for unconditional

convergence in productivity growth rates.
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Figure 10 - Industry structure along the development path

Convergence in TFP growth rate across countries.

Another question we ask is, what kind of productivity dynamics are suggested by the

model? Using the model, we can map between changes over time in employment or value-

added shares in any given country and productivity growth rates by means of equation (6).

All that is required is knowing gjt for some benchmark industry j in each country. We derive

values of gict for all countries in this manner, using the assumption that in all countries the

productivity growth rate is the same in the industry ISIC 342, Printing and Publishing. We

choose this industry because in the NBER data gj ≃ 1, for ISIC 342. We did the same at the

sector level, assuming gi is the same for all c, t for Community, Social and Personal Services.

Then we computed gic, the average of the time series for each country and industry. We

found several things. First, there is a lot of variation in the correlation between gic and the

values calibrated for gi using NBER data. However, the correlation between these correlations
34It is worth noting that, in that paper, both effects coexist and in the quantitative results the convergence

effect dominates.
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and initial GDP is 0.23 for manufacturing and 0.44 across broad sectors, both correlations

being significant at the one percent level. This is stronly indicative of the productivity

convergence mentioned earlier, at both levels of aggregation. We find also that the median

value of gic — called gmedian
i — is very highly correlated with the calibrated values of gi. In

manufacturing it is 0.40 and across sectors it is 0.70, both significant at the five percent level.

This suggests that the data are consistent with countries converging towards a measure of

productivity that is similar to the calibrated values.

Figure 11 displays the link between specialization and development using the basic model,

using gmedian
i instead of the values used earlier. The findings are generally robust. Also Figure

12 displays the weighted average of gmedian
i (similar to Figure 7): as before, countries appear

to shift resources towards high-tech sectors within manufacturing, whereas the opposite takes

place across sectors.
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Figure 11 - Basic model using median TFP growth rate.
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Figure 12- Average TFP growth within Manufacturing

6.5 Concluding Remarks

We develop a multi-sector model in which differential TFP growth rates across industries and

sectors lead to structural change along an unbalanced growth path. We find that the model

accounts for the pattern of diversification followed by specialization — stages of diversification

— that is well-known in the literature. The results are robust to a variety of extensions and

modifications, and hold both across sectors and within manufacturing. We do not exclude

other possible factors, such as differences in factor shares (as in AG) or international trade

(as in IW). However, the paper provides quantitative evidence that productivity differences

can account on their own for the dynamics of industrial structure along the development

path.

Earlier explanations of the "stages of diversification" have relied on very different factors.

IW attribute the U-shaped "stages" to the interaction of aggregate income and openness to

trade. IW argue that an interaction of income per capita and openness determines the ob-

served stages of diversification, whereas Koren and Tenreyro (2007) interpret the "stages" in

terms of shifts between sectors with differing levels of volatility. However, before concluding

that international trade or volatility are important determinants of the evolution of economic

structure along the development path, we need to understand how economic structure would

evolve in the absence of these factors. This paper shows that even in a closed economy

and in a deterministic setting, persistent total factor productivity (TFP) growth differences
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across industries are sufficient to generate a U-shaped pattern of specialization. It would

be interesting in future work to develop a theoretical or empirical model that nests all the

various possibilities, and estimate the contribution of different factors to the evolution of

economic structure.

The results suggest that a productivity driven theory can account for both income levels

and economic structure. This lends further emphasis to the question of the ultimate determi-

nants of productivity growth rates. Ngai and Samaniego (2011) relate productivity growth

rates to the technological determinants of R&D intensity and Ilyina and Samaniego (2012)

are able to account for country differences in industry productivity growth rates based on

an interaction of research intensity and institutional frictions, suggesting fruitful avenues for

future research.

An implication of the quantitative results is that the composition of capital shifts towards

the most high-tech industries, providing an explanation for the observed acceleration of

investment-specific technical progress. Krusell et al (2000) relate this to increasing wage

inequality, and it would be interesting more broadly to understand the link between economic

structure and wage inequality.

In the paper we take initial conditions as given for our quantitative experiments. The re-

sults suggest that poorer countries tend to begin specialized in industries where TFP growth

is low. Although it is beyond the scope of this paper, it is interesting to think about why ini-

tial conditions might be biased in this way. One possibility is that there are non-homothetic

preferences (see Kongsamut et al (2000)), so that consumption patterns in poor countries

are dominated by subsistence considerations that wear off later. If manufacturing industries

that produce goods necessary for subsistence (e.g. food products) happen to have slow TFP

growth, whereas sectors that are necessary for subsistence (e.g. agriculture) so happen to

have rapid TFP growth, then we would observe these initial conditions. This explanation,

however, relies on coincidence. Another possibility that does not require non-homothetic

preferences involves the transition from a "traditional" technology with low productivity

growth to a "modern" technology with more rapid productivity growth. Ngai (2004) shows

that small differences across countries in barriers to technology adoption can lead to very

large differences in income by delaying the transition from the "traditional" to the "modern"

technologies. Initial conditions would be determined by the traditional technology and the

date of transition between technologies. The idea that the transition between the "tradi-

tional" and "modern" technologies could explain historical economic structure as well as

income levels is an interesting topic for future research.
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A Proofs

Proof of decentralized economy. For consumers:

max
yst

∞∑

t=0

βt c
1−θ
t − 1

1− θ

ct =

[
S−1∑

s=1

ζsy
ε−1
ε

st

] ε
ε−1

s.t.
S−1∑

s=1

qstyst +Kt+1 =
S∑

s=1

∑

i∈Is

rtKit +
S∑

s=1

∑

i∈Is

wtnit

Capital and labor market clearing conditions are:

Kt =
S∑

s=1

∑

i∈Is

Kit

1 =
S∑

s=1

∑

i∈Is

nit

F.O.C w.r.t yst :
qst
qs′t

=

(
ys′t
yst

) 1

ε ζs
ζs′

s, s′ = 1, ..., S − 1 (37)

or
yst
ys′t

=

(
ζs
ζs′

ps′t
pst

)ε

s, s′ = 1, ..., S − 1 (38)

Final Goods Sector s maximizes profit:

max
us,i,t

qstyst −
∑

i∈I

pitus,i,t

= qst

[
∑

i∈I

ξs,i × y
εs−1
εs

i,t

] εs
εs−1

−
∑

i∈I

pityi,t

F.O.C w.r.t yi,t :

qst

[
∑

i∈I

ξs,i × y
εs−1
εs

i,t

]
ξs,iy

−1

εs

i,t = pit

similarly for yj,t :

qst

[
∑

i∈I

ξs,i × y
εs−1
εs

i,t

]
ξs,jy

−1

εs

j,t = pjt
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So we have:
pit
pjt

=

(
yj,t
yi,t

) 1

εs ξs,i
ξs,j

(39)

or
yi,t
yj,t

=

(
ξs,i
ξs,j

pjt
pit

)εs

(40)

For industry i in a given sector:

max pitAitK
α
itn

1−α
it − rtKit − wtnit

F.O.C w.r.t Kit :

pitαAitK
α−1
it n1−αit = rt (41)

F.O.C w.r.t nit :

pit(1− α)AitK
α
itn

−α
it = wt (42)

Dividing one F.O.C. by the other we get that

1− α

α

(
Kit

nit

)
=
wt

rt
⇒ kt =

wt

rt
×

α

1− α
(43)

where the capital labor ratio kt ≡ Kit/nit is a constant across industries. Applying this

result to (41) implies that
Ait

Ajt
=
pjt
pit

(44)

Using (40), (43) and (44) yields

nit
njt

=

(
ξs,i
ξs,j

)εs (Ait

Ajt

)εs−1

(45)

which, rearranging (39), implies that nit
njt

= pityit
pjtyjt

. Define the industry i growth factor as :

Git =
pi,t+1yi,t+1
pityit

and the expression Git/Gjt then denotes the growth of industry i relative to industry j

Git

Gj,t

=

pi,t+1yi,t+1
pityit

pj,t+1yj,t+1
pjtyjt

=

pit+1
pjt+1

(
ξs,i
ξs,j

pjt+1
pit+1

)εs

pit
pjt

(
ξs,i
ξs,j

pjt
pit

)εs

=

(
pit+1
pjt+1

)1−εs

(
pit
pjt

)1−εs =

(
Ait+1
Ait

)εs−1

(
Ajt+1
Ajt

)εs−1

=

(
gi
gj

)εs−1
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Proof of Proposition 1. Solving the 2 sector problem and using the equilibrium condi-

tions, we have:

Aht = pctAct (46)

rt =

pctc
θ
t

pct−1c
θ
t−1

β
− 1 + δ =

(
gAht−1
gAct−1

)1−θ
gθct−1

β
− 1 + δ IF β 
= 0 (47)

where gct−1 ≡
ptct

pt−1ct−1
is the growth factor of aggregate consumption (48)

gAct−1 =
Act

Act−1
, gAht−1 =

Aht

Aht−1
are known (49)

Let φt = α−1r
−α
1−α

t − g
1

1−α

Aht
r

−1

1−α

t+1 + (1− δ) r
−1

1−α

t

kt =
Kht

nht
=
Kct

nct
=

(
αAht

rt

) 1

1−α

Kt = kt

The growth factor of capital per capita in each sector is:

gkt =
kt+1
kt

= g
1

1−α

Aht

(
rt
rt+1

) 1

1−α

(50)

Similarly, we get aggregate capital growth factor:

g
Kt
= gkt

Using (46) and (25), we derive capital sector output, i.e., investment:

ht =

(
αAht+1

rt+1

) 1

1−α

− (1− δ)

(
αAht

rt

) 1

1−α

= (αAht)
1

1−α

[(
gAht
rt+1

) 1

1−α

− (1− δ)

(
1

rt

) 1

1−α

]
(51)

and the growth factor of investment ht is:

ght =
ht+1
ht

= g
1

1−α

Aht

(
gAht+1
rt+2

) 1

1−α

− (1− δ)
(

1
rt+1

) 1

1−α

(
gAht
rt+1

) 1

1−α

− (1− δ)
(
1
rt

) 1

1−α

so that the labor in capital sector is:

nht = α

[
1

rt

(
gAhtrt

rt+1

) 1

1−α

−
(1− δ)

rt

]
(52)
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and the growth factor of nht is:

gnht =
nht+1
nht

=

1
rt+1

(
gAht+1

rt+1

rt+2

) 1

1−α

− (1−δ)
rt+1

1
rt

(
gAht

rt

rt+1

) 1

1−α

− (1−δ)
rt

(53)

Notice that nht (and hence nct = 1− nht) is independent of the level of technology in c and

h as long as the interest rate is too. We can get capital in capital sector:

Kht = α

[
1

rt

(
gAhtrt

rt+1

) 1

1−α

−
(1− δ)

rt−1

](
αAht

rt

) 1

1−α

(54)

Define the aggregate output per capita as yt = ht + pctcct. Since Kct = Kt − Kht and

nct = 1− nht,

yt = ht + pctcct

= AhtK
α
htn

1−α
ht

+ pctActK
α
ctn

1−α
ct

= Ahtk
α

1−α

t =

(
α

rt

) α
1−α

A
1

1−α

ht
(55)

and its growth factor is:

gyt =
yt+1
yt

= g
1

1−α

Aht

(
rt
rt+1

) α
1−α

(56)

Aggregate consumption is:

Ct = pctct = yt − ht (57)

=

(
α

rt

) α
1−α

A
1

1−α

ht

− (αAht)
1

1−α

[(
gAht
rt+1

) 1

1−α

− (1− δ)

(
1

rt

) 1

1−α

]
(58)

The growth factor of consumption is:

gct =
Ct+1

Ct
= g

1

1−α

Aht

φt+1
φt

. (59)

Notice that as t→∞ the expressions for gAht and gAct converge to constants, so the difference

equation for gct converges uniformly to that which characterizes the model of investment-

specific technical change in Greenwood, Hercowitz and Krusell (1997). Thus, the result that

the transversality condition picks out a single equilibrium solution in that model extends to

our case too.

Proof of Proposition 2. Corollary of the proof of Proposition 1 and (16).

42



B Measurement of productivity in Manufacturing

We measure productivity using the NBER Manufacturing Productivity Database. The data

are more disaggregated that the ISIC3 Classification we need for the UNIDO data, so we

aggregate them using Domar weights.

In addition, we use an alternative way of measuring TFP growth rates. Using the UNIDO

dataset, we compute the TFP growth rates of 28 UNIDO manufacturing industries of the

United States using the following equation:

ln(TFPit) = ln(Yit)− (1− α) ln(Lit)− α ln (Kit) (60)

where Yit is the production index. This requires computing the capital stock at the industry

level. The UNIDO dataset provides investment data but not capital stock data Kit, so we

use a perpetual inventory method

Kit+1 = (1− δ)Kit + Iitqit (61)

to compute growth rate of capital stock, where Iit is investment and qit represents investment-

specific technical progress35. Then the growth rate of Kit is the sum of growth rates of I and

q. We set qit = gtiq, so that growth rates of qi vary across industries. We use growth factor

giq from IS. (see table 6) Also, δ = 0.06 and α = 0.3. These are standard numbers in the

literature.36 Then, if Γ (x) is the log growth rate of x over the time period in the data, note

that

ln gi = Γ (Yi)− (1− α)Γ(Li)− αΓ (Ki) (62)

We obtain Γ (Yi) and Γ(Li) from UNIDO, and set Γ (Ki) = Γ (Ii) + log giq, which is the long

run relationship in (61) .

C Simulation procedure

Simulating the model requires overcoming two distinct problems.

The first concerns matching the model with the data. Notice that the model is essentially

a 2 sector model where consumption and investment are made by different sectors. As shown

35We need to allow for investment-specific technical progress because the model is one with many industries

where productivity growth rates in capital-producing industries may be different from productivity growth

elsewhere.
36The value of δ is from Greenwood, Hercowitz and Krusell (1997) and is a value typical in models with

investment-specific technical change, in other words where gq > 1.
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in Greenwood, Hercowitz and Krusell (1997), this is the same as a one-sector model with

investment specific technical change. In the one-sector growth model, the equilibrium for any

initial conditions is a jump to the stable branch of a saddle path that leads to the long run

equilibrium (which in this case is the model where the capital sector has converged to contain

only one industry). Thus, for general initial conditions K0, the share of investment will jump

after period 1, so that the structure of the manufacturing sector will change abruptly after

period zero (and smoothly thereafter).

We handle this problem in two ways. First, we computed everything without worrying

about the jump. Second, we calibrated the model so as to focus on an Euler growth path —

which are the results reported in the paper (results were very similar either way).

We did not set the initial value of the capital stock K0 to match the investment share of

GDP in each country. The reason was that, in all other periods after t = 0, the investment

share will follow the Euler equation. It seems arbitrary to assume that in all countries the

Euler equation is satisfied in all years except 1963, or whatever happens to be the year for

which data are initially available. As a result, we assume that the Euler equation is also

satisfied at date zero. We call this an "Euler growth path" or EGP. To do this requires

setting the investment share of GDP at a value that is different from that in the data. At

the same time, it is critical that we preserve the composition of manufacturing. Hence, we

adopted a recursive strategy. We know from the data the composition of investment in year

zero. Given an assumption on the investment to GDP ratio, we can preserve the ratio of

capital to manufacturing and find a value for the size of manufacturing that preserves its

composition.37 Then we check whether the assumption on the investment to GDP ratio

matches an EGP.38 If not, then we generate another guess based on the predicted EGP value

from the last iteration. We find that 3 loops is sufficient for very tight convergence. Then,

the sector shares in the rest of the economy are set so as to preserve their relative values.

When we regress data on initial manufacturing shares on the model initial manufacturing

shares, we find a coefficient of 1.16 (positive and close to one) and an intercept of −0.026

(close to zero), both significant at the 1% level. We take this to imply that, in general, our

procedure does not significantly distort the sector structure of the model economy.

The second computational issue we confront is the fact that we are simulating a model

37Other sectors are resized so that, relative to each other, shares of GDP are preserved.
38Recall that computing the equilibrium, including the initial share of investment, requires a series for

gc, which in turn depends on sector productivity growth rates. However, sector productivity growth rates

depend on the initial composition and size of the economy. This is why an iterative procedure is necessary

to find an EGP.
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economy that does not have a balanced growth path (although it converges to one). Recall

that the aggregate behavior of the model is the same as a one-sector model with investment

specific technical change. In the one-sector growth model, any approximation to the saddle

path will "shadow" it for a period of time, eventually diverging infinitely from it: see Colucci

(2001). As a result, we adopt a procedure to provide this "shadowing" without suffering a

significant divergence.

The procedure is to assume limited computational ability among the agents, a procedure

we call "rolling windows of consciousness." Specifically, the structure of the model economy

can be computed exactly given the investment share of employment. This can be computed

exactly given a series for gct, which is determined by (59) and the transversality condition.

This series eventually converges to gct = g
1

1−α

Aht , where gAht is known given initial conditions.

We assume that an agent at date t acts as though up to some period t+T difference equation

(59) characterizes gct, whereas after t+T the agent believes that gct = g
1

1−α

Aht . We tried T = 50,

90 and 200. For T = 90, the error between the realized value of gc1 and the value forecast

by the agent in period 0 is about 1% of the actual value (because the series for gct converges

uniformly to its long run value, the forecast errors are the highest in the first period). For

T = 200 these values are indistinguishable to eight decimal places. At the same time, for

all values of T , the Gini nonparametric regressions were indistinguishable regardless of the

value of T .

This indicates two results. First, this procedure could yield an arbitrarily accurate ap-

proximation to the correct aggregate equilibrium dynamics, given a sufficiently large (but

finite) value of T . This is distinct from the shadowing property, which provides arbitrarily

precise approximations only for a finite period, after which there is increasing divergence.

Second, industry dynamics are robust to using values of T such that aggregate dynamics are

computed with some degree of imprecision.
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Table 5: NBER TFP Growth Rates for the ISIC revision 2 industry classification. Source:

NBER productivity database and authors’ calculations.

Industry ISIC code NBER TFP Growth Rate

Food products 311 0.0101

Beverages 313 0.0303

Tobacco 314 -0.0345

Textiles 321 0.0269

Apparel 322 0.0121

Leather 323 -0.0034

Footwear 324 -0.0035

Wood products 331 0.0113

Furniture, except metal 332 0.0066

Paper and products 341 0.0088

Printing and publishing 342 -0.0022

Industrial chemicals 351 0.0214

Other chemicals 352 0.0135

Petroleum refineries 353 0.0196

Misc. pet. and coal products 354 0.0223

Rubber products 355 0.0142

Plastic products 356 0.0339

Pottery, china, earthenware 361 0.0078

Glass and products 362 0.0051

Other non-metallic mineral prod. 369 0.0120

Iron and steel 371 0.0047

Non-ferrous metals 372 0.0016

Fabricated metal products 381 0.0029

Machinery, except electrical 382 0.0285

Machinery, electric 383 0.0347

Transport equipment 384 0.0160

Prof. & sci. equip. 385 0.0126

Other manufactured prod. 390 0.0089
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Table 6: UNIDO TFP and Price Growth Rate

Industry ISIC code UNIDO TFP Growth Rate UNIDO Price Growth Rate

Food products 311 0.0067 0.0424

Beverages 313 0.0244 0.0295

Tobacco 314 -0.0212 0.0941

Textiles 321 0.0090 0.0328

Apparel 322 0.0060 0.0371

Leather 323 -0.0196 0.0570

Footwear 324 0.0034 0.0438

Wood products 331 -0.0014 0.0464

Furniture, except metal 332 0.0064 0.0352

Paper and products 341 0.0019 0.0410

Printing and publishing 342 -0.0062 0.0499

Industrial chemicals 351 0.0225 0.0201

Other chemicals 352 0.0146 0.0322

Petroleum refineries 353 -0.0089 0.0507

Misc. pet. and coal products 354 -0.0168 0.0552

Rubber products 355 0.0287 0.0172

Plastic products 356 0.0321 0.0132

Pottery, china, earthenware 361 -0.0116 0.0428

Glass and products 362 0.0005 0.0358

Other non-metallic mineral prod. 369 0.0040 0.0375

Iron and steel 371 -0.0006 0.0377

Non-ferrous metals 372 -0.0103 0.0472

Fabricated metal products 381 0.0034 0.0392

Machinery, except electrical 382 0.0330 0.0025

Machinery, electric 383 0.0218 0.0167

Transport equipment 384 -0.0118 0.0488

Prof. & sci. equip. 385 -0.0027 0.0425

Other manufactured prod. 390 0.0170 0.0290
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D Industry TFP growth data

E Robustness results
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Figure A1. Industry structure along the development path.

TFP growth rates are derived from the UNIDO data.
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Figure A2. Industry structure along the development path.

Alternative Classification of the Capital Industry.
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Figure A3. Economic Structure along the Development path, results for the entire economy,

using the ILO 1-Digit Sector Classification with different values of ε.
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Table 7: Capital Industries

Industry ISIC code

Wood products 331

Furniture, except metal 332

Rubber products 355

Plastic products 356

Pottery, china, earthenware 361

Glass and products 362

Other non-metallic mineral prod. 369

Iron and steel 371

Non-ferrous metals 372

Fabricated metal products 381

Machinery, except electrical 382

Machinery, electric 383

Transport equipment 384

Prof. & sci. equip. 385

Other manufactured prod. 390
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