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1 Introduction

This paper proposes a new approach for analyzing the dynamic effects of q common shocks such

as due to monetary policy and technology on q or more observables. We assume that a large panel

of data XALL = (X,XOTH) is available and use the sub-panel X that is likely to have a strong

factor structure to estimate the common shocks. Identification is based on restrictions on a q

dimensional subset of X. The impulse response coefficients are obtained from an autoregression in

each variable of interest augmented with current and lagged values of the identified common shocks.

Observed factors can coexist with latent factors. We refer to this approach as Factor Augmented

Autoregressive Distributed Lag (FADL).

An important feature of the FADL is that it estimates the impulse responses using minimal

restrictions from the factor model. The approach has several advantages. First, while X is large in

dimension, identification is based on a subset of variables whose dimension is the number of common

shocks. This reduces the impact of invalid restrictions on variables that are not of direct interest.

Second, the impulse responses are the coefficients estimated from a regression with common shocks

as predictors. Restrictions are easy to impose, and for many problems the impulse responses can

be estimated on an equation by equation basis. Third, the analysis only requires a strong factor

structure to hold in X and is less likely to be affected by the possibility of weak factors in XOTH .

The proposed FADL methodology lets the data speak whenever possible and is in the spirit of

vector-autoregressions (VAR) proposed by Sims (1980). The FADL also shares some similarities

with the Factor Augmented Vector Autoregressions (FAVAR) considered in Bernanke and Boivin

(2003). Their FAVAR expands the econometrician’s information set without significantly increasing

the dimension of the system. Our FADL further simplifies the analysis by imposing restrictions only

on the variables of interest. Recursive and non-recursive restrictions can be easily implemented.

The FADL is derived from a structural dynamic factor model which has a restricted FAVAR

as its reduced form. A factor model imposes specific assumptions on the covariance structure of

the data. Even though many variables are available for analysis, a factor structure may not be

appropriate for every series. As noted in Boivin and Ng (2006), more data may not be beneficial for

factor analysis if the additional data are noisy and/or do not satisfy the restrictions of the factor

model. We treat X like a training sample. Using it to estimate the common shocks enables us to

validate the factor structure in XOTH , the series not in X.

The FADL approach stands in contrast to structural FAVARs that impose all restrictions of a

dynamic factor model in estimation, as Forni, Giannone, Lippi, and Reichlin (2009). The FADL

estimates will necessarily be less efficient if the restrictions are correct, but are more robust when

the restrictions do not hold universally. As in Stock and Watson (2005), our FADL also permits
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implications of the factor model to be tested. However, we go one-step further by letting the data

determine the Wold representation instead of inverting a large FAVAR.

The paper proceeds as follows. Section 2 first sets up the problem of identifying the effects

of common shocks from the perspective of a dynamic factor model. It then presents the FADL

framework without observed factors. Estimation and identification of a FADL is discussed in Section

3. Relation of FADL to alternative structural dynamic factor analysis is discussed in Section 4, and

FADL is extended to allow for observed factors. Simulations are presented in Section 5. Section 6

considers the identification of monetary and news shocks. Both examples highlight the two main

features of FADL:- the ability to perform impulse responses analysis and to test the validity of the

factor structure of variables not used in estimation or identification of the common shocks.

2 Dynamic Factor Models and the FADL Framework

Let N be the number of cross-section units and T be the number of time series observations where

N and T are both large. We observe data XALL = (X, XOTH) which are stationary or have been

transformed to be covariance stationary. It is assumed that Xt = (X1t, . . . , XNt)
′ has a (strong)

factor representation and can be decomposed into a common and an idiosyncratic component:

Xt = λ(L)ft + uXt (1)

where ft = (f1t, . . . , fqt)
′ is a vector of q common factors and λ(L) = λ0 + λ0L + . . . λsL

s is a

polynomial matrix of factor loadings in which the N × q matrix λj = (λj1 . . . , λjN )′ quantifies the

effect of the common factors at lag j on Xt. The series-specific errors uXt = (uX1t, . . . , uXNt)
′ are

mutually uncorrelated but can be serially correlated. We assume

(IN −D(L)L)uXt = vXt (2)

where vXt is a vector white noise process. The q latent dynamic factors are assumed to be a vector

autoregressive process of order h. Without loss of generality, we assume h = 1 and thus

ft = Γ1ft−1 + Γ0vft (3)

where the characteristic roots of Γ1 are strictly less than one. The q × 1 vector vft consists of

structural common shocks (such as monetary policy or technology). These structural shocks can

affect several dynamic factors simultaneously. Hence, the q × q matrix Γ0 need not be an identity.

By assumption, E(vXitvXjt) = 0 and E(vXitvfkt) = 0 for all i 6= j and for all i = 1, . . . N and

k = 1, . . . q.
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Assuming that I−D(L)L is invertible, the vector-moving average representation of Xt in terms

of the structural common and idiosyncratic shocks is

Xt = Ψf (L)vft + ΨX(L)vXt.

The structural impulse response coefficients ΨX
j and Ψf

j are defined from

ΨX(L) =
∞∑
j=0

ΨX
j L

j = (I −D(L)L)−1

Ψf (L) =
∞∑
j=0

Ψf
jL

j = (I −D(L)L)−1λ(L)(I − Γ1L)−1Γ0.

For each j ≥ 0, Ψf
j is a N×q matrix summarizing the effect of a unit increase in vft after j periods.

We use Ψf
j,i1:i2,k1:k2 to denote the submatrix in the i1 to i2 rows and k1 to k2 columns of Ψf

j . When

i1 = i2 = i and k1 = k2 = k, we use ψfj,i,k to denote the effect of shock k in period t on series i in

period t+ j.

The objective of the exercise is to uncover the dynamic effects (or the impulse response) of the

structural common shocks vft on variables of interest. By using X1t, . . . , XNt for factor analysis,

the econometrician’s information set is of dimension N . Forni, Giannone, Lippi, and Reichlin

(2009) argue that non-fundamentalness is generic of small scale models but cannot arise in a large

dimensional dynamic factor model. The reason is that Ψf (z) is a rectangular rather than a square

matrix and its rank is less than q for some z only if all q × q sub-matrices of Ψf (z) are singular,

which is highly unlikely. Assuming that N is large ensures that the common shocks are fundamental

for X.

However, even if N is large, nothing distinguishes one common shock from another. In a VAR

analysis with q endogenous variables and q shocks, q(q − 1)/2 restrictions will be necessary. A

popular approach is to impose contemporaneous exclusion restrictions such that a rank condition is

satisfied, see, eg. Deistler (1976), Rubio-Ramı́rez, Waggoner, and Zha (2010). If the identification

restrictions imply a recursive ordering, then the parameters can be identified sequentially and

estimation can proceed on an equation by equation basis.

While ΨX
0 = IN in a dynamic factor model, the contemporaneous response of Xt to common

shocks vft is given by

Ψf
0 = Λ0Γ0 =



λ0,1,1 λ0,1,2 . . . λ0,1,q
...

...
λ0,q,1 λ0,q,2 . . . λ0,q,q

...
...

λ0,N,1 λ0,N,2 . . . λ0,N,q



Γ0,1,1 . . . Γ0,1,q
...

Γ0,q,1 . . . Γ0,q,q

 .
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The (i, k) entry of Λ0 is the contemporaneous effect of factor k on series i, and the (k, j) entry of

Γ0 is the effect of the j-th common shock on factor k. In general, Ψf
0 will not be an identity matrix.

Two additional problems make the identification problem non-standard. First, while having

more total shocks than endogenous variables should facilitate identification, the common shocks

also restrict the co-movements across series. Imposing constraints on an isolated number of series

is actually quite difficult within the factor framework. Zero restrictions on the entries of Λ0 or Γ0

alone are not usually enough to ensure that a particular entry of Ψf
0 takes on the desired value

(often zero). Second, the dynamic factors are themselves latent. Thus, not only do we need to

identify the effects of vf , we also need to identify vf .

Our analysis is based on the following assumptions.

Assumption 1: E(vft) = 0, E(vftv
′
ft) = Iq.

Assumption 2 D(L) is a diagonal matrix with δi(L) in the i-th diagonal, ie

D(L) =

δ1(L) 0 . . . 0
...

...
...

0 0 . . . δN (L)

 ,

Assumption 3: For some j, a q × q matrix of Ψf
j is full rank.

Assumption 1 is a normalization restriction as we cannot separate the size of the common shocks

from their impact effects. Assumption 2 is a form of exclusion restriction. We assume univariate

autoregressive dynamics idiosyncratic errors:

uXit = δi(L)uXit−1 + vXit.

This implies that dynamic correlations between any two series are due entirely to the common

factors, which is the defining feature of a dynamic factor model. Diagonality of D(L) in turn allows

Xit to be characterized by an autoregressive distributed lag model

Xit = δi(L)Xit−1 + (1− δi(L))λi(L)ft + vXit (4)

where λi(L) = λ0i + λ1iL+ . . . λsiL
s is the i-th row of λ(L). A representation that is more useful

for impulse response analysis is an autoregressive distributed lag in the primitive shocks vft:

Xit = δi(L)Xit−1 + ψfi (L)vft + vXit (5)

where

ψfi (L) = (1− δi(L))λi(L)(I − Γ1L)−1Γ0.
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We will henceforth refer to (5) as the FADL representation ofXit. Note that ψfi (L) =
∑∞

j=0 ψ
f
j,i,1:qL

j

is precisely the i-th row of Ψf (L), with

ψf0,i,1:q = λ0iΓ0 =
(
λ0,i,1 λ0,i,2 . . . λ0,i,q

)Γ0,1,1 . . . Γ0,1,q
...

Γ0,q,1 . . . Γ0,q,q

 .

The dynamic effects of the common shocks vft on Xit are defined by the coefficients ψfi (L).

If vf were observed and N = q, equation (5) defines a dynamic simultaneous equations system in

which identification can be achieved by excluding some vf or its lags from certain equations. For

example, contemporaneous restrictions can be imposed so that the q× q matrix Ψf
0 has rank q. As

our system is tall with N ≥ q, Assumption 3 is modified to require that a q× q submatrix of Ψf
j is

full rank. If all restrictions are imposed on Ψf
0 , Assumption 3 will hold if the top q × q submatrix

of Ψf
0 has rank q. However, long run and sign restrictions are also permitted.

Assumptions 1 to 3 are fairly standard. But our factors are also latent and we can only identify

the space spanned by the factors and not the factors themselves. To make the procedure operational,

we need to replace vft by estimates v̂ft which have the same properties as Assumption 1. These

identification conditions will be further developed below.

3 Estimation and Identification

If there are q common shocks, we will need at least q series for identification. Without loss of

generality, let Yt be the first q series in Xt. Since each yt ⊂ Yt admits a dynamic factor structure,

it holds that

yt = αyy(L)yt−1 + αyf (L)vft + vyt. (6)

Estimation of (6) is not possible because we do not observe vft. Our impulse response analysis is

based on least squares estimation of the FADL

yt = αyy(L)yt−1 + αyf (L)v̂ft + vyt (7)

where a prior restrictions are be imposed on αyf (L) for identification. We now explain how vft is

estimated and how restrictions are imposed on the FADL.

Let Λ be the N × r matrix of loadings, Ft be a r = q(s+ 1)× 1 vector of static factors, where

Λ =


Λ1

Λ2
...

ΛN

 , Ft =


ft
ft−1

...
ft−max(h,s)

 , ΦF =


Γ1 Γ2 . . . Γs
Iq 0 . 0 . 0
0 Iq 0 . 0
. 0 . . 0
0 0 . Iq . 0

 Λi =
(
λi0 λi1 . . . λis

)
.
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The starting point is the static factor representation of the pre-whitened data, xit = (1−δi(L)L)Xit:

xit = ΛiFt + vXit (8)

Ft = ΦFFt−1 + εFt (9)

εFt = Gεft. (10)

The εFt are the reduced form errors of Ft and are themselves linear combinations of the structural

shocks vft and εft = Γ0vft is the vector of reduced form common shocks, see (3),. The r× q matrix

G maps the structural dynamic shocks to the reduced form static shocks. Since Xt is assumed to

have a strong factor structure, Λ′Λ/N → Λ > 0 as N → ∞, and the N × N matrix 1
T

∑T
t=1 xtx

′
t

has r eigenvalues that diverge as N,T → ∞ while the largest eigenvalue of the N ×N covariance

matrix of vXt is bounded.

From vXit = xit − ΛiFt = xit − Λi(ΦFFt−1 + εFt), define

εXit = xit − ΛiΦFFt−1

= ΛiεFt + vXit. (11)

As noted in Stock and Watson (2005), the rank of the r × 1 vector εFt is only q, since Ft is

generated by q common shocks.1 In other words, εXit itself has a factor structure with common

factors εft. But εft are themselves linear combinations of vft. Let

vft = Hεft.

The q× q matrix H maps the reduced form dynamic shocks to the structural dynamic shocks. The

objective is to identify vft and to trace out its effects on the variables of interest. If there are q

common shocks, q(q − 1)/2 restrictions are necessary to identify vft via H.

Estimation proceeds in five steps.

Step E1: Estimate Ft from the full panel of data X by iterative principal components (IPC).

i Initialize δXi (L) using estimates from a univariate AR(q) regression in Xit. Let D(L) be a

diagonal matrix with δXi (L)L on the i-th diagonal.

ii Iterate until convergence

min
D(L),Λ,F

SSR =

T∑
t=1

(
(I −D(L)L)Xt − ΛFt

)′(
(I −D(L)L)Xt − ΛFt

)
.

1Bai and Ng (2007) thus suggest using the number of diverging eigenvalues in the covariance of εFt to estimate q.
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a Let F̂t be the first k principal components of xx′ using the normalization that F ′F/T =

Ik, where k is the assumed number of static factors.

b Estimate D(L) and Λ by regressing Xit on F̂t and lags of Xit.

The method of principal components (PC) estimates k factors as the eigenvectors corresponding

to the k largest eigenvalues of XX ′/(NT ). Under the assumption of strong factors, Bai and Ng

(2006) show that the estimates are consistent for the space spanned by the true factors in the

sense that 1
T

∑T
t=1

∥∥∥F̂t −HFt∥∥∥2
= Op(min(N,T )), where H is a k × r matrix of rank r. However,

the idiosyncratic errors may not be white noise. Stock and Watson (2005) suggest using IPC to

iteratively update δXi (L), which is then used to define xit. The static factors form the common

component of xit.

Step E2: Estimate a VAR in F̂t to obtain Φ̂F and ε̂Ft and let ε̂Xit = xit − Λ̂′iΦ̂F F̂t−1, where Λ̂

and F̂t−1, Φ̂F are obtained from Step (E1). Amengual and Watson (2007) show that the q principal

components of ε̂Xt can precisely estimate the space spanned by εft.

Step E3: Identification of vft: The common shocks ε̂ft are unorthogonalized and, in general,

are mutually correlated. We seek a matrix H such that

v̂ft = H ε̂ft, (12)

and v̂ft is a vector of mutually uncorrelated structural common shocks. We consider two approaches.

The first condition (abbreviated as RO) is lower triangularity of a q × q sub-matrix so that the

shocks can be identified recursively from q equations. The second condition (abbreviated as BO)

requires organizing the data into blocks using a priori information so that the factors estimated

from each block can be given meaningful interpretation.

Assumption Recursive Ordering (RO) Method (a) is based on an assumed causal structure.

Just like a VAR, this would require knowledge of which of the q variables to order first. For j = 1 : q

consider estimating the regression:

ytj = αyy,j(L)yt−1,j +

q∑
k=1

ayf,j,k(L)ε̂fkt + vyt,j

where ε̂ft are the q principal components of the N residuals êXt.

i Let Âf0 be the estimated contemporaneous response to the q unorthogonalized shocks ε̂ft:

Âf0 =

âyf,0,1,1 âyf,0,1,2 . . . âyf,0,1,q
...

...
...

âyf,0,q,1 âyf,0,q,2 . . . âyf,0,q,q

 .
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ii Define the q × q matrix H = [chol(Âf0Â
′
f0)]−1Âf0. Now let

v̂ft = Hε̂ft

α̂yf,j = α̂yf,j(L)H−1.

By construction, v̂ft is orthonormal. The method achieves exact identification by using the causal

ordering of the q variables selected for analysis.

Imposing a causal structure through the ordering of variables is the most common way to

achieve identification of FAVAR. Stock and Watson (2005) also use Assumption RO to identify the

primitive shocks. Their implementation differs from ours in that we apply Choleski decomposition

to the FADL estimates of αyf (0) and hence we do not impose all the restrictions of the factor

model. In contrast, Stock and Watson (2005) impose restrictions implied by the FAVAR in Xt and

Ft. The results are likely to be more sensitive to the choice of Xt.

Assumption Block Ordering (BO) Method (b) is useful when the data can be organized into

blocks. Let X = (X1, X2, . . . Xq) be data organized into q blocks. To see how data blocks facilitate

identification, observe that the factor estimates ε̂0
ft are linear combinations of ε̂Xt. Let ε̂0

f = ε̂X,:,:ζ
0

be the T × q matrix of factor estimates where for each t,

ε̂0
ft =


ζ0

11 ζ0
12 . . . . . . ζ0

1N

ζ0
21 ζ0

22 . . . . . . ζ0
2N

...
...

...
...

...
ζ0
q1 ζ0

q2 . . . . . . ζ0
qN



ε̂X1t

ε̂X2t
...

ε̂XNt

 . (13)

Identification requires a priori information on the ζ.

i. For b = 1, . . . q, let ε̂bf be the matrix of eigenvector corresponding to the largest eigenvalues

of the nb × nb matrix ε̂b′X ε̂
b
X .

ii. Let H be the Choleski decomposition of the q× q sample covariance of ε̂ft. Then v̂ft = Hε̂ft.

The identification strategy can be understood as follows. From (11), we see that εXt =(
ε1′
Xt ε2′

Xt . . . εq′Xt
)′

have εft as common factors. Since the factors are pervasive by definition,

the factors are also common to all εbXt for arbitrary b. Thus for each b = 1, . . . q, consider a factor

model for εbXit = Λbiε
b
ft + vbXit. If εbXit were observed, the factors for block b can be estimated by

principal components which are linear combinations of series in εbXt. We do not observe εbXt, but

we have ε̂Xt = xt− Λ̂Φ̂F F̂t−1 from Step (E2). For example, if X1 is a T ×N1 panel of employment
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data, the first principal component of ε̂1′
X ε̂

1
X is a labor market factor ε̂f1t, and if X2 is a panel of

price data, ε̂f2t is a price factor. Collecting the factors estimating from all blocks into ε̂ft, we have

ε̂ft =


ζ1

1,1:N1
0 0 . . . 0 0

0 ζ2
1,1:N2

0 . . . 0 0
... 0

...
...

...
0 0 0 . . . 0 ζq1,1:Nq



ε̂1
Xt

ε̂2
Xt
...
ε̂qXt

 (14)

Obviously, the factors are defined by assuming a structured covariance relation in the observables.

The appeal is that we can now associate the q factors with the block of variables from which

they are estimated. However, these factors can still be correlated across blocks. To orthogonalize

them, step (ii) performs q regressions beginning with v̂f1 = ε̂1
f . For m = 2, . . . q, v̂fb = Mbε̂

b
f

are the residuals from projecting ε̂bf onto the space orthogonal to v̂f1, . . . , v̂f,b−1, and Mb is the

corresponding projection matrix.

Bernanke, Boivin, and Eliasz (2005) treat the interest rate as an observed factor, organize the

macro variables into a fast and a slow block, and estimate the one factor from the slow variables.

Their identification is based on a Choleski decomposition of the residuals in the slow variables and

the observed factor. Their implementation is specific to the question under investigation while our

methodology is general. Our identification algorithm is generic, provided blocks of variables with

meaningful interpretation can be defined.2

In conventional VAR models, the structural impulse responses are obtained by rotating the

reduced form impulse response matrix by a matrix, say, H. The primitive shocks are then obtained

by rotating the reduced form errors with the inverse of the same matrix. In our setup, identification

of structural common shocks precedes estimation of the impulse responses. This allows us to

impose economic restrictions on the impulse response functions without simultaneously affecting

the structural shocks. As presented, H is a lower triangular matrix. However, sign, long run and

other structural restrictions can be imposed.

Step E4: Construct Impulse Response Function: Estimate a q dimensional FADL by OLS

with restrictions on αY f (L):

Yt = αY Y (L)Yt−1 + αY f (L)v̂ft + vyt (15)

where αY Y (L) is a diagonal polynomial in the L of order py, and αY f is of order pf . Given

interpretation of v̂f identified from Step E3, short and long-run economic restrictions on the impulse

2Moench and Ng (2011) construct regional factors from data organized geographically. Ludvigson and Ng (2009)
study the relative importance of the factor loadings and find that factor one loads heavily on real activity series,
factor two on money and credit variables, while factor three loads on price variables.

9



responses can be directly imposed on αyf . The estimated responses of yt to a unit increase in the

common shocks v̂ft and idiosyncratic shocks vyt are defined by

ψ̂fy (L) =
α̂yf (L)

1− α̂yy(L)L
ψ̂yy(L) =

1

1− α̂yy(L)L
.

Since α̂yy(L) is a scalar rational polynomial, the impulse responses are easy to compute using the

filter command in matlab. Note that by Assumption 1, the standard deviation of all common

shocks are normalized to unity. The response to a unit shock is thus the same as the response to a

standard deviation shock.

Step E5: Model Validation Our maintained assumptions are that Ft are pervasive amongst

Xt rather than (Xt, X
OTH
t ) and by assumption, Xt have a strong factor structure. We refer to X

as a ’training sample’. This is useful because once the estimated common shocks v̂ft are available,

they can be treated as regressors in a FADL model for zt (scalar) not necessarily in Xt. This is

because if (Xt, X
OTH
t ) have a factor structure, the shocks vft common to Xt are also common to

variables in XOTH
t . If the common factors are important for zt ⊂ XOTH

t , then FADL coefficients

on vft and its lags should be statistically significant.

4 Relation to the Other Methods and Allowing for Observed Factors

An important difference between our approach and existing structural FAVAR analysis is that we

estimate the impulse responses directly rather than inverting a VAR. Chang and Sakata (2007).

estimates the shocks as residuals from long vector autoregressions in observed variables. The

authors show that their estimated impulse responses are asymptotically equivalent to the local

projections method proposed by Jorda (2005). Our analysis has the additional complication that

the factors are latent. Thus, we first estimate the space spanned by common factors, then estimate

the space spanned by the common shocks, before finally estimating the impulse response functions.

It is useful to relate our estimate of Ψf (L) with the conventional FAVAR approach which starts

with the representation(
Ft
Xt

)
=

(
Φ 0

ΛΦ D(L)

)(
Ft−1

Xt−1

)
+

(
εFt

ΛεFt + vXt

)
from which it follows that

xt = ΛΦL(I − ΦL)−1εFt + ΛεFt + vXt

=

(
ΛΦL(I − ΦL)−1 + Λ

)
εFt + vXt.
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The dynamic effects of shocks εFt to the static factors on (prewhitened) data are determined by

Λ

(
ΦL(I − ΦL)−1 + I

)
= Λ

∞∑
j=0

Φi+1Li+1. (16)

At lag j, the N ×N response matrix

ΛΦj =
(

Λ′i Λ′2
... Λ′N

)′
Φj .

Intuitively, the total effect of εFt depends on Xt through Ft and hence depends on the dynamics

of Ft and the importance of the factor loadings on Xt. Assuming that the reduced form shocks are

related to the structural shocks via εFt = A0vft, the response to the structural shocks estimated

by a FAVAR is

Ψ̂f = Λ̂Φ̂jA−1
0

which is a product of three terms: two that are the same for all i, and one (Λ̂) that is specific to

unit i’s. Since Λ̂i is only available for any xit ∈ Xt, Ψf can be constructed only for N series. This

is a consequence of the fact that the FAVAR estimates the impulses without directly estimating

vft. Since we estimate vft, we can construct impulse responses for series not in X.

In contrast, our estimator of Ψf is Λ̂′iΦ
jA0, which may not equal Λ̂′iΦ̂

jA0, because we do not

fully impose restrictions of the dynamic factor model on the static factor representation. Instead of

a large FAVAR system, we estimate the FADL one variable at a time. Cross parameter restrictions

between αyf (L) and αyy(L) are also not imposed. As is usually the case, system estimation is more

efficient if the restrictions are true. However, misspecification in one equation can adversely affect

the estimates of all equations. This possibility increases with N . The single equation FADL esti-

mates are more robust to misspecification than those that rely on a large number of overidentifying

restrictions which are often imposed on variables that are not of primary interest, or whose factor

structure may not be strong.

Finally, restrictions on Γ0 and Λ0 alone may not be enough for identification. Consequently, it

is not always easy to directly define A0. FAVARs typically require several auxiliary regressions to

determine A0. In addition to incurring sampling variations at each step, the identification procedure

requires tricks that are problem specific. In a FADL setting, the restrictions are directly imposed

when the FADL is estimated. It is more straightforward, as will be illustrated in Sections 6 and 7.

4.1 Extension to m Observed Factors

Some economic analysis involves identification of shocks to observed variables in the presence of

latent shocks. For example, Bernanke, Boivin, and Eliasz (2005), Stock and Watson (2005) and

Forni and Gambetti (2010) consider identification of monetary policy shocks in the presence of other

11



shocks, using the information that some variables have instantaneous, while others have delayed

response to shocks to the observed factor, being the Fed Funds Rate. These studies, summarized in

Appendix A, impose restrictions of the factor models on all series. Our proposed FADL approach

imposes significantly fewer restrictions on the factor model.

To extend the dynamic factor model to allow for m observed common factors Wt, let

Xt = λf (L)ft + λw(L)wt + uXt

uXt = D(L)uXt−1 + vXt(
ft
wt

)
=

(
Γ1,ff Γ1,fw

Γ1,wf Γ1,ww

)(
ft−1

wt−1

)
+

(
Γ0,ff Γ0,fw

Γ0,wf Γ0,ww

)(
vft
vwt

)
with Γ1,fw 6= 0 and Γ0,wf 6= 0. Without these assumptions, wt is weakly exogenous and can be

excluded from the analysis. Let Wt be a vector consisting of wt and its lags. Assume that its

dynamics can be represented by a VAR(1):

Wt = ΦWWt−1 + εWt. (17)

The reduced form model is

Xt = (I −D(L)L)−1
(
λf (L) λw(L)

)
(I − Γ1)−1Γ0

(
vft
vwt

)
+ (I −D(L)L)−1)vXt

= Ψf (L)vft + Ψw(L)vwt + ΨX(L)vXt.

The static factors are estimated from prewhitened data that also nets out the effects of the observed

factors, and the construction of the structural shocks vft must take into account that the reduced

form innovations to the static factors can be correlated with the innovations to the reduced form

representation of the observed factors. Let xit = Xit − δiXit−1 and define

xit = Λ′iFFt + λ′WiWt + εit

where Wt = (w′t w
′
t−1, . . . wt−p)

′. The steps can be summarized as follows.

Step W1: Estimate Ft conditional on Wt by iterating until convergence

min
D(L),Λ,F

=
T∑
t=1

(
(I −D(L)L)Xt − ΛFFt − ΛFWt

)′(
(I −D(L)L)Xt − ΛFFt − ΛWWt

)
.

i Let F̂t be the k principal components of xx′ using the normalization that F ′F/T = Ik.

ii Estimate D(L), ΛF and ΛW by regressing Xit on F̂t and Wt.

Step W2: Estimate ΦF and ΦW from a VAR in F̂t and Wt, respectively. Also let ε̂Wt be the

residuals from estimation of (17), the VAR in Wt.
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Step W3: Estimate vft:

i. Let ε̂Xit = xit − Λ̂′iF Φ̂F F̂t−1 − Λ̂′iW Φ̂WWt−1, where F̂t are the iterative principal components

of the full panel.

ii. Let X = (X1, X2, . . . Xq) be data organized into q blocks. For b = 1, . . . q, let ε̂fb be the

eigenvector corresponding to largest eigenvalue of the nb × nb matrix ε̂′
Xb ε̂Xb .

iii. Orthogonalize ε̂t = (ε̂′ft ε̂
′
wt)
′ using the causal or block ordering of the variables.

Step W4: Construct the impulse response: Estimate by OLS with restrictions on αyf (L)

and αyw(L):

yt = αyyyt−1 + αyf (L)v̂ft + αyw(L)vwt + vyt. (18)

Then ψ̂f (L) =
α̂yf (L)

(1−α̂yy(L)) gives the response of yt to vft holding Wt fixed.

5 Simulations

We use simulations to evaluate the finite sample properties of the identified impulse responses.

Data are simulated from equations (1)-(3) with λ(L) being a polynomial of degree s = 1. The

persistence parameter δi is uniformly distributed over (.2,.5). The errors vXit, vft and the non-zero

factor loadings are normally distributed with variances σ2
X , 1, σ

2
λ respectively. We set T = 200 and

N = 120 to mimic the macroeconomic panels used in empirical work.

The structural moving-average representation is

Xit = 1− δiL)−1
(
λ0i λ1iL

)(
I − Γ1L

)−1

Γ0

(
vf1t

vf2t

)
+ vXit.

This implies that the impact response of Xit to the shocks is summarized by

Xit = (λ0,i,1 λ0,i,2)

(
γ0,11 γ0,12

γ0,21 γ0,22

)(
vf1t

vf2t

)
+ vXit. (19)

DGP 1: q = 2 factors, Γ1 =

(
0.75 0

0 0.7

)
, σλ,1k = 1.

case a: Γ0 = I, case b: Γ0 =

(
1 0

0.5 1

)
, σλ,2k = 0.8.

The N variables are ordered such that the first N/2 variables respond contemporaneously to

both shocks and are labeled ‘fast’. The last N/2 do not respond contemporaneously to shock 2 and

are labeled slow’. By design, X1t is a fast variable and XNt is a slow variable. This structure is

achieved by specifying

(λ0,i,1 λ0,i,2), i = 1, . . . , N/2 and (λ0,i,1 0) i = N/2 + 1, . . . , N.
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Let Yt = (X1t, XN,t) be the two variables whose impulse responses are of interest. Since there are

no observed factors, estimation begins with E1 and E2. We consider both identification strategies

and estimate two FADL regressions, one for each variable in Yt. As a benchmark, we also estimate

the (infeasible) FADL regressions using the true common shocks, vft.

The results are summarized in Table 1. The top panel of Table 1 shows that for DGP 1a, the

correlation between vfjt and v̂fjt are well above 0.90 for both identification strategies. For DGP

1b, Method (a) is more precise than (b) but the latter is still quite precise. The correlation between

vfjt and vfkt are statistically different from zero, but are numerically small. Panel B of Table 1

reports the RMSE of the estimated impulse responses when the shocks are observed. Given that

there are two shocks, there are two impulse responses to consider for each of the two variables. We

use vfj → Xk to denote the response of Xk to shock j, where k = 1 is the fast variable, and k = N

is the slow variable. Panel C reports results when the common shocks have to be estimated. The

ψ̂ are practically identical to the analytical ones given by (19). Furthermore, the impact response

of slow variable to second shock is not statistically different from zero.

When the FADL models are estimated on v̂f instead of vf , we observe that (i) corr(vft, v̂ft) ≈ I;

In case 2, off-diagonal elements (ii) ψ̂(L) are very close to true impulse response coefficients (iii)

the non-zero coefficients have statistically significant estimates.

DGP 2: q = 2 latent and m = 1 observed factors Let σλ,jk = 1, σλ,1k = 1, σλ,2k = 0.8, and

σλ,3k = 0.7 and Γ1 =

0.75 0 0
0 0.7 0
0 0 0.65

.

case a: Γ0 = I, case b: Γ0 =

 1 0 0
0.4 1 0
0.3 0.2 1

.

The ordering of structural shocks is vft = (vslowft , vmpft , vfastft ). The goal is (partial) iden-

tification of the effects of vmpft . Again, the N variables are divided between fast and slow: slow

variables do not respond on impact to second and third shocks, and at least one variable does not

respond immediately only to the third shock, such that the causal ordering holds.

After the common shocks are estimated and identified according to Methods RO and BO, two

FADL regressions are estimated for the two components in Yt: one fast and one slow variable. As

we are interested in partial identification of the second shock, we only report results on the approx-

imation of vmpft , and impulse responses of two variables to this shock. As in the previous exercise,

FADL regressions with true shocks produce impulse response coefficients practically identical to

the analytical ones. The estimated second shock is very close to the true one and ψ̂(L) very close

to true impulse response coefficients.
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6 Two Examples

In this section, we use FADL to analyze two problems:- measuring the effects of monetary policy

in the presence of other common shocks, and news shocks.

6.1 Example 1: Effects of a Monetary Policy Shock

As in Bernanke, Boivin, and Eliasz (2005), the monetary authority observes Nslow variables (such

as measures of real activity and prices) collected into Xslow
t when setting the interest rate Rt but

does not observe Nfast variables (such as financial data) collected into Xfast
t . In this exercise, Rt

is an observed factor. Let vft = (vslowft , vmpft , vfastft ) be the vector of q common shocks, where

vmpft is the monetary policy shock, vfastft is a vector q1 shocks, specific to Xfast, and vslowft is a vector

of q2 shocks, specific to Xslow
t respectively, with q = q1 + q2 + 1. The issue of interest is (partial)

identification of the effects of monetary policy shock, meaning that the effects due to vslowft and

vfastft are not of interest.

Bernanke, Boivin, and Eliasz (2005) identify the monetary policy shock by assuming that Ψf
0

is a block lower triangular structure. This involves restrictions o on Nslow > q2 variables. In a

data rich environment, some of these restrictions could well be invalid. We consider two alternative

identification strategies, both using fewer restrictions. The first is based on Assumption RO which

can be achieved by choosing the first q variables to compose of q1 (slow) indicators of real activity

and prices, followed by the monetary policy instrument.3 The second is based on Assumption BO

which identifies the shocks at the block level. The data are ordered as Yt = (Xslow′
t , Rt, Xfast′

t )′.

After estimating vslowft from Xslow
t and and vfastft from Xfast

t , the monetary policy shocks are the

residuals from a regression of Rt on current and lag values of v̂slowft . By construction, the estimated

structural shocks are mutually uncorrelated under both RO and RO assumptions. A FADL in all

the shocks is then estimated for each variable of interest.

In terms of matrix Ψf
0 , Bernanke, Boivin, and Eliasz (2005) assumes:

Ψf
0 =



ψ0,1,1

Nslow×q1

0
Nslow×1

0
Nslow×q2

ψ0,2,1

1×q1

ψ0,2,2

1×1

0
1×q2

ψ0,3,1

Nfast×q1

ψ0,3,2

Nfast×1

ψ0,3,3

Nfast×q2

.


3One may also add q2 financial indicators at the end of the recursion, but Bernanke, Boivin, and Eliasz (2005)

found that there is little informational content in the fast moving factors that is not already accounted for by the
federal funds rate.
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Assumptions RO and BO both assume that the top q × q block of Ψf
0 is lower triangular:

Ψf
0,1:q,1:q =



ψ0,1:q,1

q1×q1

0
q1×1

0
q1×q2

ψ0,2:q,1

1×q1

ψ0,2:q,2

1×1

0
1×q2

ψ0,3:q,1

q2×q1

ψ0,3:q,2

q2×1

ψ0,3:q,3

q2×q2

.


However, the Ψf

0 matrix and v̂ft identified by RO will be different from those identified by BO.

Under Assumption RO, all N series are used to estimate the q vector εft. Thus any q series in the

training sample can be used to identify primitive shocks v. Under Assumption BO, εjft is estimated

from block j of Xt. Thus, the j shock in vft is identified from one of the Nj series in block j

of Xt. Assumption BO also allows a priori economic restrictions to be imposed on some or all

variables within the blocks. For example, we can restrict all Nslow series not to react on impact to

a monetary policy shock, while the response of fast moving variables is unrestricted. Since these

restrictions are imposed on equation by equation basis, they do not affect the estimation nor the

identification of structural shocks.4

6.1.1 Data and Results

The training sample used to estimate the factors consists of 107 quarterly aggregate macroeconomic

and financial indicators over the extended sample 1959Q1- 2009 Q1. This data set consists of fast

and slow moving variables. The Federal funds rate (FFR) is treated as an observed factor. All data

are assumed stationary or transformed to be covariance stationary. The complete list of variables

is given in the Appendix.

Our estimation differs from Bernanke, Boivin, and Eliasz (2005) in two ways. First, we use

quarterly data. Second, we estimate the factors by IPC to take care of autocorrelation in residuals.

According to information criteria in Amengual and Watson (2007) and Bai and Ng (2007), there

are q = 3 latent dynamic factors in the training sample. Identification is achieved by imposing a

causal ordering. We order commodity price inflation first, followed by GDP deflator inflation, un-

employment rate, and then FFR. Hence monetary policy is the last variable in this causal ordering,

which implies zero contemporaneous response to monetary policy by the slow moving variables.

We only impose restrictions on q series (one from each block) while Bernanke, Boivin, and Eliasz

(2005) impose restrictions on all series belonging to the slow moving block.

Compared to Stock and Watson (2005), we impose the same minimal number of restrictions to

identify the structural shocks, but our approach differs in estimating the impulse response functions.

4The restrictions can vary across series in the block. For example, one series could be restricted to respond only 2
periods after the shock, the sign of another variables could be fixed, the shape of the impulse response function could
be constrained for a third variables, and so on.

16



Instead of constructing impulse response coefficients of Xt as (I−D̂(L))Λ̂(I−Γ̂1(L))−1Γ̂0, we rather

estimate the product, ψfi (L), equation by equation for any element of Xt and XOTH
t .

The 12 period impulse responses are presented in Figure 1. As in Bernanke, Boivin, and Eliasz

(2005), controlling for the presence of common shocks resolves anomalies found in the literature.

After a monetary policy shock, the fast moving variables such as Treasury bills increase immediately,

while stock prices, housing starts, and consumer expectations fall. Furthermore, many measures of

the slow variables including real activity and prices decline as a result of the shock without evidence

of a price puzzle. The exchange rate appreciates fully on impact, with no evidence of overshooting.

The results for the variables of interest are in line with Christiano, Eichenbaum, and Evans (2000)

who use recursive and non-recursive identification schemes to study the effects of monetary policy,

using small VARs. However, once the common shocks are estimated, the effects of monetary policy

can be studied for many variables, not just the q variables used in identification. The scope of the

analysis is much larger than a small VAR.

To check the validity of the factor structure in series not in the training sample, we consider

XOTH
t consisting of 107 disaggregated series. Amongst these are (i) 3 sectoral CPI, 55 PCE, and

3 PPI measures of inflation, (ii) 10 disaggregated employment series, (iii) 18 investment measures,

and (iv) 18 consumption series. For each of these additional variables, the Wald test is used

to test the null hypothesis that all coefficients in αyf (L) are jointly zero. The null hypothesis

cannot be rejected at the five percent level for many series including one sectoral CPI, 15 PCE,

one employment, one investment and two consumption series. For these series, the data does not

support the presence of a factor structure.

We then proceed to analyze the effects of monetary policy on variables in XOTH
t . Interestingly,

the impulse responses of variables not affected by vft display price-puzzle like features. As seen in

the top panel of Figure 2 for some of these variables, an increase in the Fed Funds rate increases

rather than lowers prices. The bottom panel displays results for four series with significant α̂yf (L).

For these latter set of variables, the impulse responses are similar to those reported for the variables

in the training sample, namely, that an increase in the Fed funds rate lowers prices.

The impulse responses of all sectoral variables are presented in Figure 3. The responses of

many disaggregated series are in line with theory: a decline of real activity and price indicators

across several sectors after an adverse monetary policy shock. In case of employment variables,

only mining and government sector series diverge from others during the first year after the shock,

while the price indicators of some nondurable goods sectors present the price puzzle behavior.

6.2 Example 2: Effects of a News Shock

Beaudry and Portier (2006) consider technology shock and news shocks, vft = (vTFPt vNSt )′, inter-
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preted as an announcement of future change in productivity. They are interested in the effects of

these two shocks on productivity X1t. Consider identification by the short run restrictions. Sup-

pose that the first N1 variables X1
t ⊂ Xt do not respond immediately to vNSt , but their response

to vTFPt is unrestricted. Then Ψf
0 is lower block triangular, viz:

Ψf
0 =



ψf0,1,1 0
...

...

ψf0,N1+1,1 ψf0,N1+1,2
...

...

ψf0,N,1 ψf0,N,2


≡

 Ψf
0,1:N1,1

01:N1,1

. . . . . .

Ψf
0,N1+1:N,1 Ψf

0,N1+1:N,2

 .

This structure can be achieved if Λ0 and Γ0 are both lower block triangular, ie.

Λ0

N×2

=


λ0,1,1 0

...
...

λ0,N1+1,1 λ0,N1+1,2
...

...
λ0,N,1 λ0,N,2

 =

 Λ0,1:N1,1
... 0N1×1

Λ0,N1+1:N,1
... Λ0,N1+1:N,2

 and Γ0

2×2

=

(
Γ0,11 0
Γ0,21 Γ0,22.

)

The zero restriction should hold for all series in the first block. But since there are only two

shocks, any two series permit exact identification provided one is from X1
t , one from X2

t , and one

restriction is imposed on Ψf
0 . Beaudry and Portier (2006) only uses two variables (X1t, XNt) for

analysis where X1t is a measure of TFP and XNt is stock price. We allow for N > 2 variables. But

unlike standard VARs which require restrictions of order N2 to identify N shocks, we use q series

to exactly identify q = 2 shocks. As discussed earlier, instead of putting restrictions on Γ0 or Λ0

separately, our restrictions are imposed on the relevant row(s) of Ψf
0 = Γ0Λ0. The bivariate system

has the property that(
X1t

XNt

)
=

(
ψf0,11 0

ψf0,21 ψf0,22

)(
vTFPt

vNSt

)
+
∞∑
j=1

(
ψfj,11 ψfj,12

ψfj,21 ψfj,22

)(
vTFPt−j
vNSt−j

)
.

The number of identifying restrictions used in the FADL is of order q2 irrespective of N . This also

contrasts with standard FAVARs which impose many overidentifying restrictions. In our setup, a

large N is desirable for FADL because it improves estimation of vft. Long run restrictions can

similarly be imposed so that Ψf (1) is block lower triangular. A FADL leads to exact identification

using the salient features of the factor model.

6.2.1 Data and Results

Our data consists of Xt = (XTFP
t , XSP

t , XOTH
t ), where XTFP

t contains six TFP measures from

FRB San Francisco, XSP
t is a vector of eight S&P and Dow Jones aggregate stock price indicators,
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and XOTH
t is a vector of 104 macroeconomic time series used in the previous example but with the

stock prices removed5. Beaudry and Portier (2006) only use one series of the six series in XTFP
t

and one series in XSP
t at the time. Forni, Gambetti, and Sala (2011) use the same TFP series and

some of our stock price measures.

Two identification strategies are considered:

i (Causal Ordering) estimate two common shocks from Xt = (XTFP
t , XSP

t ). Two series, one

from XTFP
t and one from XSP

t are selected. By ordering the TFP series ordered first, the H

that identifies the technology and the news shock.

ii (Block Ordering) εTFPt is estimated exclusively from XTFP
t and εSPt is estimated from XSP

t .

The identification is based on the structure(
εTFPt

εSPt

)
=

(
a11 0
a21 a22

)(
vTFPt

vNSt

)
.

Effectively, v̂TFPt = εTFPt and v̂NSt are the residuals from a projection of ε̂SPt onto v̂TFPt . Note

that under both identification strategies the estimated shocks are mutually uncorrelated.

Once v̂TFPt and v̂NSt are available, variable by variable FADL equations are estimated for all

series in Xt. The zero impact restrictions are imposed for all TFP measures, while all other FADL

regressions are left unrestricted. The results for the two identification strategies and for both

technology and news shocks (vTFPt and vNSt respectively) are given in Figures 4-7. We report

results for differenced data.

The Table 3 contains p-values for Wald test for the null hypothesis of no factor structure

in XTFP
t , XSP

t and XOTH
t variables. The abbreviations ‘RO’, ‘BO’ stand for Assumption RO

and BO respectively. The null hypothesis is strongly rejected for many series. Turning to the

impulse responses, the effects of technology shocks are in line with Christiano, Eichenbaum, and

Vigfusson (2003) who suggest that technology improvements are pro-cyclical for real activity and

hours measure, but contrary to Basu, Fernald, and Kimball (2006) and Gali (1999).

Of special interest here are the responses to a positive news shock. The forward looking variables

such as stock prices, housing starts, new orders and consumer expectations increase on impact.

Consumption reacts positively. The wealth effect does not seem important enough such that the

worked hours also increase on impact.

Our results are in line with Beaudry and Portier (2006) for the pro-cyclical response of worked

hours. However, Barsky and Sims (2011) also estimate positive response of consumption and find

an immediate decrease of hours. Forni, Gambetti, and Sala (2011) find that both consumption and

5The complete list of additional variables used in news shock application is available in Appendix

19



hours respond negatively on impact. These differences can be due to the choice of variables used

to identify the shocks and to the variables selected for analysis. In particular, these studies used a

small set of worked hours measures. We check the sensitivity of our results to a much broader set

of available indicators.

To this end, we assess the sensitivity of our results (under the assumption of a block structure)

to additional variables as follows:

a Estimate εOTHt from the macro data XOTH
t . Identification is now based onεTFPt

εSPt
εOTHt

 =

a11 0 0
a21 a22 0
a31 a32 a33

vTFPt

vNSt
vOTHt

 .

b change the ordering to εTFPt , εOTHt with εSPt ordered last in view of the forward looking

nature of stock prices.

These results are denoted Block 2 and Block 3 respectively. In a VAR setup, there would be 104

VARs to consider when there are 104 macro variables that might not be econometrically exogenous

to TFP and stock prices. In the factor setup, we only need to estimate one set of macro shocks

from 104 macro series. As shown in Figure 5, the effects of news shocks are smaller when the

macro shocks are present. In other words, omitted variables from the VAR could have biased the

estimated effects of news shocks. However, for an assumed q, the identified impulse responses are

robust to the ordering of the variables.

As is well known, VARs involving hours worked are sensitive to whether the hours series is in

level or in difference, see for example, Féve and Guay (2009). We use the specification labeled

Block 3 to further understand the dynamic response the level (Figure 8) and growth (Figure 9)

of average weekly hours (AWH) level to news shock. The dynamic responses of AWH and total

hours indices are plotted in Figure 9. Regardless of the data transformation, the hours variables

are pro-cyclical after the news technology shock. This exercise illustrates the FADL can be used

to check the robustness of the results to many other measures without affecting the identification

of structural shocks.

7 Conclusion

In this paper, we have proposed a new approach to analyze the dynamic effect of common shocks

in a data-rich environment. After estimating the common shocks from a large panel of data and

imposing a minimal set of identification restrictions, the impulse responses are obtained from an

autoregression in each variable of interest, augmented with a distributed lag of structural shocks.
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The FADL framework presents several advantages. The method is more robust to a fully

structural factor model when the identifying factor restrictions do not hold universally. Since the

impulse responses are obtained from a set of regressions, the restrictions are easy to impose, and

implications of the factor model can be tested. The estimation of common shocks is less likely to be

affected by the presence of weak factors. The FADL methodology is used to measure the effects of

monetary policy shocks, and to news and technology shocks. The approach allows us to go beyond

existing structural FAVAR, and to validate restrictions of the factor model.
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Appendix: Relation to Other Methods with Observable Factors

The estimated common shocks are treated as regressors of a FADL. As such, a priori restrictions on

the impulse response functions can be directly imposed in estimation of the FADL by least squares.

The approach is simpler and more transparent than existing implementations of structural FAVARs.

Consider the identification of monetary policy shocks in the presence of other shocks as in

Bernanke, Boivin, and Eliasz (2005). Their point of departure is a static factor model with latent

and observed factors:

Xt = ΛFFt + ΛRRt + ut (20)[
Ft
Rt

]
= Φ

[
Ft−1

Rt−1

]
+ ηt (21)

where Ft is vector of r latent factors and Rt is the observed factor (usually Federal Funds Rate or

3-month Treasury Bill). The authors organize the N = 120 data vector Xt into a block of slow-

moving’ variables that are largely predetermined, and another consisting of ‘fast moving’ variables

that are sensitive to contemporaneous news. The idiosyncratic errors are assumed to be serially

uncorrelated.

BBE Identification

1 Estimate Ft.

i Let Ĉ(Ft, Rt) be the K principal components of Xt.

ii Let XS
t be NS ‘slow’ moving variables that do not respond immediately to a monetary

policy shock. Let the K principal components of XS
t be C?(Ft).

iii Define F̂t = Ĉ(Ft, Rt) − b̂RRt where b̂R is obtained by least squares estimation of the

regression

Ĉ(Ft, Rt) = bCC
?(Ft) + bRRt + et.

2 Estimate the loadings by regressing Xt on F̂t and Rt: Λ̂F and Λ̂R.

3 Estimate the FAVAR given by (21) and let η̂t be the residuals. From the triangular decom-

position of the covariance of η̂t, let A0 be a lower triangular matrix with ones on the main

diagonal Then η̂t = Â0ε̂t are the monetary policy shocks.

4 Obtain IRFs for F̂t and Rt by inverting (21) and using Â0

5 Multiplying the IRFs in (3) by Λ̂F and Λ̂R to obtain the IRFs for Xt.
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The novelty of the BBE analysis is that Step (1) accommodates the observed factor Rt when

F̂t is being estimated. By construction, Ĉ(Ft, Rt) spans the space spanned by Ft and Rt while

C∗(Ft) spans the space of common variations in variables that do not respond contemporaneously

to monetary policy. Since Rt is observed, the regression then constructs the component of Ĉt that

is orthogonal to Rt. Once F̂t is available, Step (2) is straightforward. Under the BBE scheme, the

common shocks are identified in Step (3) when a FAVAR in (F̂t, Rt) is estimated. Because F̂t may

be correlated contemporaneously with Rt, the monetary policy shocks are identified by ordering Rt

after F̂t in (21).6

The lower triangular of A0 is not enough to identify the structural shocks as the response

depends on the product
(
ΛF ΛR

)
A0.7 Thus, BBE impose additional restrictions. In particular,

the K slow moving variables are ordered first in Xt. Furthermore, the K × K block of ΛF is

identity, and the first element in ΛR is zero. As a result, the first K+ 1×K+ 1 part of the product(
ΛF ΛR

)
A0 is lower triangular. For K = 2, 1 0 0

0 1 0
λ31 λ32 λ33

 1 0 0
a21 1 0
a31 a32 1


The structural model is just-identified.

Stock and Watson (2005) The SW approach treats monetary policy as a dynamic factor. The

identification assumptions are that (i) the monetary policy shock does not affect the slow-moving

variables contemporaneously; and (ii) the slow-moving shock and monetary policy affects the Fed

Funds rate contemporaneously. Thus, as in Bernanke, Boivin, and Eliasz (2005), the slow-moving

variables first, followed by the Fed funds rate, and then the fast-moving variables. The point of

departure is that εXt = Λεft + vXt is assumed to have a factor structure and εft = Gηt = GHvft.

Letting C = GH, the errors are related by

εXt = ΛCvft + vXt

where vft is of dimension q. The steps are as follows:

6Boivin, Giannoni, and Stevanović (2009) suggests an alternative way to estimate Ft that does not rely on orga-
nizing the variables into fast and slow.

1 Initialize F̂t to be the K first principal components of Xt.

2 (i) Regress Xt on F̂t and Rt, to obtain Λ̂F,j
t and Λ̂R,j

t . (ii) Compute X̃j
t = Xt − Λ̂R,0

t Rt (iii) Update F̂t as the

first K principal components of X̃t

By construction, F̂t is contemporaneously uncorrelated with Rt This is possible because the step that estimates the
latent factors controlling for the presence of the observed factors is separated from identification of structural shock.
In BBE, ηt depends on the choice of variables used in the first stage to estimate Ft.

7In BBE application, Step 1 estimates the loadings of slow moving variables to Rt close to zero.
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1 Let ε̂Xt into (ε̂slowX,t , ε̂fedX,t and ε̂fastX,t ) corresponding to the three types of variables.

2 Let ûFt, the residuals from a VAR in the static factors constructed from the full panel, X.

3 Let the factor component of εfedX,t be the fit from a reduced rank regression of ε̂slowX,t and ûFt.

4 Take the monetary shocks to be the residuals from a projection of of ε̂fedX,t onto v̂slowX,t .

If there are qslow and qfast factors in ε̂slowXt and ε̂fastXt respectively, then q = qslow + qfast + 1. The

identification scheme makes use of the fact that vslowX,t spans the space of εslowX,t and can thus be

identified from a projection of ε̂slowX,t on ûFt. An additional step is needed to estimate the common

variations between ûFt and ε̂slowX,t . This procedure sequentially estimates the rotation matrix H8.

Note that the identification restrictions are imposed directly on the impact coefficients matrix of

the structural moving average representation of Xt, and the structural model is overidentified. The

method is not easily generalizable to other models in which the shocks do not have a block recursive

structure implicit in the model.

FGLR: Forni, Giannone, Lippi, and Reichlin (2009) provides a framework for structural FAVAR

analysis. The method is applied to identify monetary policy in Forni and Gambetti (2010).

1 let Λ̂ be a N × r matrix of estimated loadings and F̂t be the static principal components.

Estimate a VAR in F̂t to get Γ̂(L) and the residuals ûFt.

2 Perform a spectral decomposition of the covariance matrix of ûFt. Let M be a diagonal matrix

consisting of the largest eigenvalue of ûF û
′
F and let K be the r × q matrix of eigenvectors.

3 Let S = KM . The non-orthogonalized impulse responses are given by

Ψ̈η(L) = Λ̂(I − Γ̂(L))−1S.

Step (2) is a consequence of the fact that the VAR in F̂t is singular. Step (3) rotates Ψ̈η by a

q × q matrix of restrictions. Unlike the partial identification analysis of Stock and Watson (2005),

this method estimates the impulse responses for the system as a whole. Mis-specification in a

sub-system can affect the entire analysis, but the estimates are more efficient if every aspect of the

factor model is correctly specified.

8Boivin, Giannoni, and Stevanović (2009b) find that the rotation of principal components by Ĥ gives interpretable
factors.
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Table 1: Simulations DGP 1

corr(vft, v̂ft)

a. Recursive Ordering b. Block Ordering

DGP 1a

(
0.9844 0.0308
0.0636 0.9790

) (
0.9825 0.0562
0.0953 0.9030

)
DGP 1b

(
0.9843 0.0313
0.0638 0.9777

) (
0.9805 0.0874
0.1188 0.8706

)
RMSE of Impulse Responses: vft observed

vf1 → X1 vf2 → X1 vf1 → XN vf2 → XN

DGP 1a 0.0415 0.0412 0.0426 0.0414
DGP 1b 0.0409 0.0394 0.0422 0.0425

RMSE of Impulse Responses Using v̂ft
a. Recursive Ordering b. Block Ordering

vf1 → X1 vf2 → X1 vf1 → XN vf2 → XN vf1 → X1 vf2 → X1 vf1 → XN vf2 → XN

DGP 1a 0.2452 0.2228 0.2299 0.1963 0.2558 0.2642 0.2366 0.2032
DGP 1b 0.2994 0.2453 0.2702 0.1953 0.2954 0.3556 0.2556 0.2578

Table 2: Simulations DGP 2

corr(vmpft , v̂
mp
ft )

a. Recursive Ordering b. Block Ordering
DGP 2a 0.9747 0.9629
DGP 2b 0.9774 0.9620

RMSE of Impulse Responses: vf Observed

vf2 → X1 vf2 → XN

DGP 2a 0.0406 0.0417
DGP 2b 0.0399 0.0419

RMSE of Impulse Responses: vf Estimated

a. Recursive Ordering b. Block Ordering
vf2 → X1 vf2 → XN vf2 → X1 vf2 → XN

DGP 2a 0.2743 0.2285 0.2760 0.1996
DGP 2b 0.3155 0.2781 0.3391 0.2466
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Table 3: News Shock, p-values from Wald test for H0 : αyf (L) = 0

Variables in (XTFP
t , XSP

t ) RO BO BO2 BO3

TFP 0 0 0 0
TFP-util 0 0 0 0
TFP-I 0 0 0 0
TFP-C 0 0 0 0
TFP-I-util 0 0 0 0
TFP-C-util 0 0 0 0
S&P: composite 0 0 0 0
S&P: industrial 0 0 0 0
S&P: dividend 0 0 0 0
S&P: price/earning 0 0 0 0
DJ: industrial 0 0 0 0
DJ: composite 0 0 0 0
DJ: transportation 0 0 0 0
DJ: utilities 0 0 0 0

Variables in XOTH
t

GDP 0 0 0 0
IP 0 0 0 0
RONSUMPTION 0 0 0 0
INVESTMENT 0 0 0 0
HOURS 0 0 0 0
HOURS: Overtime 0 0 0 0
EMPLOYEES: NONFARM 0,0262 0,0399 0 0
CLF: EMPLOYED 0 0 0 0
HELP-WANTED ADV 0 0 0 0
AVG HOURLY EARNINGS 0 0 0 0
CAPACITY UTILIZATION 0 0 0 0
RONSUMER EXPECTATIONS 0 0 0 0
UR 0 0 0 0
EMPLOYEES ROMPENSATION 0 0 0 0
RONSUMPTION: NONDUR 0 0 0 0
RONSUMPTION: DURAB 0 0 0 0
RONSUMER CREDIT 0,2422 0,2772 0 0
HOUSING STARTS 0,0062 0,0027 0 0
NEW ORDERS 0 0 0 0
INVENTORIES 0,0718 0,1742 0 0
FFR 0,3513 0,2612 0 0
ROMMODITY PRICES 0,0299 0,1384 0 0
CPI 0,3527 0,5556 0 0
GDP DEFLATOR 0,0438 0,0729 0 0

RO and BO refer to identification by causal and block ordering, respectively. The two blocks of data are XTFP
t and

XSP
t . Data from the macro block XM

t are also used in BO2 and BO3. BO2 uses the ordering TFP, SP, Macro. BO3

orders the macro variables before the stock prices.
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Figure 1: Example 1: dynamic responses to a contractionary monetary policy shock
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Figure 2: Example 1: dynamic responses to a monetary policy shock (aggregate data)
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Figure 3: Example 1: dynamic responses to a monetary policy shock (disaggregate data)
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Figure 4: Example 2, dynamic responses of XTFP
t and XSP

t to a positive technology shock
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Figure 5: Example 2, dynamic responses of some series in XOTH
t to a positive technology shock
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Figure 6: Example 2, dynamic responses of XTFP
t and XSP

t to a positive news shock
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Figure 7: Example 2, dynamic responses of selected series in XOTH
t to a positive news shock
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Figure 8: Example 2, dynamic responses of selected hours measures
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8 Appendix C: Data Sets

The transformation codes are: 1 no transformation; 2 first difference; 4 logarithm; 5 first

difference of logarithm; 0 variable not used in the estimation (only used for transforming other

variables). A * indicate a series that is deflated with the GDP deflator (series #89).

8.1 Data used in monetary policy shock example

No. Series Code T-Code Series Description
1 DRIINTL:GDPRC@US.Q 5 NIA REAL GROSS DOMESTIC PRODUCT (CHAINED-2000), SA - U.S.
2 USCEN:GDPGDR.Q 5 REAL GDP-GDS,BILLIONS OF CH (2000) $,SAAR-US
3 USCEN:GDPSVR.Q 5 REAL GDP-SVC,BILLIONS OF CH (2000) $,SAAR-US
4 USCEN:GDPSR.Q 5 REAL GDP-STRUC,BILLIONS OF CH (2000) $,SAAR-US
5 BASIC:IPN11.M 5 INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL
6 BASIC:IPN300.M 5 INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS
7 BASIC:IPN12.M 5 INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS
8 BASIC:IPN13.M 5 INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS
9 BASIC:IPN18.M 5 INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS
10 BASIC:IPN25.M 5 INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT
11 BASIC:IPN32.M 5 INDUSTRIAL PRODUCTION INDEX - MATERIALS
12 BASIC:IPN34.M 5 INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS
13 BASIC:IPN38.M 5 INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS
14 BASIC:IPN10.M 5 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX
15 USCEN:UTLB00004.M 1 CAPACITY UTILIZ-MFG,SA-US
16 BASIC:PMI.M 1 PURCHASING MANAGERS’ INDEX (SA)
17 BASIC:PMP.M 1 NAPM PRODUCTION INDEX (PERCENT)
18 DRIINTL:WS@US.Q 5* NIA NOMINAL TOTAL COMPENSATION OF EMPLOYEES, SA - U.S.
19 USCEN:YPR.M 5 PERS INCOME CH 2000 $,SA-US
20 USCEN:YP@V00C.M 5 PERS INCOME LESS TRSF PMT CH 2000 $,SA-US
21 USCEN:AHPMF.M 5* AHE,PROD WORKERS: MFG,SA-US
22 USCEN:AHPCON.M 5* AHE,PROD WORKERS: CONSTR,SA-US
23 USCEN:HPMF.M 5 AWH,PROD WORKERS: MFG,SA-US
24 USCEN:HOPMD.M 5 AVG WEEKLY OT,PROD WORKERS: DUR,SA-US
25 BASIC:LHEL.M 5 INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)
26 BASIC:LHELX.M 1 EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF
27 BASIC:LHEM.M 5 CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA)
28 BASIC:LHNAG.M 5 CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA)
29 BASIC:LHUR.M 1 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)
30 BASIC:LHU680.M 1 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
31 BASIC:LHU5.M 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
32 BASIC:LHU14.M 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)
33 BASIC:LHU15.M 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)
34 BASIC:LHU26.M 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)
35 BASIC:CES001.M 5 EMPLOYEES, NONFARM - TOTAL NONFARM
36 BASIC:CES002.M 5 EMPLOYEES, NONFARM - TOTAL PRIVATE
37 BASIC:CES003.M 5 EMPLOYEES, NONFARM - GOODS-PRODUCING
38 USCEN:CR.Q 5 REAL PCE,BILLIONS OF CH (2000) $,SAAR-US
39 USCEN:JQCDR.Q 5 REAL PCE-DUR,QTY INDEX (2000=100),SA,SA-US
40 USCEN:JQCNR.Q 5 REAL PCE-NDUR,QTY INDEX (2000=100),SA,SA-US
41 USCEN:JQCSVR.Q 5 REAL PCE-SVC,QTY INDEX (2000=100),SA,SA-US
42 USCEN:JQCXFAER.Q 5 REAL PCE EX FOOD&ENERGY,QTY INDEX (2000=100),SAAR-US
43 DRIINTL:CGRCUS.Q 5 REAL GOVERNMENT CONS. EXPEND.& GROSS INVESTMENT (CHAINED-2000), SA - U.S.
44 USCEN:I.Q 5* GROSS PRIV DOM INVEST,BILLIONS OF $,SAAR-US
45 USCEN:IF.Q 5* GROSS PRIV DOM INVEST-FIXED,BILLIONS OF $,SAAR-US
46 USCEN:IFNRE.Q 5* GROSS PRIV DOM INVEST-FIXED NONRES,BILLIONS OF $,SAAR-US
47 USCEN:IFRES.Q 5* PRIV FIXED INVEST-RES-STRUC,BILLIONS OF $,SAAR-US
48 USCEN:IFRE.Q 5* GROSS PRIV DOM INVEST-FIXED RES,BILLIONS OF $,SAAR-US
49 USCEN:II.Q 1 GROSS PRIV DOM INVEST-CH IN PRIV INVENT,BILLIONS OF $,SAAR-US
50 USCEN:IIF.Q 1 GROSS PRIV DOM INVEST-CH IN PRIV INVENT-FARM,BILLIONS OF $,SAAR-US
51 BASIC:HSFR.M 4 HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA
52 BASIC:HMOB.M 4 MOBILE HOMES: MANUFACTURERS’ SHIPMENTS (THOUS.OF UNITS,SAAR)
53 BASIC:PMNV.M 1 NAPM INVENTORIES INDEX (PERCENT)
54 BASIC:PMNO.M 1 NAPM NEW ORDERS INDEX (PERCENT)
55 BASIC:PMDEL.M 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)
56 BASIC:MOCMQ.M 5 NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI)
57 BASIC:MSONDQ.M 5 NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI)
58 USCEN:M.Q 5 IMPORTS OF GDS&SVC,BILLIONS OF $,SAAR-US
59 USCEN:X.Q 5 EXPORTS OF GDS&SVC,BILLIONS OF $,SAAR-US
60 BASIC:FSPCOM.M 5 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)
61 BASIC:FSPIN.M 5 S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)
62 BASIC:FSDXP.M 1 S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)
63 BASIC:FSPXE.M 1 S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)
64 BASIC:EXRUK.M 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
65 BASIC:EXRCAN.M 5 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)
66 BASIC:FYGM3.M 1 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)
67 BASIC:FYGM6.M 1 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)
68 BASIC:FYGT1.M 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)
69 BASIC:FYGT5.M 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)
70 BASIC:FYGT10.M 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)
71 BASIC:FYAAAC.M 1 BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM)
72 BASIC:FYBAAC.M 1 BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM)
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73 FYGM6-FYFF 1
74 FYGM3-FYFF 1
75 FYGT1-FYFF 1
76 FYGT5-FYFF 1
77 FYGT10-FYFF 1
78 FYAAAC-FYFF 1
79 FYBAAC-FYFF 1
80 BASIC:FM1.M 5 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA)
81 BASIC:FM2.M 5 MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$)
82 USCEN:MNY2@00.M 5 MONEY SUPPL-M2 IN 2000 $,SA-US
83 BASIC:FMFBA.M 5 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)
84 BASIC:FMRRA.M 5 DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA)
85 BASIC:FMRNBA.M 2 DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA)
86 USCEN:ALCIBL00Z.M 5 COML&IND LOANS OUTST,SA-US
87 BASIC:FCLBMC.M 1 WKLY RP LG COM’L BANKS:NET CHANGE COM’L & INDUS LOANS(BIL$,SAAR)
88 BASIC:CCINRV.M 5 CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19)
89 DRIINTL:PGDP@US.Q 5 NIA PRICE DEFLATOR - GROSS DOMESTIC PRODUCT, SA - U.S.
90 DRIINTL:PCP@US.Q 5 NIA PRICE DEFLATOR - PRIVATE CONSUMPTION EXPENDITURE, SA - U.S.
91 USCEN:PDII.Q 5 GROSS PRIV DOM INVEST,PRICE DEFLATORS (2000=100),SA,SA-US
92 USCEN:JPCD.Q 5 PCE-DUR,PRICE INDEX (2000=100),SA,SA-US
93 USCEN:JPCN.Q 5 PCE-NDUR,PRICE INDEX (2000=100),SA,SA-US
94 USCEN:JPCSV.Q 5 PCE-SVC,PRICE INDEX (2000=100),SA,SA-US
95 BASIC:PUXM.M 5 CPI-U: ALL ITEMS LESS MEDICAL CARE (82-84=100,SA)
96 BASIC:PUXHS.M 5 CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA)
97 BASIC:PUXF.M 5 CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA)
98 BASIC:PUS.M 5 CPI-U: SERVICES (82-84=100,SA)
99 BASIC:PUCD.M 5 CPI-U: DURABLES (82-84=100,SA)
100 BASIC:PUC.M 5 CPI-U: COMMODITIES (82-84=100,SA)
101 BASIC:PUNEW.M 5 CPI-U: ALL ITEMS (82-84=100,SA)
102 BASIC:PWFSA.M 5 PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA)
103 BASIC:PMCP.M 1 NAPM COMMODITY PRICES INDEX (PERCENT)
104 UOMO83 1 COMPONENT INDEX OF CONSUMER EXPECTATIONS, NSA, CONFBOARD AND U.MICH.
105 DRIINTL:JLEAD@US.Q 5 COMPOSITE CYCLICAL INDICATOR (1996) - LEADING, SA - U.S.
106 DRIINTL:JLAG@US.Q 5 COMPOSITE CYCLICAL INDICATOR (1996) - LAGGING, SA - U.S.
107 DRIINTL:JCOIN@US.Q 5 COMPOSITE CYCLICAL INDICATOR (1996) - COINCIDENT, SA - U.S.
108 USCEN:NC16&Z.M 0 CIVILIAN NONINSTITUTIONAL POP: 16 YEARS&OVER,SA-US
109 BASIC:FYFF.M 1 INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)

8.2 Additional series used in news shock example

No. Series Code T-Code Series Description
TFP measures

1 1 FERNALDS’S BUSINESS SECTOR TFP
2 1 FERNALDS’S BUSINESS SECTOR UTILIZATION-ADJUSTED TFP
3 1 FERNALDS’S INVESTMENT SECTOR TFP
4 1 FERNALDS’S INVESTMENT SECTOR UTILIZATION-ADJUSTED TFP
5 1 FERNALDS’S CONSUMPTION SECTOR TFP
6 1 FERNALDS’S CONSUMPTION SECTOR UTILIZATION-ADJUSTED TFP

SP measures
7 BASIC:FSPCOM.M 5 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)
8 BASIC:FSPIN.M 5 S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)
9 BASIC:FSDXP.M 1 S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)
10 BASIC:FSPXE.M 1 S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)
11 5 DOW JONES INDEX: INDUSTRIALS
12 5 DOW JONES INDEX: COMPOSITE
13 5 DOW JONES INDEX: TRANSPORTATION
14 5 DOW JONES INDEX: UTILITIES

OTHER measures of hours worked
15 AVG WEEKLY HOURS: MANUFACTURING
16 AVG WEEKLY HOURS: CONSTRUCTION
17 AVG WEEKLY HOURS: DURABLE GOODS
18 AVG WEEKLY HOURS: GOODS PRODUCING
19 AVG WEEKLY HOURS: NONDURABLE GOODS
20 AWH INDEX: MANUFACTURING
21 AWH INDEX: CONSTRUCTION
22 AWH INDEX: DURABLE GOODS
23 AWH INDEX: GOODS PRODUCING
24 AWH INDEX: NONDURABLE GOODS
25 TOTAL HOURS INDEX: BUSINESS SECTOR
26 TOTAL HOURS INDEX: NONFARM BUSINESS SECTOR
27 TOTAL HOURS INDEX: NONFINANCIAL CORPORATION SECTOR
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