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Abstract

What is the best way to reward innovation? While prizes avoid deadweight loss, intellectual

property screens out projects generating low consumer surplus per unit sold. We propose

a stretch parameterization of demand under which innovations differ in both the size of the

market they create and consumers’ average willingness-to-pay for them. We solve the resulting

multidimensional screening problem by decomposing the analysis into a separate choice of the

level and structure of rewards for innovations. Optimal policy generally calls for some market

power but never full monopoly pricing. The appropriate degree of market power is determined

by a value-weighted average of the innovation supply elasticity multiplied by the log-variance

of the ratio of the monopoly prices to quantities, opening our analysis to empirical calibration.

Our results also shed light on the pricing of platforms, incentives within firms for product

development and public infrastructure.
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For if the legislature should appoint a pecuniary reward for the inventors of new

machines, etc., they would hardly ever be so precisely proportional to the merit of

the invention as this is. For here, if the invention be good and such as is profitable

to mankind, he will probably make a fortune by it; but if it be of no value he also

will reap no benefit.

- Adam Smith, Lectures on Jurisprudence1

Nothing could be more absurd. Whether it was wise for the government to subsi-

dize...Union Pacific Railroad...is an interesting historical question...but it would be

better...to leave it unsolved than to ruin the country...by charging enormous freight

rates and claiming that their sum constitutes a measure of the value...of the invest-

ment.

–Harold Hotelling, “The General Welfare in Relation to Problems of Taxation and Of Railway

and Utility Rates”

Can innovation be rewarded without the distortions created by intellectual property?2 As

reflected in Hotelling’s quote above, at least since Marshall (1890) textbook economics has

advocated replacing IP with a system of prizes and, more broadly, replacing monopoly by

marginal cost pricing. Yet an even older tradition (Smith, 1762) has argued that without

market-driven rewards, it is difficult to determine which projects merit the necessary devel-

opment costs. In turn, Kremer (2000a,b) points out that both the ex-post pricing distortion

and the waste of resources on useless innovations may simultaneously be avoided by basing

prizes on consumption at the efficient price.3 Yet this measurement of market size ignores a

second dimension of heterogeneity among innovations, also necessary to determine their social

value: consumers’ willingness to pay for them. Our paper develops a model for trading off the

1We thank Joel Mokyr for this reference.
2Intellectual property, or IP as we will refer to it from here on, may take many forms: trade secrets, copyrights,

patents, etc. We follow much recent literature in seeing the broad institution of market power as a reward for
innovation (regardless of the exact form it takes) as separate from the specific institution of patents; our focus is on
whether market power is appropriate, however implemented.

3Interest in centralized systems for stimulating innovation, including Kremer’s “advance market commitments”
(Barder et al., 2005), has risen in recent years with the resurgence of industrial policy (Economist, 2010). Note that
quantity-dependent prizes, like our mechanisms, clearly require a standardized-within-market unit of quantity, such
as individuals treated or smartphones having installed the application.
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screening benefits of market power against the traditional distortion of consumption in this

environment of multidimensional heterogeneity.
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Figure 1: Distinguishing valuable from low-surplus projects

Figure 1: Distinguishing valuable from low-surplus projects

Figure 1 illustrates the basic idea. Consider two equally costly innovations: m (“me-too”)

and M (“Major”). Because willingnesses to pay are small, m creates little social value despite

its large market size and does not justify the fixed cost of bringing it about. An example

might be Netscape Navigator during the 1990’s which, while widely adopted, sold at a low

price because it offered little added value over its rivals. In contrast, M , such as America

OnLine (AOL), brought substantial value to each consumer (and charged a correspondingly

high price), though it had a smaller customer base.

A social planner who does not directly observe consumer surplus needs to separate m from

M by using the property that the demand for a higher-quality product is (everywhere) less

sensitive to price. This requires charging a price for M of at least p0, the minimum price at

which the demand for M actually exceeds that for m. At lower prices, m looks superior to M ,

being more widely adopted. Fundamentally, a prize system – a payment to the entrepreneur

depending only on demand at the marginal cost (assumed to lie below p0) – is unable to screen

out m and screen in M .4 This sorting role of market power arises not only in the choice

4Despite the extensive theoretical and policy interest in, and numerous successful historical examples (Kremer,
1998) of such a system, many consider it simply impractical. Yet it is hard to see what, other than informational
asymmetries, could be the source of such “impracticality”. Perhaps there is simply a fixed cost of government
involvement; but then this could not explain the patent system (which clearly involves the government) or rationalize
market power for large innovations as these would pass the fixed-cost threshold. Furthermore, market power is used
in many situations, such as infrastructure procurement, where government involvement is inevitably highly intrusive;
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between IP and prizes. As we discuss in Section 5, leading examples include bundling v. free

pricing in online application and media markets, incentives for product development within

firms and cost recovery rules in public infrastructure procurement.

Previous literature on the design of institutions for rewarding innovation has either ruled

out prizes or considered environments with a single dimension of heterogeneity in which

quantity-dependent prizes achieve optimal sorting. The first strand of literature assumes either

explicitly that no transfers can be made from the planner to the entrepreneur (Gilbert and

Shapiro, 1990; Klemperer, 1990; Green and Scotchmer, 1995; O’Donoghue et al., 1998; Scotch-

mer, 1999; Hopenhayn and Mitchell, 2001), ruling out prizes and R&D or output subsidies, or

that private information is so severe that prizes can only drain the planner’s resources (Cornelli

and Schankerman, 1999; Gallini and Scotchmer, 2002; Hopenhayn et al., 2006; Chari et al.,

2009). Thus this literature has focused on the allocation of market power across time or product

space, rather than on its desirability per se. The second strand of literature allows for prizes,

but only a single dimension of heterogeneity, in which case quantity-dependent prizes perfectly

screen. This work thus either considers the comparison between quantity-independent prizes

and IP (Shavell and van Ypersele, 2001) or concludes that quantity-dependent prizes achieve

the first-best (Kremer, 2000a,b). By allowing multidimensional heterogeneity, our framework

creates a smooth trade-off between screening and ex-post pricing distortion that determines

which of a range of institutions running between IP and quantity-dependent prizes is optimal.

Our model, developed in Section 1, features an entrepreneur who is privately informed

about both the size of the market for his innovation, σ, and consumers’ willingness to pay for

it, its quality m. Namely, we study a stretch parametrization of general demand functions Q,

q = σQ
( p
m

)
.

The key assumption embodied in this parameterization is the proportionality of average con-

sumer surplus and the monopoly price, m. A social planner only has a prior over (σ,m) and

seeks to maximize total social welfare.5 We illustrate the logic above in Subsection 1.2 with

see also our application to platform markets in Subsection 5.1.
5Section 4 extensively discusses our modeling approach, especially the structure of information, instruments and

demand, and demonstrates the robustness of our conclusions to including a redistributive motive, externalities (such
as competing or complementary/sequential innovations), moral hazard, residual uncertainty of the entrepreneur
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an example showing that the tighter are the planner’s priors, the more relatively attractive

are quantity-dependent priors compared to IP.

In practice, however, we observe institutions (such as output subsidies, price controls and

competition spurred by weak IP) that help limit prices without achieving full ex-post efficiency.

We thus grant our social planner access to a range of policies between quantity-dependent prizes

and IP. In particular, rewards t under a quantity-dependent prize system are a function of q,

so we can write them as an increasing function t
(
q1p0

)
, while under IP they are a function of

profits π = qp, so we can write them as t
(
q

1
2 p

1
2

)
. This suggests a natural intermediate class

of policies with Cobb-Douglas isoreward curves, t
(
q1−αpα

)
. Raising α increases the reward

given for a higher price and thereby the incentive for higher pricing. However, it also targets

rewards to entrepreneurs with a high ratio of quality to market size (x ≡ m
σ ). We show that

this screening effect is beneficial so long as α < 1
2 because the stretch parameterization obeys

Smith’s hypothesis that the monopoly profit is “a pecuniary reward...precisely proportional to

the merit of the invention.”

Section 3 then quantifies this trade-off between ex-post distortion and screening. Raising

α selects the best marginal innovations, which is important to the extent that these differ

greatly from the worst innovations. However, it also increases deadweight loss on all innovations

brought to market, not just those on the margin between being created or not. Thus the relative

importance of screening also depends on the relative number of marginal and inframarginal

innovations. Pure IP (α = 1
2) is never optimal as the benefits of sorting innovations dwindle

as we reach perfect sorting, and pure quantity-dependent prizes (α = 0) are (essentially) never

optimal as marginal deadweight loss is 0 at the ex-post-efficient price.6

However, by the above logic, near-monopoly prices are optimal whenever the following

quantity is large:

V1 ≡ E π2
︸︷︷︸
Value

[
η︸︷︷︸

elasticity of
innovation supply

·Var ( log(x)| I, π)︸ ︷︷ ︸
inequality of

innovation supply

]

where π is the profit the innovation makes, I is any information available to the social planner

ex ante and η is the elasticity of innovation supply with respect to rewards. In particular,

about demand conditions and the possibility of manipulation of sales by the entrepreneur.
6α > 1

2 is always worse than pure IP as it both creates greater deadweight loss and provides inferior screening as
we show in Subsection 2.2.

5



when V1 is large, we show that α? ≈ 1
2 − ω1

V1
, where ω1 represents properties of the demand

form assumed.7 V1 reflects the three key considerations described above:

1. The social value created by an innovation is proportional to the monopoly profit it could

earn. Thus, weighting by the (square of) profit weighs the measure by value.8

2. The elasticity of innovation supply measures the relative weight of the marginal innova-

tions subject to screening compared to the inframarginal innovations subject to dead-

weight loss.

3. The variance of the logarithm is a standard measure of tail uncertainty, and thus the

inequality of innovation supply determines the importance of screening in high quality

and out low quality innovations.9

When prices are close to the monopoly optimum, society may approximately observe the

monopoly profit a firm could make. Thus Var ( log(x)| I, π), which is conditioned both on

profits and any information available ex-ante to the social planner, represents the residual tail

dispersion over the merits of innovations. Note that V1 is an empirical quantity, consisting

of an elasticity and a fairly easily-measurable variance. Thus, if V1 is large, optimal policy

may be approximated by relatively straightforward empirical measurements, as we illustrate

in Section 6 through Weingarten (2011)’s calibration of our model for the iPhone App store.

Conversely when V1 is small, there is at least a strong case for moving somewhat away from

common practices of market power as the primary means of rewarding innovation. Indeed,

our techniques can also be applied in an industry where quantity-dependent prizes are initially

employed.

Section 7 concludes the paper with a discussion of directions for future research. Detailed

technical explanations, more general results and longer, less instructive proofs are collected into

appendices following the main text. A more elaborate and technical extension of the results

7Note that because the logarithm and the elasticity are both unit-free, so is V1.
8The square is the relevant weighting, as we use the elasticity rather than the semi-elasticity and a one percent

increase in innovation incentives impacts larger innovations more strongly.
9In fact, the variance of the logarithm is one of the most commonly used measures of inequality (Creedy, 1977;

Foster and Ok, 1999). It is even more intuitive in our setting because its well-known drawback of being hard to
ground in utility theory (Dasgupta et al., 1973) is irrelevant, while its primary benefit of emphasizing the degree
of extremely low and high outcomes (Sen, 1973) is central to capturing the elitist feature of innovation. We thank
Nicolas Pistolesi for these references.
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to isoreward curves outside the Cobb-Douglas class, along with a treatment of our problem

using the revelation principle, appears in an online appendix at http://www.glenweyl.com.

1 Set-up

We first develop the basic model and provide a simple example showing when a market-power-

based system can dominate an ex-post-efficient system.

1.1 Model

We assume no marginal cost of production, as ideas are typically free to distribute.10 Potential

innovations, each independent in production and consumption, are sponsored by entrepreneurs

and characterized by three numbers:11

• c, or cost, an ex-ante cost of creating the innovation;

• σ, or size of the market, the demand at p = 0;

• and m, the monopoly price for the good, which we call quality for reasons that will

become apparent below.

The entrepreneur’s utility is t − c if she innovates and 0 otherwise, where t is the reward

the she receives. θ = (σ,m, c) is her private information. The social planner knows only

that θ is distributed according to some smooth pdf f with full support R3
++ and all moments

finite. He observes the price charged by the entrepreneur and the quantity she sells at this

price and therefore announces a reward schedule t(q, p) based on these. We restrict attention

to t functions which weakly increase in each of p and q, to avoid incentives for disposing of

quantity.

Demand for the innovation is characterized by a general function Q obeying standard

assumptions discussed below. Thus, the quantity sold

q = σQ
( p
m

)

10This is equivalent to known costs and an adjusted demand.
11See Subsections 4.2 and 4.5 for relaxations of independence in production and consumption respectively.
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and has elasticity ε(a) ≡ −aQ′(a)/Q(a), where a ≡ p
m . We normalize Q(0) = 1, so ex-post-

efficient demand is σ (thereby requiring finite demand at p = 0), and ε(1) = 1 so that the

monopoly optimal price is m. Q is assumed smooth, strictly decreasing wherever it is strictly

positive, to have strictly declining marginal revenue and bounded ε′′

ε , and to have vanishing

marginal distortion at the ex-post-efficient price (lima→0 aQ
′(a) = 0). A simple example is

linear demand q = σ(2m − p)/2m; σ corresponds to the quantity-intercept of linear demand

and m to half of the price-intercept as shown in Figure 2.

σ represents a horizontal stretching of inverse demand while m is a vertical stretching. We

thus refer to this as the stretch parametrization. The crucial assumption inherent to the stretch

parametrization is the proportionality between average social surplus and monopoly price when

the same fraction of the monopoly price is charged for all innovations; the robustness of our

results to relaxing this assumption is discussed in Subsection 4.1. In particular, under this

parametrization, the social surplus created by an innovation is

pσQ
( p
m

)

︸ ︷︷ ︸
profit

+σ

∫ ∞

p
Q

(
p̃

m

)
dp̃

︸ ︷︷ ︸
net consumer surplus

= σm

(
aQ(a) +

∫ ∞

a
Q(ã)dã

)
≡ σmS (a)

Thus if a is constant across types, so is the ratio of social surplus to profit S(a)/aQ(a).

An entrepreneur (σ,m) chooses p so as to maximize her reward t
(
σQ
( p
m

)
, p
)
. Equivalently

chooses her optimal fraction of the monopoly price a? (σ,m; t(·, ·)) and creates the innovation

if c is smaller than the resulting reward. The social planner seeks to maximize the total social

welfare created by innovation:

∫

θ:c≤t(σQ(a?(σ,m;t(·,·))),ma?(σ,m;t(·,·)))
[σmS (a? (σ,m; t(·, ·)))− c] f(θ)dθ. (1)

1.2 An illustrative example

To fix ideas, let us compare two specific institutions, the prize and the IP systems, in the

context of linear demand. Under the prize system (ex-post-efficient price and reward based

only on demand at this price, q = σ), the expected welfare created by realized innovations

8



2m

σ
Prize

Social surplus = σm

profit σm

2 ≥ c

if realized

2m

m

σ
2

σ

consumer
net surplus

deadweight loss

IP

Social surplus = 3σm

4

Figure 2: Linear demand under the stretch parametrization (left) and the division of potential gains from
trade among deadweight loss, profits and consumer surplus at monopoly prices (right)

characterized by (c, σ) is

Wprize = σE(m|σ, c)− c.

While the prize system realizes all potential gains from innovations that are created, it does

nothing to screen out low m innovations. In fact, if σE(m|σ, c) < c is satisfied (for all σ and c),

the average innovation that is created for any prize is not worth its cost. It is thus optimal to

award no prizes at all, shutting down the market for innovations entirely even if many worthy

innovations exist.12

Under the IP system (each innovation charges the monopoly pricem and earns the monopoly

profits 1
2σm), the innovation occurs if and only if c < 1

2σm. The social welfare created by

the innovation is (only) 3
4σm because of the deadweight loss associated with elevated prices

as illustrated in the second panel of Figure 2. Thus, while the IP system destroys a quarter

of the value created by each innovation, it robustly selects only innovations which are socially

beneficial.13

To see the role of inequality of innovation supply in this tradeoff, consider the expected

12For example, if m ∼
[
0, 52

c
σ

]
according to the decreasing triangular probability density function f(m|σ, c) =

4σ
5c − 8σ2

25c2m, despite all innovations with m > c
σ being worthy, σE(m|σ, c) = 5

6c < c. Thus, it is optimal to shut down
the market for innovations if one is constrained to prizes.

13In our “lemons” example from the previous footnote, the 4% of innovations with m > 2 cσ are created, and all
these are worth creating so the IP system is in this case superior.
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welfare under the IP system when conditioning on (σ, c):

WIP = Prob

(
m ≥ 2c

σ

)[
σE

(
3m

4

∣∣∣σ, c,m ≥ 2c

σ

)
− c
]

density

m

killer and me-too
innovations dominate: IP
superior to prize

innovations clustered
towards center: prize
dominates

prize equivalent
to IP

Figure 3: Bitriangular distributions with varying degrees of inequality of innovation supply

Because IP selects only innovations with relatively high m, the more important it is to

select out these best innovations, the more valuable is the IP system relative to prizes. A

simple example arises if m is distributed on
[
0, 3 cσ

]
according to a bi-triangular pdf as shown

in Figure 3.14 When the distribution is peaked and thus innovations clustered towards the

center, prizes are preferable. But when it reaches a sharp trough and thus the quality of

innovations is highly unequal, IP performs much better.

However, in practice we observe a range of institutions, including specific subsidies on

output, R&D subsidies, price controls, government bargaining over price (of medicines), limits

on patent breadth or enforcement to encourage some competition and others. These restrain

prices below the monopoly optimum without achieving full ex-post efficiency. As we will

show, neither prizes or IP are optimal once we allow for a broader range of institutions, as an

intermediate system outperforms both.

14In particular, if we let ν ≡ σm
c and f represent the height of the peak/trough of the bi-triangular distribution

f (ν|c, σ) =

{ (
5
3f + 25

36

)
ν + 5

6 − f ν < 6
5(

25
81 − 10

9 f
)
ν − 10

27 + 7
3f ν ≥ 6

5

Then welfare from prizes is .4− .3f while from IP is ≈ .47− .57f .
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2 The Isoreward Approach

In analyzing policies beyond the IP and quantity-dependent prizes discussed in the previous

section, it is useful to consider a simple method decomposing policies into their structure and

level of rewards. Each policy t(q, p) is characterized by the isoreward curves along which it

assigns constant rewards, and the actual level of rewards it assigns to each of these curves.

Because entrepreneurs select their price to maximize reward along their demand curve, only the

isoreward curves, and not the level of reward assigned to them, affect their pricing incentives.

The level of the reward affects only their decision to enter. We refer to this decomposition as

the isoreward approach.

Consider quantity-dependent prizes. These have rewards that depend only on quantity

and thus the reward is t(q).15 By contrast, under classical IP, rewards depend on the product

of price and quantity, qp. More generally any reward schedule t(qp) has the same isoreward

curves, leading the entrepreneur to maximize qp by charging the monopoly price.

These generalized IP rewards can be written as t
(
q

1
2 p

1
2

)
rather than t(qp). Similarly,

it is equivalent to write quantity-dependent prizes as t
(
q1p0

)
. Thus these two policies, one

inducing monopoly pricing, the other inducing ex-post efficiency, have in common that their

isoreward curves have a Cobb-Douglas form. A natural way to map between these extremes,

therefore, is to consider the broader class of all policies with Cobb-Douglas isoreward curves,

t
(
q1−αpα

)
, where the social planner’s choice variable α determines the relative weight on price

versus quantity.

As we show in our online appendix, the isoreward approach can be used to analyze a range

of reward policies in which isoreward curves may be arbitrarily flexible smooth curves and

thus far broader than the Cobb-Douglas class. This follows from the fact that any policy

may be decomposed into its isoreward curves and the value assigned to these. In fact our

online appendix establishes natural, if difficult to state, analogs of our results below that hold

even allowing for this richer range of policies. However, we find it useful to restrict attention

to Cobb-Douglas isoreward policies as they provide a parsimonious single-parameter class,

allowing empirical calibration while still providing a continuous map between the extremes of

15We use t both as a function of p and q separately and as a function of the unidimensional isoreward curve.
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generalized IP and quantity-dependent prizes.

2.1 Pricing

price

quantity

p

q

entrepreneur’s

optimum

isoreward curve(
t(q, p) = constant

)

demand curve for ( σ, m)

Figure 4: Isoreward curves must be tangent to demand at the entrepreneur’s optimal price

Another useful property of the Cobb-Douglas isoreward class is, as we show in this sub-

section, that all innovators are incentivized to charge the same fraction a of the monopoly

price. As pictured in Figure 4, to maximize rewards, the entrepreneur chooses the point on

her demand curve at which it is tangent to the isoreward curve, given that the reward is

(weakly) increasing as one moves out across isoreward curves. Cobb-Douglas isoreward curves

are particular simple from this perspective as they have a constant elasticity α
1−α .16 Thus

every entrepreneur will choose a point that equates the elasticity of her demand curve, ε(a),

to α
1−α .17 Finite demand and zero marginal distortion at the ex-post-efficient price imply that

ε(0) = 0 and monopoly optimization that ε(1) = 1. For marginal revenue to be decreasing,

ε′ > 0 whenever ε ≤ 1.18 Thus for any α ∈
[
0, 1

2

]
, every entrepreneur will charge the same,

16Regardless of whether the isoreward curves are Cobb-Douglas, the entrepreneur will always choose a point on
her demand curve whose elasticity equals the elasticity of the isoreward curve at that point.

17This can be seen because q1−αpα = k1−α =⇒ q = kp
α

1−α .
18MR = p− p

ε ∝ a− a
ε(a) , so

Q′(MR)′ > 0 ⇐⇒
[
a

(
1− 1

ε

)]′
< 0 ⇐⇒ ε′ > − ε

a

(
1− 1

ε

)
⇐⇒ ε′ > −ε

2

a

(
1− 1

ε

)
.

This also implies that for all α > 1
2 , a > 1 and thus α > 1

2 always leads to above-monopoly pricing.
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unique a(α) solving

ε (a(α)) =
α

1− α. (2)

Thus we will alternate interchangeably in what follows between α and a.

2.2 The trade-off between ex-post distortion and screening

Because all entrepreneurs charge the same a, their prices and quantities are proportional to

m and σ respectively as p = a(α)m and q = σQ (a(α)). Thus an entrepreneur of type (σ,m)

receives reward τ
(
σ1−αmα;α

)
≡ t

(
Q (a(α))1−α a(α)ασ1−αmα

)
.19 Additionally, the value of

innovations, σmS (a(α)) is proportional to σm. Thus Pigouvian payment in accordance to

product would require the reward to be based on σ
1
2m

1
2 and thus is possible only with α = 1

2

(i.e. full monopoly pricing). The higher the value of α (below 1
2), the closer we are to payment

in accordance with product and thus perfect sorting among innovations. However, because

ε′ > 0, a′ > 0 and thus prices and ex-post distortion rise in α. We can thus refer to α as the

degree of market power chosen by the planner. This establishes the basic tradeoff between

sorting and ex-post efficiency that is the key to optimal policy.

This also immediately implies a useful and intuitive result: it is never optimal to choose

α > 1
2 and thus induce prices above the monopoly optimum. This both worsens ex-post

distortion and reduces the quality of sorting by over-rewarding quality relative to size

3 Optimal Rewards and Pricing

We can now decompose the planner’s problem as

max
α

W (α) where W (α) = max
τ(·)

∫

θ:c≤τ(σ1−αmα)
[σmS (a(α))− c] f(θ)dθ,

which illustrates the three steps we follow in analyzing the problem. First, for a given market

power α (or equivalently a) we perform the straightforward exercise of maximizing social

welfare over choices of reward schedules τ . Then we establish the applicability of the envelope

theorem to our context and thus the differentiability of the value function W (α). Finally, we

19From here on we use τ to represent rewards in the type space and t the same in price-quantity space.
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use the envelope conditions derived in the first stage to determine the marginal benefits and

costs of raising α, W ′.

3.1 Optimal transfers

We first consider the optimal reward along each isoreward curve independently, a simple uni-

dimensional problem. It is useful to re-parameterize the problem in terms of isoreward curves

and the quality-market size ratio along a particular isoreward curve,

k = σ1−αmα and x ≡ m

σ
,

respectively, rather than (σ,m). We will refer to the relevant (change-of-variables augmented)

distribution function as f̃(k, x, c) to distinguish it from f(σ,m, c).20 In this new notation, the

social value created by an innovation, σmS (a(α)), becomes k2x1−2αS (a(α)).

For a given reward τ(k), all innovations along the k isoreward curve with cost less than

τ(k), those with c ≤ τ
(
σ1−αmα

)
are created. If the “average marginal innovation” (i.e. the

average innovation along isoreward curve k with cost c = τ(k)) creates social value greater

(lower) than τ(k), the social planner has an incentive to raise (lower) τ(k). Thus for a given

α, the optimum is at a point at which these are exactly equated:

τ?(k;α) = k2S(a)E
(
x1−2α

∣∣ c = τ∗(k;α), k
)
, (3)

where the expectation is taken over x under f̃ .21 For implementation, the optimal transfer

function in the (q, p) space is then derived simply by inverting the definition of τ from Subsec-

tion 2.2 above: t?
(

k
Q(a(α))1−αa(α)α

;α
)

= τ? (k;α). The social value function W (α) associated

with each pricing policy α can thus be computed.

20The formula for this transformation is provided in Appendix A.
21If c is not too affiliated with x under f̃ given k, in a sense formalized in Proposition 3 in Appendix A, then there

is a unique point at which this condition is satisfied and this constitutes the optimal (monotonicity-relaxed) transfer.

Furthermore, if k is not too negatively affiliated under f̃ with x given c (see again Appendix A) then τ? is monotone
increasing and thus is the truly optimal transfer function. If either (but not both) of these conditions fail, standard
ironing techniques can be used to determine optimal transfers as described in Appendix C. In any case the envelope
conditions for τ? (the average marginal innovation’s value equals the transfer) hold once innovations are pooled over
the ironing region.
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3.2 Optimal market power

Because τ?(k;α) is chosen optimally, we can apply Milgrom and Segal (2002)’s envelope the-

orem for general choice sets and consider only the direct effect of an increase in a on social

welfare, ignoring indirect effects through the optimal choice of τ?.

Lemma 1. W (α) is differentiable for all α ∈
(
0, 1

2

)
and its derivative may be evaluated by the

envelope theorem, holding τ? fixed. Formally:

W ′(α̂) =
∂

∂α

[∫

σ

∫

m

∫ τ?(σ1−αmα;α̂)

c=0
[σmS (a(α))− c] f(σ,m, c)dcdmdσ

]∣∣∣∣∣
α=α̂

Proof. See Appendix B.

In fact, this holds even if τ? is non-differentiable: the smoothness properties we have

assumed on f , combined with the monotonicity of τ? are sufficient to establish the equidif-

ferentiability and continuity conditions required by Milgrom and Segal. However, in most of

what follows we will derive the formulae for the case when τ? is differentiable.22

Theorem 1: An optimal value of α, α∗, exists. Either α∗ is strictly between 0 and 1
2 , or

α? = 0 and τ?(k;α) is constant in k.

If transfers are everywhere constant when α = 0, sorting need not have a local benefit as

it is not used. However, such flat transfers can easily be ruled out by a significant weakening

of our no-ironing condition (14) in Appendix C, which requires that σ not be too negatively

affiliated with m. Thus when optimal transfers at α = 0 are flat in k, this is likely to raise the

global value of sorting as it implies sorting is very poor at α = 0, as σ is a poor indicator of

overall value as in our “lemons” example from Subsection 1.2. Thus, we conjecture that α = 0

is never optimal.

Proof. See Appendix D.
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isoreward curve
before increase in α
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(σ1 , m1)

(σ2 , m2)

Figure 5: Increasing market power changes isoreward curves and therefore the reward given to
different innovations, favoring high quality over large market size

3.3 Heuristics

Figure 5 first depicts an isoreward curve (the dashed curve) for a given α. Types (σ1 ,m1) and

(σ2 ,m2) receive the same reward. An increase in α makes the isoreward curves flatter. This

has the effect of shifting the high-quality type (σ1 ,m1) to a higher k (higher isoreward curve;

note that k = σ = m on the 45◦ line and is therefore independent of α) and the low-quality

type (σ2 ,m2) to a lower k. This in turn implies that for locally fixed transfers τ∗(k;α), a

small increase in α at the margin will attract in marginal (cost equal to reward) high-quality

projects and crowd out marginal low-quality projects.

The further points are from the (σ = m = k) 45◦ line, the more quickly the k values

corresponding to the point increases (if the point is above the line), or decreases (if it is

below), in α. The rate of moving up (or down) isoreward curves dσ1−αmα

dα for an innovation

of partial type x is proportional to log(x), just as the production of a Cobb-Douglas economy

responds to a shift in shares at a rate proportional to the ratio of factors because isoquants

are log-linear: log(k) = (1− α) log(σ) + α log(m).

The value of innovations along any particular isoreward curve is proportional to x1−2α

22The absence of ironing is sufficient to ensure this differentiability. Sufficient conditions for the absence of ironing
are given in Appendix A. Appendix D presents analogous results when optimal transfers are non-differentiable.
Additionally this approach may be applied, under appropriate conditions, when isoreward curves are characterized
by (infinitely) many parameters as shown in our online appendix.
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by Subsection 3.1. The social benefit associated with raising α is that high x innovations

are created more frequently: to the extent that x1−2α covaries with log(x) (which it must

to some extent), more beneficial innovations will be selected by higher values of α.23 Thus

Cov
[
x1−2α, log(x)|k, c = τ?(k;α)

]
, the covariance between the extra rewards given to (marginal)

innovations and the value of these innovations, is a crucial quantity pushing towards greater

market power. Furthermore, because limα→ 1
2

x1−2α−1
1−2α = log(x), for α close to 1

2 ,

Cov
[
x1−2α, log(x)|k, c = τ?(k;α)

]
≈ (1− 2α) Var [ log(x)| k, c = τ?(k; 1)]

Thus, if one is considering near-monopoly pricing rules, the incentive for marginally higher α

is nearly proportional to the (conditional) variance of the logarithm of x.

On the other hand, raising α reduces the value of all innovations that are created, not

just the marginal ones (with c = τ?(k;α)). Thus, the relative weight on this distortion is the

ratio of the mass of infra-marginal innovations to the density of marginal innovations; that is,

the inverse hazard rate, or inverse semi-elasticity, of innovations with respect the reward/cost

along a given isoreward curve. The harm per innovation is proportionate to the value of the

innovations which is, by the optimality conditions for τ? closely tied to the reward given to

innovations. Thus, we can normalize the semi-elasticity and obtain that it is t the (in)elasticity

of innovations with respect to the rewards given them that determines the relative size of the

disincentive to ex-post distortion.

3.4 Marginal costs and benefits of market power

The factors considered informally in the preceding subsection can be formally shown to be the

key determinants of the net marginal social benefit of ex-post distortion.

Corollary 1: 24 Assuming τ?(k;α) is differentiable in k at α, W ′(α) ∝

E

[
k4
[

(1− 2α)
τ?
′

k
ηCov

(
log(x),

x1−2α − 1

1− 2α

)

︸ ︷︷ ︸
sorting

− Qα

(1− α)3ε′
E
(
x1−2α

)
E
(
x1−2α

∣∣ c < τ?
)

︸ ︷︷ ︸
ex-post distortion

]]
, (4)

23See Veiga and Weyl (2011) for a general analysis of this logic of smooth screening.
24This formula is a special case of the general first-order condition which applies even when τ? is not differentiable.
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where the outer expectation is taken over k, the covariance and inner expectations over x,

η ≡ fc(τ?(k;α)|k)τ?(k;α)
Fc(τ?(k;α)|k) is the elasticity of innovations with respect to reward, all quantities

inside the expectation are evaluated conditional on k, c = τ?(k;α) where not explicitly stated,

fc and Fc the (conditional) marginal pdf and cdf respectively of c and all expectations are taken

under f̃ . As usual, a necessary condition for the optimal choice of α is that this equal 0.

Proof. Assuming continuous differentiability of τ?,

∂

∂α

[∫

σ

∫

m

∫ τ?(σ1−αmα;α̂)

c=0
[σmS (a(α))− c] f(σ,m, c)dcdmdσ

]∣∣∣∣∣
α=α̂

=

∫

σ

∫

m

(
σ1−α̂mα̂τ?

′
log
(m
σ

)
(σmS − τ?) f (σ,m, τ?) +

∫ τ?

c=0
σma′Qεf(σ,m, c)dc

)
dmdσ,

where all variables are evaluated at α̂. Recalling that ε (a(α)) = α
1−α , and thus, a′ = 1

(1−α)2ε′ ,

W ′ in the (k, x) space is

∫

k

∫

x
kτ?

′
log(x)

(
k2x1−2α̂S − τ?

)
f̃ (k, x, τ?)−

∫ τ?

c=0
k2x1−2α̂ α̂Q

(1− α̂)3ε′
f̃(k, x, c)dcdxdk.

Letting f̃k(k) be the marginal distribution under f̃ of k (and similarly with other subscripts

of densities), this becomes

∫
k
Ex,f̃

[[
kτ?
′
log(x)(k2x1−2α̂S−τ?)

∣∣∣c=τ?,k]f̃k[τ?;α̂]−k2 α̂Q

(1−α̂)3ε′
Ex,f̃(x

1−2α̂|c<τ?,k)F̃k(τ?;α̂)
]
f̃(k)dk.

By the envelope conditions in equation (3), τ? = Ex,f̃
(
k2x1−2α̂S

∣∣ c = τ?, k
)
, so that we can

rewrite the derivative as

S

∫
k
k4

[
τ?
′

k Covx,f̃
(

log(x), x1−2α̂
∣∣ c = τ?, k

)
− α̂Q

(1−α̂)3ε′
Ex,f̃(x

1−2α̂|c<τ?,k)Ex,f̃(x1−2α̂|c=τ?,k)
η(τ?|k)

]
f̃kc (k, τ?) dk

where f̃(k, c) is the marginal distribution of (k, c). If we now normalize by dividing by

S
∫
k f̃ (k, τ?) dk, remove remaining unnecessary arguments and subscripts and multiply and

divide the first term in the appropriate places by 1−2α, we obtain the desired expression.

For the first-order condition to actually characterize the optimum, the problem must be

(quasi-)concave. While it is not typically tractable to determine simple conditions on primitives
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to ensure this, we show in Appendix E that so long as the product of the inequality and

elasticity of innovation supply does not increase too rapidly with α, especially for intermediate

values of α, the problem is concave. All of our computational simulations thus far, some of

which are described in the next subsection, exhibit such concavity.

3.5 Approximation theorems

Assuming quasi-concavity, we now consider the limit as the elasticity and the inequality of

innovation supply grow large or small.

Theorem 2 (Optimal near-monopoly pricing): Let π ≡ σmQ(1) be the monopoly profit asso-

ciated with an innovation and V1 be defined by:

V1 ≡
E

[
π2Var

(
log(x)|π, c =

S(1)

Q(1)
π

)
η

(
S(1)

Q(1)
π

∣∣∣∣π
)]

E [π2]
,

where the expectations are taken with respect to π under the distribution over (π, x, c) induced

by f(σ,m, c) and the variance is taken with respect to the conditional-on-π distribution of x.25

Then, if W is quasi-concave or if we consider only α values sufficiently near 1
2 , the optimal

value of α is

α? =
1

2
− Q(1)

S(1)ε′(1)V1
+O

(
1

V 2
1

)
. (5)

Thus for V1 sufficiently large, α? approaches 1
2 ; that is, as the value-weighted average of the

product of the elasticity and inequality of innovation supply grow large, near-monopoly pricing

becomes optimal.

Proof. By Corollary 1, rearranged slightly, the necessary condition for determining α? is

(1− 2α)SE

[
1

S
τ?
′
k3ηCov

(
log(x),

x1−2α − 1

1− 2α

)]
=

Qα

2(1− α)3ε′
E

[
k4E

(
x1−2α

)
E
(
x1−2α

∣∣ c < τ?
)
]
.

25Formally this is f̃ at α = 1
2 .
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Letting ω(α) ≡ (1− 2α)S(1−α)3ε′

Qα and

β(α) ≡
E

[
1
S τ

?′k3ηCov
(

log(x), x
1−2α−1
1−2α

)]

V1E

[
k4E (x1−2α)E (x1−2α| c < τ?)

] ,

the first-order condition becomes ω(α)β(α) ≡ κ(α) = 1
V1

. Proposition 5 in Appendix E shows

that κ is locally decreasing near α = 1
2 and thus we may consider the local inversion of κ in

this neighborhood κ−1
δ 1
2

. Note that ω
(

1
2

)
= 0. To determine β

(
1
2

)
note first that τ?

(
k; 1

2

)
=

S(1)k2 by equation (3) and thus τ?
′ (
k; 1

2

)
= 2S(1)k. Second, note that by L’Hôpital’s rule,

limα→ 1
2

x1−2α−1
1−2α = log(x) so limα→ 1

2
Cov

(
log(x), x

1−2α−1
1−2α

)
= Var (log(x)). Third, note that

when a = 1, k2Q(1) = π and that E
(
x1−2α

)
= E

(
x1−2α

∣∣ c < τ?
)

= 1. Thus limα→ 1
2
β(α) = 2.

Thus Taylor expanding κ−1
δ 1
2

about 0 yields

α? =
1

2
+ κ−1′

δ 1
2

(0)
1

V1
+O

(
1

V 2
1

)
. (6)

By the inverse function theorem,

κ−1′

δ 1
2

(0) =
1

κ′
(

1
2

) =
1

ω′
(

1
2

)
β
(

1
2

) =
1

−2
S(1)(1− 1

2)
3
ε′(1)

Q(1)· 1
2

· 2
= − Q(1)

S(1)ε′(1)
,

so that rearranging equation (6) yields the result.

Intuitively, as the inequality and elasticity of innovation supply grow, the incentives for

ex-post distortion grow until monopoly pricing becomes optimal in the limit. In this limit

many of the complexities above disappear: isoreward curves become isoprofit sets, optimal

transfers collapse to the social surplus of every innovation, namely S(1)
Q(1) times its profit, and

optimal pricing is near monopoly.

This particular approximation is also of interest for a pragmatic reason. Most advanced

capitalist nations use primarily market-power-based schemes for rewarding innovation: thus

current policy has α near 1
2 . Hence a local approximation to optimal policy near this point

seems most useful for a gradualist interested in moving cautiously away from this point. If V1
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Figure 6: Increasing the inequality of innovation supply raises optimal market power

is not in fact measured to be large, one may only conclude it should move down significantly,

but how far exactly is not clear as the approximation becomes poor. Empirical implementation

of this approach is discussed further in Section 6. After policy has been changed marginally,

the model may be recalibrated and further adjustments enacted, in the spirit of Chetty (2009).

However, to illustrate the generality of the approach, we also consider an approximation about

a = 0, which has the additional benefit of providing a near-converse toTheorem 2.

Theorem 3 (Partial converse): Let V0 be defined by

V0 ≡
E

[
σ4 log (τ0)′Cov (log(m),m|σ, c = τ0(σ)) η (τ0(σ)|σ)

σE (m|σ, c < τ0(σ))

]

E(σ4)
,

where τ0, the optimal reward schedule at α = 0, is defined implicitly by τ0(σ) = σS(0)E (m|c = τ0 (σ) , σ),

the outer expectation is taken with respect to σ and the inner expectation and covariance are

taken over m, all under the measure f . Then, if W is quasi-concave in α or if we consider

only α values sufficiently near 0, the optimal value of α is

α? = ε′(0)V0 +O
(
V 2

0

)
. (7)

Thus for V0 sufficiently small, α? approaches 0.
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Proof. Follows from analogous logic mutatis mutandis to the proof of Theorem 2 (Taylor

expanding now about 0) as in this limit k = σ, x1−2α = x when α = 0 and Q
(1−α)3ε′

∣∣∣
α=0

=

1
ε′(0) .

Intuitively, as m becomes perfectly known or all innovations become infra-marginal, the

screening benefit of ex-post distortion becomes small. Optimal policy becomes ex-post-efficient

pricing coupled with demand-dependent prizes.

Figure 7: Increasing the elasticity of innovation supply raises optimal market power

While these two theorems are not quite converses, numerical simulations verify the validity

of our intuitions. In particular we consider a simulation in which π is drawn from a uniform

distribution, x is drawn log-normally and c is drawn exponentially (so that its elasticity can

be unambiguously adjusted), all independent of one another. Figure 6, which pictures W for

various values of the log-variance of x, shows that increasing the log-variance of x increases

a? ≡ a (α?) through the full range of values. Figure 7 shows W for various values of the

exponential parameter, showing that as the elasticity increases, so too does a?.26

26It should be noted that we have graphed the value W̃ that could be achieved if monotonicity constraints were
not imposed, not the true W that would result from ironing. This is to avoid the difficulty of an ironing routine;
however, it does not bias the results on α? as we have verified that, in every example, τ??, the monotonicity relaxed
optimal τ , is in fact monotone at α?. It is only at sub-optimally low α that ironing may be necessary and there
it only makes these a values further unattractive. Whether it is “typically” the case that ironing is unnecessary at
or above optimal α is a question we hope to investigate in further simulations. Python code for our simulations is
available at http://www.glenweyl.com. Appendices A and C discuss ironing in greater detail.
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3.6 Discussion

A simple application of our results is to the relative attractiveness of prizes compared to IP in

the development of new medicines compared to software and other high-technology. Kremer,

his co-authors and many others have advocated prizes for the development of new medicines.

More broadly, many developed countries have extensive price controls, centralized bargaining,

subsidies and other non-market mechanisms for increasing access to medicines.27 As in a prize

system, these determine rewards per unit sold independently of the discipline of market prices.

On the other hand, most advanced economies use, and most economists would advocate,

market-oriented pricing of high technology products, from software to tablet computers.

These intuitions square with our reasoning because, at least in many cases, the per-

consumer value of medicines can be judged somewhat objectively using clinical trials and

standard calculations of the monetary value of added quality-adjusted life years. Thus the in-

novator has little private information on m ex post. Conversely high technology exhibits nearly

the opposite pattern: it is typically far from apparent how much consumers value various new

electronics and software until the market demonstrates this. Taking our example from the in-

troduction, many engineers believed AOL would be worth little compared to Netscape because

they failed to take into account the AOL’s relative ease and social benefits for non-specialists.

One way to interpret the difference between these systems is the notion of “entrepreneur-

ship”. While this concept is taken to mean many things, one way to interpret an entrepreneur

is as an individual who acts on the basis of strongly-held minority views about demand con-

ditions. An “entrepreneurial” system is then one in which the set of innovations created or

products brought to market is highly responsive to private information held by entrepreneurs

about the value of the products, possibly at the expense of market power in the spirit of

Schumpeter (1942). In this sense, our α can exactly be interpreted as the degree to which the

reward structure is entrepreneurial as isoreward curves σ1−αmα coincide with social isovalue

curves σmS (a(α)) to the extent that α is close to 1
2 . In fact, the covariance that determines

the marginal screening benefits of α is exactly the increase in the covariance (along the set of

27These policies have traditionally been explained by the government discounting innovator surplus and/or low η
at the country level, so that in the absence of cross-country coordination, each country internalizes too little of its
effect on innovation supply. However, the difference between the medical and other sectors in this dimension suggests
a role for private information about quality.
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marginal innovations) between σ1−αmα and σm.

Thus our results may be seen as establishing a link between belief in strong material motiva-

tion (elasticity of innovation supply) and heterogeneity of ability in entrepreneurship (inequal-

ity of innovation supply) on the one hand and belief in the desirability of an entrepreneurial

system on the other. This may help explain formally the emphasis Hayek (1945) places on

the private information of entrepreneurs and Friedman (1962) puts on materially-motivated

“individual geniuses” in justifying such a system, as well as clarify which exact institutions

“entrepreneurship” represents for these authors.

4 Modeling Choices and Robustness

This section discusses modeling choices and extends our basic framework in a number of

directions, largely exhibiting the robustness of both its techniques and conclusions.

4.1 Implications of the stretch parameterization

We make extensive use of our stretch parameterization of demand, which significantly general-

izes the linear specification of preferences typically used in multidimensional screening models

(Rochet and Choné, 1998).28 However, the parameterization still embodies a crucial assump-

tion, namely that if a constant fraction of the monopoly price is charged for all innovations,

then the average consumer surplus generated by an innovation is proportional to its monopoly

optimal price. Effectively this rules out demand curves differing in their curvature. We suspect

that in a more general model where curvature too could vary, our results would continue to

hold if the correlation between curvature and (σ,m) were low. However, if curvature, and

thus the ratio of average consumer surplus to monopoly price (Weyl and Fabinger, 2011), were

highly positively correlated with m or negatively correlated with σ, the planner might want

to have an incentive to set α above 1
2 to further screen for curvature. On the other hand if

curvature had a sufficiently opposite correlation, the role of market power in screening might

be eliminated.

28Thus we suspect this parameterization for indifference curves may be useful more broadly in multidimensional
screening.
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An increase in σ corresponds to an increase in the traditional market size parameter in

standard industrial organization (Bresnahan and Reiss, 1991) and international trade (Krug-

man, 1980). A shift in m, on the other hand, corresponds to a proportional increase in all

consumers’ willingness-to-pay, often represented (Berry et al., 1995) by a proportional increase

in their income.

Among the classes of preferences representable by the stretch parametrization are all con-

stant pass-through demand (Bulow and Pfleiderer, 1983) functions with common pass-through

rate, the broader Apt demand class (Weyl and Fabinger, 2009) with common limiting pass-

through and slope of pass-through that scales with m, any demand based on a statistical

distribution with a constant location-to-scale parametrization and a single-product version of

AIDS (Deaton and Muellbauer, 1980).29

Given its intuitiveness, this parameterization seems likely to be useful in other areas of

industrial organization and beyond. As discussed in Subsection 4.2 it seems a natural parame-

terization for demand morphing in the spirit of Johnson and Myatt (2006). Similarly, increas-

ing σ and m in proportion provides a simple manifestation of Bresnahan (1982)’s “demand

shifters” and while changing their ratio while holding, say, their product constant manifests

a demand “twister”. It also offers a simple way to parameterize cases when, in the sense of

Spence (1975), a monopolist has excessive or deficient incentives to supply quality, holding

fixed quantity:

Proposition 1: Holding fixed quantity, a monopolist will always have too little incentive to

supply m. Furthermore, so long as demand is log-concave (linear-cost pass-through is less than

1), a monopolist will have excessive incentive to supply σ.

Intuitively, most of the benefits of increased m go to infra-marginal consumers, but most

of the benefits of increased σ go to marginal consumers.

Proof. Social value is σmS
(
Q−1

( q
σ

))
while profits are qmQ−1

( q
σ

)
. Thus, the marginal social

incentive to supply m is σS while the marginal private incentive is qQ−1 = σQpm . But Sm
Qp is

exactly the ratio of average to marginal willingness-to-pay which is clearly above unity.

29See Weyl and Fabinger (2009) for an extensive list of statistical distributions used to generate demand functions.
Two prominent examples are Gaussian or Type-I extreme value distribution with constant location to scale parameter
ratios.
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The social incentive to provide σ holding fixed q is

−S
′

Q′
q

σ
m+mS =

QεQ

Q′a
am+ Sm = (S − aQ)m,

while the private incentive is

− q
2m

Q′σ2
= −Q

2m

Q′
=
Qam

ε
.

At monopoly optimal prices the first simplifies to (S(1)−Q(1))m and the second to Q(1)m.

S(1)−Q(1)
Q(1) is the ratio of consumer to producer surplus at the monopoly optimal price, whose

comparison to unity is dictated by the average pass-through rate at prices above the monopoly

optimum (Weyl and Fabinger, 2011).

4.2 Moral hazard

Society may face a trade-off between having particular entrepreneurs work on developing one

or another innovation. An extreme example of such a trade-off is simple to model: the en-

trepreneur must choose which of many possible innovations to create. This leads to a natural

moral hazard version of our model which, while too simple to formalize the notion of the

inequality and elasticity of innovation supply, illustrates the robustness of our basic argument.

Suppose an entrepreneur can choose to create, for effort cost e, any innovation lying along

the smooth curve σ = h(m; e) where hm < 0 < he. It is natural to assume that along an

isoeffort curve h(m; e), there is a unique point generating maximal potential surplus mh(m; e)

so that if the social planner were to select unconstrained, his problem would be quasi-concave.30

A standard condition for this is increasing elasticity: ∂εh
∂m > 0 where εh ≡ −mh′

h , where εg is

the elasticity of an arbitrary function g.

The entrepreneur would like to minimize her effort cost of obtaining a reward t that the

social planner offers her if she achieves a specified quantity-price target, which may be set

in advance given the lack of ex-ante private information. From now on we will suppress the

dependence of h on e, assuming the social planner has chosen (in some other stage of analysis)

the optimal effort e? to induce. Thus, we focus on the choice between quality and market size.

30Interestingly, Johnson and Myatt (2006) base their analysis on an assumption implying that the social planner’s
problem would be globally convex.
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Incentive compatibility requires that the entrepreneur select m so to maximize σQ
( p
m

)
=

h(m)Q
( p
m

)
, or equivalently that the isoeffort curve be tangent to the demand curve at the

requested price-quantity pair; otherwise the entrepreneur could achieve the desired price and

quantity at a lower cost. Therefore, for (q, p) to be incentive compatible it must be that

εh (m) = ε
( p
m

)
. (8)

Note that m is increasing in a ≡ p
m because ε and εh are both increasing. Price must be higher

to induce the entrepreneur to choose a higher quality product, as these are the products which

fare better at higher prices.

Social welfare is h(m)mS(a). If the social planner were unconstrained by incentives, he

would choose a = 0 and m = m? where m? is the unique maximizer of h(m)m. However

to achieve the surplus maximizing m would require εh = 1, the social planner’s problem is

equivalent to the monopoly problem, which would, by incentive compatibility, require a = 1.

This is exactly the same trade-off as in the adverse selection model and gives rise to a simple

expression for the cost and benefit of ex-post distortion.

Proposition 2: The first-order net benefit of increasing a in the moral-hazard model is pro-

portional to

(1− ε) εε︸ ︷︷ ︸
incentivizing high quality

− εεhεS︸ ︷︷ ︸
ex-post distortion

.

Furthermore 0 < a? < 1.

Proof. We can log-differentiate social welfare:

−εS + (1− εh)
∂ log(m)

∂ log(a)

But by implicit differentiation of equation (8),

∂ log(m)

∂ log(a)
=

εε
εεh

Combining this with the first expression, multiplying by εεh and noting that by incentive

compatibility εh = ε yields the result.
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When a = 0, εS = 0 as there is no first-order distortion from raising a but (1 − ε)εε > 0

(as ε = 0 and thus, in fact, εε = ∞) and thus there is a first-order benefit from raising a.

When a = 1 there is no first-order benefit from raising a as ε = 1, but there is a first-order

loss from the distortion thus caused as εεh , εS > 0. Therefore, it is always optimal to choose

an a? ∈ (0, 1).

More detailed comparative statics may easily be derived. If demand is very elastic, even

for low values of a, it will be optimal to choose a low. If the isoeffort curve is very elastic even

for low values of a, then it is optimal to chose high values of a. In a broad sense, our core

model can be seen as providing structure to these relative elasticities and tying them thereby

to statistical properties of the distribution of innovations.

4.3 Sales manipulation

In line with the literature on advance market commitments and output subsidy policies, we

have assumed so far that sales are verifiable by the government. At the very least, such

verifiability requires the existence of either exclusive resale outlets with trustworthy record

keeping or an encryption device preventing inflated sale claims. Yet, even if actual sales are

verifiable, the entrepreneur may still want to manipulate sales figures by asking friends and

affiliates to purchase on her behalf. Such manipulation may provide a separate, but closely

related, rationale for above-cost pricing.

Allowing for such manipulation, the scheme t(q, p) is non-manipulable if such purchases

are not profitable. That is, for any (q, p) in the equilibrium support, t(q + ∆, p) − p∆ must

be maximized in the range [0,∞) at ∆ = 0. If t is differentiable, this adds the following

non-manipulability constraint:

tq(q, p) ≤ p

The non-manipulability constraint is inconsistent with low mark-ups. For instance, a quantity-

responsive prize system (i.e. p = 0, t(q) increasing) is no longer feasible, let alone approxi-

mately optimal. Specializing to the Cobb-Douglas isoreward curves we use above, this non-
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manipulability constraint can be rewritten as

p

q
≥
(
t′
(
q1−αpα

)
(1− α)

q1−αpα

) 1
1−2α

.

A low price policy leads to this being violated for a wide range of x values, unless the transfer

policy is highly unresponsive. In this setting, screening even the size of the market requires

market power. Simple IP (t = qp) satisfies the non-manipulability constraint everywhere with

equality. Indeed simple IP is optimal in the class of Cobb-Douglas isoreward policies.

The optimal scheme under the non-manipulability constraint lies outside the scope of this

paper, but we conjecture that the optimal α is higher than in its absence and that simple IP

is optimal with sales manipulation under weaker conditions than V1 →∞.

4.4 Multiple price observations

For analytical convenience, we have presumed that the social planner does not require the

entrepreneur to randomize over prices. Randomization could facilitate sorting at a lower

distortion cost (Brynjolfsson and Zhang, 2006) by improving the social planner’s information

about the demand curve without forcing all consumers to pay higher prices.

There are several ways in which multiple prices might emerge: pure stochastic pricing (the

entrepreneur may randomize prices and rewards may be contingent on the realized outcome,

as well as on the randomization chosen), geographically differentiated prices and intertem-

porally differentiated prices. The latter two forms of price variability require the absence of

consumer arbitrage: geographical price dispersion is not sustainable if resale across territories

is feasible.31 Similarly, for a durable good, Coasian arbitrage limits the forms of intertemporal

discrimination that can be achieved.

But even in the absence of consumer arbitrage, price variability in general would not obviate

the need for pricing in the upper part of the demand curve sufficiently long, with sufficient

probability. A general treatment of this point lies outside the scope of the paper and we

content ourselves with a simple illustration.

31Of course, the incentives for arbitrage are greater for higher prices and smaller geographic area (or period of
time) over which they are applied, further emphasizing the difficulty of obtaining “free” information about demand.
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An example. Consumers have willingness to pay for the innovation equal to vH (fraction m)

or vL (fraction 1−m), where vH > vL. Let v ≡ mvH + (1−m)vL denote the social surplus at

ex-post-efficient pricing (p ≤ vL). There are two types of innovations: minor (c1 , σ1 ,m1) in

proportion f1 , and major (c2 , σ2 ,m2) in proportion f2 , with f1 + f2 = 1. One has σ1 ≥ σ2 ,

m1 < m2 and, with obvious notation, v2− c2 > 0 > v1− c1 so the social planner would like to

screen in major innovations and out minor ones.

Consider first intertemporal price variations. One might intuit that the social planner

should mandate high prices for a short while in order to learn about the demand curve and

then, conditional on the observed demand having passed the market test, award a prize to

the inventor and have the innovation turned to the public domain. This reasoning, however,

ignores two related features: First, for exogenous reasons, demand may develop faster or slower

than thought and so early demand observations will be noisy. Second, the entrepreneur may

use marketing and more generally non-price effort to frontload realizations of demand. We

formalize the latter possibility in a straightforward way: let time run from 0 to 1 and there be

no discounting for notational simplicity. Let ztk = 1 if type k ∈ {1, 2} charges vL < pt ≤ vH

and ztk = 0 if pt ≤ vL. To formalize the feasibility of moving demand across time, we allow the

entrepreneur to choose demand size path {σtk}t∈ [0,1] subject to the constraint

∫ 1

0
σtkdt ≤ σk

(total demand across time is constant).

To mimic the major innovation, the minor innovation must choose σt1 = σt2m2/m1 for all

t such that zt2 = 1 and σt1 = σt2 otherwise. Letting z ≡
(∫ 1

0
σt2z

t
2dt

)
/σ2 denote the fraction

of the demand for time at which the major innovation leads to a distortion, screening out the

minor innovation requires that the latter be forced to frontload sufficient demand that the

planner later finds out:

σ1 < σ2

(
1 +

m2 −m1

m1
z

)

This condition puts a lower bound on the fraction of time z over which a high price must be

charged. Similarly, rather than moving demand across time, the entrepreneur may manipulate

sales, as studied in the previous subsection. Let X ∈ [0, 1] denote the fraction of time for which

pt = vH and 1 −X the fraction of time for which pt = vL. To make up for the sale shortage

(m2 −m1) when pt = vH , the producer of the minor innovation must spend (m2 −m1)vH ,
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and so incentive compatibility requires that

c2 − c1 ≤ (m2 −m1)vHX

Again, this sets a lower bound on the fraction of time for which the monopoly price vH must

be charged if sorting is to occur.

Finally, let us use this example to illustrate that random schemes similarly require a suf-

ficient probability of a high price. Under risk neutrality, this would not be the case: it would

suffice to implement a high price with a small probability, and then give a very high transfer in

that state of nature if demand turns out to be sufficient. There are however two limits to this

argument. The first is that the random scheme is highly manipulable in the sense of Subsection

4.3: a small probability of teasing out the demand curve requires a very high transfer in order

to make up for the R&D cost c2. And so the cost of manipulation (m2 −m1)vH is lower than

this transfer. Second, entrepreneur risk aversion also constrains the use of random schemes.32

The bottom line is that the social planner must trade off the reduced cost of sorting and the

cost of randomization when contemplating the use of multiple price observations (temporal,

geographic, randomized). Furthermore, these mechanisms for attaining multiple price obser-

vations would likely be fragile to the introduction of additional dimensions of heterogeneity

(in the duration or geographical distribution of demand for the product or in the risk aversion

of the entrepreneur). Finally, the possibilities for manipulation will likely grow with more

sophisticated mechanisms, potentially making consumer surplus unverifiable in the absence of

market power even if it is somewhat observable. Thus, the basic insights of this paper seem

robust. However, the appropriate role of more sophisticated schemes to partially mitigate the

costs of market power, especially in the presence of richer heterogeneity, is an exciting direction

for future research.

32Suppose for example that the entrepreneur’s utility is u(T ) = T for 0 ≤ T ≤ T and u(T ) = T for t ≥ T , where
T > c2. Let X denote the probability that p = vH and (1 − X) the probability that p = vL. It is optimal to set
t = T when p = vH and demand is m2. Let T denote the reward when p = vL. Then XT + (1 −X)T ≥ c2 for the
major innovation to be created. On the other hand sorting requires that (1−X)T ≤ c1. And so

X ≥ c2 − c1
T

.

Again the probability of monopoly pricing cannot be too small.
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4.5 Distribution, externalities and residual uncertainty

Finally, let us discuss informally some extensions; formal results can be found in the Appendix.

a) Distributional concerns

In many applications, transfers to entrepreneurs should not be viewed as socially neutral.

A simple way to incorporate this into our model is to assume the social planner puts a weight

of only λ ∈ [0, 1) on the welfare of the entrepreneurs compared to that of the government and

consumers. Then her program is exactly as in expression (1), but with λc+ (1−λ)T replacing

c, and is subject to the same incentive compatibility conditions.

Analyzing a? is also straightforward. The two primary effects we emphasized above, sorting

and ex-post distortion, persist. The additional element added is the effect that an increase

in a has on the rewards given to marginal compared to infra-marginal entrepreneurs (Spence,

1975).

b) Externalities

Innovations often “stand on the shoulders” of previous innovations. On the other hand,

many innovative products compete with existing products. If the value of such spillovers is

not a direct function of the demand parameters, we need to consider further heterogeneity;

the analysis is then beyond the scope of direct extension of our model. However in the,

not unreasonable, simple cases when they are proportional either to the potential or actual

net surplus created by an innovation (σm and σmS(a) respectively), a fairly straightforward

analysis is possible. All of our theorems can be extended to this context. More explicit and

detailed modeling of complementary and substitutable innovations in our framework remains

an important direction for future research, however, for the light it might shed on competition

policy.

c) Residual uncertainty

We assumed above that the entrepreneur knows, at the point of undertaking the innovation,

the exact demand her product will face. This seems unrealistic for two reasons. First, the

entrepreneur likely learns a significant amount about the demand from the time of undertaking

the innovation to when she brings it to market (e.g. through market research). Before sinking

c, the entrepreneur knows only a signal of her eventual demand. Such uncertainty does not
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significantly change our approach. By the time the product comes to market, the entrepreneur

will know the parameters and thus still charge a(α). Additionally her expected rewards will

be E
[
τ
(
σ1−αmα

)]
and thus nearly the same analysis will follow. However, it will be the

residual private information about demand that will be relevant, as heterogeneity in x that

the entrepreneur cannot predict will not affect her incentives to develop products.

Second, even at the point of bringing the innovation to market the entrepreneur may be

uncertain about the demand that will be realized once she chooses a price. For example,

suppose that given (σ,m) realized demand is given by a distribution H (q|σQ(p/m)). Again

this has little impact: changing σ in a multiplicative manner has no effect on the elasticity

of demand as a function of a and thus the entrepreneur will charge the same a(α). Similarly,

entrepreneurs with a higher expected q
p (a higher x) will generate more social value and expect

higher rewards when α is higher. Again, the appropriate expectations must be taken, but

otherwise the analysis is unchanged.

5 Other Applications

This section demonstrates how the techniques developed above apply to a range of problems

more general than IP or even the optimal distortion of prices that we focus on above.

5.1 Platforms

Users Platform

Potential
application i

T

tipi

Figure 6: Application development incentives in a two-sided market
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A two-sided platform (as shown in Figure 6 above), such as an operating system, must

attract multiple sides of a market, say end-users and application developers.33 A key deci-

sion such platforms face is how to “regulate” the relationship between application developers

and end-users. Should it let application developers charge a monopoly price (pi = mi) for

their application, effectively giving them IP? Or should it bundle the applications, free to the

consumers, with the platform, paying the developer a prize-like up-front fee?

The analogy between a platform and a social planner can be made more formal and is

particularly precise when end-users differ in an idiosyncratic parameter of taste for the plat-

form and there is a large number of applications.34 It can then be shown that the platform

aims at maximizing total surplus (end-user gross surplus) minus the rewards given to devel-

opers. Therefore, the extension of the paper’s analysis to the case where the social planner

cares nothing for developers (λ = 0 in Subsection 4.5 above) carries through without any

modification.

This analysis qualifies the classic result of Armstrong (1999), Bakos and Brynjolfsson (1999)

and Geng et al. (2005), who showed that a platform with full knowledge about the quality of a

large number of independent applications optimally bundles them with access to the platform.

Bundling is no longer optimal when the platform is unsure which applications bring value to

the end-user; thus the laissez-faire (monopoly pricing) policy for applications is nearly optimal

if a few “killer apps” make most of the platform’s value and the elasticity of innovation supply

is high.

33See Rysman (2009) for a recent survey.
34Let i ∈ [0, 1] denote the set of potential innovations, δi = 1 if the innovation is developed and δi = 0 otherwise.

Consumers are indexed by k, uniform in [0, 1]. Consumer k’s net payoff is
∫ 1

0
Vi(pi ;σi ,mi)δidi − T − ξk, where

ξk is distributed according to H(·). Application developer i introduces the innovation if and only if ti ≥ ci. The

platform’s profit is then
[
T +

∫ 1

0
[πi(pi ;σi ,mi)− ti] δidi

] [
1−H

(
t−
∫ 1

0
Vi(pi ;σi ,mi)δidi

)]
, or after a change in

variables and using Si ≡ Vi +πi,

[
T̂ +

∫ 1

0

[Si(pi ;σi ,mi)− ti] δidi
] [

1−H
(
T̂
)]

. Thus the platform first maximizes

∫ 1

0
[Si(pi ;σi ,mi)− ti] δidi and then chooses the surplus-adjusted price T̂ . Put differently, the planner behaves exactly

as a social planner with strong redistributive concerns (λ = 0).
Of course this assumption is likely rarely satisfied exactly. Yet the fact that most first-party applications are

bundled with most platforms (e.g. Apple’s basic apps) suggests that it is close to correct; at least, an incentive
problem towards application developers likely accounts for a large part of the asymmetry between the pricing of
internal and external applications. Furthermore, despite the fact that little that is known about it, it seems likely
that even optimal price discrimination (constrained to a single tariff, say) would involve charging only a small fraction
of the monopoly optimal price for an individual product as the platform would seek only to extract that part of
surplus associated with income.
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In practice we observe online music stores, such as Apple’s iTunes store and Rhapsody,

using price caps, fixed or proportional licensing fees and low (or purely bundled) prices to

consumer. In our model, this is rationalized by the fact that only a small fraction of the

total revenue for a song comes from any of these individual stores and thus the elasticity of

innovation supply with respect to a change in their revenue from one of these stores is small.

Contrast this with the Apple App store, which allows total pricing freedom to App developers

and gives them a share of revenue. Given that applications are developed almost exclusively

for the iPhone or another individual platform, the elasticity of innovation supply is likely much

higher and thus there is more burden on Apple to sort out which applications deserve greater

rewards by using market power. Section 6 discusses a more detailed application to this market.

5.2 Intrapreneurship

A similar tradeoff arises when the “application developer” is an internal division and the

platform wants to provide it with incentives to develop useful innovations. A division manager

is endowed with a project for a new product. If authorized, the manager will enjoy a private

benefit or cost, and headquarters will observe price and sales, but not the resulting spillovers.

Spillovers can be traced to the existence of either repeat purchases (e.g., due to lock-in) or the

sale of complementary products; the spillovers will benefit the conglomerate, but not (at least

not fully) the division manager.

The unobserved profit from spillovers is the counterpart of the unobserved net consumer

surplus in our main analysis. Assume (reasonably) that spillovers are larger when consumer’s

willingnesses to pay for the division’s product are higher. Spillovers are then larger when

the demand curve is less price sensitive. This setting is perfectly analogous to the platform

setting discussed in the previous subsection, except that the relevant incentives are internal

to the firm. Our paper thus provides a rationale for allowing intrapreneurs to receive rewards

proportional to the profits generated on their specific product, even though this causes multi-

marginalization problems for the firm, helping to address recent debates about such incentive

schemes (Hunt and Lerner, 1995).
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5.3 Public infrastructure

The traditional approach to building a new highway or new train tracks is to enter a procure-

ment contract with an infrastructure builder, and then to turn to a separate infrastructure

operator to manage it; the infrastructure may then be accessed at a relatively low price. By

contrast, under a public-private partnership (PPP), the builder of the new infrastructure de-

rives substantial revenue from its later operations. Such a long-term approach links builder

compensation to actual revenue derived from the end-user and is often vaunted as a way to

screen out white elephants.

Purely public projects may be seen in a similar light if we consider the limiting case

of observed costs and a political entrepreneur seeking funding from the public purse for a

project, motivated to have a successful project by the prestige, career enhancement or other

non-pecuniary benefit it brings. In Appendix D we show that in this case an optimal scheme

(the optimal scheme if transfers are – at least slightly – socially costly) is to reimburse the

known cost provided that the innovation satisfy a minimum scoring rule: q1−αpα ≥ k, and

nothing if this score is not reached. When α is close to 1
2 , this minimum score is equivalent

to a minimum profit level. Thus we may interpret policy regimes under which politicians

or bureaucrats are under more pressure to recover costs by charging higher prices as high α

regimes and ones under which the emphasis is on consumer surplus and subsidies are required

as corresponding to low α. The role of the inequality and elasticity (now in the threshold level

rather than reward space) of innovation supply is unchanged.

6 Empirical Calibration

Weingarten (2011) calibrates our model in the context of the smartphone applications markets

discussed in Subsection 5.1. While the validity of his results are not the focus of this paper,

his approach illustrates a method for empirically calibrating our model.

In particular he studies Apple’s iPhone (and more recently iPad) Apps market, in which

developers receive 70% of the revenues derived from a free choice of their own price. Price data

and a wide range of other application characteristics are scraped directly from online. Because

quantity data (the number of phones on which the application is running) is proprietary,
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Weingarten uses the number of ratings an application has received as a proxy (only application

owners may give ratings), which he shows is fairly accurate in various ways.

Then, following Acemoglu and Linn (2004), he measures the elasticity of innovation supply

by considering an event which (exogenously) raised the demand for, and thus revenue of,

applications (namely the introduction of the iPhone on Verizon) and observing the increase

in the number of applications created. His point estimate of elasticity of innovation supply is

.95.35

To measure the inequality of innovation supply, Weingarten assumes the set of marginal

applications has the same residual log-variance as the whole set of applications, to increase his

data set. Letting xi be the ratio of an individual product price to the quantity proxy he uses

and πi be their product while Ii is a vector containing all other covariates he collects (such as

application category, size, average rating, etc. which are available to the platform independent

of market prices), he runs various specifications of the regression

log(xi) = γ (πi, Ii) + εi, (9)

weighted by π2
i to recover the residuals εi. In his most robust (to cross-validation) and thus

preferred specification he measures the inequality of innovation supply to be 5.5. Together,

these yields an estimate of V1, V̂1 = 5.23, assuming no correlation across isoprofit curves

between the elasticity and inequality of innovation supply.

He plugs this value into equation (7), assuming a Bulow and Pfleiderer (1983) constant

pass-through demand, yielding α? ≈ 1
2 −

ρ

(ρ+1)V̂1
or a (α?) ≈ 1− 4ρ2

(ρ+1)V̂1
, where ρ is the pass-

through rate. While he experiments with a variety of pass-through rates, we focus on ρ = .5

(linear demand) as this is most conservative in deviating from current practice (leads to highest

α), as seems sensible. This yields α̂? = .44 or â? = .87.

Weingarten then goes on to use this estimate to calculate isoreward curves and applies

35A striking result based on this comes from using the “distributional concerns” version of our model described in
Subsection 4.5 in which the platform has no concern for entrepreneur’s profits. Solving for optimal rewards under
linear demand and a constant elasticity of .95 for innovation supply yields that, constrained to α = 1

2 , the optimal
reward to entrepreneurs is 73% of profits, strikingly close to what Apple (and other application stores such as the
Android Market) provide.
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equation (3) to compute optimal rewards to each isoreward curve by running the regression

πi = γ
(
p.44
i q̂.56

i , Ii
)

+ εi (10)

and using the resulting model to assign rewards to innovations. He then shows how this

system would make an extremely popular but relatively low-priced game, Angry Birds, earn

about 10% higher revenue while an expensive and less well-selling game, Infinity Blade, would

receive only 64% of the revenue it was previously receiving. Consumer prices of each would be

expected to fall by 13%.

Of course, the resulting rule should be interpreted very cautiously: Weingarten’s data

suffers from a lack of access to proprietary information, and his analysis could be improved

by incorporating factors such as externalities across applications, residual uncertainty, etc.

However, his exercise provides a method for applying our results to the structural estimation

of optimal innovation policy.

7 Conclusion

This paper aspires to make three contributions. First, in terms of modeling, we propose the

intuitive stretch parameterization of demand to allow a smooth trade-off between quantity-

dependent prizes and IP. Second, on a technical level, we develop a simple isoreward approach

to analyzing multidimensional screening problems: parameterize policies based on the shape

of the isoreward curves they create and then solve separately for the structure and level of

rewards using the envelope theorem. Finally, and substantively, we show how the inequality

and elasticity of innovation supply are tightly connected to the optimality of market power as

a reward for innovation, making precise and empirically testable the conjectures of classical

thinkers.

Needless to say, our framework requires further elaboration in order to help fashion policy.

Furthermore, given the foundational role that many of the issues we address in this paper play

in several areas of price theory, we believe that our work opens a number of promising directions

for future research. First, our general formula ought to be calibrated in specific industries
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beyond Weingarten’s smartphone applications example. Second, several extensions would test

the robustness of our insights: the demand function could be generalized beyond the stretch

parameterization and the optimal structure, not just level, of market power could be more fully

analyzed; although we have presented arguments that make us hopeful that our insights will

carry over, only a rigorous analysis can vindicate such a claim. Along the same lines, a general

analysis of demand uncertainty (under entrepreneur limited liability or risk aversion), as well

as richer private information (duration, marketing, price discrimination, marginal costs) and

richer instruments for screening demand would be welcome. In particular, the latter would

be crucial in allowing our analysis to shed light on the design of patent length and breadth.

Finally, the extension of our techniques to accommodate R&D races, licensing competition and

cumulative innovation stands high on the research agenda. For instance, our techniques are

likely to be helpful in analyzing the validity of the notion (central to antitrust doctrine) that

acquired market power may be maintained but should not be extended. The acceptability of

vertical foreclosure practices is often felt to depend on the extent of innovation/investment;

while market power gained through horizontal mergers and predation are frowned upon in the

absence of substantial efficiency gains. Formal analyses would be useful to help guide policy

in these matters.

Appendices

A Supply, demand and optimal transfers

This appendix solves for the monotonicity-relaxed optimal τ??(k;α) function and conditions
under which this function is, in fact, monotone. The change of variables from (σ,m) to (k, x)
requires transforming the distribution of values according to

f̃(k, x, c;α) ≡ f
(
kx−α, kx1−α, c

)
kx−2α.

We can then rewrite the social planner’s problem, with the substitution and by switching the
order of integration, as

max
τ(·)

∫

k

∫ τ(k)

c=0

∫

x

(
k2x1−2αS (a(α))− c

)
f̃(k, x, c;α)dxdcdk s.t. τ increasing. (11)

Consider the marginal cumulative distribution of innovations in terms of their cost of creation c,

integrating out over x, lying along a particular isoreward curve, F (τ ; k, a) ≡
∫ τ
c=0

∫
x f̃(k,x,c;α̃)dxdc∫∞

c=0

∫
x f̃(k,x,c;α̃)dxdc

.

This is the fraction of innovations that will be created if a reward τ is offered along this curve.
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Σ(r; k, α) ≡ F−1(r; k, α) is then the (clearly increasing) inverse supply of innovations lying
along isoreward curve k, namely the reward necessary to induce a fraction r of innovations
lying along that curve to be created.

We can similarly define the social inverse demand for innovations. First, let us define the
average value of an innovation lying on isoreward curve k with cost c by

S(c; k, α) ≡ k2S (a(α))Ex,f̃
[
x1−2α|k, c

]
≡ k2S (a(α)) ·

∫
x x

1−2αf̃(k, x, c;α)dx∫
x f̃(k, x, c;α)dx

(12)

Then D(r; k, α) ≡ S (Σ(r; k, α); k, α) is the average value of a marginal innovation lying along
isoreward curve k, given that a fraction r of innovations lying on that isoreward curve have
been created.

The optimal reward along the isoreward curve is the intersection of the supply and demand
curves for innovations, assuming these intersect only once. To the extent that α < 1

2 , D will
slope downwards if x varies negatively with c given k and upwards in the reverse case, in a
sense made more rigorous below. Both effects are dampened for large α. So long as D does
not increase too quickly, supply and demand will have a unique intersection corresponding
to the optimal quantity of innovations and reward along k given α. These optimal rewards
ignore the monotonicity constraint that higher-k isoreward curves must receive higher rewards.
When α is relatively low, if k is sufficiently negatively affiliated with x given c, the optimal
reward unconstrained by monotonicity may be decreasing in k; ruling out such strong negative
affiliation ensures that the relaxed solution is in fact optimal.

Proposition 3: Suppose that for all k, c and a fixed α,

Covx,f̃

[
x1−2α,

∂ log(f)

∂c

∣∣∣∣ k, c
]
≤ 1

k2S(a)
(13)

and

2Ex,f̃
[
x1−2α|k, c

]
≥ −kCovx,f̃

[
x1−2α,

∂ log(f̃)

∂k

∣∣∣∣∣ k, c
]

(14)

Then the optimal reward function τ?(k;α), given α, is defined for each k by the unique value
at which D(·; k, α) and S(·; k, α) intersect if D(0; k, α) > S(0; k, α), D(1; k, α) < S(1; k, α) for
all k, a or by the appropriate boundary solutions otherwise.

These conditions are intuitive extensions of the classic Mirrlees (1979)-Rogerson (1985)
monotone likelihood ratio property that ensures validity of first-order approaches in classical,
single-dimensional screening problems. If as x increases ∂ log(f)

∂c also increases, this exactly
represents x having a strong monotone likelihood ratio relationship with c. Thus, condition
(13) can be viewed as stating that c and x are not “too” affiliated (Milgrom and Weber, 1982),
while condition (14) can be seen as stating that x is not too negatively affiliated with k. Note
that ironing-free approach is always valid for sufficiently high values of α. This is illustrated
by Figure 7, which shows τ??(k;α) for the simulation we describe in the text. For high values
of α it is monotone increasing, but must be ironed for low values of α.

Proof. The first-order condition for the monotonicity-unconstrained optimum is exactly that
S(τ ; k, α) = τ . This condition is sufficient for the monotonicity-unconstrained optimum if
the first-order derivative with respect to t, S − τ , is monotone decreasing in τ (Guesnerie
and Laffont, 1984). Because these expressions are clearly differentiable, given the smoothness
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Figure 7: τ??
(
k; a−1(a)

)
in our simulation as described in Subsection 3.5

assumed, this is equivalent to

∂S

∂c
≤ 1 ⇐⇒ k2S(a)

∂Ex,f̃
[
x1−2α

∣∣ k, c
]

∂c
≤ 1 ⇐⇒ Covx,f̃


x1−2α,

∂ log
(
f̃
)

∂c


 ≤ 1

k2S(a)
.

Because f̃ differs from f as a function of c only by a multiplicative factor, we can replace f̃ with
f and obtain inequality (13) in the proposition. Furthermore an upward shift in V must then
increase this optimal transfer (Milgrom and Shannon, 1994). Thus we are guaranteed that τ??

will be monotone so long as V increases in k. Again by differentiability this is equivalent to
(taking logs)

∂S

∂k
≥ 0 ⇐⇒ 2

k
+

Covx,f̃

[
x1−2α,

∂ log(f̃)
∂k

∣∣∣∣ k, c
]

Ex,f̃ [x1−2α| k, c] ≥ 0

which simplifies to condition (14). Thus if this condition also holds the τ?? derived from supply
and demand is in fact τ?.

As discussed in Subsection 2.2, a (grossly) sufficient condition to ensure that when α = 0,
τ? is not flat and therefore that α? ∈

(
0, 1

2

)
is obedience of inequality (14) when α = 0. At

α = 0 this condition simplifies to (at each (σ, c)) 2Em,f [m|σ, c] ≥ −σCovm,f

[
m, ∂ log(f)

∂σ

∣∣∣σ, c
]
.

That is, σ is not too negatively affiliated with m.
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B Envelope Theorem

The application of the general Milgrom and Segal (2002) envelope theorem at α̂ requires
equidifferentiability across feasible reward functions of social welfare with respect to α, holding
fixed the reward function, and continuity of the derivative given the (locally) optimal choice of
the reward function , both at α̂. This appendix therefore establishes two sublemmata prior to
the proof of Lemma 1:

1. First, we establish equidifferentiability in Sublemma 1 by deriving a general expression
for the first-order derivative of social welfare holding fixed the reward function that is
valid even when τ? is not differentiable. This expression, for any reward function, can
be broken into two pieces, one along the boundary and one on the interior. The second
always converges “quickly” because the derivative is proportional to S, which is constant
across τ . The first does as well, because the mass along the boundary is bounded above
by monotonicity and the rate of movement across the boundary by uniform bounds we
establish on the covariance of x1−2α and log(x).

2. Second, we establish continuity of the derivative in Sublemma 2 from the continuity of the
optimal reward boundary; this does not require that the optimal rewards, as a function
of k, be continuous but rather that the curve dividing innovations that are created and
those that are not continuously deform as α changes. Combined with the smoothness of
f̃ both in its arguments and in α suffices to establish continuity of the derivative.

In what follows we will use the (slightly abusive of our earlier) notation W (α; τ(·)) to
denote the social welfare when pricing policy is α and the transfers assigned to each k (given
α) are τ(k):

W (α; τ(·)) ≡
∫

σ

∫

m

∫ τ(σ1−αmα)

c=0
(σmS (a(α))− c) f(σ,m, c)dcdmdσ

Sublemma 1: The class of functions W (α; τ(·)) are equidifferentiable in α across all mono-
tone increasing τ(·) at each α ∈

[
0, 1

2

]
.

Proof.

W ′ (α; τ (·)) =limδ→0

∫
σ

∫
m


∫

τ(σ1−α−δmα+δ)

c=0
(σmS(a(α+δ))−c)f(σ,m,c)dc−

∫
τ(σ1−αmα)

c=0
(σmS(a(α))−c)f(σ,m,c)dc

dmdσ
δ

=,

letting Sδ ≡ S (a(α+ δ)),

limδ→0

∫
x

∫
k


∫

τ(kxδ)

c=0
(k2x1−2αSδ−c)f̃(k,x,c)dc−

∫
t̃(k)

c=0
(k2x1−2αS−c)f̃(k,x,c)dc

dkdx
δ =,

dropping the arguments where possible,

lim
δ→0

∫
x

∫
k

(∫
τ(kxδ)

c=τ(k)

(
k2x1−2αSδ − c

)
f̃dc+

∫
τ(k)

c=0
k2x1−2α (Sδ − S) f̃dc

)
dkdx

δ
=
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lim
δ→0

∫
x

∫
k

∫
τ(kxδ)

c=τ(k)

(
k2x1−2αSδ − c

)
f̃dcdkdx

δ
− Qα

2(1− α)3ε′

∫

k

k2

∫

x

∫ τ(k)

c=0

x1−2αf̃dcdkdx

(15)
by differentiability of S and ε and the argument given in the proof of Corollary 1. The second
term is as we want it, so we focus on the first. We can break it into the sum of three terms: an
integral over the region where x > 1, the point where x = 1 and the integral over the region
where x < 1. The second of these is identically zero as the integral over c always runs over a
degenerate region. The third can be transformed in a manner parallel to that of the first, so
we focus on the first in most of the remaining proof; thus the quantity we will analyze is

lim
δ→0

∫
∞

x=1+

∫
k

∫
τ(kxδ)

c=τ(k)

(
k2x1−2αSδ − c

)
f̃dcdkdx

δ
(16)

The integral over k, which runs from 0 to ∞ is just the limit of an integral running from
bounds k(δ, z) to k(δ, z) as z →∞ so long as limz→∞ k(δ, z) = 0 and limz→∞ k(δ, z) =∞. In

particular let k(δ, z) ≡ 1
k(δ,z)

and k(δ, z) ≡ x
δ
⌈

log(z)
δ log(x)

⌉
. Clearly limz→∞ k(δ, z) = ∞ and thus

limz→∞ k(δ, z) = 0. Then we can re-write expression (16) as

lim
δ→0

lim
z→∞

∫
∞

x=1+

∫
k=k(δ,z)

k=k(δ,z)

∫
t(kxδ)

c=t(k)

(
k2x1−2αSδ − c

)
f̃dcdkdx

δ
. (17)

Furthermore, we may approximate the integral over k by a Riemann sum, the intervals of
which are given by

(k(δ, z), k(δ, z)xδ) ,
(
k(δ, z)xδ, k(δ, z)x2

δ

)
, . . . ,

(
k(δ, z)x−1

δ , k(δ, z)
)

Let us number these intervals starting from 1 as both down and up: “up” interval 1 is
(
1, xδ

)

and “down” interval 1 is
(
x−δ, 1

)
. There are then

⌈
log(z)
log(xδ)

⌉
of each up and down intervals and

the length of the ith up interval is xδ(i−1)
(
xδ − 1

)
while of the ith down interval is x−iδ (xδ − 1).

Thus note that the upper bound on the length of any interval, k(δ, z)
(
xδ − 1

)
→ 0 as δ → 0,

so that any choice of a point within the interval at which to evaluate the Riemann sum will
lead to a sum converging to the integral as δ → 0. Thus, if we evaluate the Riemann sum at
the bottom of the interval, the expression (17) becomes the limit as δ becomes small and z
becomes large of

(xδ−1)

∫
∞

x=1+

∑
⌈

log(z)
δ log(x)

⌉
N=1

x−δN

∫
τ(x−δ(N+1))

c=τ(x−δN)
(x1−2(α+δN)Sδ−c)f̃dc+xδN

∫
τ(xδN)

c=τ(xδ(N−1))
(x1−2[α−δ(N−1)]Sδ−c)f̃dc

dx
δ

=

lim
δ→0

lim
z→∞

∫ ∞

x=1+

xδ − 1

δ

∫
τ(k(δ,z))

c=τ(k(δ,z))

τ−1

(
x
δ
⌊

log(c)
δ log(x)

⌋)(
τ−1

(
x
δ
⌊

log(c)
δ log(x)

⌋)2

x1−2αSδ − c
)
f̃dcdx =

where, in the cases where τ−1 is not single valued, it is defined to pick out the single value to
make this equality correct, and where c is not in the range of t because of a discontinuity, τ−1(c)
is taken to be the unique value of k such that τ(k−) ≤ c ≤ τ(k+). Thus if limc→0 τ(c) = c > 0
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then for all c < c, τ(c) = 0 as clearly τ(0) = 0.

limδ→0

∫
∞

x=1+

xδ−1
δ

∫
c

c=0
τ−1

(
x
δ

⌊
log(c)
δ log(x)

⌋)τ−1

(
x
δ

⌊
log(c)
δ log(x)

⌋)2

x1−2αSδ−c

f̃dcdx (18)

The equidifferentiability of the second term of (15) follows from the finiteness of the moments
of f and f̃ ; by the same argument we can, for the purposes of establishing equidifferentiability
reduce equation (18) to

lim
δ→0

∫
c

c=0

τ−1

(
x
δ
⌊

log(c)
δ log(x)

⌋)(
τ−1

(
x
δ
⌊

log(c)
δ log(x)

⌋)2

x1−2α − c
)
f̃dc.

We must show this converges uniformly across feasible τ . Clearly

∣∣∣∣x
δ
⌊

log(c)
δ log(x)

⌋
− c
∣∣∣∣ ≤ xδc and

thus
∣∣∣∣∣

∫
c

c=0
τ−1

(
x
δ
⌊

log(c)
δ log(x)

⌋)(
τ−1

(
x
δ
⌊

log(c)
δ log(x)

⌋)2

x1−2α − c
)
f̃dc−
∫

c

c=0
τ−1 (c)

(
τ−1 (c)2 x1−2α − c

)
f̃dc

∣∣∣∣∣ <

max

{∣∣∣∣x1−2α

∫ c

c=0

[
τ−1

(
cxδ
)3
− τ−1 (c)3

]
f̃dc

∣∣∣∣ ,
∣∣∣∣
∫ c

c=0
c
[
τ−1

(
cxδ
)
− τ−1 (c)

]
f̃dc

∣∣∣∣
}

For brevity’s sake, we only show that the second of these must converge uniformly, as the
argument that the first does follows by the same logic.

∣∣∣∣
∫ c

c=0
c
[
τ−1

(
cxδ
)
− τ−1 (c)

]
f̃dc

∣∣∣∣ =

∣∣∣∣
∫ c

c=0
cτ−1

(
cxδ
)
f̃dc−

∫ c

c=0
cτ−1 (c) f̃dc

∣∣∣∣ =,

by the change of variables c̃ = cxδ on the first integral,

∣∣∣∣∫ xδcc̃=0 c̃τ
−1(c̃)f̃

(
·,·, c̃

xδ

)
dc̃−

∫ c
c=0 cτ

−1(c)f̃(·,·,c)dc
∣∣∣∣=∫ cc= c

xδ
cτ−1(c)f̃dc+

∫ c
xδ
c=0 cτ

−1(c)
(
f̃
(
·,·, c

xδ

)
−f̃(·,·,c)

)
dc

But both of these clearly converge uniformly across τ as thefirst term is just some upper tail
of the kc moment, which is finite, and the second term is, in the limit, just the (bounded by
smoothness) partial slope of log(f̃)-weighted value of the kc moment along the τ−1 curve given
that finite moments imply finite moments along any one-dimensional curve.

Sublemma 2: W1 (α; τ?(·;α)) ≡ W (α;τ?(·;α))
∂α is continuous on

[
0, 1

2

]
as a function of α.

Proof. We wish to show that

lim
δ→0

W1 (α+ δ, τ? (·, α+ δ)) = lim
δ→0

W1 (α− δ, τ? (·, α− δ))

It is clearly from the reasoning in the proof of Sublemma 1 that W1 (α, τ(·)) is continuous in
α for any τ(·) so it suffices to show that

lim
δ→0

W1 (α, τ? (·, α+ δ)) = lim
δ→0

W1 (a, τ? (·, α− δ))
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Now, abbreviating W (x, τ?(·, y)) to W (x, y), this is equivalent to:

lim
δ→0

∣∣∣∣ limη→0

W (α+ η, α+ δ)−W (α, α+ δ)

η
− W (α+ η, α− δ)−W (α, α− δ)

η

∣∣∣∣ = 0

Interchanging the limits and rearranging it suffices to show that

lim
η→0

∣∣∣∣limδ→0

W (α+ η, α+ δ)−W (α+ η, α− δ)
η

∣∣∣∣ = limη→0

∣∣∣∣limδ→0

W (α, α+ δ)−W (α, α− δ)
η

∣∣∣∣ = 0

Both of these can be shown to equal zero in the same way, so we focus on the second. It
suffices to show

lim
δ→0

W (α, α+ δ)−W (α, α− δ) = 0.

To see this note that W (α, α̂) is continuous in α so that for any ν > 0 we can find a sufficiently
small δ such that W (α, α−δ) ≥W (α−δ, α−δ)− ν

2 and W (α−δ, α) ≥W (α, α)− ν
2 . Combining

this with revealed preference yields

W (α, α− δ) ≥W (α− δ, α− δ) +
ν

2
≥W (α− δ, α) +

ν

2
≥W (α, α) + ν ≥W (α, α+ δ) + ν

A similar inequality may be established by the same reasoning in the other direction, estab-
lishing the desired limit.

Proof of Lemma 1. The choice set for τ(·) is the set of all monotone increasing functions. Thus
from Milgrom and Segal (2002)’s Theorem 3, given equidifferentiability across this class and
continuity on [0, 1] from Sublemmata 1 and 2 we have that W ′(α̂) = W1 (α̂; τ?(·; α̂)).

C Ironing

If the regularity conditions in Proposition 3 do not hold, some ironing is necessary to derive
the optimal τ?. First, suppose that condition (13) is violated, but (14) is obeyed. Then there
may be multiple crossings between demand and supply if supply and demand are at the wrong
“levels” relative to one another. This difficulty may be resolved either by directly comparing
the surplus created at each supply-demand intersection, as well as at the extremal points of
q = 0 and q = 1 or by “ironing” the social demand for innovation. Now suppose that condition
(14) is violated while condition (13) is maintained. Then τ?? may be non-monotone. However,
the social value created along each isoreward curve is concave in the reward given along that
curve by condition (14): supply grows relative to demand as quantity increases. This is exactly
the conditions required to use the Guesnerie and Laffont (1984) procedure to iron τ?? into a
monotone τ?. When both of these conditions fail, ironing is needed but the social value created
along each isoreward curve need not be concave. Solving unidimensional mechanism design
problems of this form remains intractable (Toikka, Forthcoming) given current techniques.
However, Toikka’s work suggests the envelope conditions we require for our analysis of optimal
α may still hold, even though solving for τ? may be intractable.

D First-order condition without differentiabilty

In the text we focused on the case when when τ? is differentiable. However, the only role τ?
′

plays in (4) is a change of variable to an integral over c so as to trace out the boundary of

45



marginal innovations for which τ?(k) = c. If we instead take an integral over c, this boundary
is well-defined by the monotonicity of τ?, as stated formally in the following proposition.

Proposition 4: Suppose that at least one of the conditions of Proposition 3 is obeyed. Then if
the expectation is taken over all c’s other than the countable set where τ?

−1
is not well-defined

W
′
(α) ∝ SEc<c

[[
τ
?−1

(c;α)

]3
ηCov

[
log(x), x

1−2α
]
−

Qα

2(1− α)3ε′
E

[
k
2
x
1−2α

∣∣∣ k ≥ τ?−1
(c;α), c

]
E
[
k
2
x
1−2α

]]
(19)

where c ≡ limx→∞ τ
?(x) (typically ∞).

Thus nothing of substance changes if cost are observed, as discussed in Subsection 5.3.36

Proof. Clearly limδ→0 x
δ
⌊

log(c)
δ log(x)

⌋
= log(c), limδ→0 Sδ = S(a) and limδ→0

xδ−1
δ =, by L’Hôpital’s

rule, log(x). Therefore expression (18) becomes

∫ ∞

x=1+

log(x)

∫ c

c=0
τ−1 (c)

(
τ−1 (c)2 x1−2αS (a(α))− c

)
f̃dcdx

where the integral over c leaves out the (by monotonicity) measure-zero set of c’s for which t
is not invertible. Analogous reasoning for x < 1 shows that the first term of expression (15)

is
∫∞
x=0 log(x)

∫ c
c=0 τ

−1 (c)
(
τ−1 (c)2 x1−2αS (a(α))− c

)
f̃dcdx. By the first-order conditions for

optimal transfers and the proof of Sublemma 1, dropping arguments W ′ (α, τ? (·, α)) =

∫∞
x=0 log(x)

∫ c
c=0

[
τ?
−1

(c;α)
]3
S
(
x1−2α − Ex,f̃

[
x1−2α

])
f̃− Qα

2(1−α)3ε′x
1−2α

∫∞
k=τ?−1 (c;α) k

2f̃dkdcdx ∝

∫ c

c=0

[
τ?
−1
]3
SCov

[
log(x), x1−2α

∣∣ k = τ?
−1
, c
]
−

Qα

2(1− α)3ε′
E
[
k2x1−2α

∣∣ k ≥ τ−1, c
] 1− F̃−1

(
τ?
−1

; c
)

f̃
(
τ?−1 , c

) dc (20)

As long as we are not in an ironing region, the average reward given to an innovation with
k = τ?

−1
(c) that is created is, by the first-order condition for socially optimal transfers,

SE
[
k2x1−2α

∣∣ k = τ?
−1

(c;α), c
]

and thus
1−F̃−1

(
τ?
−1

;c
)

SE[k2x1−2α|k=τ?−1 ,c]f̃(τ?−1 ,c)
is exactly the elasticity

of of innovation supply η. We can thus rewrite expression (20) as

SE

[[
τ?
−1
]3
ηCov

[
log(x),x1−2α|k=τ?

−1
,c
]
− Qα

2(1−α)3ε′
E
[
k2x1−2α|k≥t?−1

,c
]
E
[
k2x1−2α|k=τ?

−1
,c
]∣∣∣∣c<c]

If we are in an ironing region, rewards are constant over the ironing region in Guesnerie and
Laffont (1984)’s solution, so this may only occur at one of the countable discontinuity points
of c, which have no effect on the integral and thus may be ignored.37

We can now establish Theorem 1 in full generality.

Proof of Theorem 1. By equation (19) we have that W ′(a) ∝

Ec≤c,f̃

[(
τ?
−1

(c)
)3

(1− 2α)ηCov
(

log(x), x
1−2α−1
1−2α

)
− Qα

(1−α)3ε′Ex,f̃
(
x1−2α

)
E
(
x1−2α

∣∣ k ≥ τ?−1
(c)
)]

36Assuming the entrepreneurs had some tie breaking rule that could not be dictated by the social planner. Oth-
erwise the planner could simply give all entrepreneurs c conditional on innovating and just ask them to do the right
thing.

37Furthermore, Toikka (Forthcoming)’s analysis suggests that the envelope conditions may still be satisfied in an
appropriate average sense that would carry our result through.
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By the smoothness of f̃ the expectation and covariance terms are non-explosive so that as
α→ 0 the second term approaches 0 as ε′ is bounded away from 0. Thus for α in an open ball
is strictly positive if τ? is non-constant. If τ? is constant, then the first term is 0 and thus by
local concavity (see Appendix E) we cannot rule out α? = 0. By (the proof of) Theorem 2 we
know that the covariance ratio term approaches the finite limit of the variance of log(x); thus
by an identical argument the first term must approach 0 as α → 1

2 and thus expression must
be strictly negative at α = 1

2 ; thus this cannot be a maximum.
Finally, to see that any α > 1

2 is dominated, note that when α = 1
2 the solution to the

relaxed program

max
{τ(·,·))}

∫

{θ:c<τ(σ,m)}
[σmS(1)− c] f(θ)dθ, (21)

τ?(σ,m) = S(1)σm may be implemented using the constrained instrument τ(k). Thus if we let
W (α; ) represent the maximized social value given a(α) with the isoreward curves implied by
α̂, W

(
α̂; 1

2

)
> W (α̂; α̂) for any α̂ > 1

2 . But clearly, given that S′(a) < 0, W
(
α̂; 1

2

)
< W

(
1
2 ; 1

2

)
.

E Second-order conditions for optimal market power

The first-order condition, that expression (4) or (19) is equal to 0, is necessary but not sufficient
for the socially optimal choice of α. Some condition, such as quasi-concavity of W , is needed
to ensure it selects even a local, much less a global, maximum. As in the Mirrlees problem,
interpretable conditions on primitives to ensure this seem challenging to derive.

However, note that by Proposition 1 we know that the optimal value of α must be in the
interior of the half-unit interval and thus W ′(α) must be eventually negative as α goes to 1
and eventually positive as α goes to 0. While this certainly does not preclude several local
minima or maxima in the interior, it does ensure that in the limiting cases of Subsection 3.5
are at least local maxima. Computational simulations suggest that global quasi-concavity is
common; the following proposition provides a standard sufficient condition for quasi-concavity,
applied to this context.

Proposition 5: Let

V (α) ≡
Ek,f̃

[
k3τ?

′
(k;α)Covx,f̃

(
log(x), x

1−2α−1
1−2α

)]

Ek,f̃

[
Ex,f̃ (x1−2α|c<τ?(k;α),k)Ex,f̃ (x1−2α|c=τ?(k;α),k)

η(τ?(k;α);k,α)

] ,

where τ? is defined implicitly by equation 3 and can be solved for explicitly given α by the
techniques of Appendices A and C. If τ? is differentiable, W is quasi-concave if for all α ∈(
0, 1

2

)
,

d log (V )

dα
<

1 + 3α− 6α2 + 3α3

(1− 2α)(1− α)2α
+
α− (1− α)a(α)ε′′ (a(α))

ε′ (a(α)) (1− α)3 (22)

This condition always holds for α sufficiently close to either 0 or 1
2 .

Proof. The first-order derivative from expression (4) is exactly

(1− 2α)V (α)− Qα

(1− α)3ε′
.
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Given that all terms here are strictly positive for α ≤ 1
2 , using the standard ratio monotonicity

condition, a sufficient condition for quasi-concavity is that (1−2α)(1−α)3ε′(a(α))
Q(a(α)) V (α) or its log is

declining in α (recall that a′(α) = 1
(1−α)2ε′ ):

d log(V )
dα < 3

1−α + 2
1−2α + 1

α − ε′′

ε′(1−α)2
+ α

ε′a(1−α)3
= 3(1−2α)α+2(1−α)α+(1−α)(1−2α)

(1−α)(1−2α)α + α−ε′′a(1−α)
ε′a(1−α)3

which gives the desired inequality by expansion and simplification.
Note that by differentiability and strictly declining marginal revenue

lim
a→0

ε′(a), lim
a→1

ε′(a) > 0

and that limα→0 1 + 3α− 6α2 + 3α3 = 1 and limα→ 1
2

1 + 3α− 6α2 + 3α3 = 1 + 3
2 − 3

2 + 3
8 = 11

8 .

Therefore for α close to 0 or 1
2 the first term in the expression approach infinity. Because ε′′(a)

ε′(a)

is assumed bounded the third term is bounded near both extremities, as is d log(V )
dα since these

converge smoothly to their limiting quantities as shown in the proof of Theorem 2. Therefore
the inequalities are always satisfied close to α = 0 and α = 1

2 .

We conjecture that when there is a strong negative affiliation between σ and m and thus
severe ironing (or even complete non-responsiveness) is necessary for small α, non-concavities
may arise as screening has no local benefits for small a’s given non-responsiveness but may
be globally optimal. However, we have yet to find an example where W is not quasi-concave,
despite considering a range of computational experiments where non-responsiveness is optimal
for low α (as pictured in Figure 7).
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