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Abstract: Preferences are fundamental constructs in all models of economic and political 

behavior and important precursors to many lifetime outcomes. Twin studies suggest that 

individual-level variation in preferences partly due to genetic factors, but twin-based 

heritability estimates remain controversial. Here, with a new sample of comprehensively-

genotyped subjects with data on political and economic preferences, as well as income and 

educational attainment, we use genome-wide data to estimate the proportion of variation in 

these traits explained by common SNPs. The overall pattern of results is consistent with 

findings for other complex traits: (1) the estimated fraction of phenotypic variation that could 

ultimately be explained by dense SNP arrays is between one-quarter and one-half of the 

narrow heritability as estimated using twin and family studies; and (2) GWAS and prediction 

analyses reveal that many common SNPs with large explanatory power for these traits are 

unlikely to exist. These findings have implications for evaluating the extent to which the 

potential benefits of molecular genetic data in the social sciences will be borne out in the near 

future. The results are also useful for evaluating existing published associations in candidate 

gene studies of economic and political phenotypes. We propose some constructive responses 

to the inferential challenges posed by the small explanatory power of individual SNPs. 
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Introduction 

Preferences are fundamental constructs in most theories of economic and political behavior. 

Economists believe that risk aversion, patience, fair-mindedness, and trust are fundamental 

preferences because they explain a wide range of behaviors, and political ideology plays a 

similar role within political science. For example, measures of risk preferences predict 

diverse risky behaviors, such as smoking, drinking, and holding stocks rather than bonds (1-

2). Experimentally-elicited patience predicts body mass index, smoking behavior and 

exercise (3), as well as credit card borrowing (4). Political preferences similarly predict a 

wide range of political behaviors, including voting (5) and monetary campaign contributions 

(6), as well as campaign activities like volunteering, attending rallies, and displaying yard 

signs (7). 

Behavior genetic studies, beginning with some classical papers on social and political 

attitudes (8-9), have found that some of the variation in political and economic preferences 

can be statistically accounted for by genetic factors (10-15). However, these conclusions 

continue to be contested (e.g., 16). Critics point out that the twin-based estimates of 

“heritability”—which compare the correlation of an outcome across monozygotic (MZ) twin 

pairs with that correlation across dizygotic (DZ) twin pairs—rely on strong assumptions 

which render it difficult to draw any definite conclusions. For example, one criticism 

sometimes leveled against twin studies is that the similarity of MZ twins may be inflated due 

to failure of the equal-environment assumption (17), a bias which could cause heritability 

estimates to be positive even if the true value were zero.  

Other researchers have embraced the twin-based heritability estimates and argued that the 

next step is to use molecular data to identify the specific genetic pathways that influence 

behavior. If behavioral phenotypes are heritable, then associated genetic markers exist in 

principle and might be identified in practice. If specific genetic markers can be identified that 

are associated with a preference, then it might be possible to predict a given individual’s 

preference without access to any phenotypic data (a feat that cannot be accomplished just 

using heritability estimates). Identifying such predictive markers may shed light on the 

biological pathways underlying preferences and ultimately help us better understand how 

genes affect outcomes (18). If a set of genetic markers is sufficiently predictive, then these 

markers could be used in social science research as covariates, as instrumental variables* (21-
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22), or, under certain conditions, as factors for identifying at-risk populations who might 

benefit from additional resources. 

Even if social-science traits are heritable, the extent to which the potential of molecular 

genetic data will be fulfilled for a given trait hinges crucially on its “molecular genetic 

architecture,” i.e., the joint distribution of effect sizes and allele frequencies of the causal 

genetic markers (23-25). The molecular genetic architecture is the result of evolutionary 

forces, including mutation, drift, and selection. The architecture determines the difficulty 

with which the genetic variants associated with a trait can be identified and what sample sizes 

will be required. It also determines the out-of-sample aggregate predictability that can be 

derived from a set of SNPs considered jointly.  

 

In this paper, we use a new sample of comprehensively-genotyped subjects from the Swedish 

Twin Registry who were recently administered, as part of a survey called SALTY, a rich set 

of questions measuring economic and political preferences. We study four fundamental 

economic preferences—risk aversion, patience, trust and fair-mindedness—and five 

dimensions of political preferences, derived from a factor analysis of a comprehensive battery 

of attitudinal items. The five attitudinal dimensions are immigration/crime, economic policy, 

environmentalism, feminism, and foreign policy. 

 

We also study educational attainment and income because much is known about their 

heritability not only from twin studies (26), but unlike the preference measures, also from 

behavior-genetic estimates that use other pedigree relationships (27-28). Educational 

attainment and income are available for a larger sample of genotyped individuals. For 

comparability with previous work and with our other estimates, we report twin-based 

estimates of heritability from this new sample, but our main focus is on using the whole-

genome data, first, to provide new evidence regarding heritability as estimated directly from 

the genetic data, and, second, to learn about the genetic architecture of these traits. 

 

First, we employ a recently-developed method (29-30) that uses the whole-genome data to 

estimate a lower bound of the narrow heritability of these traits. The technique—which we 

will call Genomic-Relatedness-Matrix Restricted Maximum Likelihood (GREML)—has been 

applied to height (30), intelligence (31), personality traits (32), and several common diseases 

(33), but never before to economic and political phenotypes. 
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Since these lower-bound estimates of narrow heritability do not rest on the same assumptions 

used in twin studies, they provide an additional source of evidence regarding heritability. The 

method is instead based on the assumption that among individuals who are not in the same 

extended families, environmental factors are uncorrelated with differences in the degree of 

genetic similarity, or “relatedness.” In this analysis, genetic relatedness is directly estimated 

from the single nucleotide polymorphism (SNP) data, unlike in behavior-genetic studies, 

where expected relatedness (known from the family pedigree) is used. Some of the concern 

about behavior-genetic studies is that expected relatedness could be correlated with 

environmental factors that are not endogenous to genotype (as defined by Jencks (18)). Since 

there is more random variation in the realized degree of genome sharing relative to the 

expected degree as the expected relatedness declines (34), environmental confounding is less 

likely to drive estimates that are based on realized relatedness among individuals whose 

expected relatedness is negligible. 

 

Under the key assumption of no environmental confounding, an estimate of heritability can 

be obtained by examining how the correlation in phenotype between pairs of individuals 

relates to the realized genetic distance between those individuals. This would be an unbiased 

estimator of narrow heritability if genetic distance were calculated using all the genetic 

variants that are causal for the phenotype. In practice, since the causal variants are not known, 

the SNPs typed on the genotyping chip are used to estimate genetic distance. Because these 

SNPs are only imperfectly correlated with the causal variants, relatedness with respect to the 

causal variants is measured with error. Consequently, the estimated relationship between 

phenotype and genetic relatedness is attenuated, and hence the estimator is a lower bound for 

narrow heritability (30).  

 

Second, we use the whole-genome data to explore the molecular genetic architecture of the 

phenotypes. Specifically, we estimate heritability using relatedness measured separately by 

chromosome to test how evenly distributed the genetic effects are across the genome. We 

supplement these results with a standard genome-wide association study (GWAS) for each 

trait, in which individual SNPs are tested for association with the outcome of interest. Finally, 

we also perform a risk prediction exercise in which we randomly split the dataset into a 

discovery and a validation sample. We use a pruned set of SNPs from the discovery sample 

to build a predictor and then examine to what extent the predictor is correlated with the 
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outcome in the validation sample. Similar approaches have been applied in the study of 

schizophrenia (36), height (37) and intelligence (31), but none of these methods have been 

applied to economic or political preferences. 

 

Results 

We began by computing the sibling correlations for all eleven variables and the re-test 

reliabilities for the nine preference measures.  Table 1 reports the results. In total, the sample 

of SALTY respondents is comprised of 1,143 complete MZ pairs (464 of them male); 1,237 

complete, same-sex DZ pairs (502 of them female); 1,114 complete, opposite-sex DZ pairs; 

and 4,394 singletons. We estimate re-test reliabilities for the preference measures using data 

from 491 respondents who answered the survey twice. The sibling correlations for the 

SALTY questions on patience (38), risk aversion (25), and political preferences (39) have 

previously been analyzed and are reproduced here to facilitate comparison with the remaining 

results. The income and educational attainment variables we used have also been previously 

studied in partially overlapping samples (27-28). We report the correlations in educational 

attainment and the natural logarithm of income averaged over 1985 and 1990. The implied 

heritabilities of the economic preferences are typically in the vicinity of 30% and the 

estimates for political preferences are typically around 40%. The final column of the table 

shows the estimated test-retest reliability of each of the preferences phenotypes. These 

reliabilities are estimated from a subset of respondents who answered the survey twice. 

We estimated, for each trait, the proportion of phenotypic variation accounted for by all 

SNPs, following the method of (30). These lower-bound heritability estimates for the nine 

traits are reported in Table 2. For economic preferences, only one of the four variables, trust, 

is significant, with the point estimate suggesting that the common SNPs explain over twenty 

percent of phenotypic variation (p = 0.047). The remaining effects are lower, in one case 

zero, and not statistically distinguishable from zero. For political preferences, three out of the 

five derived attitudinal dimensions are statistically significant estimates, though one of the 

three is only significant at the 10% threshold. These estimates are 0.203 (p = 0.079) for 

immigration/crime, 0.344 (p = 0.012) for economic policy, and 0.353 (p = 0.001) for foreign 

policy attitudes. The estimates are noisier (and the p-values tend to be higher) for phenotypes 

with lower re-test reliabilities. Keeping in mind that these are noisy and are lower bounds, the 

estimates taken as a whole are consistent with low to moderate heritabilities for these traits. 
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The cumulative effect of the SNPs is much more precisely estimated for educational 

attainment because this phenotype is available for all the genotyped individuals in the sample, 

not just the survey respondents. For this phenotype, the larger sample decreases the standard 

error of the estimates substantially, while the point estimate of 0.191 (p = 0.001) is only 

somewhat higher than the average point estimate for the other phenotypes. These analyses are 

all based on mixed-sex samples, controlling for sex, age, and the first ten principal 

components of the genotypic data. For our last variable, log income, we restrict the sample to 

males only. § Our point estimate for log income in males is 0.061 (p = 0.313). In the 

Supplementary Information, we report additional analyses of log income and find that when 

we pool men and women, the point estimate is 0.084 (p = 0.085). 

We also conduct the analysis separately by chromosome, as in (30) and (31). Between 

unrelated individuals, realized relatedness is random and independent across chromosomes, 

and the expected relatedness measured from any chromosome is zero. If, rather than being 

concentrated in a particular location, the genetic variation that predicts a trait were uniformly 

distributed across the genome, then greater realized relatedness from any given chromosome 

will predict greater phenotypic similarly, and this association will be stronger from longer 

chromosomes. The bottom row of Table 2 shows the estimated correlation between 

chromosomal length, measured in centimorgans, and the fraction of variance explained by the 

estimates of realized relatedness estimated using only data from one chromosome. The 

correlation is positive for 8 out of 11 phenotypes, significantly so in 3 cases. Analogous 

positive correlations have been reported for height (30) and cognitive ability (31) and have 

been interpreted as evidence that the trait is highly polygenic with causal variants distributed 

across the genome. 

Next, we examine whether we can identify individual SNPs that predict economic and 

political preferences. For none of the eleven traits did we identify any SNPs that pass the 

conventional genome-wide significance threshold of p < 5  10-8 (41). In fact, no single SNP 

attains a p-value lower than 10-7 for any of the eleven traits. The standard diagnostic for 

population stratification (i.e., ethnic confounding) in GWAS is inflated test statistics in the 

QQ-plot (e.g., 42); there is no evidence of inflated test statistics across the traits, with 

estimated lambdas in the range 0.982 (income) to 1.017 (educational attainment). While this 

suggests that our controls for population structure worked well, it is somewhat surprising that 

there is no tendency for the lambdas to be larger than 1, given that some inflation is expected 
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under a polygenic model even without any stratification (43). In the Supplementary 

Information, we provide details on the full set of SNPs with p-values below 10-5 for the nine 

preference measures, but we are skeptical that any of these associations will be replicable, 

given the absence of genome-wide significant hits for any of the eleven phenotypes. 

Finally, we examine the aggregate, out-of-sample predictive power of the SNPs. Following 

(36), we first estimate the regression coefficient for each SNP in a discovery sample, 

composed of a randomly-drawn 90% of the sample. From this set of coefficients, we form a 

prediction equation based on a pruned set of 107,360 markers that includes only SNPs that 

are approximately in linkage equilibrium (to avoid double counting SNPs that are correlated 

with other SNPs). In a validation sample composed of the remaining 10%, we evaluate the 

correlation between individuals’ predicted phenotype and their observed phenotype. We do 

not find any significant out-of-sample predictability for any of the traits, and for most 

phenotypes, the explanatory power of the predictor is well below R2 = 0.1%. These results are 

reported in the Supplementary Information.  

Discussion 

The data reported here reveal a number of descriptive facts about the heritability and genetic 

architecture of political and economic preferences. First, we report sibling correlations for 

several traits, some of which have never before been studied in large samples, and we 

confirm that there is a robust separation of the MZ and DZ correlations. We obtain 

heritability estimates that are consistent with typical estimates previously reported for both 

political attitudes (10, 12) and economic preferences (11, 28, 38, 14), as well as educational 

attainment (44). Our estimates for income are actually a little higher than what has previously 

been reported in Swedish data (27). Overall, these results are consistent with the hypothesis 

that there exists a moderate correlation between genotype and the eleven phenotypes. None of 

these sibling correlations are adjusted for measurement error. A plausible conjecture is that 

the lower heritabilities of the economic preferences relative to the political preferences result 

from attenuation bias due to greater measurement error, as evidenced by their lower test-

retest reliabilities. 

Second, our molecular-genetic-based estimates of heritability partially corroborate the twin-

based estimates and suggest that molecular genetic data could be predictive of preferences. 
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When we estimate the cumulative effect of genotyped SNPs using the method of (30), we 

find that the estimated heritabilities are lower than the twin-based estimates, but the overall 

pattern of results suggests that point estimates are generally non-zero and, for the better 

measured variables, statistically distinguishable from zero. Previous papers on height (30), 

intelligence (31), personality traits (32), and several common diseases (33) have found that 

the SNP-based heritability estimates are between one-quarter and one-half the size of the 

twin-study estimates. One interpretation of the gap is that genotyped SNPs tag less than half 

the genetic variation in those traits. The gap may also reflect an upward bias in twin-based 

estimates of narrow heritability estimates due to environmental confounding or non-additive 

variation, both of which will cause an upward bias in the estimated additive genetic 

proportion of variance. Consistent with the interpretation that some of the gap is due to bias, 

behavior-genetic heritability estimates for income and education based on non-twin siblings, 

for example adoptees and full siblings, are somewhat lower than those based on twins (27- 

28). 

Do economic and political preferences parallel other phenotypes in having SNP-based 

heritabilities that are half or less the magnitude of the twin-study estimates? If so, it would 

suggest that economic and political preferences have a similar genetic architecture, a similar 

degree of bias in twin-based estimates, or both. Since the economic and political preference 

measures have twin-based heritabilities around 0.30 (22-25, 11) and 0.40 (see Table 1), 

respectively, the hypotheses of one-half magnitude would be GREML point estimates of 

around 0.15 and 0.20. Our evidence, considered in its entirety, is not inconsistent with these 

hypotheses, but the point estimates are quite noisy. An alternative approach is to examine the 

number of statistically significant associations. For economic preferences, if the SNP-based 

heritability parameter in the population is 0.15, and if sample estimates have a standard error 

of 0.15 (as suggested by Table 2), then our power to statistically reject the null hypothesis of 

zero heritability in a one-sided test at the five percent level is about 26%. For political 

attitudes, if we assume a SNP-based heritability parameter in the population of 0.20, and we 

assume a standard error of 0.15 (again as suggested by Table 2), then the corresponding 

statistical power is about 38%. If the traits are independently distributed, this calculation 

implies that for the nine preference variables, we should expect to observe 2.9 significant 

associations at the five percent level. In fact, we observe three significant associations at the 

five percent level and one more at the eight percent level. The results, therefore, are close to 
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what one would expect under the hypothesis that the SNP-based heritability estimates are 

about half the magnitude of the twin-based estimates.¶ 

Third, our analysis of individual SNPs does not reveal any associations that are significant at 

the conventional threshold of genome-wide significance required in genetic association 

studies. This is unsurprising in light of the accumulating evidence that the effects of common 

variants on complex outcomes are small (45), especially in the context of social science traits 

(24-25). Figure 1 displays power calculations, given the SALTY sample size, for detecting 

true associations across a range of effect sizes as measured by the R2. For the preference 

measures, the study was well-powered to detect individual markers which explain at least 

1.25% of trait variation at a nominal significance level of 10-7—yet no single SNP in our 

sample attains this level of significance in our sample. Moreover, 1.25% is an upper bound to 

the effect sizes we can rule out because: first, since 1.1  10-7 is the smallest of many millions 

of p-values we estimated, it almost surely capitalizes on chance to some extent and overstates 

the strongest genetic association in our data (the well-known “winner’s curse” in statistical 

inference; 46); and second, for many of the variables, the lowest observed p-value was 

considerably higher than 1.1  10-7. To illustrate our statistical power another way, if across 

the eleven traits there are a total of ten independently-distributed SNPs each with R2 of 0.75% 

or larger, our study was well-powered to detect at least one of them—and yet we found none. 

We conclude that is unlikely that many common polymorphisms with such effect sizes exist. 

Hence our failure to detect associations at these levels of significance indicates that true 

associations between common SNPs and economic and political phenotypes are likely to 

have very small effect sizes.  Of course, our evidence does not rule out the possibility that 

there exist rare variants with large effects on these phenotypes. 

Fourth, the results from our prediction exercise show that in a sample of approximately 3,200 

individuals, a standard polygenic risk score has negligible out-of-sample predictability. This 

does not in any way contradict the results from the GREML analysis. GREML uses the 

measured SNPs to estimate realized relatedness between individuals, and given the large 

number of SNPs in a dense SNP array, realized relatedness can be estimated relatively 

precisely. In contrast, estimating a prediction equation that can predict well out of sample 

requires precise estimates of the effects of individual SNPs. In the limit of an infinite sample, 

it would be possible to perfectly estimate the effects of individual SNPs and thereby construct 

a polygenic risk score whose predictive power reaches the theoretical upper bound that is 
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estimated by GREML. The smaller the discovery sample used to estimate the prediction 

equation, the noisier are the estimates of the individual SNP effects, and hence the lower will 

be the out-of-sample predictive power of the polygenic risk score that is constructed based on 

these estimates. Evidently a discovery sample of 2,900 individuals (about 90% of 3,200) is 

far too small to obtain even mildly useful predictive power for standard measures of 

economic or political preferences. 

These findings fit in nicely with an emerging consensus in medical genetics, according to 

which common genetic variants that individually explain a substantial share of the variation 

in complex traits are unlikely to exist. If anything, the problem is likely to be even more acute 

in the social sciences, since the phenotypes are usually several degrees removed from genes 

in the chain of causation (24-25). Our results suggest that much of the “missing heritability” 

(49)—the gulf between the cumulative explanatory power of common variants identified to 

date and the heritability as estimated in behavior-genetic studies—for social science traits 

reflects the fact that these traits have a complicated genetic architecture with most causal 

variants explaining only a small fraction of the phenotypic variation. If so, then large samples 

will be needed to detect those variants.** 

Turkheimer (50) famously proposed three “laws of behavior genetics”: first, all human 

behavioral traits are heritable; second, the proportion of variance attributable to family is 

smaller than the proportion attributable to genes; and third, a large portion of individual 

differences is explained by factors other than families and genes. We believe that there is 

accumulating evidence in favor of a fourth “law” regarding the molecular genetic architecture 

of behavioral traits: Genetic variants that are common in a population have very small 

individual effects on behavioral traits. If true, this law would help explain the repeated failure 

to replicate initially promising candidate gene findings with large effect sizes (51-52), as well 

as the failure to date of genome-wide association studies to discover genetic variants 

associated with behavioral traits even in samples numbering tens of thousands of individuals 

(53). There is direct evidence for such an architecture for intelligence (31, 51), personality 

(32), and now economic and political preferences. Like Turkheimer’s three laws, this fourth 

law is a summary of patterns of empirical results, not a theoretical necessity, so it could fail 

to hold in some specific cases, but we conjecture that it will generalize to other complex 

phenotypes. 
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Our conclusions have a number of implications for research at the intersection of genetics and 

social science. There has recently been an explosion of reported associations in samples of 

several hundred individuals (for reviews of work to date, see (54) and (25)). These samples 

are very small by the standards of medical genetics, often based on samples in the hundreds 

or less. Such studies are only adequately powered if the marker’s population R2 for the trait is 

considerably larger than the upper bounds established by the GWAS findings reported here. 

Our findings, based on a sample an order of magnitude larger, suggest that adequate power 

actually requires a sample size that is yet another order of magnitude larger even than ours. 

Statistically significant associations obtained in a small sample should be approached with 

caution for two reasons: first, since most existing published studies are dramatically 

underpowered, the probability that an association study will detect a true signal is vanishingly 

small; hence if a significant association is observed, Bayesian calculations indicate that the 

posterior odds of a true association are low (52, 24, 25); and second, publication bias—the 

tendency for findings, as opposed to non-findings, to be selectively reported by researchers 

and selectively published by journals—are magnified in genetic association work because the 

typical dataset has many behavioral measures and many genetic markers (55). 

Our conclusions regarding the molecular genetic architecture of economic and political 

preferences also have implications for whether, how, and how soon molecular genetic 

information can contribute to, and potentially transform, research in social science. One 

possibility is that genetic associations may shed light on biological pathways of precursors to 

important behaviors and outcomes, such as preferences. More speculatively, such insights 

may also help inspire the development of new theoretical constructs which are more closely 

aligned with the underlying biology than the existing concepts such as “risk aversion” or 

“patience” that we study here (56). Contributions such as these require the identification of 

specific genetic variants that correlate robustly with behavior. As discussed above, the results 

reported here suggest the need to construct samples which are several orders of magnitude 

larger than those presently employed in this sort of research.  Unfortunately, even if these 

pathways are eventually identified, our quantitative results suggest that many of the identified 

markers will only explain a tiny share of variance. 

Another interesting potential contribution to economics and political science would be the use 

of genetic markers as instrumental variables in (non-genetic) empirical work. In order for the 

gene-as-instrument to be convincing, not only must the marker be robustly associated with 
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the “endogenous regressor,” but all of the behaviors associated with that marker must be 

understood. Otherwise, if the marker has pleiotropic effects, then the exclusion-restriction 

assumption could be violated, making the marker invalid as an instrumental variable. As 

more is understood about the pathways through which candidate IV markers operate, 

researchers will be in a better position to assess the plausibility of the exclusion restriction on 

a case-by-case basis, depending on the research question. 

A different potential use of molecular genetic data to social science would be as control 

variables for genetic heterogeneity in (non-genetic) empirical work, in order to reduce the 

variance of the error term and shrink the standard errors of coefficient estimates. For such an 

application to have any practical utility, the markers that are selected as controls need to 

explain a non-negligible share of the variation. Similarly, use of genetic data to target 

interventions requires that the aggregate predictive power of a set of genetic variants for the 

trait be sufficiently large. As we have shown here, given presently-attainable sample sizes, 

this does not appear to be feasible for economic and political traits.  It is likely that 

extremely large—perhaps impossibly large—samples will be required. If so, some of the 

most exciting possible uses of molecular genetic data in the social sciences lie many years in 

the future. 

In summary, our molecular-genetic-based estimates of heritability partially corroborate the 

twin-based estimates and suggest that molecular genetic data could be predictive of 

preferences. Our other results, however, suggest that excitement about the utility of molecular 

genetic data in social science research likely needs to be tempered by an appreciation that 

much of that the heritable variation is likely explained by a large number of markers, each 

with a small effect in terms of variance explained. As a consequence, for economic and 

political preferences, much larger samples than currently used will be required to robustly 

identify individual SNP associations or sizeable predictive power from many SNPs 

considered jointly.  

Rather than being destructive to the enterprise of incorporating genetic data into social 

science, an understanding of the molecular genetic architecture of economic and political 

preferences can help guide research in more productive directions. Indeed, there are several 

constructive and complementary responses one might imagine to the inferential challenges 

posed by the genetic architecture documented here. One is to undertake efforts to actually 
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obtain very large samples that contain both genetic and social science data. A second 

response is to carefully evaluate the psychometric properties of social science phenotypes to 

minimize attenuation bias due to error in measurement and thereby maximize power for any 

given sample size. In our view, the larger GREML estimates for the political preference 

measures relative to the less reliable economic measures illustrates these potential gains. A 

third suggestion is to focus on behavioral phenotypes that are more biologically proximate. 

One example that is a focus of some current work is smoking, a behavior for which large, 

replicated associations have been found with SNPs in the nicotine receptor gene CHRNA3 

(57). For biologically proximate phenotypes, it is more likely that some associations will 

have non-trivial effect sizes and clearer causal interpretations. 
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Materials and Methods 

 

Since December 2010 10,946 Swedish Twins have been genotyped using the Illumina 

HumanOmniExpress BeadChip genotyping platform. We applied standard quality controls to 

the genetic data; see the Supplementary Information for details. In all our GWAS analyses, 

we control for the first ten principal components of the genotypic data, sex and age and adjust 

the standard errors for non-independence within family. We computed the GREML estimates 

using the publicly-available GCTA software (58). Before computing the matrix of genetic 

relatedness for the SALTY sample, we dropped one twin per pair, always the twin with a 

larger number of missing phenotypes. For our prediction exercise, we randomly split the 

sample into a 90% training sample to construct the genetic score and a 10% validation sample 

to examine its predictive accuracy; details are relegated to the Supplementary Information. 

 

Footnotes 

 
* For critical perspectives, see (19-20). 
 
 Another approach is to estimate the genetic variance from within-family variation in genetic 

relatedness (see 35). The estimates derived from such an analysis are unbiased estimates of 
heritability rather than lower bounds because the identical-by-descent probabilities for all 
variants, including the rare ones not tagged by the genotyped SNPs or microsatellites, can be 
inferred if one has sibling data. 
 
 Additional details on variable construction and materials and methods are available in the 

Supplementary Information. 
 
§ Labor economists usually study earnings because it is taken to be a proxy for productivity. 
This assumption is most reasonable in prime aged males, whose attachment to the labor 
market tends to be strong and who typically work full time, making variation in hours worked 
less of a confound for measuring productivity. For a discussion of the difficulties with 
analyzing female labor supply and earnings, see (40). 
 
¶The fact that we observe some GREML point estimates of zero is not surprising. Since the 
estimator is constrained to produce a non-negative estimate, the bound at zero will often be 
attained when the true population parameter is low and estimated imprecisely. 
 
 While the survey measures we use here are common in economics (e.g., 1), it is also 

common in economics to measure preferences using laboratory tasks that attach financial 
incentives to performance (47). It is sometimes argued that these incentivized laboratory 
tasks produce measures of preferences that are more reliable and more correlated with real-
world behaviour than the survey measures. In fact, however, existing work does not support 
the hypothesis that such incentivized measures of risk aversion or other preferences are 
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measured more reliably than survey-based measures (25, 48). Moreover, our conclusion that 
effects of individual SNPs on risk preferences are very small would hold even with measures 
of preferences were much more reliable than those we use. For example, suppose we could 
improve the reliability of one of the measures from 0.58 (the average reliability across our 
four economic preference measures) to 0.80. Then the upper bound of 1.25% that we 
calculate would imply an upper bound of 1.72% for this better-measured phenotype.  
 
** While we have emphasized the possibility that the heritability of preferences is composed 
of many common SNPs of small effect, we also note that the common SNPs (the heritable 
variation measured on dense SNP arrays) do not tag all the heritable variation in the genome. 
If the twin-based estimates of heritability are correct, then rare, perhaps non-SNP, causal 
variants that are not in close linkage disequilibrium with the genotyped markers may explain 
some of the heritable variation. If such variants exist, they may have large effects. 
Nonetheless, since such variants will be rare, large samples will also be required for adequate 
power to detect those markers. 
 

 Were it the case that economic behaviors, or their precursors in the form of various 
preferences, traits and skills, could be predicted from molecular genetic information, it would 
raise a host of ethical questions about if and how such information should be used. In 
principle, the information may be used to help people make more informed decisions. For 
example, if dyslexia could be predicted at a relatively early age, such information could in 
principle be used to help parents make better information about treatment strategies (24). 
Such potential benefits must of course be carefully weighed against the costs. For example, 
insurance markets may break down due to adverse selection (56) unless there are restrictions 
placed on the availability of genetic data. 
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Table 1: Sibling Correlations 

 Economic Outcomes  Economic Preferences  Political Preferences 

  

Education 

 

Income 

 

Risk 

 

Patience 

 

Fairness 

 

Trust 

Imm./ 

Crime 

Econ. 

Policy 

 

Environ. 

 

Femin. 

Foreign 

Policy 

ρ MZM 0.70 

(.65-.75) 

0.47 

(.31-.61) 

0.41 

(.33-.49) 

0.05 

(-.04-.15) 

0.32 

(.23-.42) 

0.37 

(.29-.45) 

0.56 

(.49 -.62) 

0.42 

(.34-.50) 

0.26 

(.17-.34) 

0.48 

(.40-.57) 

0.48 

(.40-.54) 

ρ DZM 0.50 

(.42-.57) 

0.22 

(.11-.33) 

0.20 

(.12-.28) 

0.07 

(-.04-.20) 

0.24 

(.15-.33) 

0.18 

(.08-.27) 

0.33 

(.25-.42) 

0.34 

(.26-.42) 

0.09 

(.01-0.18) 

0.27 

(.19-.35) 

0.16 

(.07-.24) 

ρ MZF 0.74 

(.70-.78) 

0.37 

(.25-.50) 

0.35 

(.27-.43) 

0.16 

(.07-.25) 

0.24 

(.16-.32) 

0.33 

(.25-.40) 

0.60 

(.55-.65) 

0.45 

(.37-.51) 

0.34 

(.23-.46) 

0.41 

(.34-.48) 

0.47 

(.39-.53) 

ρ DZF 0.54 

(.49-.59) 

0.22 

(.14-.32) 

0.13 

(.05-.21) 

0.11 

(.03-.20) 

0.10 

(.03-.17) 

0.19 

(.11-.26) 

0.37 

(.29-.44) 

0.22 

(.14-.29) 

0.16 

(.09-.24) 

0.19 

(.12-.26) 

0.21 

(.14-.29) 

N MZM 561 560 443 491 450 458 448 448 448 448 448 

N DZM 614 612 477 655 482 486 487 487 487 487 487 

N MZF 544 538 594 700 652 659 630 630 630 630 630 

N DZF 845 815 636 1108 681 714 665 665 665 665 665 

ρRE-TEST - - 0.71 

(.66-.76) 

0.40 

(.27-.52) 

0.57 

(.49-.65) 

0.63 

(.57-.69) 

0.86  

(.84-.88) 

0.84  

(.84-.88) 

0.62  

(.84-.88) 

0.78  

(.84-.88) 

0.72  

(.84-.88) 

NRE-TEST - - 475 483 469 482 471 471 471 471 471 

Note: This table gives the sibling and re-test Pearson correlations for the eleven phenotypes. The 95% confidence intervals given in parentheses are computed by bootstrapping with 500 draws.  

MZM: number of male monozygotic pairs; DZM: male dizygotic pairs; MZF: female monozygotic pairs; DZF: female dizygotic pairs. The economic and political preference data are from the 

SALTY sample, whereas the education and income data are from the TwinGene sample (see Supplementary Information for sample descriptions).
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Table 2: GREML Analyses 

 Economic Outcomes  Economic Preferences  Political Preferences 

  

Education 

 

Income 

 

Risk 

 

Patience 

 

Fairness 

 

Trust 

Imm./ 

Crime 

Econ. 

Policy 

 

Environ. 

 

Femin. 

Foreign 

Policy 

V(g)/V(P)   0.191 0.062 0.137 0.085 0.000 0.242 0.203 0.344 0.000 0.000 0.354 

s.e. 0.062 0.124 0.152 0.148 0.150 0.146 0.147 0.150 0.148 0.147 0.149 

p-value 0.001 0.313 0.186 0.285 0.500 0.047 0.079 0.012 0.500 0.500 0.009 

N 5,682 2,866 2,327 2,399 2,376 2,410 2,368 2,368 2,368 2,368 2,368 

            

Chrom. 0.241 0.139 0.118 -0.195 -0.111 0.460 0.118 0.496 -0.311 0.247 0.462 

p-value 0.280 0.537 0.601 0.385 0.623 0.031 0.601 0.019 0.159 0.268 0.030 

Note: This table reports GREML estimates for the eleven variables. We estimated the matrix of genetic relatedness after omitting one twin per pair and then restricted the analyses to individuals 

whose relatedness did not exceed 0.025 in absolute value. The row Chrom. shows the estimated correlation between chromosomal length (measured in centimorgan) and the proportion of variation 

explained by relatedness estimated from that chromosome. As explained in the text, the results for income are based exclusively on men. The third row gives the p-value for the test of the null 

hypothesis that the proportion of variation explained by common SNPs on the autosomes is zero. The sixth row gives the p-value for the test of the hypothesis that, across the 22 autosomes, the 

correlation between chromosomal length and the proportion of variation explained by the chromosome is zero. All data are from the SALTY-Geno sample (see Supplementary Information for sample 

descriptions). 
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Figure 1: Power Analysis 

 

This figure shows how the power to detect a marker at a nominal significance level of 10
-7

 as a function of sample size and the fraction of 

variance (R
2
) explained by the marker. This p-value threshold was selected because no single SNP attained this level of nominal significance 

in any of the analyses. For educational attainment, there were 6,694 independent observations (i.e., from unrelated individuals) and a total of 

9,479 observations – the true power therefore lies somewhere in between the two lines shown. For the political preference measures, we had 

2,567 independent observations and a total of 3,233 observations. The true power again lies somewhere between the lines shown. Even for 

the preference variables, where the sample size is smaller, the study was well-powered to detect a marker with an R
2
 of 1.25% at a nominal 

significance level of 10
-7

. The fact that we did not observe any associations at this level of significance suggests that it is unlikely that 

common variants with effects of that magnitude exist. For several of the traits, the lowest p-values observed were considerably higher than 

10
-7

. Hence, the 1.25% estimate of the upper bound is conservative. For educational attainment and income, the study was well-powered to 

detect markers with an R
2
 of 0.5%.  
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