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Abstract 
The reduction in tobacco use as a result of taxation has been considered one of the 
most important public health successes in the past century.  However, individuals 
continue to smoke at high rates and there is evidence of substantial heterogeneity in the 
responses to taxation.  One of the key determinants of tobacco use is genetic 
susceptibility, yet important policies to reduce tobacco use have not successfully 
merged this risk factor in targeting interventions.  This paper extends the standard 
economic framework that has evaluated tobacco taxation effects by presenting the first 
evidence in the literature that specific genetic polymorphisms moderate the effects of 
taxation on tobacco consumption.  The evidence suggests that taxation only affects 
smoking participation decisions of individuals with a specific genotype—a polymorphism 
of a nicotinic receptor gene—and has no effect on others.  Additionally, the results can 
be interpreted to be broadly consistent with the idea that policy variation can affect the 
expression of underlying genetic endowments and may serve to provide further support 
for “rational” models of addictive behavior.    
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Introduction 

Tobacco use is among the most important causes of mortality and morbidity in 

the US and around the world.  Although policy and medical interventions have targeted 

tobacco use for the past 50 years, a large population of individuals continues to initiate 

and fails to quit smoking.  The difficulty of achieving additional reductions in smoking 

rates as well as the heterogeneity in response to each policy and medical intervention 

suggests that merging information and research from the biological and social sciences 

may be an important next step in further attempts of reducing use.  From genetics and 

the biological sciences, there is a history of findings that suggest specific genes are 

directly responsible for some smoking phenotypes; however, even the cumulative 

impact of the genes fail to explain substantial variation in behavior. As a response to 

these findings, an emerging approach has sought to investigate potential gene-

environment interactions in order to both explore new sources of variation and highlight 

the complexity of substance use outcomes.  At the same time, from health policy and 

economics, large literatures have described the effects (and heterogeneity of effects) of 

the rapid expansion of tobacco taxation and other policies but have also not been able 

to outline many of the key determinants of tobacco use.  With these clear limitations 

from the different sets of literatures across disciplines, additional understanding may 

require a more substantive merging of these and other findings and methodologies.  

However, economic analysis that combines a genetic perspective to further understand 

the biological determinants and sources of heterogeneous impacts of tobacco policies 

has not been undertaken.   



 
 

3 
 

The purpose of this paper is to present the first evidence in the literature of the 

existence of gene x environment (policy) interactions using a national sample of adults 

from the US.  To do this, this paper focuses on a particular genetic variant thought to 

operate along the biological pathway between nicotine exposure and brain/body 

response.  Using variation across states and over time in the state-level cigarette tax 

rate, this paper provides evidence that individuals at low genetic risk respond to tobacco 

taxes while individuals at higher risk have no such response. Importantly, the “low risk” 

individuals are approximately 50% of the sampled population.  These results are robust 

to the inclusion of state fixed effects and measures of social norms of smoking.  The 

implications of this interaction are several-fold.  First, additional policies may need to be 

employed to more adequately target the “high risk” non-responders in order to reduce 

tobacco use in this population.  The findings also suggest that state-level policies may 

(unintentionally) have the capacity to affect the expression of genetic endowments, 

which opens the possibility of explicitly crafting policies for this purpose in the future as 

well as increasing our understanding of the biological processes affecting substance 

use decisions.  While this analysis is an initial step in the process of combining 

economics and genetics to further our understanding of tobacco use patterns, additional 

research is needed to both replicate as well as extend these basic results.  

 

Background Literature  

There are many well-documented determinants of substance use, including 

genetic endowments, governmental policies, and social, psychological and 

demographic factors, however much of the variation in use and dependence is still 
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unaccounted for in standard empirical models.  For example, there is very little doubt 

that genetics plays an important role in substance use (Tyndale 2003, Dick and Toroud 

2003). Family-based studies have demonstrated that approximately 50-60% of the 

variance in alcohol dependence can be accounted for by genes (McGue 1999). Twin 

studies have provided evidence of large genetic influences on many other dimensions 

of alcohol use such as quantity consumed, frequency of use, alcohol metabolism, and 

other factors (Heath 1995, Tyndale 2003). Likewise, some studies suggest that as much 

as 70% of the variance in nicotine dependence is due to genetic factors (Sullivan and 

Kendler 1999).   

Although genetics is a key component determining tobacco use and cessation, 

few large scale policies have attempted to leverage this fact.  Indeed, arguably the most 

successful public policy in the past century at increasing public health has taken a broad 

brush to achieve its aims—large increases in tobacco taxes.  Tobacco taxes have been 

show to be responsible for large reductions in tobacco use.  For example, Chaloupka 

(1998) suggests that a $1.50 increase in cigarette taxes and prices would reduce overall 

consumption by about thirty percent and cut youth smoking rates by nearly half.  On the 

other hand, tobacco taxation has not proven to be a silver bullet in the fight against 

tobacco consumption.  The smoking rate for adults was over 20%2 and over 17%3

                                                             
2 http://www.cdc.gov/Features/VitalSigns/TobaccoUse/ 

 of 

high school students reported smoking in 2009.  In addition to the seemingly entrenched 

use by a sizable proportion of the population, there is also substantial heterogeneity in 

the responsiveness to taxation.  For example, researchers  have found higher 

responses for the poor (Farrelly and Bray 1998), girls (Lewit et al. 1997), women 

3 http://www.cdc.gov/tobacco/data_statistics/fact_sheets/youth_data/tobacco_use/index.htm 
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(Chaloupka and Warner 2001), whites teens (DeCicca et al. 2000) and younger teens 

(Gruber 2000).  Both the difficulty of attaining additional reductions in smoking rates as 

well as the unexplained and relatively unexamined heterogeneity in response suggests 

additional research is needed for new or retooled policy interventions that might achieve 

still lower rates of smoking.  This paper seeks to combine knowledge from the social 

and biological sciences to increase our understanding of continued tobacco use and 

ways to potentially enhance the typical policy response by incorporating genetic 

variation into a standard policy analysis.  This approach leverages a gene-environment 

framework that has grown rapidly in the biological sciences but has not been used in 

health economics.   

In the biological sciences, a relatively new and rapidly increasing focus in 

determining substance use patterns is on interactions between genetic endowments 

and environmental factors. The classic example of this research design is from Caspi et 

al. (2003), where an interaction between differences in the 5-HTT gene and exposure to 

life stress was examined as a determinant of depressive symptoms in a cohort of white 

male New Zealanders.  The authors reported that the main effect of maltreatment 

predicted depression, the main effect of the gene did not, but the interaction of the gene 

and environmental exposure was statistically significant, indicating a gene X 

environment (GxE) interaction. This general approach is useful because it can both 

outline important considerations in the heterogeneity of responses to environmental 

factors (and policies) and can also further develop our understanding of the critical 

biological pathways through which substance use is initiated and maintained.   
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One important disadvantage of much research that focuses on GxE interactions 

is the use of endogenous aspects of the environment.  It is well known that gene-

environment correlation (rGE) can mask true causal pathways as one is uncertain 

whether the genetic endowment affects response to the environmental factor or an 

increased risk of exposure to the environmental factor.  Analysis that examines 

interactions between non-exogenous environmental factors and genetic variation are 

also limited by the potential of gene-gene interactions. This issue has recently been 

raised by several researches (e.g. Conley 2009), where the need to focus on 

exogenous environmental factors is suggested.  This paper follows this new preferred 

methodology and focuses on adult decisions to use substances by examining the 

interactions between genetic endowments and economic and social policies. This 

research design increases the power of detecting GxE influences because it limits the 

influence of gene-environment correlation, which has problematized GxE work for many 

years. This paper utilizes this new direction of GxE research by focusing on exogenous 

environmental exposures, in the form of state-level tobacco policies.   

While the “E” in the GxE approach in this application is straightforward, focusing 

on a specific measure of “G” is somewhat less so.  Although genetic influences are 

strongly implicated in many dimensions of substance use and misuse, detecting the 

specific genes responsible has been difficult, partly because there could be different 

genes involved in different dimensions of substance use and environmental interactions 

can make it difficult to estimate the direct effects of genes. However, there is some 

convincing evidence for the role of specific genes in substance use behaviors. Several 

candidate genes in neurobiological pathways that play a role in nicotine’s reinforcing 
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and addictive effects, such as dopamine and serotonin, have also been found, although 

nonreplication has been an important limitation in much current work (IOM 2006, p. 71).   

This paper will focus on a single nucleotide polymorphism (SNP) in the genetic 

code as the measure of “G” in the GxE framework.  A SNP is measured by variation in a 

single letter in the chain of over 3 billion letters (either A,G,C,T) that make up the human 

DNA code, lying within one of the over 25,000 genes, which itself lies within one of the 

46 chromosomes.  In particular, this study uses variation within the CHRNA6 gene, 

which is located on chromosome 8, to examine differential responses to tobacco 

taxation.  The CHRNA6 (Cholinergic receptor, nicotinic, alpha 6) gene encodes an 

alpha subunit of neuronal nicotinic acetylcholine receptors.  This gene is among a class 

of genes, which are the primary targets for nicotine in the brain,  involved in nicotine-

related behaviors and is in the family of nicotinic acetycholine receptors (nAChRs), 

where each subunit is encoded by a single gene (Mineur and Picciotto 2008).4 5

Briefly, the gene has been shown to mediate the “pleasure” (transmission of 

dopamine in the brain) from exposure to nicotine.

 

6

                                                             
4 See Dajas-Bailador ad Wonnacott (2004) for general overview of neuronal nicotinic acetylcholine 
receptors.   

  This (and related) genes have been 

shown in numerous studies to be related to tobacco use and dependence.  Stevens et 

al. (2008) shows associations between the CHRNA5-CHRNA3-CHRNB4 gene cluster 

and heavy smoking.  More specifically, Hoft et al. (2009) show a replicated association 

5 Mineur and Picciotto (2008) discuss that nicotine is believed to act in part through activation of the 
mesocorticolimbic system and that activation of nAChRs on dopaminergic neurons of the ventral 
tegmental area (VTA) increases their firing rate and stimulates dopamine release from their terminals in 
the nucleus accumbens. Interestingly lesions of nicotinic antagonists into the VTA have been shown to 
prevent the development of behaviors related to nicotine addiction, particularly using animal models. 
6 More formally, these receptors consist of five subunits and function as ion channels involved in 
neurotransmission.  The encoded protein is a subunit of neuronal nicotinic acetylcholine receptors that 
mediate dopaminergic neurotransmission and are activated by acetylocholine and exogenous nicotine.  
See:  
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=8973 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=8973�
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between the CHRNA6 gene with tobacco dependence in two samples, see also Zeiger 

et al. (2008).   Saccone et al. (2007) and Greenbaum and Lerer (2009) show that the 

specific SNP used in this study (rs2304297), is associated with tobacco use outcomes 

in several samples.   

In addition to human studies, genetic engineering studies using animal (mouse) 

models have identified a number of subunits that are critical for activation of the reward 

system in the brain following nicotine exposure (Mineur and Picciotto 2008).  In 

particular, Champtiaux et al. (2002) show, using knockout mice, that the alpha-6 subunit 

plays a role in addiction related behaviors, including nicotine induced dopamine 

release.7

Thus, this paper will combine findings from the genetics/biology and 

economics/policy literatures in order to examine whether there are gene-environment 

interactions in determining tobacco use in a national sample of adults from the US.   

  

 

Data and Empirical Methods 

Even with the abundance of genetic data in the biological sciences and the 

rapidly growing number of datasets from the social sciences that include genetic 

information, surprising few datasets contain the necessary information to examine a 

potential gene-taxation interaction in determining tobacco use.  The core requirements 

include measurements of (1) tobacco use, (2) tobacco-related genes, and (3) state 

tobacco tax rates.  Unfortunately, most datasets cannot accommodate these 

requirements.  Many datasets from the biological sciences contain (1) and (2) but are 
                                                             
7 While nAChRs are the primary targets for nicotine, they are also expressed in most tissues and organs 
and can be detected on presynaptic terminals, cell bodies and dendrites of many neuronal subtypes (see 
Dajas-Bailador and Wonnocott 2004).   
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convenience samples from a small geographic area (e.g. a county or city) and thus do 

not have variation in (3).  On the other hand, many social science datasets contain (1) 

and (3) but do not yet have relevant information for (2).  Therefore, this paper uses 

Phase II of the National Health and Nutrition Examination Survey (NHANES) III dataset, 

which is a nationally representative sample of individuals from 1991-19948

In addition to containing genetic data, the NHANES also is a survey that asks 

respondents to report participation and frequency of use of tobacco, but this information 

is primarily collected for individuals over the age of 18, which will be the focus of this 

study.  Specifically, this analysis will focus on smoking participation, number of 

cigarettes consumed per day, and a separate measure of nicotine taken from blood 

samples—A major component of the NHANES study is the collection of biological 

specimens, including blood and urine.  These specimens are then analyzed in order to 

create objective measures of exposure to nicotine (which can include secondhand 

.  Although 

the NHANES is available from the early 1970s to the present, only the 1991-1994 data 

has been genotyped at this time, and only for a small number of genes.  Luckily, other 

researchers have made the investment to genotype a specific polymorphism in the 

CHRNA6 gene that has been linked with tobacco use.  As discussed above, the type of 

variation available in the NHANES III Data for this gene is a single nucleotide 

polymorphism (SNP) (rs2304297), meaning there is a single letter change in the genetic 

code (in this case either a C (cytosine) or a G (guanine)).   

                                                             
8 The Add Health data contains similar information as the NHANES, but the sample size of the Add 
Health is only a third of the size as the NHANES.  Even so, it would be useful to use alternative datasets 
to examine the robustness of the findings in this paper.   
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smoke) through cotinine9, which is an alkaloid found in tobacco and a metabolite of 

nicotine.  Several papers in the economics literature have used cotinine as an objective 

measure of tobacco use (e.g. Adda and Cornaglia 2006, 2010).  Finally, in order to 

merge the NHANES with state-level cigarette tax information, the confidential version of 

the NHANES is used.10

Summary statistics for the sample with genetic information is provided in Table 1 

below. Predictors of whether an individual agreed to participate in genotyping are 

provided in Table 1A in the appendix—approximately 6,500 of the 10,000 respondents 

from Phase II have genotypic data.  I find very small differences in the availability of 

genotypic data based on demographics and previous smoking behavior, suggesting that 

the sample is approximately a random subset of the national NHANES sample.   

  

Table 1 shows that during this period, 25% of individuals aged 17-90 report 

smoking tobacco.  The average number of cigarettes consumer per day is nearly four 

for the full population and is over 15 for smokers.  The average serum cotinine level is 

68.4 ng/mL—a typical level used to distinguish smokers from non-smoker is 14 ng/mL 

(Florescu et al. 2009).11

                                                             
9 Cotinine has a half-life of approximately 20 hours and is able to be detected for several days after the 
use of tobacco. The level of cotinine in the blood is proportional to the amount of exposure to tobacco 
smoke (Florescu et al. 2009).   

  The variation in state-level smoking is between 17-34% and 

the cigarette tax is on average $0.24 per pack.  There is also substantial genetic 

variation in the sample.  Eleven percent were genotyped as “CC”, 38% were “CG” and 

51% were “GG” for the rs2304297 SNP.   

10 Although the confidential data is generally available for use in any of the Census Restricted Data 
Centers (RDC), the genetic data is only available for use at the National Center for Health Statistics in 
Hyattsville, MD or the Centers for Disease Control and Prevention in Atlanta, GA.   
11 Over 92% of the self-reported non-smokers in the data have levels of cotinine below 14.  The average 
cotinine level in the sample for smokers is 219, while for non-smokers it is 17 (the median value for non-
smokers is 0.2).   
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One important issue in examining gene-environment interactions is that of 

population stratification.  It could be the case that the distribution of genetic variants 

differ by population subgroups (e.g. by race/ethnicity) and these differences in the 

distribution of genetic variation could be correlated with differences in environmental 

exposures.12

Conceptually, this paper follows the standard gene-environment approach of 

modeling tobacco use/initiation as a function of vectors of individual, family, and 

environmental level characteristics and interactions:   

  Table 2 shows evidence of substantial population stratification in the SNP 

of interest, where 57% of the white population are carries of the GG variant and only 7% 

of the black population are carries of the GG variant.  Thus, we might be worried that if 

exposure to high (or low) tax levels is correlated with race, the standard framework may 

provide spurious results.  The two primary methods of overcoming this problem are to 

control for race/ethnicity in the results as well as examine the robustness of the results 

when they are stratified by race/ethnicity.  The application of either of these methods 

does not change the main results (shown below).  I also extend the analysis below by 

explicitly showing that the genetic variants are uncorrelated with the policies in the data.   

),,,( GxEGEXfY =          (1) 

where the determinants of use are a function of genetic endowments (G), environmental 

factors (E), and their interactions (GxE).  Combining this approach with the standard 

economic framework of analyzing the effects of tobacco taxation (Chaloupka and 

Warner 2000), I estimate specifications of the following form:  

                                                             
12 The classic example of population stratification is the story of the “chopstick” gene (Hamer and Sirota 
2000).  Here the point is that any genes that are more prevalence in Asian populations will seem to be 
predictive of chopstick use (as the outcome of interest).  However, the clear confounder is Asian ethnicity 
and culture.   
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isttiististist XSNPTaxSNPTaxSmoking ετβββββ ++++++= 43210 *    (2) 

where the tax rate will be entered in log form, the SNP reflects variation in the CHRNA6 

gene, the X vector controls for demographic variables (age, race, gender), year fixed 

effects are controlled, and the error term is clustered at the state level.  The coefficient 

of interest is 3β  , which tests whether there is evidence of gene-environment interaction 

in predicting tobacco use outcomes. 

   A limitation with the NHANES data is the short panel (1991-1994) available, 

whereas most investigations control for state-level fixed effects in order to separate the 

effects of taxation with other state-level unobservables (DeCicca et al. 2002).  As 

sensitivity analyses, this paper will estimate two auxiliary specifications 

iststiististist XSNPTaxSNPTaxSmoking ελτβββββ +++++++= 43210 *   (3) 

iststiististist ZXSNPTaxSNPTaxSmoking εβτβββββ +++++++= 543210 *   (4) 

Where equation (3) includes state-fixed effects and equation (4) controls for state level 

smoking rates in the regression.  The estimates are not sensitive to these specifications. 

Results 

 Table 3 reports the primary findings of this paper.   The first column reports the 

unconditional effect of higher taxes of smoking participation—a 100% increase in the 

tax rate is associated with a 3.1 percentage point reduction in smoking; the baseline 

rate is 25%.  The second column reports the unconditional effect of carrying the GG 

genetic variant, which reduces smoking participation by more than that of a 100% tax 

increase.  Column three shows that the results are relatively robust to including both tax 
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and SNP variables.  Column 4 presents the main coefficient of interest, the gene-

environment interaction.  The results suggest that, for individuals with either the CC or 

CG genotypes, the participation elasticity is essentially zero.  However, for those “low 

risk” individuals with the GG genotype, which is approximately 50% of the population, 

the reduction in the likelihood of reporting smoking is nearly 7.3 percentage points.   

Columns 5-7 show that this finding is robust to the inclusion of control variables, 

state fixed effects, and state-level smoking rates.  In particular, Column 5 controls for 

individual level demographic and socioeconomic characteristics.  Column 6 adds the 

“State Anti-Smoking Sentiment” measure used by DeCicca et al. (2002).13

This finding suggest important heterogeneity in the response to tobacco taxation 

based on a single change in the genetic code related to nicotine metabolism in the brain 

and body.  Column 5 also places the importance of the genetic risk in perspective—

carriers of the GG genotype have an increased risk of smoking that is 50% of the 

  Because the 

NHANES data includes only a short panel of states, the primary analysis is unable to 

use state-level fixed effects, as is common in the literature.  Work by DeCicca has 

shown that, in these cases, the SASS measure provides a good approximation to 

typically unobserved state-level factors that may co-vary with state tobacco tax rates.  

The results suggest the results are insensitive to this addition.  Finally, column 7 

includes state-level fixed effects (with the caveat of a short panel) as well as state-

specific smoking rates (aggregated from the NHANES data).  Again, the results suggest 

the core finding is robust across these specifications.   Appendix Table 2A shows that 

these results are similar if the analyses are stratified by genotype and estimated 

separately.    

                                                             
13 The author thanks Phil DeCicca for generously providing these data.   
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magnitude of the black-white difference in smoking rates, is similar in magnitude to a 

(conditional) 1.5 increase in years of schooling, or the conditional increase of over 

$10,000 in income per year.   

 This interaction has never been reported in the extant literature but has several 

implications.  The results suggest that tobacco tax policy may be completely irrelevant 

to a large segment of the population, who are characterized based on a “high risk” 

genotype.  The implication is that additional policies will be necessary to more 

effectively reduce smoking rates for these entrenched smokers.  The flipside of the first 

implication is that these results suggest that state-policy variables may be able to 

modify the expression of genetic risk.  The mechanisms for this empirical finding cannot 

be uncovered based on these data.  One possibility, following DeCicca et al. (2002), is 

that taxation is partially capturing differences in social norms across states.  However, 

the magnitude of the interaction is not dampened in Column 7 after the inclusion of 

state-level smoking rates or in Column 5 with the use of the SASS measure. An 

alternative may be that there are threshold effects (or other non-linearities) from 

taxation, and those who gain the most from smoking are insensitive to taxes at low 

levels.  However, in results presented in Appendix Table 4A, these non-linearities do not 

appear in the data over the range available (2-50 cents per pack).   

Each of these implications require additional research with alternative datasets 

and methods, but the main finding of an interplay between genetic endowment and 

state-level policy suggests that this and related future research could be very 

illuminating about both the fundamental and complex determinants of substance use as 

well as in making potential policy recommendations. 
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Additional Results 

Table 4 presents results for alternative measures of tobacco use. Column 1 

shows that the results are similar if I use an objective measure of tobacco exposure, 

serum cotinine, where only those individuals with the “low risk” genotype are affected by 

the tax level.  Here the black-white differences are not as stark as the self-reported 

differences in smoking rates;  one explanation for this difference, which is common in 

the literature, is that menthol cigarettes contribute higher levels of cotinine than non-

menthol cigarettes, and since blacks are more likely to smoke menthol cigarettes, their 

levels of cotinine are higher than whites.  On the other hand, the magnitude of the 

reduction in cotinine associated with taxation for those with the GG genotype is similar 

to 1.5 years of schooling, like the previous table.  Column 2 shows that the number of 

reported cigarettes is affected in the same way as smoking participation and the level of 

measured cotinine, where only individuals with the GG genotype seem to be affected by 

tobacco taxation.   

Table 5 presents the results from Table 3 stratified by important demographic 

subgroups.  Columns 1-3 present the results stratified by race/ethnicity.  While the 

results are qualitatively the same across groups, the results for blacks are considerably 

weaker than for whites.  One explanation of this finding is the relatively small number of 

blacks in the sample with the low risk genotype.  An alternative explanation is that 

blacks could respond differently to taxation than whites.  In contrast, Column 3 and 4 

shows that the results for Hispanic and “Other Race” individuals largely mirror those for 

whites.  Columns 5 and 6 show evidence of no gender differences in the main results.   



 
 

16 
 

In Panel 2, the results are stratified based on age categories and education level.  

With the exception of the age 50-65 group, the findings are quite robust across the 

columns.  Overall, the robustness of the results across important demographic sub-

groups of the population strengthens the main findings and suggests important 

interaction between genotype and tobacco policy in determining tobacco use patterns in 

the data.  In the final pair of columns, the findings suggest that poor individuals 

(<median income) have large elasticities based on both tax rates as well as genetics, 

where the implication is that individuals with more resources may be able to protect 

themselves from their genetic risk of smoking and are also less responsive to taxes.    

Table 6 examines an additional potential issue with the framework—that of gene-

environment correlation, where “genes select environments.”  This could occur if 

individuals with genetic predispositions choose to move to states with low tobacco taxes 

or, potentially more likely, that there may be some correlation between state level taxes 

and some population characteristics, such as race/ethnicity, that are also correlated with 

genotype.  Table 6 examines this issue and shows that there is some evidence of 

correlations between the “risky genotype” and state level tax levels, although the 

correlation is positive, where individuals at higher risk for tobacco use live in states with 

higher tax levels.  In Column 3, the results suggest that this correlation is indeed a result 

of other individual level variables (e.g. race/ethnicity) and that any remaining 

associations are small and statistically insignificant (about ½ of one cent).   

Finally, although there are no clear potential replication samples available for 

these results, I take a step in this direction by leveraging the repeated cross-sectional 

nature of data and form three separate “replication samples” based on the year of the 
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survey.  In each year, a new set of individuals are sampled, creating a “quasi-

replication” opportunity over similar populations.   Thus the principle analysis is 

undertaken on each year of data separately, and the results are presented in Appendix 

Table 3A.  Overall, the results are highly consistent in each of the three years of the 

data, where the GG genotype is protective for current tobacco use and only those with 

this genotype appear to reduce their smoking likelihoods as taxes are increased.     

 

Conclusions 

Although tobacco use has fallen dramatically in the past half a century, there 

continues to be a large share of the population who initiates and is unable or unwilling to 

quit as they age.  These facts contribute to tobacco’s remaining status as the leading 

preventable cause of death in the US, with over 400,000 American deaths each year 

(NIDA 2009).  The underlying inability for taxation to further reduce use is of great 

concern for both theory and policy.  Researchers are still attempting to uncover all the 

critical determinants of initiation and continued use and policymakers struggle to 

leverage the determinants in new policies to further reduce use and increase cessation.  

One area that has received little attention is combining biological and social science 

methods and findings to further examine the determinants of use and the responses to 

policy.  This paper presents the first evidence in the literature of the existence of 

interaction effects between state-level tobacco policy and genetic susceptibility in 

predicting patterns of tobacco use.  The results suggest that carriers of a particular 

variant of a nicotinic receptor gene respond to taxation as economists and policymakers 

would predict—by reducing participation and consumption.  However, carriers of a 



 
 

18 
 

different variant in the same gene appear to be completely unresponsive to taxation.  

These results are robust to several auxiliary analyses but also need to be verified in 

independent samples.  Unfortunately, at present, few available datasets contain all the 

information necessary to accommodate a replication exercise.   

While the results are unique and quite interesting, there are a few caveats to 

consider.  First, this analysis was opportunistic, and thus was limited to considering a 

SNP that had already been sequenced in the data.  Although this SNP has considerable 

scientific credibility from human and animal studies as an important component in the 

determination of tobacco use and dependence, genotyping alternative SNPs based on 

additional findings from the genetic literature would be a useful next step.  Even with the 

reductions in cost of genotyping, analyzing nearly 6,500 specimens remains expensive 

and time consuming.  Similarly, the reader should be reminded that the particular SNP 

under investigation in this study could be in linkage disequilibrium (LD) with other, 

nearby SNPs (see Hoft et al. 2009).  While this circumstance is an important limitation in 

gene discovery exercises, where the precise identity of the causal SNP is required, in 

gene-environment investigations, issues of LD may not be as consequential for a proof-

of-concept examination like the current paper.  That is, the main point of this paper is 

the existence of GxE rather than the specific variant within the gene (or in LD with the 

gene) that is causing the interaction.   

With these limitations in mind, the implications of the analysis in this paper for 

both the determinants of tobacco use and the potential for policy intervention are 

substantial.  For the first time in the literature, this paper uncovers a potential source for 

the important lack of response to tobacco taxation by large sub-groups of the population 
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found in the literature.  Understanding these sources of response and non-response 

should prove useful when crafting additional policies and retooling current policies to 

reduce tobacco consumption.  A second implication of the findings is the potential for 

policies to shape the expression of genetic endowments and predispositions.  That is, 

results suggest that for individuals who live in low tax states, genetic predispositions do 

not differentially affect smoking rates; however, the effects of these genetic differences 

do appear in higher tax states.  These findings are then consistent with the idea that the 

policy environment could shape the expression of underlying genetic liabilities—

reducing the effects of genetics in some instances and amplifying them in other 

instances.  Thus, the consequence of policies may well extend farther than initially 

thought and may even have epigenetic consequences.  Future research should verify 

these findings in alternative datasets and for additional phenotypes of interest.   
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Tables 
 

Table 1 
Summary Statistics 

NHANES 1991-1994 Genetic Sample (N~6,200) 

Variable Mean 
Std 
Dev Min Max 

Smoke 0.25 0.43 0 1 
Number of Cigarettes 3.73 8.76 0 140 
Numberof Cigarettes|Smoke 15.2 11.78 1 140 
Cotinine 68.41 139.29 0.35 1890 
Age 42.83 17.09 17 90 
Female 0.52 0.50 0 1 
Black 0.10 0.30 0 1 
Hispanic 0.10 0.30 0 1 
Other Race 0.05 0.22 0 1 
Education 12.52 3.06 0 17 
Income ($1000s) 35.32 18.39 0 60 
Married 0.61 0.49 0 1 
Missing Information 0.06 0.24 0 1 
State % Smoke 0.25 0.04 0.17 0.34 
Cigarette Tax 24.53 11.34 2.0 56.0 
Year = 1991 0.02 0.15 0 1 
Year = 1992 0.38 0.49 0 1 
Year = 1993 0.31 0.46 0 1 
Year = 1994 0.28 0.45 0 1 
SNP:  

    rs2304297=="CC" 0.11 0.31 0 1 
rs2304297=="CG" 0.38 0.49 0 1 
rs2304297=="GG" 0.51 0.50 0 1 
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Table 2 
Racial Differences in Genetic Endowments 

Full   Freq. Percent Cum. 
  CC 1,278 11.46 11.46 
  CG 2,328 38.41 49.88 
  GG 2,572 50.12 100 
  Total 6,178 100   
  

   
  

White   Freq. Percent Cum. 
  CC 123 5.74 5.74 
  CG 875 37.4 43.14 
  GG 1,374 56.86 100 
  Total 2,372 100   
  

   
  

Black   Freq. Percent Cum. 
  CC 986 54.81 54.81 
  CG 642 38.24 93.05 
  GG 118 6.95 100 
  Total 1,746 100   
  

   
  

Hispanic   Freq. Percent Cum. 
  CC 163 7.36 7.36 
  CG 775 45.92 53.28 
  GG 1,017 46.72 100 
  Total 1,955 100   

Percentages are weighted 
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Table 3 
Gene-Environment Interactions in Predicting Tobacco Use 

Outcome Smoke Smoke Smoke Smoke Smoke Smoke Smoke 

Specification Tax Only Gene Only Both Interaction Xs SASS 
State 

FE/Smoking 
Log (Tax) -0.031* 

 
-0.030* 0.002 0.016 0.009 0.014 

  (0.017) 
 

(0.016) (0.013) (0.014) (0.014) (0.012) 
rs2304297=="GG" 

 
-0.037* -0.035* -0.037** -0.032* -0.032* -0.032 

  
 

(0.019) (0.020) (0.017) (0.018) (0.018) (0.019) 
Interaction 

   
-0.073*** -0.072*** -0.073*** -0.076*** 

  
   

(0.024) (0.024) (0.024) (0.023) 
Age  

    
0.016*** 0.016*** 0.016*** 

  
    

(0.003) (0.003) (0.003) 
Age-squared 

    
-0.000*** -0.000*** -0.000*** 

  
    

(0.000) (0.000) (0.000) 
Female 

    
-0.064*** -0.064*** -0.064*** 

  
    

(0.018) (0.018) (0.018) 
Black 

    
-0.062** -0.063** -0.068*** 

  
    

(0.022) (0.022) (0.022) 
Hispanic 

    
-0.184*** -0.188*** -0.182*** 

  
    

(0.046) (0.047) (0.047) 
Other Race 

    
-0.101* -0.105* -0.102* 

  
    

(0.053) (0.054) (0.054) 
Education 

    
-0.024*** -0.024*** -0.024*** 

  
    

(0.004) (0.004) (0.004) 
Income ($1000s) 

    
-0.003*** -0.003*** -0.003*** 

  
    

(0.001) (0.001) (0.001) 
Married 

    
-0.024* -0.024* -0.024* 

  
    

(0.013) (0.013) (0.014) 
Missing Information 

   
0.011 0.012 0.011 

  
    

(0.043) (0.043) (0.043) 
SASS Measure 

     
0.055 0.110* 

  
     

(0.063) (0.053) 
State Level Smoking 

     
0.602** 

  
      

(0.238) 
Constant 0.251*** 0.270*** 0.268*** 0.270*** 0.458*** 0.469*** 0.316** 
  (0.015) (0.017) (0.018) (0.018) (0.111) (0.111) (0.139) 
  

      
  

Observations 6178 6178 6178 6178 6163 6163 6163 
R-squared 0.002 0.002 0.004 0.007 0.094 0.094 0.096 

Robust standard errors in parentheses clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4 
Gene-Environment Interactions in Predicting Tobacco Use 

Alternative Measures of Tobacco Use 
Outcome Number of Cigs Cotinine 
  

  Log (Tax) 0.139 -3.046 
  (0.344) (3.129) 
rs2304297=="GG" -0.25 0.063 
  (0.370) (6.789) 
Interaction -0.782*** -12.188*** 
  (0.265) (4.146) 
Age  0.511*** 5.792*** 
  (0.065) (0.939) 
Age-squared -0.006*** -0.068*** 
  (0.001) (0.010) 
Female -2.121*** -30.823*** 
  (0.429) (5.472) 
Black -3.811*** -2.145 
  (0.649) (5.729) 
Hispanic -5.894*** -70.994*** 
  (1.106) (15.340) 
Other Race -3.189*** -27.386 
  (0.876) (17.451) 
Education -0.557*** -8.777*** 
  (0.107) (1.749) 
Income ($1000s) -0.072*** -0.596*** 
  (0.018) (0.193) 
Married -0.219 -5.721 
  (0.330) (4.517) 
Missing Information 0.073 -8.33 
  (0.842) (10.750) 
Constant 7.880** 121.797*** 
  (2.753) (39.737) 
  

  Observations 6,130 6,089 
R-squared 0.096 0.085 

Robust standard errors in parentheses clustered at the state level.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 5 
Gene-Environment Interactions in Predicting Tobacco Use 

Results Stratified by Demographic Subgroups 
Sample White Black Hispanic Other Race Female Male 
Log (Tax) 0.011 -0.003 0.114* 0.152* 0.004 -0.003 
  (0.020) (0.010) (0.064) (0.075) (0.014) (0.020) 
Genotype = GG -0.028 -0.091** 0.075 -0.148** -0.038* -0.032 
  (0.022) (0.033) (0.064) (0.067) (0.018) (0.026) 
Interaction -0.082*** -0.023 -0.193 -0.191* -0.070*** -0.072** 
  (0.025) (0.037) (0.127) (0.107) (0.020) (0.029) 
Observations 2,372 1,746 1,955 286 3,524 2,654 
R-squared 0.008 0.002 0.002 0.075 0.007 0.007 

 
Sample <30 30-50 50-65 65+ Less HS HS + Poor Rich 
Log (Tax) -0.014 0.017 -0.012 0.022 -0.067** 0.02 0.018 -0.004 
  (0.035) (0.019) (0.046) (0.020) (0.026) (0.014) (0.023) (0.012) 
Genotype = GG -0.014 -0.061 -0.044 0.013 -0.013 -0.04 -0.051* -0.027 
  (0.035) (0.045) (0.043) (0.025) (0.031) (0.025) (0.026) (0.021) 
Interaction -0.083 -0.090 0.016 -0.105 -0.074* -0.082*** -0.116*** -0.051 
  (0.049) (0.063) (0.035) (0.063) (0.041) (0.028) (0.026) (0.038) 
Observations 1,639 2,178 1,111 1,250 2,427 3,751 2,655 3,523 
R-squared 0.013 0.01 0.003 0.015 0.018 0.008 0.013 0.004 

Robust standard errors in parentheses clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 6 
Correlations between Genotype and State Level Tax Levels 

Outcome State Tax Level State Tax Level State Tax Level 
Specification Basic Weighted Clustered Xs 
Genotype = C/G 1.985*** 1.985 0.58 
  (0.577) (1.449) (0.574) 
Genotype = G/G 2.143*** 2.143 0.478 
  (0.556) (1.796) (0.708) 
Age 

  
0.017 

  
  

(0.027) 
Black 

  
-1.771 

  
  

(2.486) 
Hispanic 

  
8.807*** 

  
  

(2.224) 
Other Race 

  
2.402 

  
  

(1.753) 
Education 

  
0.243 

  
  

(0.159) 
Income  

  
0.027 

  
  

(0.029) 
Missing Information 

 
0.674 

  
  

(1.191) 
Year = 1992 

  
13.757*** 

  
  

(4.051) 
Year = 1993 

  
15.542*** 

  
  

(2.783) 
Year = 1994 

  
13.482*** 

  
  

(3.371) 
Constant 26.096*** 26.096*** 7.815** 
  (0.483) (3.697) (3.093) 
  

  
  

Observations 7,008 7,008 6,178 
R-squared 0.004 0.004 0.113 

Robust standard errors in parentheses clustered at the state level in columns 2 and 3. 
 *** p<0.01, ** p<0.05, * p<0.1.  Genetic sample weights used. 
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Appendix Tables 
Table 1A 

Predictors of Availability of Genetic Data: NHANES III (1988-1994) 
Outcome Genes Available Genes Available 
Specification OLS Fixed Effects 
Age  0.00219*** 0.00226*** 
  (0.000644) (0.000665) 
Age-Squared -3.22e-05*** -3.23e-05*** 
  (6.77e-06) (6.69e-06) 
Female -0.00373 -0.00417 
  (0.00395) (0.00401) 
Black -0.0161 -0.00296 
  (0.0131) (0.0108) 
Hispanic -0.0108 0.0259** 
  (0.0118) (0.0108) 
Other Race -0.0144 -0.00123 
  (0.0141) (0.0141) 
Education 0.00137* 0.00198** 
  (0.000779) (0.000764) 
Income 0.000190 0.000298 
  (0.000276) (0.000245) 
Married 0.0141*** 0.0123*** 
  (0.00305) (0.00348) 
Missing -0.0267*** -0.0252*** 
  (0.00696) (0.00638) 
Year=1989 0.00259 -0.00760 
  (0.00495) (0.0188) 
Year=1990 0.000356 -0.0113 
  (0.00579) (0.0321) 
Year=1991 0.0383* 0.0151 
  (0.0221) (0.0327) 
Year=1992 0.588*** 0.549*** 
  (0.0498) (0.0380) 
Year=1993 0.679*** 0.666*** 
  (0.0373) (0.0466) 
Year=1994 0.788*** 0.780*** 
  (0.0123) (0.0154) 
Smoke 100 Cigarettes? -0.0121*** -0.0125*** 
  (0.00390) (0.00415) 
Constant -0.0260 -0.0345 
Observations 19,945 19,945 
R-squared 0.526 0.536 

Robust standard errors in parentheses clustered at the state level 
. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 2A 
The Effects of State Level Taxation on Tobacco Use 

Stratified by Genotype 
Outcome Smoke Now Smoke Now Smoke Now 
Genotype CHRNA6=CC CHRNA6=GC CHRNA6=GG 
Log (Tax) -0.016 0.014 -0.071** 
  (0.018) (0.017) (0.029) 
Constant 0.316*** 0.256*** 0.233*** 
  (0.025) (0.024) (0.016) 
  

  
  

Observations 1,278 2,328 2,572 
R-squared 0.001 0.001 0.012 

Robust standard errors in parentheses clustered at the state level 
. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 3A 
The Effects of State Level Taxation on Tobacco Use 

Stratified by Year of Survey 
Outcome Smoke Smoke Smoke 
Sample Year 1 Year 2 Year 3 
  

  
  

Log (Tax) -0.002 -0.013 0.019 
  (0.017) (0.047) (0.017) 
Genotype = GG -0.039 -0.028 -0.053 
  (0.032) (0.018) (0.035) 
Interaction -0.111*** -0.029 -0.050* 
  (0.019) (0.032) (0.026) 
  

  
  

Constant 0.283*** 0.263*** 0.268*** 
  (0.030) (0.030) (0.024) 
  

  
  

Observations 1,682 2,367 2,038 
R-squared 0.02 0.002 0.005 

Robust standard errors in parentheses clustered at the state level 
. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 4A 
The Effects of State Tax Rates on Tobacco Use 

Non-Linear Results Stratified by Genotype 
Outcome Smoke  Smoke  Smoke  
Sample Genotype = CC Genotype = GC Genotype = GG 
Tax Rate (5-10) 0.035 0.063** -0.196*** 
  (0.036) (0.025) (0.020) 
Tax Rate (10-15) -0.024 0.031 -0.200*** 
  (0.027) (0.027) (0.024) 
Tax Rate (15-20) 0.172** 0.05 -0.281*** 
  (0.078) (0.044) (0.033) 
Tax Rate (20-25) 0.007 0.089*** -0.155*** 
  (0.026) (0.014) (0.014) 
Tax Rate (25-30) 0.048 0.172*** -0.265*** 
  (0.039) (0.020) (0.017) 
Tax Rate (30-35) 0.115*** 0.096** -0.268*** 
  (0.038) (0.040) (0.028) 
Tax Rate (35-40) 0.005 0.080** -0.281*** 
  (0.025) (0.032) (0.022) 
Tax Rate (40-45) -0.026 0.057* -0.268*** 
  (0.030) (0.029) (0.023) 
Age  0.034*** 0.019*** 0.009*** 
  (0.005) (0.004) (0.002) 
Age-sq -0.000*** -0.000*** -0.000*** 
  (0.000) (0.000) (0.000) 
Male 0.128*** 0.104*** 0.083*** 
  (0.030) (0.022) (0.022) 
Black -0.064* 0.01 -0.112** 
  (0.032) (0.030) (0.043) 
Hispanic -0.104** -0.131*** -0.102*** 
  (0.043) (0.034) (0.022) 
Other Race 0.135** -0.021 -0.052 
  (0.052) (0.049) (0.039) 
Education -0.019*** -0.012*** -0.010*** 
  (0.005) (0.004) (0.002) 
Income -0.004*** -0.002*** -0.002*** 
  (0.001) (0.001) (0.001) 
Married -0.072*** -0.058*** -0.031** 
  (0.017) (0.015) (0.011) 
Missing Info 0.022 -0.004 0.068 
  (0.045) (0.023) (0.039) 
Observations 1,272 2,322 2,569 
R-squared 0.121 0.097 0.07 

Robust standard errors in parentheses clustered at the state level 
. *** p<0.01, ** p<0.05, * p<0.1 


