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“When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind:
it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science.”

[Kelvin (1891)]

“None of us anticipated the magnitude of the ripple effects.”

[Merrill Lynch President Gregory Fleming
on the financial crisis of 2007-2008,
as reported in Lowenstein (2010)]

1 Introduction

Connectedness would appear central to modern risk measurement and management, and

indeed it is. It features prominently in key aspects of market risk (return connectedness

and portfolio concentration), credit risk (default connectedness), counter-party and grid-

lock risk (bilateral and multilateral contractual connectedness), and not least, systemic risk

(system-wide connectedness). It is also central to understanding underlying fundamental

macroeconomic risks, in particular business cycle risk (intra- and inter-country real activity

connectedness).

Perhaps surprisingly, then, connectedness remains a rather elusive concept, in many

respects incompletely defined and poorly measured. Correlation-based measures remain

widespread, for example, yet they measure only pairwise association and are largely wed

to linear Gaussian thinking, making them of limited value in financial-market contexts.

Different authors chip away at this situation in different ways. The equi-correlation approach

of Engle and Kelly (2009), for example, uses average correlations across all pairs. The

CoVaR approach of Adrian and Brunnermeier (2008) and the marginal expected shortfall

approach of Acharya et al. (2010) track association between individual-firm and overall-

market movements and also rely less on linear Gaussian methods. Although these and

various other measures are certainly of interest, they measure different things, and a unified

framework remains elusive.

To address this situation, in this paper we develop and apply a unified framework for

conceptualizing and empirically measuring connectedness at a variety of levels, from pairwise



through system-wide, via variance decompositions from approximating models. In section 2

we introduce the conceptual framework and measures, in population. In section 2.4 we relate

our measures to some of those in the burgeoning network literatures; the relationships turn

out to be direct and important. In section 3 we treat the sample estimation of connectedness,

with detailed attention to allowing for its time-variation. Finally, in section 4, we apply our

framework to study connectedness at all levels among a large set of return volatilities of

U.S. financial institutions during the last decade, including during the financial crisis of

2007-2008. We conclude in section 5.

2 Population Connectedness

Our approach to connectedness is based on assessing shares of forecast error variation in

various locations (firms, markets, countries, etc.) due to shocks arising elsewhere. This

is intimately related to the familiar econometric notion of a variance decomposition, in

which the forecast error variance of variable i is decomposed into parts attributed to the

various variables in the system. We denote by dHij the ij-th H-step variance decomposition

component; that is, the fraction of variable i’s H-step forecast error variance due to shocks

in variable j. All of our connectedness measures – from simple pairwise to system-wide –

are based on the “non-own,” or “cross,” variance decompositions, dHij , i, j = 1, ..., N , i 6= j.

The key is i 6= j.

2.1 The Population Data-Generating Process

Consider an N -dimensional covariance-stationary data-generating process (DGP) with or-

thogonal shocks: xt = Θ(L)ut, Θ(L) = Θ0 + Θ1L + Θ2L
2 + ..., E(utu

′
t) = I. Note that Θ0

need not be diagonal. All aspects of connectedness are contained in this very general repre-

sentation. In particular, contemporaneous aspects of connectedness are summarized in Θ0,

and dynamic aspects in {Θ1,Θ2, ...}. Nevertheless, attempting to understand connectedness

via the potentially many hundreds of coefficients in {Θ0,Θ1,Θ2, ...} is typically fruitless. One

needs a transformation of {Θ0,Θ1,Θ2, ...} that better reveals and more compactly summa-

rizes connectedness. Variance decompositions achieve this.
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x1 x2 ... xN From Others

x1 dH11 dH12 · · · dH1N ΣN
j=1d

H
1j, j 6= 1

x2 dH21 dH22 · · · dH2N ΣN
j=1d

H
2j, j 6= 2

...
...

...
. . .

...
...

xN dHN1 dHN2 · · · dHNN ΣN
j=1d

H
Nj, j 6= N

To Others ΣN
i=1d

H
i1 ΣN

i=1d
H
i2 · · · ΣN

i=1d
H
iN

1
N

ΣN
i,j=1d

H
ij

i 6= 1 i 6= 2 i 6= N i 6= j

Table 1: Connectedness Table Schematic. See Text for details.

2.2 The Population Connectedness Table

The simple Table 1, which we call a connectedness table, proves central for understanding

the various connectedness measures and their relationships. Its main upper-left N×N block

contains the variance decompositions. For future reference we call that upper-left block a

“variance decomposition matrix,” and we denote it by DH = [dHij ]. The connectedness table

simply augments DH with a rightmost column containing row sums, a bottom row containing

column sums, and a bottom-right element containing the grand average, in all cases for i 6= j.

The off-diagonal entries of DH are the parts of the N forecast-error variance decompo-

sitions of relevance from a connectedness perspective; in particular, they measure pairwise

directional connectedness. Hence we define the pairwise directional connectedness from j to

i as

CH
i←j = dHij .

Note that in general CH
i←j 6= CH

j←i, so there are N2 − N separate pairwise directional con-

nectedness measures. They are analogous to bilateral imports and exports for each of a set

of N countries.

Sometimes we are interested in net, as apposed to gross, pairwise directional connected-

ness. We immediately define net pairwise directional connectedness as

CH
ij = CH

j←i − CH
i←j.

There are N2−N
2

net pairwise directional connectedness measures, analogous to bilateral trade

balances.

Now consider not the individual elements of DH , but rather its off-diagonal row or column

sums. Take the first row, for example. The sum of its off-diagonal elements gives the share of
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the H-step forecast-error variance of variable 1 coming from shocks arising in other variables

(all other, as opposed to a single other). Hence we call the off-diagonal row and column

sums, labeled “from” and “to” in the connectedness table, the total directional connectedness

measures. That is, we define total directional connectedness from others to i as

CH
i←• =

N∑
j=1

j 6=i

dHij ,

and total directional connectedness to others from j as

CH
•←j =

N∑
i=1
i 6=j

dHij .

There are 2N total directional connectedness measures, N “to others,” or “transmitted,”

and N “from others,” or “received,” analogous to total exports and total imports for each

of a set of N countries.

Just as with pairwise directional connectedness, sometimes we are interested in net total

effects. We define net total directional connectedness as

CH
i = CH

•←i − CH
i←•.

There are N net total directional connectedness measures, analogous to the total trade

balances of each of a set of N countries.

Finally, the grand total of the off-diagonal entries in DH (equivalently, the sum of the

“from” column or “to” row) measures total connectedness. We have1

CH =
1

N

N∑
i,j=1

i 6=j

dHij .

There is just one total connectedness measure, as total connectedness distills a system into

a single number analogous to total world exports or total world imports. (The two are of

course identical.)

The connectedness table makes clear how one can begin with the most disaggregated

1Note that we construct total connectedness by taking off-diagonal DH variation relative to total DH

variation (N), so that CH is expressed as a decimal share, as with “from” total directional connectedness.
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(e.g., microeconomic, firm-level, pairwise-directional) connectedness measures and aggregate

them in various ways to obtain macroeconomic economy-wide total directional and total

connectedness measures. Different agents may be relatively more interested in one or another

of the measures. For example, firm i may be maximally interested in how various others

connect to it (CH
i←j, for various j), or how all others connect to it, CH

i←•. In contrast,

regulators might be more concerned with identifying systemically important firms j, in the

sense of large total directional connectedness to others from j, CH
•←j, and they might also be

more concerned with monitoring total (system-wide) connectedness CH .

2.3 Correlated Shocks

In the orthogonal structural system discussed thus far, the variance decompositions are eas-

ily calculated, because orthogonality ensures that the variance of a weighted sum is simply

an appropriately-weighted sum of variances. But reduced-form shocks are rarely orthogo-

nal. To identify uncorrelated structural shocks from correlated reduced-form shocks, one

must, inescapably, make assumptions. Sometimes this is more-or-less transparent, as in the

Cholesky-factor vector autoregression (VAR) identifications popularized by Sims (1980), or in

any of the scores of subsequent “structural” VAR identifications. Sometimes it is less trans-

parent, but equally true, as in the generalized variance decomposition (GVD) framework

of Koop et al. (1996) and Pesaran and Shin (1998), or in more deeply-structural dynamic

stochastic general equilibrium approaches like DiNicolo and Lucchetta (2010), which embody

large sets of maintained assumptions.

Identifying assumptions are just that – assumptions – and any set of identifying assump-

tions may fail. Results based on traditional Cholesky-factor identification, for example, may

be sensitive to ordering, as Cholesky-factor identification amounts to assumption of a partic-

ular recursive ordering. Many models, moreover, are exactly- as opposed to over-identified,

so that the identifying restrictions cannot be tested. The upshot is that reasonable people

may disagree as to their preferred assumptions, and they often do. We have nothing new to

add; one must make an assumption and move forward conditional upon (and cognizant of)

the assumption.

Our own preferences run toward Cholesky and related identifications such as GVD. We

often find that total connectedness is robust to Cholesky ordering; that is, the range of total

connectedness estimates across orderings is often quite small. Directional connectedness,

however, is sometimes more sensitive to Cholesky ordering, which enhances the appeal of

GVDs. Like Cholesky-factor variance decompositions, GVDs rely on a largely data-based
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identification scheme, but they are independent of ordering.2

GVDs were introduced in Pesaran and Shin (1998), which builds on Koop et al. (1996).3

The H-step generalized variance decomposition matrix DgH = [dgHij ] has entries

dgHij =
σ−1jj

∑H−1
h=0 (e′iΘhΣej)

2∑H−1
h=0 (e′iΘhΣΘ

′
hei)

,

where ej is a selection vector with jth element unity and zeros elsewhere, Θh is the coefficient

matrix multiplying the h-lagged shock vector in the infinite moving-average representation

of the non-orthogonalized VAR, Σ is the covariance matrix of the shock vector in the non-

orthogonalized VAR, and σjj is the jth diagonal element of Σ.4 Because shocks are not

necessarily orthogonal in the GVD environment, sums of forecast error variance contributions

are not necessarily unity (that is, row sums of Dg are not necessarily unity).5 Hence we base

our generalized connectedness indexes not on Dg, but rather on D̃g = [d̃gij], where d̃gij =
dgij∑N
j=1 d

g
ij

. By construction
∑N

j=1 d̃
g
ij = 1 and

∑N
i,j=1 d̃

g
ij = N . Using D̃g we can immediately

calculate generalized connectedness measures C̃, C̃•←j, C̃i←•, C̃i, C̃i←j, C̃j←i, and C̃ij.

2.4 Relationship to the Network Literature

Networks are everywhere in modern life, from power grids to Facebook. Not surprisingly,

research on networks has grown explosively in recent years.6 A network N is composed of N

nodes and L links between nodes. The distance sij between two nodes i and j is the smallest

number of links that must be traversed to go from i to j. N is connected if sij ≤ N−1, ∀i, j,
and one is naturally led to think about measures of the strength of network connectedness.

That is, presumably two connected networks need not be equally strongly connected. But

then deep questions arise. Just what is strength of network connectedness? Is it a pairwise

or system-wide concept, or both, or neither? How, if at all, might it be related to the notion

of connectedness that we have proposed independently and thus far emphasized, based on

2GVDs of course make other assumptions, most notably normality of shock distributions. We will discuss
this later in our application to equity return volatilities in section 4.

3We refer the reader to the original papers for motivation and background.
4Note the typo in the original paper of Pesaran and Shin (1998), p. 20. They write σ−1

ii but should have
written σ−1

jj .
5We now drop the “H” superscripts, because from this point onward they are not needed for clarity.
6Newman (2010) and Jackson (2008) provide good general and economic introductions, respectively.

Seminal contributions to the characterization, detection and estimation of causal links in networks range
from the early work of Pearl (2000) to the more recent work of White and Chalak (2009).
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variance decompositions?

To approach the issue of measuring network connectedness, we need to analyze the math-

ematical structure of networks a bit more deeply. A network is simply an N ×N adjacency

matrix A of zeros and ones, A = [Aij], where Aij = 1 if nodes i and j are linked, and Aij = 0

otherwise. Note that A is symmetric, because if i and j are connected, then so too must be

j and i. Mathematically (i.e., algebraically), the adjacency matrix A is the network, and

all network properties are embedded in A. Hence any sensible connectedness measure must

be based on A. Nevertheless, there is no single, all-encompassing measure, and several have

been proposed.7 The most important and popular by far – as well as the most useful for

our purposes – are based on the idea of node degree (and a closely-related concept, network

diameter), to which we now turn.

2.4.1 Degree and Diameter

A node’s degree is its number of links to other nodes. Immediately the degree of node i is

δi =
N∑
j=1

Aij =
N∑
j=1

Aji.

We can of course examine the pattern of degrees across nodes. The degree distribution is

the probability distribution of degrees across nodes. It is a discrete univariate distribution

with support 0, ..., (N −1), and aspects of its shape (location, scale, skewness, tail thickness,

etc.) are closely linked to aspects of network behavior.8 As regards the aspect of network

behavior that concerns us – connectedness – the location of the degree distribution is ob-

viously key, and the standard location measure is of course the mean. Hence the mean of

the degree distribution (“mean degree”) has emerged as a canonical benchmark measure of

overall network connectedness. The larger the mean degree, the greater is overall network

connectedness.

The just-described adjacency matrix and degree distribution might more precisely be

called “1-step,” as the links are direct. However, even if i is not directly linked to j, i may

be linked to k, and k to j, so that i and j are linked at a distance of two steps rather than

one. The distinction between 1-step and multi-step adjacency emphasizes distance. Recall

that, as introduced earlier, the distance sij between two nodes i and j is the smallest number

7 Bech and Atalay (2011) and Adamic et al. (2010) provide good reviews and financial applications of
network-theoretic connectedness measures.

8The support of 0, ..., (N − 1) stems from our adoption of the standard convention of writing Aii = 0,∀i.
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of links that must be traversed to go from i to j. Distance is a two-node property, in contrast

to degree, which is a single-node property. Closely related to the idea of distance is the idea

of diameter. The diameter of a network is the maximum distance between any two nodes,

smax = maxi,jsij. Diameter is another canonical benchmark measure of overall network

connectedness. The smaller the network diameter, the greater is overall connectedness.

A beautiful large-N approximation relates network diameter, network mean degree and

network size in Erdős-Rényi random networks (Erdős and Rényi (1959)):9

smax ≈
lnN

lnE(δ)
.

This “network diameter grows only as lnN” approximation is typically introduced as a

mathematically-precise characterization of the “small-world” phenomenon, namely that di-

ameters tend to be small even for huge networks.10 For our purposes, however, it is useful

because it emphasizes in a very precise way the centrality of the mean degree as a measure

of network connectedness. As we shall now see, our earlier-proposed connectedness measures

are intimately related to certain network node degrees and mean degree.

2.4.2 Variance Decompositions as Weighted, Directed Networks

Interestingly, it turns out that our connectedness measures, early variants of which were

proposed in Diebold and Yilmaz (2009) independently of the network literature, are closely

related to aspects of network connectedness. Indeed we are now in a position to notice that

variance decompositions are networks. More precisely, the variance decomposition matrix

D, which defines our connectedness table and all associated connectedness measures, is

a network adjacency matrix A. Hence network connectedness measures may be used in

conjunction with variance decompositions to understand connectedness among components.

9See, for example, Newman (2010), p. 420. Erdős-Rényi random networks have the simplest imaginable
probabilistic model of link formation: independent Bernoulli trials with fixed probability θ. Hence the degree
distribution is binomial, f(δ) =

(
N−1
δ

)
θδ(1 − θ)N−1−δ. Erdős-Rényi random networks have emerged as a

canonical benchmark, but they are sometimes poor descriptions of real-world networks, due for example
to strategic aspects of link formation such as clustering, which refers to the fact that in real networks
two “people” with a common “friend” are more likely to be friends than two randomly-selected people.
Interestingly, however, Watts and Strogatz (1998) have shown that the “network diameter grows only as
lnN” approximation nevertheless holds in networks with small clusters of linked nodes with just a few
long-range links.

10For example, for N = 300, 000, 000 (roughly the U.S. population) and mean degree E(δ) = 20, network
diameter is still small (smax ≈ 6). That is, even if every person in the U.S. is linked to only twenty others
on average, then the approximate maximum number of steps needed to link any two people is nevertheless
only six.
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The networks defined by variance decompositions, however, are rather more sophisti-

cated than the classical network structures sketched thus far. First, the adjacency matrix A

(variance decomposition matrix D) is not filled simply with 0-1 entries; rather, the entries

are weights, with some potentially strong and others potentially weak. Second, the links are

directed ; that is, the strength of the ij link is not necessarily the same as that of the ji link,

so the adjacency matrix is generally not symmetric. Third, there are constraints on the row

sums of A. In particular, each row must sum to 1 because the entries are variance shares.

Hence we write the diagonal elements as Aii = 1 −
∑N

j=1

j 6=i
Aij. Note in particular that the

diagonal elements of A are no longer 0.

Weighted, directed versions of the earlier-introduced network connectedness statistics

are readily defined, including degrees, degree distributions, distances and diameters. For

example, node degrees are now obtained not by summing zeros and ones, but rather by

summing weights in [0, 1]. Moreover, there are now “to-degrees” and “from-degrees,” corre-

sponding to row sums and column sums.11 The from-degree of node i is δfromi =
∑N

j=1

j 6=i
Aij.

The from-degree distribution is the probability distribution of from degrees across nodes.

It is a univariate distribution with support on [0, 1]. Similarly, the to-degree of node j is

δtoi =
∑N

i=1
i 6=j

Aij. The to-degree distribution is the probability distribution of to degrees across

nodes. It is a univariate distribution with support on [0, N ].

By now the relationships between our earlier-defined connectedness measures and those

used in the network literature should be apparent. First, our total directional connectedness

measures Ci←• and C•←j are precisely the from-degrees and to-degrees, respectively, associ-

ated with the notes of the weighted directed network D. Second, our total connectedness

measure C is simply the mean degree of the network D (to or from – it’s the same either

way, because the sum of all row sums must equal the sum of all column sums).

3 Sample Connectedness

Clearly C depends on the set of variables x whose connectedness is to be examined, the

predictive horizon H for variance decompositions, and the dynamics A(L), so we write

C(x,H,A(L)).12 In reality A(L) is unknown and must be approximated (e.g., using a

finite-ordered vector autoregression). Recognizing the centrality of the approximating model

11Our to-degrees and from-degrees are often called “out-degrees” and “in-degrees” in the network literature.
12The same holds, of course, for the various directional connectedness measures, so we use C(x,H,A(L))

as a stand-in for all our connectedness measures.
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adopted, we write C(x,H,A(L),M(L; θ)), where M(L; θ) is a dynamic approximating model

with finite-dimensional parameter θ. One hopes that M(L; θ)) is in some sense close to the

true population dynamics A(L) for some pseudo-true parameter configuration θ0, but there

is of course no guarantee.

In addition, and crucially, we want to allow for time-varying connectedness, which allows

us to move from the static, unconditional, perspective implicitly adopted thus far, to a dy-

namic, conditional perspective. Time-varying A(L), and hence time-varying connectedness,

may arise for a variety of reasons. A(L) may evolve slowly with evolving tastes, technolo-

gies and institutions, or it may vary with the business cycle, or it may shift abruptly with

financial market environment (e.g., crisis, non-crisis). Whether and how much A(L) varies

is ultimately an empirical matter and will surely differ across applications, but in any event

it would be foolish simply to assume it is constant. Hence we allow the connection table and

all of its elements to vary over time, and we write Ct(x,H,At(L),M(θt)).

Finally, everything we have written thus far refers to the population, whereas in reality

we have available only finite samples of observed data. That is, we must use estimated

approximating models, so we write Ĉt(x,H,At(L),M(θ̂t)), where the data sample runs from

t = 1, ..., T . To economize on notation we henceforth drop At(L), because it is determined by

nature rather than a choice made by the econometrician, relying on the reader to remember

its relevance and simply writing Ĉt(x,H,M(θ̂t)). In what follows we successively discuss

aspects of x, H and M(θ̂t).

3.1 The Reference Universe, x

Connectedness measurements are defined only with respect to a reference universe, namely

the set of x’s defining the object of interest to be studied. Choice of x has important implica-

tions for the appropriate approximating model; for example, x may (or may not) be strongly

serially correlated, conditionally heteroskedastic, or highly disaggregated. Connectedness

measurements generally will not, and should not, be robust to choice of reference universe.

Three sub-issues arise, which we call the “x object,” the “x choice,” and the “x frequency.”

By x object we refer to the type of x variable studied, typically either returns or return

volatilities. By x choice we mean precisely which (and hence how many) x variables are

chosen for study. By x frequency we refer to the observational frequency of the x variables

(daily, monthly, ...). In this paper the x object is the natural log of realized equity return

volatility, the x choice is approximately fifteen major U.S. financial institutions, and the x

10



frequency is daily.13

3.2 The Predictive Horizon, H

Certain considerations in certain contexts may help guide selection of connectedness horizon,

H. For example, in risk management contexts, one might focus on H values consistent with

risk measurement considerations. H = 10, for example, would cohere with the 10-day value

at risk (V aR) required under the Basel accord. Similarly, in portfolio management contexts

one might link H to the rebalancing period.

The connectedness horizon is important particularly because it is related to issues of

dynamic connectedness (in the fashion of contagion) as opposed to purely contemporaneous

connectedness. To take a simple pairwise example, shocks to j may impact the forecast

error variance of i only with a lag, so that Ci←j may be small for small H but nevertheless

larger for larger H.14 Intuitively, as the horizon lengthens there may be more chance for

connectedness to appear. Thus, in a sense, varying H lets us break connectedness into “long-

run,” “short-run,” etc. More precisely, as H lengthens we obtain a corresponding sequence of

conditional prediction error variance decompositions for which the conditioning information

is becoming progressively less valuable. In the limit as H →∞, we obtain an unconditional

variance decomposition.

In this paper we anchor on a horizon of H = 12 days, but we also examine a range of

nearby H values. In a sense this provides a “robustness check,” but as we argued above,

there is no reason why connectedness should be “robust” to H. Instead we view examination

of a menu of H values simply as an interesting part of a phenomenological investigation.

3.3 The Approximating Model, M(θt)

A first issue is choice of approximating model class. As discussed previously, many choices

are possible, ranging from traditional data-driven VAR approaches, to so-called “structural”

VARs, to fully-articulated dynamic stochastic general equilibrium (DSGE) models.

A second issue is how to allow for time-varying connectedness, which is potentially of

central interest for risk measurement and management (e.g., over the business cycle, or

13Taking logs converts realized volatilities to approximate normality, as emphasized in Andersen et al.
(2003).

14Such dynamic phenomena, and the rich patterns that are possible, are closely related to aspects of
multi-step Granger causality, as treated for example in Dufour and Renault (1998), Dufour and Taamouti
(2010), and the references therein.
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during financial crises). But connectedness is simply a transformation of model parameters,

so allowance for time-varying connectedness effectively means allowance for time-varying

parameters in the approximating model.15 Linear models with time-varying parameters

are actually very general nonlinear models, as emphasized in White’s Theorem (Granger

(2008)).16

As with choice of approximating model class, many choices are possible to allow for

time-varying parameters. A simple and popular scheme involves use of a rolling estimation

window. To track time-varying connectedness in real-time, for example, we might use a uni-

form one-sided estimation window of width w, sweeping through the sample, at each period

using only the most recent w periods to estimate the approximating model and calculate

connectedness measures.17 We write Ĉt(x,H,Mt−w:t(θ̂). The rolling-window approach has

the advantages of tremendous simplicity and coherence with a wide variety of possible un-

derlying time-varying parameter mechanisms. Rolling windows do, however, require choice

of window width w, in a manner precisely analogous to bandwidth choice in density estima-

tion. In this paper we use a VAR(3) approximating model with a one-sided rolling estimation

window of w = 100 days.18

4 Application to U.S. Financial Institution Return Volatil-

ities, 1999-2010

Thus far we have introduced tools for connectedness measurement and related them to tools

for describing the structure of weighted directed networks. We now put those tools to work,

using them to monitor and characterize the evolution of connectedness among major U.S.

financial institutions before and during the 2007-2008 financial crisis. Understanding such

financial connectedness is of interest not only in terms of understanding financial crises,

but also in terms of understanding the business cycle, as the financial system’s health has

15Connectedness may be a highly nonlinear phenomenon, and time-varying parameters are an important
way to allow for nonlinearity. Ultimately we want to try to escape the shackles of linear, Gaussian, correlation-
based analysis, as in much recent work including Härdle et al. (2011).

16Interestingly, it seems that “White’s Theorem” was not published by White. Instead, the theorem is
attributed to White in Granger (2008).

17Alternatively, we might use an expanding- as opposed to rolling-sample estimator, Ĉt(x,H,M1:t(θ̂).
Unfortunately, however, expanding sample estimates become very slow to adapt as sample size gets large.
Another possibility is explicitly specifying a process for the dynamically evolving model parameters, as is
commonly done in a state-space framework using the Kalman filter for estimation.

18We also explore robustness to alternative choices of w.
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important implications for real economic health.

We proceed in four steps. First, in section 4.1, we describe the data that we use to

measure financial institution connectedness. Next, in section 4.2, we perform a full-sample

(static) analysis, in which we effectively characterize average, or unconditional, connected-

ness. This is of intrinsic interest, and it also sets the stage for section 4.3, where we perform

a rolling-sample (dynamic) analysis of conditional connectedness. Our ultimate interest lies

there; we monitor high-frequency (daily) connectedness as conditions evolve, sometimes grad-

ually and sometimes abruptly. Finally, in section 4.4, we “zoom in” on financial institution

connectedness during the global financial crisis of 2007-2008.

4.1 Data

Financial institutions are connected directly through counter-party linkages associated with

positions in various assets, through contractual obligations associated with services provided

to clients and other institutions, and through deals recorded in their balance sheets. High-

frequency analysis of financial institution connectedness therefore might seem to require

high-frequency balance sheet and related information, which is generally unavailable.

Fortunately, however, we have available stock market returns and return volatilities,

which reflect forward-looking assessments of many thousands of smart, strategic and often

privately-informed agents as regards precisely the relevant sorts of connections. We use that

data to measure connectedness and its evolution. It is important to note that we remain

agnostic as to how connectedness arises; rather, we take it as given and seek to measure it

correctly for a wide range of possible underlying causal structures.19

In this paper we study volatility connectedness, for at least two reasons. First, if volatility

tracks investor fear (e.g., the VIX is often touted as an “investor fear gauge”), then volatility

connectedness is the “fear connectedness” expressed by market participants as they trade.

We are interested in the level, variation, paths, patterns and clustering in precisely that

fear connectedness. Second, volatility connectedness is of special interest because we are

particularly interested in crises, and volatility is particularly crisis-sensitive.

Volatility is latent and hence must be estimated. In this paper we use realized volatility,

which has received significant attention in recent years.20 For a given firm on a given day,

we construct daily realized return volatility using high-frequency intra-day data from the

19Obviously there are tradeoffs, but we prefer an approach that potentially achieves much under minimal
assumptions, in contrast to a more deeply structural approach that in principle could achieve even more,
but only under heroic assumptions, and which may not be robust to violations of those assumptions.

20For surveys see Andersen et al. (2006), Andersen et al. (2010) and Andersen et al. (2011).
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Trade and Quote (TAQ) database. In particular, we calculate daily realized volatility as the

sum of squared log price changes over the 78 5-minute intervals during trading hours, from

09:00-12:00 and 13:00-16:30.

We treat realized volatility as the object of direct interest, as in Andersen et al. (2003).21

This is appropriate because for the large, heavily-traded firms that we examine, five-minute

sampling is frequent enough largely to eliminate measurement error, yet infrequent enough

such that microstructure noise (e.g., due to bid-ask bounce) is not a concern. In addition,

and importantly, realized volatility actually is an object of direct interest, traded in the

volatility swap markets, in contrast to underlying quadratic variation or any other object

that realized volatility may or may not be construed as estimating.

Volatilities tend to be strongly serially correlated – much more so than returns, particu-

larly when observed at relatively high frequency. We will capture that serial correlation using

vector-autoregressive approximating models, as described earlier. Volatilities also tend to be

distributed asymmetrically, with a right skew, and approximate normality is often obtained

by taking natural logarithms. Hence we work throughout with log volatilities. This is helpful

not only generally, as normality-inducing transformations take us into familiar territory, but

also specifically as we use generalized variance decompositions (Koop et al. (1996), Pesaran

and Shin (1998)), which invoke normality.

4.2 Static (Full-Sample, Unconditional) Analysis

Here we study stock return volatilities for thirteen major U.S. financial institutions that

survived the crisis of 2007-2008. In Table 2 we list the firms, tickers, market capitalization

before and after the crisis, and critical episodes/dates during the crisis. Our sample includes

seven commercial banks, two investment banks, one credit card company, two mortgage

finance companies and one insurance company. Stocks of all firms except Fannie Mae and

Freddie Mac were included in the S&P500 prior to the sub-prime crisis of 2007.

Our sample begins in May 1999 and ends in April 2010. Starting in 1999 allows us to

include among our firms Goldman Sachs, Morgan Stanley and U.S. Bancorp, all of which went

public in the late 1990s. Our sample also spans several important financial market episodes

in addition to the crisis of 2007-2008.22 These include the dot-com bubble collapse of 2000,

21This contrasts with an alternative approach that views realized volatility not as the direct object of
interest, but rather as an estimate of underlying quadratic variation. In that case one might want to
acknowledge estimation error explicitly, as in Hansen and Lunde (2010). Doing so will generally increase the
persistence of the estimated volatility dynamics.

22The 2007-2008 crisis may itself be split into the sub-prime / liquidity crisis of 2007 and the financial
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Market Cap.
Institution Ticker Business 12/29/06 12/31/09

J.P. Morgan JPM C-Bank 169 171
Wells Fargo WFC C-Bank 121 137
Bank of America BAC C-Bank 241 131
Citigroup C C-Bank 274 76
U.S. Bancorp USB C-Bank 64 43
Bank of New York Mellon BK C-Bank 30 34
PNC Group PNC C-Bank 22 24
American Express AXP Credit Cards 74 49
Goldman Sachs GS I-Bank 86 86
Morgan Stanley MS I-Bank 85 40

Fannie Mae FNM Mortgages 59 1.3
Freddie Mac FRE Mortgages 47 0.9
AIG AIG Insurance 187 4

Table 2: U.S. Financial Institution Detail. C-Bank denotes a commercial bank, and I-Bank denotes
an investment bank. Market capitalizations are in billions of U.S. dollars. Fannie Mae and Freddie Mac
were placed into government conservatorship on September 7, 2008, and AIG began government ownership
on September 17, 2008.

the Enron scandal of October 2001, and the WorldCom/MCI scandal and bankruptcy of

July 2002. Hence we can not only assess connectedness of our firms during the crisis of

2007-2008, but also compare and contrast connectedness during other episodes.

We include AIG because it was a major supplier of “financial insurance” in the 2000s,

selling credit default swaps (CDSs) through its AIG Financial Products arm in London.

Although CDSs provided lucrative business for AIG early on, contributing close to 17% of

revenue in 2005, they singlehandedly brought down AIG as the financial crisis of 2007-2008

spread across financial markets.

The full-sample connectedness table appears as Table 3. Many features are notable.

Clear blocks of high pairwise directional connectedness appear, as with the GSEs (Freddie

and Fannie) and various investment banks. The diagonal elements (“own connectednesses”)

tend to be the largest individual elements of the table, but total directional connectedness

(from others or to others) tends to be much larger, and total connectedness is a very high

78%. In addition, the spread of the “from” degree distribution is noticeably less than that

of the “to” degree distribution.

crisis of 2008.

15



AXP BAC BK C GS JPM MS PNC USB WFC AIG FNM FRE FROM

AXP 20.0 8.5 7.1 10.3 5.8 9.8 8.8 5.1 8.0 7.8 3.2 2.6 3.0 80.0
BAC 8.3 19.1 6.0 10.6 5.8 8.0 7.4 6.1 7.1 9.2 4.2 3.5 4.6 80.9
BK 8.4 8.3 18.8 8.4 6.2 9.3 8.5 5.7 8.4 8.3 4.2 2.4 3.0 81.2
C 9.5 9.6 5.4 20.4 4.9 8.7 7.8 5.2 7.0 8.0 5.4 3.5 4.7 79.6
GS 8.2 8.6 6.8 7.6 22.1 8.8 13.3 4.0 6.0 7.6 2.4 1.9 2.6 77.9
JPM 10.2 8.6 7.1 10.6 6.2 18.8 9.5 5.2 7.8 7.3 3.6 2.5 2.6 81.2
MS 9.2 8.3 7.1 8.9 9.8 9.7 20.5 4.2 5.5 7.1 3.4 2.8 3.6 79.5
PNC 7.7 8.8 7.4 8.5 4.6 7.6 6.6 18.1 7.6 8.8 5.2 4.2 4.9 81.9
USB 9.3 9.9 7.6 9.9 5.7 8.7 6.4 5.4 20.1 8.5 4.3 1.6 2.7 79.9
WFC 8.3 10.2 6.5 9.8 6.2 7.6 7.1 5.9 7.3 18.0 3.8 3.8 5.3 82.0
AIG 5.3 7.3 4.9 8.8 2.6 5.2 4.9 6.2 6.0 5.6 27.5 6.6 9.0 72.5
FNM 4.2 5.4 2.5 6.0 2.3 3.5 3.8 5.5 1.9 6.8 6.5 29.6 22.0 70.4
FRE 4.3 6.3 2.9 6.5 2.6 3.3 4.1 5.2 2.9 7.3 7.4 17.6 29.6 70.4

TO 92.9 99.7 71.3 106.1 62.7 90.2 88.2 63.7 75.5 92.2 53.8 53.1 68.1 78.3
NET 13.0 18.8 -9.9 26.5 -15.2 8.9 8.7 -18.2 -4.4 10.2 -18.7 -17.4 -2.3

Table 3: Full-Sample Connectedness Table. The sample is May 4, 1999 through April 30, 2010.
The ij -th entry of the upper-left 13x13 firm submatrix gives the ij -th pairwise directional connectedness;
i.e., the percent of 12 -day-ahead forecast error variance of firm i due to shocks from firm j. The rightmost
(“FROM”) column gives total directional connectedness (from); i.e., row sums (“from all others to i”).
The bottom (“TO”) row gives total directional connectedness (to); i.e., column sums (“to all others from
j”). The bottom-most (“NET”) row gives the difference in total directional connectedness (to-from). The
bottom-right element (in boldface) is total connectedness (mean “from” connectedness, or equivalently, mean
“to” connectedness).

Let us discuss some of the features of the connectedness table at greater length, begin-

ning with the pairwise directional connectedness measures, C̃H
i←j, which are the off-diagonal

elements of the 13x13 matrix. A quick inspection of Table 3 shows that the highest pairwise

connectedness measure observed is from Freddie Mac to Fannie Mae (C̃H
FNM←FRE = 22%). In

return, the pairwise connectedness from Fannie Mae to Freddie Mac (C̃H
FRE←FNM = 17.6%)

is ranked second. The two mortgage finance companies have been viewed very much as

twins by the markets and it is quite normal that their pairwise connectedness measures are

quite high. When we net the two gross measures out, the resulting net pairwise directional

connectedness from Freddie Mac to Fannie Mae is 4.6%, that is, C̃H
FRE,FNM = 4.6%.

The next largest pairwise directional connectedness takes place from Morgan Stanley to

Goldman Sachs (C̃H
GS←MS = 13.3%), the two top investment banks that were able to survive

the 2007-08 financial crisis.23 While the connectedness from Goldman Sachs to Morgan

23Since the other three investment banks ceased to exist in 2008, they are not included in the full sample
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Stanley is also high (C̃H
MS←GS = 9.8%), in net terms the directional connectedness takes

place from Morgan Stanley to Goldman Sachs stock (C̃H
GS,MS = 3.5%).

The highest values of pairwise directional connectedness measures among the commercial

bank stocks are observed to take place from Citigroup, on the one hand, and Bank of America

and J.P. Morgan, on the other (C̃H
BAC←C = C̃H

JPM←C = 10.6%). A high value of pairwise

connectedness from Citigroup to either Bank of America and/or J. P. Morgan shows that

being the worst hit institution among the top five commercial banks, Citigroup’s stock spread

its troubles to the stocks of other top commercial banks.

As we have seen above, Fannie Mae and Freddie Mac are tightly connected to each other.

They are well connected with AIG as well. Pairwise directional connectedness of the stocks

of these three institutions with the stocks of other financial institutions tends to be much

lower than connectedness of other bank stocks in our sample. We need to remind the reader

that these three institutions had lots of difficulties during the 2007-08 financial crisis and

could have gone bankrupt had the U.S. government not intervened in financial markets in

September 2008.

The row sum of the pairwise connectedness measures results in the total directional

connectedness from others to each of the thirteen stocks (see Section 2). In other words, the

“FROM” column measures the share of volatility shocks received from other financial firm

stocks in the total variance of the forecast error for each stock. By definition, it is equal to

100% minus the own share of the total forecast error variance. As the own-effects (diagonal

elements of the matrix) range between 18 and 30%, the total directional connectedness in

the “FROM” column ranges between 70 and 82%.

Similarly, the column sum of all pairwise connectedness measures results in the corre-

sponding stock’s total directional connectedness to others. As each stock’s contribution to

others’ forecast error variances is not constrained to add up to 100%, entries in the “TO” row

can exceed 100%. While the financial stocks are largely similar in terms of receiving volatil-

ity shocks from others, they are highly differentiated as transmitters of volatility shocks to

others. The stark difference between the distributions of the two connectedness measures is

clearly observed in their respective empirical survivor functions presented in Figure 1. Com-

pared to the very steep survivor function defined over a narrow range for the connectedness

from others, the survivor function for the connectedness to others is quite flat and defined

over a wider range. Starting at a minimum of 70% for Fannie and Freddie and increasing

only up to a maximum of 82% for Wells Fargo and PNC Group, the total directional con-

connectedness table.
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Figure 1: Full-Sample Total Directional Connectedness: Empirical Survivor Functions. We
plot the empirical survivor functions for total directional connectedness “to” others and “from” others. The
predictive horizon for the underlying variance decomposition is 12 days.

nectedness from others is distributed rather tightly. The total directional connectedness to

others, on the other hand, varies from a low of 53% for Fannie Mae, to all the way up to

106% for Citigroup: A range of 53 points for the connectedness to others compared to a

range of just 12 points for the connectedness from others.

The largest commercial banks (as of 2010) were the ones that have the highest values

of connectedness (all exceeding 90%) to others. Being the most vulnerable among them,

Citigroup generated a total directional connectedness measure of 106% to others. Besides

the top four commercial banks, American Express Bank also generated significant (93%)

volatility connectedness to others.

The difference between the total directional connectedness to others and the total direc-

tional connectedness from others gives the net total directional connectedness to others(C̃H
i =

C̃H
•←i − C̃H

i←•). In terms of the net total directional connectedness Citigroup (26.5%) leads

the way, followed by Bank of America (18.8%), American Express (13%), and J. P. Morgan

(8.9%). AIG (-19%), PNC Group (-18%), Fannie Mae (-17%), Goldman Sachs (-15%) and

Bank of New York Mellon (-10%) are the financial institutions with negative values of net

total directional connectedness to others.
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Finally, with a value of 78.3% the measure of total connectedness among the thirteen

financial stocks is higher than the total connectedness measures we obtained in other set-

tings, such as the connectedness among different asset classes, or among international stock

markets. Given the large number of stocks included in the sample, there is a high degree

of connectedness for the full sample. As we will see below there is always a high degree of

connectedness even during tranquil times. There is another reason for the total connected-

ness for a set of financial stocks to be higher than for a set of major national stock markets

around the world or for a set of asset classes in the U.S. As the institutions included in our

analysis are all operating in the finance industry, both industry-wide and macroeconomic

shocks affect each one of these stocks one way or the other. As some of these institutions

and their stocks are more vulnerable to external and/or industry-wide shocks than others,

they are likely to be transmitting these shocks to other financial stocks, generating a higher

degree of connectedness to others. Obviously, to the extent that they have important im-

plications for the rest of the industry, idiosyncratic volatility shocks are also transmitted to

other stocks. For that reason, compared to a similar number of stocks from different indus-

tries, the connectedness for a group of stocks in the finance industry is likely to be higher.

It is also likely to be higher compared to the connectedness for a group of global markets, as

these markets are not subject to common shocks as frequently as the stocks from the finance

industry.24

4.3 Dynamic (Rolling-Sample, Conditional) Analysis

The just-completed analysis of full-sample connectedness provides a good characterization

of “average” or “unconditional” aspects of each of the connectedness measures, yet by con-

struction it is silent as to connectedness dynamics. In this sub-section we provide a dynamic

analysis by using rolling estimation windows. We include the same thirteen financial insti-

tutions that we included in our earlier full-sample analysis.25

In contrast to our theoretical discussion in section 2, as well as our static empirical

analysis in section 4.2, in which we progressed from “micro to macro” – that is, from pairwise

connectedness, to total directional connectedness, to total connectedness – here it proves

useful to proceed in reverse order, from macro to micro. We start our dynamic analysis with

24We have in mind a comparison with the total connectedness indexes reported in Diebold and Yilmaz
(2009) and Diebold and Yilmaz (2011).

25In the next sub-section we specifically focus on the 2007-08 financial crisis and include the remaining
four institutions (Bear Stearns, Lehman Brothers, Merrill Lynch and Wachovia), all of which ceased trading
during the crisis.
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Figure 2: Rolling Total Connectedness. The rolling estimation window width is 100 days, and the
predictive horizon for the underlying variance decomposition is 12 days.

total connectedness, and then we move to various levels of disaggregation (total directional

and pairwise directional). Finally, we also provide a brief assessment of the robustness of

our results to choices of tuning parameters and alternative identification methods.

4.3.1 Total

In Figure 2 we plot total volatility connectedness over 100-day rolling-sample windows. From

a bird’s-eye perspective, the total connectedness plot in Figure 2 has some revealing patterns.

It has two big cycles; one starting in late-2000 and ending in mid-2003, whereas the second

coincides with the development of the global financial crisis from early 2007 all the way to

the end of 2009. The first cycle coincides with the burst of the dot-com bubble, followed by

the downward spiral in the Nasdaq and other stock exchanges and the 2001 recession. Even

if the recession was over in early 2002, the MCI WorldCom scandal of mid-2002 kept the

volatility of the financial stocks and their connectedness high for another year. The second

cycle started at the end of February 2007. With the first signs of the sub-prime crisis, the

total volatility connectedness index jumped up from a low of around 56% in February 2007

to reach close to 90% in August 2007 and stayed above 80% until mid-2009.

In between the two big cycles of the total connectedness lie three smaller, but not nec-

essarily negligible, cycles. We will discuss each of these cycles along with the events that

possibly led to them. Before doing so, let us point to another fact that emerges from the

total connectedness plot. From 1999 to 2007, whenever the total connectedness increased

to a higher level, it always came back down to the 55-65% range as the sample-windows

are rolled to leave that episode behind. Following the 2007-08 financial crisis, the total con-

nectedness index stayed well above this range as of the end of April 2010, even though the
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financial crisis had ended almost a year before.

Earlier on in our sample, developments in the tech-heavy Nasdaq stock exchange influ-

enced the behavior of the total volatility connectedness among the financial stocks. Starting

in March 2000, the so-called dot-com bubble finally started to burst. The bursting of the

dot-com bubble had a serious impact on the total volatility connectedness of financial stocks.

In March 2000, the volatility connectedness index increased by 7 percentage points. Despite

short spells of recovery, troubles of the internet stocks continued for some time and solid

signs of an imminent recession appeared on the horizon. The volatility in the bank stocks

increased rapidly over this period, and so did the total volatility connectedness. From a low

of 60% in early September, the connectedness index increased to 75% by mid-January 2001

and further to surpass 80% by early May 2001.

The Federal Reserve’s intervention, by way of lowering the fed funds target rate by 2.5

percentage points in the first five months of 2001, helped stem the decline in the Nasdaq and

other markets toward the second and third quarters of 2001. Total connectedness declined to

71% by early September 2001. However, 9/11 terrorist attacks worsened market sentiment

again. Even though the markets were closed for a week after the terrorist attacks, the total

connectedness among the financial stocks jumped 10 percentage points in the week it was

reopened. The total connectedness stayed around 80% as long as the data for 9/11 were

included in the rolling-sample windows.

After the Enron scandal of late 2001, which did not have much impact on financial

stocks, another corporate scandal rocked the U.S. financial markets toward the end of June

2002. This time around it was the bankruptcy of the MCI WorldCom, which was once the

second-largest long distance phone company in the U.S. Unlike the Enron scandal, the MCI

WorldCom scandal had a serious impact on major bank stocks. All major U.S. banks had

credit positions with MCI WorldCom and hence they all suffered losses when the company

declared bankruptcy.

Following the bankruptcy, the total connectedness among the major financial institutions

jumped from 72% to reach 85% in July 2002, the highest level achieved from the beginning of

the sample. However, being an isolated source of loss for the banks, the scandal’s impact on

the financial system as a whole could be contained. As of the end of 2002 total connectedness

subsided very quickly to pre-July 2002 levels. After a brief increase following the invasion of

Iraq in March 2003, the total connectedness declined to 58% in August 2003.

From August 2003 to February 2007, the total connectedness index went through three

smaller cycles, during which it moved within the 55–80% range. The first cycle lasted from
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August 2003 to March 2005; the second from April 2005 to February 2006; and the third

from March 2006 to February 2007. The three cycles mostly coincide with the tightening of

monetary policy and its impact on the behavior of long-term interest rates.26

4.3.2 Total Directional

The dynamic analysis of total connectedness gave us a clear understanding of the factors

influencing the volatility connectedness across major U.S. financial stocks over the 1999-2010

period. Keeping this analysis in the back of our minds, we can now focus on the dynamics

of directional connectedness over time.

Figure 3 presents the time series of total directional connectedness (“to” and “from”

degrees) separately for each firm. The plots for total directional connectedness “to” others

are presented in the upper panel, the plots for total directional connectedness “from” others

are in the middle panel, and the plots for “net” total directional connectedness to others are

in the lower panel.

One of the first things one notices in Figure 3 is the substantial difference between the

“to” and “from” connectedness plots: The “from” connectedness plots are much smoother

compared to the “to” connectedness plots. The difference between the two directional con-

nectedness measures is not hard to explain. When there is a shock to the return volatility of

an individual stock or a couple of stocks, this volatility shock is expected to be transmitted to

other stocks. Since individual institutions’ stocks are subject to idiosyncratic shocks, some

of these shocks are very small and negligible, while others can be quite large. Irrespective

of the size of the volatility shock, if it is the stock of a larger institution or a highly cen-

tral institution (which has strong balance-sheet and off-balance-sheet connections with other

banks) that received the volatility shock, then one can expect this volatility shock to have

even a larger spillover effect on stocks of other institutions. As the size of the shocks vary as

well as the size and centrality of the institutions in our sample, the directional connectedness

“to” others varies substantially across stocks over the rolling-sample windows.

We have already emphasized that the institutions in our sample are the largest ones in the

U.S. financial industry. As a result, none of the stocks in our sample of thirteen institutions

are insulated from the volatility shocks to other institutions’ stocks. In other words, they

26The link between the volatility connectedness and the long-term rates is directly a result of the choices
of the investors. Rising long-term interest rates reflect optimism about the future economic performance.
As they expect the growth to pick up, investors sell more defensive stocks such as the financial stocks and
instead invest in manufacturing, energy and airlines sector stocks that are likely to benefit most from an
economic recovery.
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Figure 3: Rolling Total Directional Connectedness. The rolling estimation window width is 100
days, and the predictive horizon for the underlying variance decomposition is 12 days.
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are expected to be interconnected. As a result, each one will receive, in one form or the

other, the volatility shocks transmitted by other institutions. While the volatility shocks

transmitted “to” others by each individual stock may be large, when they are distributed

among twelve other stocks the size of the volatility shock received by each stock will be much

smaller. That is why there is much less variation in the directional connectedness “from”

others compared to the directional connectedness “to” others in Figure 3.

The difference between the directional connectedness “to” and “from” others is equal

to the “net” directional connectedness to others presented in the lower panel of Figure 3.

As the connectedness “from” others measure is smoother over the rolling-sample windows,

the variation in the plots for “net” connectedness to others over the rolling-sample windows

resembles the variation in the plots for connectedness “to” others.

In Figure 3 we observe that even though for each stock the “from” connectedness reached

the highest levels during the 2007-08 crisis, we do not observe such a level shift in the “to” and

“net” connectedness measures over the same period. This is so, perhaps because idiosyncratic

shocks have always hit individual stocks and these shocks have been transmitted to other

stocks. During the 2007-08 crisis these shocks became more frequent and each time hit more

stocks than before the crisis and hence were transmitted to others in larger amounts than

before.

In order to better evaluate the differences between the “to” and “from” directional con-

nectedness, in Figure 4 we plot the evolution of the entire “to” and “from” degree dis-

tributions. Although, by definition, the mean “to” and ”from” directional connectedness

measures are both equivalent to the total connectedness measure presented in Figure 2, each

financial institution has rather different “to” and “from” directional connectedness. This

implies that even though their means are the same, “to” and “from” connectedness mea-

sures are distributed quite distinctively. As emphasized earlier, the variation in the “from”

connectedness is much lower than the variation in “to” connectedness. Even the first and

second quartile band for the “to” connectedness is wider than the min-max range for the

“from” connectedness.

Temporal changes in the dispersion and skew of the “to” and “from” connectedness in

Figure 4 may contain useful information. For example, it appears that “from” connectedness

gets not only more dispersed but also more left-skewed during crises, and simultaneously that

“to” connectedness gets more right-skewed. That is, during crisis times relatively more than

non-crisis times, there are a few firms receiving very little, and a few firms transmitting very

much. One might naturally want to identify firms that are simultaneously “recipients of
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Figure 4: Rolling Distribution of Total Directional Connectedness. We plot the time series of
daily min, 25%, mean, 75%, and max of the distributions of“to” and “from” total directional connectedness.
The rolling estimation window width is 100 days, and the predictive horizon for the underlying variance
decomposition is 12 days.

small” and “transmitters of big” – those are the distressed firms potentially poised to wreak

havoc on the system.

4.3.3 Pairwise Directional

In the analysis of the full-sample volatility connectedness in Section 4.2, we discussed the

importance of pairwise volatility connectedness measures. In particular, we emphasized the

importance of pairwise connectedness as a measure of how volatility shocks are transmitted

across financial institution stocks. The relevance of the pairwise connectedness measures

carries over to the rolling sample windows. Indeed, the analysis of pairwise connectedness

is even more crucial in the rolling sample windows case, because it helps us identify how

the connectedness measures across financial institution stocks vary over time. During times

of crises, individual stocks are likely to be subject to frequent volatility shocks. How these

shocks led to volatility connectedness across pairs of stocks is very crucial for any analysis of

crises. Unfortunately, given that there are 13 institutions in our sample from 1999 to 2010,

presenting plots of the volatility connectedness (for each of the 156 pairwise directional mea-

sures, and 78 net pairwise directional measures) is an almost impossible task to accomplish

in the confines of this article. Instead, when we are discussing the development of the global

financial crisis over time and the volatility connectedness of the most troubled financial insti-

tutions during the crisis, we will present and discuss the net pairwise connectedness measures
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during the most critical days of the crisis.

4.3.4 Robustness Assessment

Finally, we conclude this section with a discussion of the robustness of our results to the

choice of the parameters of the model. In particular, we plot the total connectedness for

two alternative identification methods (namely, the Cholesky factor identification and the

generalized identification), for alternative values of the window width (in addition to w = 100

days, we consider sample windows of 75 and 125 days), and for alternative forecast horizons

(in addition to H = 12 days, we consider 6 and 18 days). The results are presented in

Figure 5. In each plot, the solid line is the total connectedness measure obtained through

the generalized identification for each value of H and w. In the case of Cholesky factor

identification, we calculate the connectedness index for 100 random orderings of the realized

stock return volatilities. The gray band in each plot corresponds to the (10%,90%) interval

based on these 100 randomly-selected orderings.
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Figure 5: Robustness of Total Connectedness We explore estimation window widths w of 75, 100
and 125 days, predictive horizons H of 6, 12 and 18 days, and a variety of Cholesky orderings. In each
sub-graph, the solid line corresponds to our benchmark ordering, and the gray band corresponds to a [10%,
90%] interval based on 100 randomly-selected orderings.

In all subgraphs, the solid line that corresponds to the generalized identification-based

total connectedness measure runs higher than the gray band that corresponds to the Cholesky
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identification. As the generalized identification treats each variable to be ordered as the first

variable in the VAR system, the total connectedness obtained from the Cholesky-based

identification is the lower bound of the one obtained from the generalized identification.

Nevertheless, in all subgraphs of Figure 5, the two series move very much in accordance over

time, a strong indication of the robustness of our total connectedness measures based on

generalized identification. It is also important to note that the (10%,90%) interval based

on 100 random orderings of the Cholesky-based total connectedness is quite narrow. The

ordering of the financial stocks in the VAR do not really matter much to follow the dynamic

behavior of total connectedness.

As the window length, w, is increased, the gap between total connectedness based on

the generalized identification and the one based on the Cholesky identification increases.

Both connectedness measures are more wiggly when the window width is set to 75 days, but

become smoother as we increase the window width to 125 days. Similarly, given the window

length, a shorter forecast horizon, H, implies a smaller gap between the generalized- and

Cholesky-based total connectedness measures.

To summarize, our robustness checks show that the dynamic behavior of the total con-

nectedness measures over the rolling-sample windows is robust to the choice of alternative

sample window lengths, forecast horizons, identification methods and orderings of stocks in

the VAR system.

4.4 The Financial Crisis of 2007-2008

Having analyzed the dynamics of the various connectedness measures over time, in this

section we focus on the global financial crisis, from 2007 through the end of 2008. The

analysis of this section shows how the measurement and daily monitoring of connectedness

can help us understand the developments at each stage of the global financial crisis.

4.4.1 Total Connectedness at Various Stages of the Crisis

As of the end of 2006 there were already some, albeit weak, signs of slowdown in the U.S.

real estate market.27 In late February 2007, the New Century Financial Corporation was

reported to have troubles in servicing its debt. It was followed by the bankruptcy of three

small mortgage companies. These in turn worsened the expectations about the real estate

markets, the mortgage-backed securities (MBS) markets as well as the stock market, and

27The Case-Shiller home price index for 20 metropolitan regions was 2% lower in January 2007 compared
to its historical high level reached in July 2006.
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on the last day of February 2007, the total connectedness measure jumped by more than 17

points, the biggest increase on a single day. The increase in the total connectedness was not

due to a volatility shock to the stock of a single financial institution; rather, all bank stocks

were affected by the recent developments in the MBS markets.

The churning in the MBS markets continued from February until early June. New Cen-

tury declared bankruptcy in April. In June and July the markets became aware that big

financial institutions were not insulated from the debacle in the MBS. Bear Stearns had to

liquidate two of its hedge funds in July, leading to billions of dollars of losses. From early

March to late June the total volatility connectedness index climbed gradually from 73 to

80% (see Figure 2).

In July 2007, the market for asset-backed commercial paper (ABCP) showed signs of

drying up, which eventually led to the liquidity crisis of August 2007. From July 25 to

August 10, the index climbed 12 percentage points, to reach 88% (see Figure 2). Reflecting

the developments over the period, the total connectedness index doubled in the first eight

months of 2007. After the liquidity crisis of August 2007, it was obvious that the whole

financial system would be badly bruised by the collapse of the ABCP market.

After seven months of learning about the problems in MBS markets and the ensuing

liquidity crisis, next came the months of reckoning with the consequences as nearly all U.S.

banks started to announce huge losses. Even though it had already reached its historical

maximum, in late 2007 the volatility connectedness index continued its upward move by

several points.

As the MBS markets continued their descent in early 2008 Bear Stearns’ financial position

became untenable. Amid widespread rumors of an eventual bankruptcy, its stock price

declined rapidly in mid-March, briefly increasing the tensions and volatility in the markets.

In an operation directed by the New York Fed, J.P. Morgan acquired Bear Stearns on March

17, 2008 with financial assistance from the Fed. As a result of the timely rescue operation,

in the final days of Bear Stearns the total connectedness of the surviving thirteen banks

showed an upward movement of only a couple of percentage points.

In the summer of 2008 the tension in the stock market had started to build up again as a

result of Wachovia Bank’s troubles. Thanks to Wachovia’s high volatility, the total volatility

connectedness index increased, reaching to 88.5% in mid-July (see Figure 2).

In the meantime, regional banks smaller than Wachovia failed. These were followed by

news about the constantly deteriorating asset positions of Fannie Mae and Freddie Mac.

Before going bankrupt, these two ”government-sponsored enterprises” were taken into gov-
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Market Cap.
Institution Ticker Business (12/29/2006) Important Events

Bear Stearns BSC I-Bank 19 Acquired by JPM 3/17/2008
Lehman Brothers LEH I-Bank 41 Bankruptcy 9/15/2008
Merrill Lynch MER I-Bank 82 Acquired by BAC 9/15/2008
Wachovia Bank WB C-Bank 115 Acquired by WFC 10/3/2008

Table 4: Detail for Financial Institutions Acquired or Bankrupted During the Crisis of 2007-
2008. I-Bank denotes an investment bank, and C-Bank denotes a commercial bank. Market capitalizations
are in billions of U.S. dollars.

ernment conservatorship in the first week of September.

Then came the most significant event in the unfolding of the crisis. Following the news

that Lehman would announce huge losses in its latest financial statement, market participants

started selling Lehman Brothers’ stock. Despite the overwhelming efforts over the weekend

of September 13-14, no viable takeover bid could be produced for Lehman Brothers by the

interested institutions. The U.S. government did not want to step in to save Lehman Brothers

with taxpayers’ money. As soon as Lehman Brothers declared bankruptcy on the morning of

September 15, 2008 all hell broke out in financial markets around the world. That same day,

the weakest of the three remaining investment banks, Merrill Lynch, announced it was being

acquired by Bank of America. The total volatility connectedness index increased further to

reach its maximum level of 89.2% (see Figure 2).

After months of gyrations in the U.S. financial system, the volatility connectedness started

to subside toward the end of the first quarter of 2009. In March and April 2009, the total

connectedness measure fluctuated between 80-85% for a while. It started to fall only after

the announcement of the stress test results in May 2009. By October 2009 the index was

down to 70%. However, the news coming from Greece and the EU’s inability to handle the

Greek debt crisis in an orderly manner led to further volatility in financial industry stocks

in the EU and the U.S., which prevented the volatility connectedness index from declining

any further. As of the end of our sample, the index was fluctuating between 70 and 75%, a

range that is above the levels the index attained during tranquil times (See Figure 2).

4.4.2 Pairwise Connectedness of Troubled Financial Institutions

So far we have discussed the behavior of the total connectedness and total directional con-

nectedness measures for a group of thirteen institutions along with the background of the
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events that took place in the U.S. financial markets during the financial crisis of 2007-2008.

Our analysis did not include four major banks that disappeared during the crisis through

bankruptcy or acquisitions. In the remainder of this section, we analyze the total directional

and pairwise directional connectedness measures for these four institutions as well as for AIG

and Morgan Stanley, two other troubled institutions. In Table 4 we list the information on

the four major banks that ceased to exist, with information on their stock tickers, market

capitalization before and after the crisis, and critical dates during the crisis.
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Figure 6: Net Total Directional Connectedness of Troubled Financial Firms. Net total direc-
tional connectedness for firm i is “from i to others” less “from others to i.”

Net total directional connectedness plots for AIG, Wachovia, Merrill Lynch, Lehman

Brothers, Morgan Stanley and Bear Stearns are presented in Figure 6.28 Let us spell out

28It is worth noting that connectedness measurements generally will not, and should not, be robust to
the choice of reference universe. Hence, given a decision as to the x to be examined, a second important
issue is precisely which (and hence how many) x’s to use. For example, in this paper’s analysis of individual
financial institution equity return volatilities, we intentionally use only the largest firms. In addition, note
that our reference universe will change with the “births” and “deaths” of financial firms. Births happen,
for example, when a firm goes public, as with Goldman Sachs in 1999, and deaths happen when firms go
bankrupt, as with Lehman Brothers in 2008.
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the most important observation in Figure 6 upfront: Even though it was the troubles of

the investment banks that were followed the most throughout the crisis, Wachovia Bank is

the one that had the highest net total and pairwise volatility connectedness in the climactic

months of the second half of 2008.

Coming back to the four troubled investment banks, it was true that they had high net

connectedness on several occasions as the global financial crisis unfolded steadily in 2007 and

2008. To start with the most vulnerable of the top five investment banks, the net volatility

connectedness of Bear Stearns’ stock was not sizable in the run-up to its takeover by J.P.

Morgan on March 17, 2008, but it increased substantially to 6.4% on March 14 and 4.9% on

March 17 (see Figure 6).

Viewed as the most vulnerable investment bank after Bear Stearns, Lehman Brothers’

net directional connectedness during the liquidity crisis of August 2007 was close to 5%.

It also generated close to 4% net directional connectedness on the day Bear Stearns was

taken over by J.P. Morgan (Figure 6). Furthermore, its net directional connectedness stayed

around 2% for almost three months after the demise of Bear Stearns. From early June till

early August 2008 Lehman Brothers stayed as a net receiver of volatility shocks. This status,

however, did not last for long. Lehman again became one of the front runners in terms of

net directional connectedness (close to 4%) in the first 20 days of August.

On Friday, September 12, 2008, just one day before the critical weekend, Lehman Brothers

was not at the center stage in terms of volatility connectedness; its net total directional

volatility connectedness was less than 1% (see Figure 6). Markets were still expecting another

government-orchestrated rescue operation. Only after the announcement of its bankruptcy

on the morning of September 15 did Lehman Brothers’ stock move to center stage in the crisis

and generated substantial volatility connectedness, with a net total directional connectedness

of 6% (see Figure 6). Its net pairwise connectedness with five financial stocks was in the top

percentile (another five were in the top five percentiles and two in the top ten percentiles) of

all the net pairwise volatility connectedness that took place between June 1 and December

31 of 2008 (Figure 7(b)). Lehman Brothers’ net pairwise directional connectedness increased

substantially in the last two trading days of the stock, September 16 and 17 (see Figures 7(c)

and 7(d)).

As we have already emphasized above in Figure 6, among the six troubled banks Wachovia

was the one that had the highest net directional connectedness with other stocks. Wachovia’s

problems had already been known in 2007, yet the markets learned that they were actually

worse than previously known when the bank announced that it incurred a loss of $8.9 billion
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Figure 7: Net Pairwise Directional Connectedness During the Lehman Bankruptcy. Notes:
We show the most important directional connections among the pairs of sixteen bank stocks on each day.
Black, red and orange links (black, gray and light gray when viewed in grayscale) correspond to the first,
fifth and tenth percentiles of all net pairwise directional connections from June 1 to December 31, 2008.
Node size indicates stock market capitalization.
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in the second quarter of 2008. In the month of June, long before the climax month (September

15 – October 15) of the financial crisis, Wachovia’s stock came under heavy pressure and its

total directional connectedness to others (see Figure 6) increased substantially. On October

3, Wachovia was sold to Wells Fargo.

5 Concluding Remarks

Schweitzer et al. (2009) provide an insightful description of the challenges of financial network

modeling:

“In the complex-network context, ’links’ are not binary (existing or not existing),

but are weighted according to the economic interaction under consideration...

Furthermore, links represent traded volumes, invested capital, and so on, and

their weight can change over time.” [p. 423]

We hope to have successfully confronted the issues raised by Schweitzer et al., proposing con-

nectedness measures at all levels – from system-wide to pairwise – that are rigorous in theory

and readily implemented in practice, that capture the different strengths of different connec-

tions, and that capture time-variation in connectedness. Our approach effectively marries

VAR variance-decomposition theory and network topology theory, recognizing that variance

decompositions of VARs form weighted directed networks, characterizing connectedness in

those networks, and in turn characterizing connectedness in the VAR.

We see our paper as part of a vibrant emergent literature using network perspectives

in economic contexts, and introducing economic perspectives in network contexts. Leading

examples include Acemoglu et al. (2010), Adamic et al. (2010), Allen et al. (2010), and

Billio et al. (2010). Indeed Billio et al. (2010) is our closest relative, using pairwise Granger-

causality to characterize network structure. The Granger-causal approach is in some respects

less appealing than ours (e.g., it is directional but exclusively pairwise and unweighted,

testing zero vs. nonzero coefficients, with arbitrary significance levels, and without tracking

the magnitude of non-zero coefficients), and in other respects more appealing (e.g., there is

no need for identifying assumptions, which are inescapable in variance-decomposition and

impulse-response analyses), and the two are surely complements rather than substitutes.

In any event it seems clear that the network and multivariate time series literatures have

much to learn from each other, and that their blending may have much to contribute to the

successful measurement of financial economic risks.
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