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Abstract

In rational choice theory, individuals are assumed always to choose the op-
tion that will provide them maximum utility. But actual choices must be based
on subjective perceptions of the attributes of the available options, and the ac-
curacy of these perceptions will always be limited by the information-processing
capacity of one’s nervous system. I propose a theory of valuation errors under
the hypothesis that perceptions are as accurate as possible on average, given
the statistical properties of the environment to which they are adapted, subject
to a limit on processing capacity. The theory is similar to the “rational inatten-
tion” hypothesis of Sims (1998, 2003, 2011), but modified for closer conformity
with psychophysical and neurobiological evidence regarding visual perception.
It can explain a variety of aspects of observed choice behavior, including the in-
trinsic stochasticity of choice; focusing effects; decoy effects in consumer choice;
reference-dependent valuations; and the co-existence of apparent risk-aversion
with respect to gains with apparent risk-seeking with respect to losses. The
theory provides optimizing foundations for some aspects of the prospect theory
of Kahneman and Tversky (1979).
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Experiments by psychologists (and experimental economists) have documented

a wide range of anomalies that are difficult to reconcile with the model of rational

choice that provides the foundation for conventional economic theory. This raises an

important challenge for economic theory. Can standard theory be generalized in such

a way as to account for the anomalies, or must one start afresh from entirely different

foundations?

In order for a theory consistent with experimental evidence to count as a gener-

alization of standard economic theory, it would need to have at least two properties.

First, it would still have to be a theory which explains observed behavior as optimal,

given people’s goals and the constraints on their behavior — though it might specify

goals and constraints that differ from the standard ones. And second, it ought to

nest standard theory as a limiting case of the more general theory.

Here I sketch the outlines of one such theory, that I believe holds promise as

an explanation for several (though certainly not all) well-established experimental

anomalies. These include stochastic choice, so that a given subject will not necessar-

ily make the same choice on different occasions, even when presented with the same

choice set, and so may exhibit apparently inconsistent preferences; focusing effects, in

which some attributes of the choices available to a decisionmaker are given dispropor-

tionate weight (relative to the person’s true preferences), while others (that do affect

true utility) may be neglected altogether; choice-set effects, in which the likelihood of

choosing one of two options may be affected by the other options that are available,

even when the other options are not chosen; reference-dependence, in which choice

among options depends not merely upon the final situation that the decisionmaker

should expect to reach as a result of each of the possible choices, but upon how those

final situations compare to a reference point established by a prior situation or expec-

tations; and the co-existence of risk-aversion with respect to gains with risk-seeking

with respect to losses, as predicted by the prospect theory of Kahneman and Tversky

(1979).

There are three touchstones for the approach that I propose to take to the expla-

nation of these phenomena. The first is the observation by McFadden (1999) that

many of the best-established behavioral anomalies relate to — or can at least po-

tentially be explained by — errors in perception, under which heading he includes

errors in the retrieval of memories of past experiences. Because of the pervasiveness

of the evidence for perceptual errors, McFadden argues that economic theory should

be extended to allow for them. But he suggests that “if the cognitive anomalies that
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do appear in economic behavior arise mostly from perception errors, then much of

the conventional apparatus of economic analysis survives, albeit in a form in which

history and experience are far more important than is traditionally allowed” (p. 99).

Here I seek to follow this lead, by examining the implications of a theory in which

economic choices are optimal, subject to the constraint that they must be based

on subjective perceptions of the available choices. I further seek to depart from

standard theory as minimally as possible, while accounting for observed behavior, by

postulating that the perceptions of decisionmakers are themselves optimal, subject

to a constraint on the decisionmaker’s information-processing capacity. Standard

rational choice theory is then nested as a special case of the more general theory

proposed here, the one in which available information-processing capacity is sufficient

to allow for accurate perceptions of the relevant features of one’s situation.

A second touchstone is the argument of Kahneman and Tversky (1979) that key

postulates of prospect theory are psychologically realistic, on the ground that they

are “compatible with basic principles of perception and judgment” in other domains,

notably perceptions of “attributes such as brightness, loudness, or temperature” (pp.

277-278). Here I pursue this analogy further, by proposing an account of the relevant

constraints on information-processing that can also explain at least some salient as-

pects of the processing of sensory information in humans and other organisms. This

has the advantage of allowing the theory to be tested against a much larger body of

data, as perception has been studied much more thoroughly (and in quantitatively

rigorous ways), both by experimental psychologists and by neuroscientists, in sensory

domains such as vision.

More specifically, the theory proposed here seeks to develop an idea stressed

by Glimcher (2011) in his discussion of how a neurologically grounded economics

would differ from current theory: that judgements of value are necessarily reference-

dependent, because “neurobiological constraints ... make it clear that the hardware

requirements for a reference point-free model ... cannot in principle be met” (p.

274). I do not here consider constraints that may result from specific structures of

the nervous system, but I do pursue the idea that reference-dependence is not simply

an arbitrary fact, but may be necessary, or at least an efficient solution, given con-

straints on what it is possible for brains to do, given fundamental limitations that

result from their being finite systems.

The third touchstone is the theory of “rational inattention” developed by Sims
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(1998, 2003, 2011). Sims proposes that the relevant constraint on the precision of

economic decisionmakers’ awareness of their circumstances can be formulated using

the quantitative measure of information transmission proposed by Shannon (1948),

and extensively used by communications engineers. An advantage of information

theory for this purpose is the fact that it allows a precise quantitative limit on the

accuracy of perceptions to be defined, in a way that does not require some single,

highly specific assumption about what might be perceived and what types of errors

might be made in order for the theory to be applied. This abstract character of the

theory means that it is at least potentially relevant across many different domains.1

Hence if any general theory of perceptual limitations is to be possible — as opposed

to a large number of separate studies of heuristics and biases in individual, fairly

circumscribed domains — information theory provides a natural language in which

to seek to express it. Here I do not adopt the precise quantitative formulation of the

relevant constraint on information processing proposed by Sims; instead, I propose a

modification of rational inattention theory that I believe conforms better to findings

from empirical studies of perception. But the theory proposed here remains a close

cousin of the one proposed by Sims.

The paper proceeds as follows. In section 1, I review some of the empirical evi-

dence regarding visual perception that motivates the particular quantitative limit on

the accuracy of perceptions that I use in what follows. Section 2 then derives the im-

plications for perceptual errors in the evaluation of economic choices that follow from

the hypothesis of an optimal information structure to the particular kind of constraint

that is motivated in the previous section. Section 3 discusses several ways in which

this theory can provide interpretations of apparently anomalous aspects of choice

behavior in economic contexts, that have already received considerable attention in

the literature on behavioral economics, and compares the present theory to other

proposals that seek to explain some of the same phenomena. Section 4 concludes.

1Indeed, a number of psychologists and neuroscientists have already sought to characterize limits

to human and animal perception using concepts from information theory. See, for example, Attneave

(1954) and Miller (1956) from the psychology literature, or Barlow (1961), Laughlin (1981), Rieke

et al. (1997), or Dayan and Abbott (2001), chap. 4, for applications in the neurosciences.
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1 What Do Perceptual Systems Economize?

I shall begin by discussing the form of constraint on the degree of precision of people’s

awareness of their environment that is suggested by available evidence from experi-

mental psychology and neurobiology. I wish to consider a general class of hypotheses

about the nature of perceptual limitations, according to which the perceptual mech-

anisms that have developed are optimally adapted to the organism’s circumstances,

subject to certain limits on the degree of precision of information of any type that

it would be feasible for the organism to obtain. And I am interested in hypotheses

about the constraints on information-processing capacity that can be formulated as

generally as possible, so that the nature of the constraint need not be discovered

independently for each particular context in which the theory is to apply.

If high-level principles exist that determine the structure of perception across a

wide range of contexts, then we need not look for them simply by considering evi-

dence regarding perceptions in the context of economic decisionmaking. In fact, the

nature of perception, and the cognitive and neurobiological mechanisms involved in

it, has been studied much more extensively in the case of sensory perception, and of

visual and auditory perception particularly. I accordingly start by reviewing some of

the findings from the literatures in experimental psychology and neuroscience about

relations between the objective properties of sensory stimuli and the subjective per-

ception or neural representation of those stimuli, in the hope of discovering principles

that may also be relevant to perception in economic choice situations.

I shall review this literature with a specific and fairly idiosyncratic goal, which

is to consider the degree to which the experimental evidence provides support for

either of two important general hypotheses about perceptual limitations that have

been proposed by economic theorists. These are the model of partial information as

an optimally chosen partition of the states of the world, as proposed in Gul et al.

(2011), and the theory of “rational inattention” proposed by Sims (1998, 2003, 2011).

1.1 The Stochasticity of Perception

Economic theorists often model partial information of decisionmakers about the cir-

cumstances under which they must choose by a partition of the possible states of the

world; it is assumed that a decisionmaker (DM) is correctly informed about which

element of the partition contains the current state of the world, but that the DM has
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no ability to discriminate among states of the world that belong to the same element

of the partition. This is not the only way that one might model partial awareness, but

it has been a popular one; Lipman (1995) argues that limited information must be

modeled this way in the case of “an agent who is fully aware of how he is processing

his information” (p. 43).

In an approach of this kind, more precise information about the current state

corresponds to a finer partition. One might then consider partial information to

nonetheless represent a constrained-optimal information structure, if it is optimal

(from the point of view of expected payoff that it allows the DM to obtain) subject

to an upper bound on the number of states that can be distinguished (i.e., the num-

ber of elements that there can be in the partition of states of the world), or to an

information-processing cost that is an increasing function of the number of states. For

example, Neyman (1985) and Rubinstein (1986) consider constrained-optimal play of

repeated games, when the players’ strategies are constrained not to require an ability

to distinguish among too many different possible past histories of play; Gul et al.

(2011) propose a model of general competitive equilibrium in which traders’ strate-

gies are optimal subject to a bound on the number of different states of the world

that may be distinguished. This way of modeling the constraint on DMs’ awareness

of their circumstances has the advantage of being applicable under completely general

assumptions about the nature of the uncertainty. The study of optimal information

structures in this sense also corresponds to a familiar problem in the computer science

literature, namely the analysis of “optimal quantization” in coding theory (Sayood,

2005).

However, it does not seem likely that human perceptual limitations can be un-

derstood as optimal under any constraint of this type. Any example of what Lipman

(1995) calls “partitional” approaches to modeling information limitations implies that

the DM’s subjective representation of the state of the world is a deterministic function

of the true state: the DM is necessarily aware of the unique element of the informa-

tion partition to which the true state of the world belongs. And different states of the

world can either be perfectly discriminated from one another (because they belong

to separate elements of the partition, and the DM will necessarily be aware of one

element or the other), or cannot be distinguished from one another at all (because

they belong to the same element of the partition, so that the DM’s awareness will

always be identical in the two cases): there are no degrees of discriminability.
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Yet one of the most elementary findings in the area of psychophysics — the study

by experimental psychologists of the relation between subjective perceptions and the

objective physical characteristics of sensory stimuli — is that subjects respond ran-

domly when asked to distinguish between two relatively similar stimuli. Rather than

mapping the boundaries of disjoint sets of stimuli that are indistinguishable from one

another (but perfectly distinguishable from all stimuli in any other equivalence class),

psychophysicists plot the way in which the probability that a subject recognizes one

stimulus as brighter (or higher-pitched, or louder, or heavier...) than another varies

as the physical characteristics of the stimuli are varied; the data are generally con-

sistent with the view that the relationship (called a “psychometric function”) varies

continuously between the values of zero and one, that are approached only in the case

of stimuli that are sufficiently different.2 Thus, for example, Thurstone (1959) refor-

mulates Weber’s Law as: “The stimulus increase which is correctly discriminated in

any specified proportion of attempts (except 0 and 100 percent) is a constant fraction

of the stimulus magnitude.” How exactly and over what range of stimulus intensities

this law actually holds has been the subject of a considerable subsequent literature;

but there has been no challenge to the idea that any lawful relationships to be found

between stimulus intensities and discriminability must be stochastic relations of this

kind.

Under the standard paradigm for interpretation of such measurements, known

as “signal detection theory” (Green and Swets, 1966), the stochasticity of subjects’

responses is attributed to the existence of a probability distribution of subjective

perceptions associated with each objectively defined stimulus.3 The probability of

error in identifying which stimulus has been observed is then determined by the

degree to which the distributions of possible subjective perceptions overlap;4 stimuli

that are objectively more similar are mistaken for one another more often, because

2See, for example, Gabbiani and Cox (2010), chap. 25; Glimcher (2011), chap. 4; Green and

Swets (1966); or Kandel, Schwartz, and Jessel (2010), Box 21-1.
3This interpretation dates back at least to Thurstone (1927), who calls the random subjective

representations “discriminal processes,” and postulates that they are Gaussian random variables.
4Of course, even given a stochastic relationship between the objective stimulus and its subjec-

tive representation, there remains the question of how the subject’s response is determined by the

subjective representation. In “ideal observer theory,” the response is the one implied to be optimal

under statistical decision theory: the response function maximizes the subject’s expected reward,

given some prior probability distribution over the set of stimuli that are expected to be encountered.
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the probabilities of occurrence of the various possible subjective perceptions are quite

similar (though not identical) in this case. Interestingly, the notion that the subjective

representation is a random function of the objective characteristics is no longer merely

a conjecture; studies such as that of Britten et al. (1992) — who record the electrical

activity of a neuron in the relevant region of the cortex of a monkey trained to signal

perceptual discriminations, while the stimulus is presented — show that random

variation in the neural coding of particular stimuli can indeed explain the observed

frequency of errors in perceptual discriminations.

In order to explain the actual partial ability of human (or animal) subjects to

discriminate between alternative situations, then, one needs to posit a stochastic

relationship between the objective state and the subjective representation of the state.

A satisfactory formalization of a constraint on the degree of precision of awareness

of the environment that is possible — or of the cost of more precise awareness —

must accordingly be defined not simply for partitions, but for arbitrary information

structures that specify a set of possible subjective representations R and a conditional

probability distribution p(r|x) for each true state of the world x. It should furthermore

be such that it is more costly for an information structure to discriminate more

accurately between different states, by making the conditional distributions p(·|x)
more different for different states x. But in order to decide which type of cost function

is more realistic, it is useful to consider further experimental evidence regarding

perceptual discriminations.

1.2 Experimental Evidence on the Allocation of Attention

While the studies cited above make it fairly clear that subjective perceptions are

stochastically related to the objective characteristics of the environment, it may not

be obvious that there is any scope for variation in this relationship, so as to make it

better adapted to a particular task or situation. Perhaps the probability distribution

of subjective perceptions associated with a particular objective state is simply a

necessary consequence of the way the perceptual system is built, and will be the

same in all settings. In that case, the nature of this relationship could be an object of

study; but it might be necessary to make a separate study of the limits of perception

of every distinct aspect of the world, with little expectation of finding any useful

high-level generalizations.
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There is, however, a certain amount of evidence indicating that people are able to

vary the amount of attention that they pay to different aspects of their surroundings.

Some aspects of this are commonplace; for example, we can pay more attention to a

certain part of our surroundings by looking in that direction. The eye only receives

light from a certain range of angles; moreover, the concentration of the light-sensitive

cone cells in the retina is highest at a particular small area, the fovea, so that visual

discrimination is sharpest for that part of the visual field that is projected onto

the fovea. This implies opportunities for (and constraints upon) the allocation of

attention that are very relevant to certain tasks (such as the question of how one

should move about a classroom in order to best deter cheating on an exam), but that

do not have obvious implications for more general classes of information processing

problems. Of greater relevance for present purposes is evidence suggesting that even

given the information reaching the different parts of the retina, people can vary the

extent to which they attend to different parts of the visual field, through variation in

what is done with this information in subsequent levels of processing.5

1.2.1 The Experiment of Shaw and Shaw (1977)

A visual perception experiment reported by Shaw and Shaw (1977) is of particular

interest. In the experiment, a letter (either E, T, or V ) would briefly appear on a

screen, after which the subject had to report which letter had been presented. The

letter would be chosen randomly (independently across trials, with equal probability

of each of the three letters appearing on each trial), and would appear at one of eight

possible locations on the screen, equally spaced around an imaginary circle; the loca-

tion would also be chosen randomly (independently across trials, and independently

of the letter chosen). The probability of appearance at the different locations was

not necessarily uniform across locations; but the subjects were told the probability

πi of appearance at each location i in advance. The question studied was the degree

to which the subjects’ ability to successfully discriminate between the appearances

of the different letters would differ depending on the location at which the letter

appeared, and the extent to which this difference in the degree of attention paid to

each location would vary with the likelihood of observing the letter at that location.

5See, for example, Kahneman (1973) and Sperling and Dosher (1986) for general discussions of

this issue.
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Figure 1: The experimental results of Shaw and Shaw (1977), when the letters ap-

pear with equal frequency at all 8 locations. Solid grey bars show the frequency of

appearance at each location. Triangles show the fraction of correct identifications at

each location, for each subject. Circles show the predicted fraction of correct identifi-

cations at each location, under the hypothesis of uniform attention allocation, and an

individual-specific processing capacity. Data from Table 1, Shaw and Shaw (1977).
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Figure 2: The experimental results of Shaw and Shaw (1977), when the letters appear

with different frequencies at different locations. Solid grey bars show the frequency

of appearance at each location. Triangles show the fraction of correct identifications

at each location, for each subject. Circles show the predicted fraction of correct

identifications at each location, under the criterion for optimal allocation of attention

discussed in the text. Data from Table 2 , Shaw and Shaw (1977).
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The experimental data are shown in Figures 1 and 2 for two different probability

distributions {πi}. Each panel plots (with triangles) the fraction of correct responses

as a function of the location around the circle (indicated on the horizontal axis)

for one of the four subjects.6 In Figure 1, the probabilities of appearance at each

location (indicated by the solid grey bars at the bottom of each panel) are equal

across locations. In this case, for subjects 1-3, the frequency of correct discrimination

is close to uniform across the eight locations; indeed, Shaw and Shaw report that one

cannot reject the hypothesis that the error probability at each location is identical,

and that the observed frequency differences are due purely to sampling error. (The

behavior of subject 4 is more erratic, involving apparent biases toward paying more

attention to certain locations, of a kind that do not represent an efficient adaptation

to the task.)

Figure 2 then shows the corresponding fraction of correct responses at each lo-

cation when the probabilities of the letters’ appearing at the different locations are

no longer uniform; as indicated by the grey bars, in this case the letters are most

likely to appear at 0◦ or 180◦, and least likely to appear at either 90◦ or 270◦. The

probabilities for the non-uniform case are chosen so that there are two locations, dis-

tant from one another, at each of which it will be desirable to pay particularly close

attention; in this way the experiment is intended to test whether attention is divisible

among locations, and not simply able to be focused on alternative directions. In fact,

the non-uniform distribution continues to be symmetric with respect to reflections

around both the vertical and horizontal axes; the symmetry of the task thus continues

to encourage fixation of the subject’s gaze in the exact center of the circle, as in the

uniform case. Any change in the capacity for discrimination at the different locations

should then indicate a change in the mental processing of visual information, rather

than a simple change in the orientation of the eye.

As shown in Figure 2, the data reported by Shaw and Shaw indicate that in the

case of all except subject 4, the frequency of correct discrimination does not remain

constant across locations when the frequency of appearance at the different locations

ceases to be uniform; instead, the frequency of correct responses rises at the locations

that are used most frequently (0◦ and 180◦) and falls at the locations that are used

least frequently (90◦ and 270◦). Thus subjects do appear to be able to reallocate

6The location labeled 0◦, corresponding to the top of the circle, is shown twice (as both 0◦ and

360◦), to make clear the symmetry of the setup.

11



their attention within the visual field, and to multiple locations, without doing so

by changing their direction of gaze; and they seem to do this in a way that serves

to increase their efficiency at letter-recognition, by allocating more attention to the

locations where it matters more to their performance.

These results indicate that the nature of people’s ability to discriminate between

alternative situations is not a fixed characteristic of their sensory organs, but instead

adapts according to the context in which the discrimination must be made. Nor

are the results consistent with the view (as in the classic “signal detection theory” of

Green and Swets, 1966) that each objective state is associated with a fixed probability

distribution of subjective perceptions, and that is only the cutoffs that determine

which subjective perceptions result in a particular behavioral response that adjust

in response to changes in the frequency with which stimuli are encountered. For in

moving between the first experimental situation and the second, the probability of

presentative of an E as opposed to a T or V at any given location does not change;

hence there is no reason for a change in a subject’s propensity to report an E when

experiencing a subjective perception that might represent either an E or a T at

the 0◦ location. Evidently, instead, the degree of overlap between the probability

distributions of subjective perceptions conditional upon particular objective states

changes — becoming greater in the case of the different letters appearing at 90◦ and

less in the case of the different letters appearing at 0◦. But how can we model this

change, and under what conception of the possibilities for such adaptation might

the observed adaptation be judged an optimal response to the changed experimental

conditions?

1.2.2 Sims’s Hypothesis of Rational Inattention

Sims (1998, 2003, 2011) proposes a general theory of the optimal allocation of limited

attention that might appear well-suited to the explanation of findings of this kind.

Sims assumes that a DM makes her decision (i.e., chooses her action) on the basis of

a subjective perception (or mental representation) of the state of the world r, where

the probability of experiencing a particular subjective perception r in the case that

the true state of the world is x is determined by a set of conditional probabilities

{p(r|x)}. The formalism is a very general one, that makes no general assumption

about the kind of sets to which the possible values of x and r may belong. There

is no assumption, for example, that x and r must be vectors of the same dimension;

12



indeed, it is possible that the set of possible values for one variable is continuous while

the other variable is discrete. The hypothesis of rational inattention (RI) asserts

that the set of possible representations r and the conditional probabilities {p(r|x)}
are precisely those that allow as high as possible a value for the DM’s performance

objective (say, the expected number of correct decisions), subject to an upper bound

on the information that the representation conveys about the state.

The quantity of information conveyed by the representation is measured by Shan-

non’s (1948) mutual information, defined as

I = E

[
log

p(r|x)
p(r)

]
(1.1)

where p(r) is the frequency of occurrence of representation r (given the conditional

probabilities {p(r|x)} and the frequency of occurrence of each of the objective states

x), and the expected value of the function of r and x is computed using the joint

distribution for r and x implied by the frequency of occurrence of the objective

states and the conditional probabilities {p(r|x)}. This can be shown (see, e.g., Cover

and Thomas, 2006) to be the average amount by which observation of r reduces

uncertainty about the state x, if the ex ante uncertainty about x is measured by the

entropy

H(X) ≡ −E [log π(x)] ,

where π(x) is the (unconditional) probability of occurrence of the state x, and the

uncertainty after observing r is measured by the corresponding entropy, computed

using the conditional probabilities π(x|r). Equivalently, the mutual information is

the average amount by which knowledge of the state x would reduce uncertainty

(as measured by entropy) about what the representation r will be.7 Not only is this

concept defined for stochastic representations; the proposed form of constraint implies

that there is an advantage to stochastic representations, insofar as a “fuzzier” relation

between x and r reduces the mutual information, and so relaxes the constraint.

7The formula (1.1) for mutual information follows directly from the definition of entropy and

this second characterization. While the first characterization provides better intuition for why this

should be a reasonable measure of the informativeness of the representation r, I have written the

formula (1.1) in terms of the conditional probabilities {p(r|x)} rather than the {π(x|r)}, because
this expression makes it more obvious how the choice of the conditional probabilities {p(r|x)}, which
are a more natural way of specifying the design problem, is constrained by a bound on the mutual

information.

13



Rather than assuming that some performance measure Π is maximized subject to

an upper bound on I, one might alternatively suppose that additional information-

processing capacity can be allocated to this particular task at a cost, and that the

information structure and decision rule are chosen so as to maximize Π − θI, where

θ > 0 is a unit cost of information-processing capacity.8 This latter version of the

theory assumes that the DM is constrained only by some bound on the sum of the

information processing capacity used in each of some large number of independent

tasks; if the information requirements of the particular task under analysis are small

enough relative to this global constraint, the shadow cost of additional capacity can be

treated as independent of the quantity of information used in this task. A constrained-

optimal information structure in any given problem can be equally well described in

either of the two ways (as maximizing Π given the quantity of information used, or as

maximizing Π− θI for some shadow price θ); the distinction matters, however, when

we wish to ask how the information structure should change when the task changes,

as in the movement from the first experimental situation to the second in experiment

of Shaw and Shaw. We might assume that the bound on I remains unchanged when

the probabilities {πi} change, or alternatively we might assume that the shadow price

θ should remain unchanged across the two experiments. The latter assumption would

imply not only that attention can be reallocated among the different locations that

may be attended to in the experiment, but that attention can also be reallocated

between this experiment and other matters of which the subject is simultaneously

aware.

Because Sims’s measure of the cost of being better informed implies that allowing

a greater degree of overlap between the probability distributions of subjective repre-

sentations associated with different objective states reduces the information cost, it

might seem to be precisely the sort of measure needed to explain the results obtained

by Shaw and Shaw (for their first three subjects) as an optimal adaptation to the

change in the experimental setup. But in fact it makes no such prediction.

Suppose that (as in the pure formulation of Sims’s theory) there are no other con-

straints on what the set of possible representations r or the conditional probabilities

{p(r|x)} may be. In the experiment of Shaw and Shaw, the state x (the objective

properties of the stimulus on a given trial) has two dimensions, the location i at

which the stimulus appears, and the letter j that appears, and under the prior these

8This is the version of the theory used, for example, in Woodford (2009).
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two random variables are distributed independently of one another. In addition, only

the value of j is payoff-relevant (the subject’s reward for announcing a given letter

is independent of the location i, but depends on the true letter j). Then it is easy

to show that an optimal information structure will provide no information about the

value of i: the conditional probabilities p(r|x) = p(r|ij) will be functions only of j,

and so can be written p(r|j).
The problem then reduces to the choice of a set of possible representations r

and conditional probabilities {p(r|j)} so as to maximize the probability of a correct

response subject to an upper bound on the value of

I = E

[
log

p(r|j)
p(r)

]
,

where the expectation E[·] now represents an integral over the joint distribution of j

and r implied by the conditional probabilities. This problem depends on the prior

probabilities of appearance of the different letters j, but does not involve the prior

probabilities of the different locations {πi}. Since the prior probabilities of the three

letters are the same across the two experimental designs, the solution to this optimum

problem is the same, and this version of RI theory implies that the probability of

correct responses at each of the eight locations should be identical across the two

experiments. This is of course not at all consistent with the experimental results of

Shaw and Shaw.

Why is this theory inadequate? Under the assumption that the DM could choose

to pay attention solely to the letter that appears and not to its location, it would

clearly be optimal to ignore the latter information; and there would be no reason

for the subject’s information-processing strategy to be location-dependent, as it is

evidently is under the second experimental design. It appears, then, that it is not

possible (or at any rate, not costlessly possible) to first classify stimuli as Es, T s or V s,

and then subsequently decide how much information about that summary statistic to

pass on for use in the final decision. It is evidently necessary for the visual system to

separately observe information about what is happening at each of the eight different

locations in the visual field, and at least some of the information-processing constraint

must relate to the separate processing of these individual information streams — as

opposed to there being only a constraint on the rate of information flow to the final

decision stage, after the information obtained from the different streams has been
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optimally combined.9

Let us suppose, then, that the only information structures that can be considered

are ones under which the subject will necessarily be aware of the location i at which

the letter has appeared (though not necessarily making a correct identification of the

letter that has appeared there). One way of formalizing this constraint is to assume

that the set of possible representations R must be of the form

R =
8∪

i=1

Ri, (1.2)

and that the conditional probabilities must satisfy

p(Ri|ij) = 1 ∀i, j (1.3)

We then wish to consider the choice of an information structure and decision rule to

maximize the expected number of correct responses, subject to constraints (1.2)–(1.3)

and an upper bound on the possible value of the quantity I defined in (1.1).

As usual in problems of this kind, one can show that an optimal information

structure reveals only the choice that should be made as a result of the signal; any

additional information would only increase the size of the mutual information I with

no improvement in the probability of a correct response.10 Hence we may suppose

that the subjective representation is of the form ik, where i indicates the location at

which a letter is seen (necessarily revealed, by assumption) and k is the response that

the subject gives as a result of this representation. We therefore need only to specify

the conditional probabilities {p(ik|ij)} for i = 1, . . . , 8, and j, k = 1, 2, 3. Moreover,

because of the symmetry of the problem under permutations of the three letters, it is

easily seen that the optimal information structure must possess the same symmetry.

9The issue is one that arises in macroeconomic applications of RI theory, whenever there is a

possibility of observing more than one independent aspect of the state of the world. For example,

Mackowiak and Wiederholt (2009) consider a model in which both aggregate and idiosyncratic

shocks have implications for a firm’s optimal price, and assume a form of RI theory in which

firms must observe separate signals (each more or less precise, according to the firm’s attention

allocation decision) about the two types of shocks, rather than being able to observe a signal that is

a noisy measurement of an optimal linear combination of the two state variables. This is effectively

an additional constraint on the set of possible information structures, and it is of considerable

importance for their conclusions.
10See the discussion in Woodford (2008), in the context of a model with a binary choice.
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Hence the conditional probabilities must be of the form

p(ij|ij) = 1− ei ∀i, j, (1.4)

p(ik|ij) = ei/2 ∀i, j, any k ̸= j, (1.5)

where ei is the probability of error in the identification of a letter that appears at

location i.

With this parameterization of the information structure, the mutual information

(1.1) is equal to

I = −
∑
i

πi log πi + log 3−
∑
i

πih(ei), (1.6)

where

h(e) ≡ −(1− e) log(1− e)− e log(e/2)

is the entropy of a three-valued random variable with probabilities (1 − e, e/2, e/2)

of the three possible outcomes.11 The optimal information structure subject to con-

straints (1.2)–(1.3) and an upper bound on I will then correspond to the values {ei}
that minimize ∑

i

πiei + θI(e), (1.7)

where I(e) is the function defined in (1.6), and θ ≥ 0 is a Lagrange multiplier as-

sociated with the upper-bound constraint. (Alternatively, if additional information-

processing capacity can be allocated to this task at a cost, θ measures that cost.)

Note that the objective (1.7) is additively separable; this means that for each i,

the optimal value of ei is the one that minimizes

ei − θh(ei),

11The derivation of (1.6) is most easily understood as a calculation of the average amount by which

knowledge of the state ij reduces the entropy of the subjective representation ik. The unconditional

entropy (before knowing the state) of the subjective representation is given by the sum of the first two

terms on the right-hand side, which represent the entropy of the location perception (8 possibilities

with ex ante probabilities {πi}) and the entropy of the letter perception (3 possibilities, equally

likely ex ante) respectively. The final term on the right-hand side subtracts the average value of the

entropy conditional upon the state; the conditional entropy of the location perception is zero (it can

be predicted with certainty), while the conditional entropy of the letter perception is h(ei) if the

location is i.
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regardless of the values chosen for the other locations. Since this function is the

same for all i, the minimizing value ē is the same for all i as well. (One can easily

show that the function h(e) is strictly convex, so that the minimum is unique for

any value of θ.) Thus we conclude once again that under this measure of the cost

of more precise awareness, non-uniformity of the location probabilities should not

make it optimal for subjects to make fewer errors at some locations than others. If

the shadow cost of additional processing capacity is assumed to be the same across

the two experiments, then constancy of the value of θ would imply that the value

of ē should be the same for each subject in the two experiments. If instead it is

the upper bound on I that is assumed to be the same across the two experiments,

then the reduction in the entropy of the location in the second experiment (because

the probabilities are no longer uniform, there is less uncertainty ex ante about what

the location will be) means that more processing capacity should be available for

transmission of more accurate signals about the identity of the letter, and the value

of ē should be substantially lower (the probability of correct identifications should

be higher) in the second experiment. (This prediction is also clearly rejected by the

data of Shaw and Shaw.) But in either case, the probability of correct identification

should be the same across all locations, in the second experiment as much as in the

first, a prediction that is not confirmed by the data.

Why does the mutual information criterion not provide a motive for subjects to

reallocate their attention when the location probabilities are non-uniform? Mutual

information measures the average degree to which the subjective representation re-

duces entropy, weighting each possible representation by the probability with which

it is used. This means that arranging for available representations that will be highly

informative about low-probability states when they occur is not costly, except in

proportion to the probability of occurrence of those states. And while the expected

benefit of being well-informed about low-probability states is small, there remain ben-

efits of being informed about those states — proportional to the probability that the

states will occur. Hence the fact that some states occur with much lower probability

than others does not alter the ratio of cost to benefit of a given level of precision of

the subjective representation of those states.

But this means that theory of rational inattention, as formulated by Sims, cannot

account for reallocation of attention of the kind seen in the experiment of Shaw and

Shaw. We need instead a measure of the cost of more precise awareness that implies
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that it is costly to be able to discriminate between low-probability states (say, an

E as opposed to a T at the 90◦ location), even if one’s capacity to make such a

discrimination is not exercised very frequently.

1.2.3 An Alternative Information-Theoretic Criterion

One possibility is to assume that the information-processing capacity required in or-

der to arrange for a particular stochastic relation {p(r|x)} between the subjective

representation and the true state depends not on the actual amount of information

about the state that is transmitted on average, given the frequency with which differ-

ent states occur, but rather on the potential rate of information transmission by this

system, in the case of any probabilities of occurrence of the states x. Under this alter-

native criterion, it is costly to arrange to have precise awareness of a low-probability

state in the case that it occurs; because even though the state is not expected to

occur very often, a communication channel that can provide such precise awareness

when called upon to do so is one that could transmit information at a substantial

rate, in a world in which the state in question occurred much more frequently. We

may then suppose that the information-processing capacity required to implement

such a stochastic relation will be substantial.

Let the mutual information measure defined in (1.1) be written as I(p;π), where

p refers to the set of conditional probabilities {p(r|x)} that specify how subjective

representations are related to the actual state, and π refers to the prior probabili-

ties {π(x)} with which different states are expected to occur. (The set of possible

subjective representations R is implicit in the specification of p.) Then the pro-

posed measure of the information-processing capacity required to implement a given

stochastic relation p can be defined as12

C = max
π

I(p;π). (1.8)

This measure of required capacity depends only on the stochastic relation p. I pro-

pose to consider a variant of Sims’s theory of rational inattention, according to which

any stochastic relation p between subjective representations and actual states is pos-

sible, subject to an upper bound on the required information-processing capacity C.

12Note that this is just Shannon’s definition of the capacity of a communication channel that takes

as input the value of x and returns as output the representation r, with conditional probabilities

given by p.
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Alternatively, we may suppose that there is a cost of more precise awareness that is

proportional to the value of C, rather than to the value of I under the particular

probabilities with which different states are expected to be encountered.

Let us consider the implications of this alternative theory for the experiment of

Shaw and Shaw (1977). I shall again suppose that possible information structures

must respect the restrictions (1.2)–(1.3), and shall also again consider only symmet-

ric structures of the form (1.4)–(1.5). Hence the information structure can again be

parameterized by the 8 coefficients {ei}. But instead of assuming that these coeffi-

cients are chosen so as to minimize the expected fraction of incorrect identifications

subject to an upper bound on I, I shall assume that the expected fraction of incorrect

identifications is minimized subject to an upper bound on C. Alternatively, instead

of choosing them to minimize (1.7) for some θ ≥ 0, they will be chosen to minimize∑
i

πiei + θC(e) (1.9)

for some θ ≥ 0, where C(e) is the function defined by (1.8) when the conditional

probabilities p are given by (1.4)–(1.5).

For an information structure of this form, the solution to the optimization problem

in (1.8) is given by

π∗
i =

exp{−h(ei)}∑
j exp{−h(ej)}

for all i. Substituting these probabilities into the definitition of mutual information,

we obtain

C(e) = I(p;π∗) = log 3 + log

(∑
i

exp{−h(ei)}

)
.

The first-order conditions for the problem (1.9) are then of the form

πi = θ̃ exp{−h(ei)}h′(ei) (1.10)

for each i, where θ̃ ≡ θ/
∑

j exp{−h(ej)} will be independent of i. Because the right-

hand side of (1.10) is a monotonically decreasing function of ei, the solution for ei

will vary inveresely with πi. That is, under the optimal information structure, the

probability of a correct identification will be highest at those locations where the

letter is most likely to occur, as in the results of Shaw and Shaw.

Indeed, the proposed theory makes very specific quantitative predictions about the

experiment of Shaw and Shaw. Let us suppose that the shadow value θ of additional
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information-processing capacity remains constant across the two experiments.13 Then

the observed frequencies of correct identification in the case of the uniform location

probabilities can be used to identify the value of θ for each subject. Given this

value, the theory makes a definite prediction about each of the ei in the case of

non-uniform location probabilities. For the parameter values of the Shaw and Shaw

experiment, these theoretical predictions are shown by the circles in each panel of

Figure 2.14 For each of the first three subjects (i.e., the ones with roughly optimal

allocation of attention in the first experiment), the predictions of the theory are

reasonably accurate.15 Hence the reallocation of attention reported by Shaw and

Shaw is reasonably consistent with a version of the theory of rational inattention,

in which the only two constraints on the possible information structure are (i) the

requirement that the subject be aware of the location of the letter, and (ii) an upper

bound on the channel capacity C.

1.3 Visual Adaptation to Variations in Illumination

One of the best-established facts about perception is that the subjective perception

of a given stimulus depends not just on its absolute intensity, but on its intensity

relative to some background or reference level of stimulation, to which the organism

has become accustomed.16 Take the example of the relation between the luminance

of objects in one’s visual field — the intensity of the light emanating from them, as

measured by photometric equipment — and subjective perceptions of their brightness.

We have all experienced being temporarily blinded when stepping from a dark area

13The numerical results shown in Figure 2 are nearly identical in the case that the upper bound

on C is assumed to be constant across the two experiments, rather than the shadow cost θ.
14The value of θ used for each subject is the one that would imply a value of ē in the first

experiment equal to the one indicated in Table 1 of Shaw and Shaw (1977).
15They are certainly more accurate than the predictions of the alternative theory according to

which the information structure minimizes (1.7), with the value of θ again constant across the two

experiments. The likelihood ratio in favor of the new theory is greater than 1021 in the case of

the data for subject 1, greater than 1015 for subject 2, and greater than 1030 for subject 3. The

likelihood is instead higher for the first theory in the case of subject 4, but the data for subject 4

are extremely unlikely under either theory. (Under a chi-squared goodness-of-fit test, the p-value

for the new theory is less than 10−14, but it is on the order of 10−11 for the first theory as well.)
16See, e.g., Gabbiani and Cox (2010), chap. 19; Glimcher (2011), chap. 12; Kandel, Schwartz and

Jessel, 2000, chap. 21; or Weber (2004).
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into bright sunlight. At first, visual discrimination is difficult between different (all

unbearably bright) parts of the visual; but one’s eyes quickly “adjust,” and it is soon

possible to see fairly “normally.” Similarly, upon first entering a dark room, it may

be possible to see very little; yet, after one’s eyes adjust to the low illumination, one

finds that different objects in the room can be seen after all. These observations

indicate that one’s ability to discriminate between different levels of luminance is

not fixed; the contrasts between different levels that are perceptible depend on the

mean level of luminance (or perhaps the distribution of levels of luminance in one’s

environment) to which one’s eyes have adapted.

It is also clear that the subjective perception of a given degree of luminance

changes in different environments. The luminance of a given object — say, a white

index card — varies by a factor of 106 between the way it appears on a moonlit night

and in bright sunlight (Gabbiani and Cox, 2010, Figure 19.1). Yet one’s subjective

perception of the brightness of objects seen under different levels of illumination

does not vary nearly so violently. The mapping from objective luminance to the

subjective representation of brightness evidently varies across environments. It is

also not necessarily the same for all parts of one’s visual field at a given point in

time. Looking at a bright light, then turning away from it, results in an after-effect,

in which part of one’s visual field appears darkened for a time. After one has gotten

used to high luminance in that part of the visual field, a more ordinary level of

luminance seems dark — but this is not true of the other parts of one’s visual field,

which have not similarly adjusted. Similarly, a given degree of objective luminance

in different parts of one’s visual field may simultaneously appear brighter or darker,

depending on the degree of luminance of nearby surfaces in each case, giving rise to

a familiar optical illusion.17

Evidence that the sensory effects of given stimuli depend on how they compare

to prior experience need not rely solely on introspection. In the case of non-human

organisms, measurements of electrical activity in the nervous system confirm this, dat-

ing from the classic work of Adrian (1928). For example, Laughlin and Hardie (1978)

graph the response of blowfly and dragonfly photoreceptors to different intensities of

light pulses, when the pulses are delivered against various levels of background lumi-

17For examples, see Frisby and Stone (2010), Figures 1.12, 1.13, 1.14, 16.1, 16.9, and 16.11.

Kahneman (2003) uses an illusion of this kind as an analogy for reference-dependence of economic

valuations.
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nance. The higher the background luminance, the higher the intensity of the pulse

required to produce a given size of response (deflection of the membrane potential).

Laughlin and Hardie point out that the effect of this adaptation is to make the signal

passed on to the next stage of visual processing more a function of contrast (i.e., of

luminance relative to the background level) than of the absolute level of luminance

(p. 336).

An important recent literature argues that the neural coding of stimuli depends

not merely on some average stimulus intensity to which the organism has been ex-

posed, but on the complete probability distribution of stimuli encountered in the or-

ganism’s environment. For example, Laughlin (1981) records the responses (changes

in membrane potential) of the large monopolar cell (LMC) in the compound eye of the

blowfly to pulses of light that are either brighter or darker than the background level

of illumination to varying extents. His experimental data are shown in Figure 3 by

the black dots with whiskers. The change in the cell membrane potential in response

to the pulse is shown on the vertical axis, with the maximum increase normalized

as +1 and the maximum decrease as -1.18 The intensity of the pulse is plotted on

the horizontal axis in terms of contrast,19 as Laughlin and Hardie (1978) had already

established that the LMC responds to contrast rather than to the absolute level of

luminance.

Laughlin also plots an empirical frequency distribution for levels of contrast in

the visual environment of the blowflies in question. The cumulative distribution

function (cdf) is shown by the solid line in the figure.20 Laughlin notes the similarity

between the graph of the cdf and the graph of the change in membrane potential.

They are not quite identical; but one sees that the potential increases most rapidly

— allowing sharper discrimination between nearby levels of luminance — over the

range of contrast levels that occur most frequently in the natural environment, so

18For each level of contrast, the whiskers indicate the range of experimental measurements of the

response, while the dot shows the mean response.
19This is defined as (I − I0)/(I + I0), where I is the stimulus luminance and I0 is the background

luminance. Thus contrast is a monotonic function of relative luminance, where 0 means no difference

from the background level of illumination, +1 is the limiting case of infinitely greater luminance

than the background, and -1 is the limiting case of a completely dark image.
20The cdf is plotted after a linear transformation so that it varies from -1 to +1 rather than from

0 to 1.
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that the cdf is also rapidly increasing.21 Thus Laughlin proposes not merely that

the visual system of the fly responds to contrast rather than to the absolute level of

luminance, but that the degree of response to a given variation in contrast depends

on the degree of variation in contrast found in the organism’s environment. This, he

suggests, represents an efficient use of the LMC’s limited range of possible responses:

it “us[es] the response range for the better resolution of common events, rather than

reserving large portions for the improbable” (p. 911).

The adaptation to the statistics of the natural environment suggested by Laughlin

might be assumed to have resulted from evolutionary selection or early development,

and not to be modified by an individual organism’s subsequent experience. However,

other studies find evidence of adaptation of neural coding to statistical properties of

the environment that occurs fairly rapidly. For example, Brenner et al. (2000) find

that a motion-sensitive neuron of the blowfly responds not simply to motion relative

to a background rate of motion, but to the difference between the rate of motion

and the background rate, rescaled by dividing by a local (time-varying) estimate of

the standard deviation of the stimulus variability. Other studies find that changes in

the statistics of inputs change the structure of retinal receptive fields in predictable

ways.22

These studies all suggest that the way in which stimuli are coded can change

with changes in the distribution of stimuli to which a sensory system has become

habituated. But can such adaptation be understood as the solution to an optimization

problem? The key to this is a correct understanding of the relevant constraints on

the processing of sensory information.

1.4 Adaptation as Optimal Coding

Let us suppose that the frequency distribution of degrees of luminance in a given envi-

ronment is log-normally distributed; that is, log luminance is distributed as N(µ, σ2)

for some parameters µ, σ.23 We wish to consider the optimal design of a perceptual

21It is worth recalling that the probability density function (pdf) is the derivative of the cdf. Thus

a more rapid increase in the cdf means that the pdf is higher for that level of contrast.
22See Dayan and Abbott (2001), chap. 4; Fairhall (2007); or Rieke et al. (1997), chap. 5, for

reviews of this literature.
23The histograms shown in Figure 19.4 of Gabbiani and Cox (2010) for the distribution of lumi-

nance in natural scenes suggest that this is not an unreasonable approximation.
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system, in which a subjective perception (or neural representation) of brightness r

will occur with conditional probability p(r|x) when the level of log luminance is x. By

optimality I mean that the representation is as accurate as possible, on average, sub-

ject to a constraint on the information-processing requirement of the system. Let us

suppose that the relevant criterion for accuracy is minimization of the mean squared

error of an estimate x̂(r) of the log luminance based on the subjective perception r.24

... Note that it is important to distinguish between the subjective perception r

and the estimate of the luminance that one should make, given awareness of r. For

one thing, r need not itself be assumed to be commensurable with luminance (it

need not be a real number, or measured in the same units), so that it may not be

possible to speak of the closeness of the representation r itself to the true state x.

But more importantly, I do not wish to identify the subjective representation r with

the optimal inference that should be made from it, because the mapping from r to

x̂(r) should change when the prior and/or the coding system changes. Experiments

that measure electrical potentials in the nervous system associated with particular

stimuli, like those discussed above, are documenting the relationship between x and r,

rather than between x and an optimal estimate of x. Similarly, the observation that

the subjective perception of the brightness of objects in different parts of the visual

field can be different depending on the luminance of nearby objects in each region is

an observation about the context-dependence of the mapping from x to r, and not

direct evidence about how an optimal estimate of luminance in different parts of the

visual field should be formed.

The solution to this optimization problem depends on the kind of constraint on

information-processing capacity one assumes. Suppose, for example, that we assume

an upper bound on the number of distinct representations r that may be used, and

no other constraints, as in Gul et al. (2011). In this case, it is easily shown that

24Our criteria for the accuracy of perceptions would be possible, of course. This one has the

consequence that, under any of the possible formulations of the constraint on the information content

of subjective representations considered below, the optimal information structure will conform to

Weber’s Law, in the formulation given by Thurstone (1959) cited above in section 1.1. That is,

for any threshold 0 < p < 1, the probability that a given stimulus S will be judged brighter than

a stimulus with the mean level of luminance will be less than p if and only if the luminance of S

is less than some multiple of the mean luminance, where the multiple depends on p and σ, but is

independent of µ — i.e., independent of the mean level of luminance to which the perceptual system

is adapted.
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an optimal information structure partitions the real line into a N intervals (each

representing a range of possible levels of luminance), each of which is assigned a

distinct subjective representation r. The optimal choice of the boundaries for these

intervals is a classic problem in the theory of optimal coding; the solution is given by

the algorithm of Lloyd and Max (Sayood, 2005, chap. 9).

This sort of information structure does not, however, closely resemble actual per-

ceptual processes. It implies that while varying levels of luminance over some range

should be completely indistinguishable from one another, it should be possible to find

two levels of luminance x1, x2 that differ only infinitesimally, and yet are perfectly

discriminable from one another (because they happen to lie on opposite sides of a

boundary between two intervals that are mapped to different subjective represen-

tations). This sort of discontinuity is, of course, never found in psychophysical or

neurological studies.

If we instead assume an upper bound I on the mutual information between the

state x and the representation r, in accordance with the “rational inattention” hy-

pothesis of Sims, this is another problem with a well-known solution (Sims, 2011).

One possible representation of the optimal information structure is to suppose that

the subjective perception is a real number, equal to the true state plus an observation

error,

r = x+ ϵ, (1.11)

where the error term ϵ is an independent draw from a Gaussian distribution N(0, σ2
ϵ),

where
σ2
ϵ

σ2
=

e−2I

1− e−2I
.

Thus the signal-to-noise ratio of the noisy percept is an increasing function of the

bound I, falling to zero as I approaches zero, and growing without bound as I is

made unboundedly large.

In this model of imperfect perception, there is no problem of discontinuity: the

probability that the subjective representation will belong to any subset of the set R

of possible representations is now a continuous function of x. But this model fails to

match the experimental evidence in other respects. Note that the optimal information

structure (1.11) is independent of the value of µ. Thus the model implies that the

discriminability of two possible levels of luminance x1, x2 should be independent of the

mean level of luminance in the environment to which the visual system has adapted;
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but in that case there should be no difficulty in seeing when abruptly moving to

an environment with a markedly different level of illumination. Similarly, it implies

that the degree of discriminability of x1 and x2 should depend only on the distance

|x1 − x2|, and not on where x1 and x2 are located in the frequency distribution of

luminance levels. But this is contrary to the observation of Laughlin (1981) that finer

discriminations are made among the range of levels of illumination that occur more

frequently.

Moreover, according to this model, there is no advantage to responding to con-

trast rather than to the absolute level of illumination: a subjective representation of

the form (1.11), which depends on the absolute level of illumination x and not on

contrast (x − µ), is fully optimal.25 This leaves it a mystery why response to con-

trast is such an ubiquitous feature of perceptual systems. Moreover, since the model

implies that there should be no need to recalibrate the mapping of objective levels

of luminance into subjective perceptions when the mean level of luminance in the

environment changes, it provides no explanation for the existence of after-effects or

lightness illusions.

The problem with the mutual information criterion seems, once again, to be the

fact that there is no penalty for making fine discriminations among states that seldom

occur: such discriminations make a small contribution to mutual information as long

as they are infrequently used. Thus the information structure (1.11) involves not only

an extremely large set of different possible subjective representations (one with the

cardinality of the continuum), but nearly all of them (all r << µ and all r >> µ) are

subjective representations that are mainly used to distinguish among different states

that are far out in the tails of the frequency distribution. As a consequence, the

observation of Laughlin (1981) that it would be inefficient for neural coding to leave

“large parts of the response range [of a neuron] underutilized because they correspond

25It is true that the representation given in (1.11) is not uniquely optimal; one could also have

many other optimal subjective representations, including one in which r = (x− µ) + ϵ, so that the

representation depends only on contrast. The reason is that Sims’ theory does not actually determine

the representations r at all, only the degree to which the distributions p(r|x) for different states x

overlap one another. However, the theory provides no reason for the representation of contrast to be a

superior approach. Furthermore, if one adds to the basic theory of rational inattention a supposition

that there is even a tiny cost of having to code stimuli differently in different environments, as surely

there should be, then the indeterminacy is broken, and the representation (1.11) is found to be

uniquely optimal.
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to exceptionally large excursions of input” (p. 910) is completely inconsistent with

the cost of information precision assumed in RI theory.

As in the previous section, the alternative hypothesis of an upper bound on the

capacity requirement C defined in (1.8) leads to predictions more similar to the ex-

perimental evidence. The type of information structure that minimizes mean squared

error subject to an upper bound on C involves only a finite number of distinct subjec-

tive representations r, which are used more to distinguish among states in the center

of the frequency distribution than among states in the tails. Figure 4 gives, as an

example, the optimal information structure in the case that the upper bound on C

is equal to only one-half of a binary digit.26 In this case, the optimal information

structure involves three distinct possible subjective representations (labeled 1, 2, and

3), which one may think of as subjective perceptions of the scene as “dark,” “mod-

erately illuminated,” and “bright” respectively. The lines in the figure indicate the

conditional probability of the scene being perceived in each of these three ways, as a

function of the objective log luminance x.27

In panel (a), the prior distribution has a mean of −2 and a standard deviation of

1, while in panel (b), the mean is 2 and the standard deviation is again equal to 1.

One observes that the shift in the mean luminance between the two cases shifts the

functions that indicate the conditional probabilities. In the high-average-luminance

environment, a log luminance of zero has a high probability of being perceived as

“dark” and only a negligible probability of being perceived as “bright,” while in the

low-average-luminance environment, the same stimulus has a high probability of being

perceived as “bright” and only a negligible probability of being perceived as “dark.”

Thus the theory predicts that perceptions of brightness are recalibrated depending

on the mean luminance of the environment. In fact, the figure shows that for a fixed

value of σ, subjective perceptions of brightness are predicted to be functions only of

contrast, x − µ, rather than of the absolute level of luminance. Hence the theory

is consistent both with the observed character of neural coding and with subjective

26If the logarithm in (1.1) is a natural logarithm, then this corresponds to a numerical value

C = 0.5 log 2. For those readers who may have difficulty imagining “half of a binary digit”: a

communication channel with this capacity can transmit the same amount of information, on average,

in each two transmissions as can be transmitted in each individual transmission using a channel which

can send the answer to one yes/no question with perfect precision.
27The equations that are solved to plot these curves are stated in section 2, and the numerical

algorithm used to solve them is discussed in the Appendix.
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experiences of after-effects and lightness illusions.

The theory also predicts that finer discriminations will be made among levels of

luminance that occur more frequently, in the environment to which the perceptual

system has adapted. One way to discuss the degree of discriminability of nearby

levels of luminance is to plot the Fisher information,

IFisher(x) ≡ −
∑
r

p(r|x)∂
2 log p(r|x)
(∂x)2

,

as a function of the objective state x, where the sum is over all possible subjective

representations r in the case of that state.28 This function is shown in the two panels

of Figure 5, for the two information structures shown in the corresponding panels of

Figure 4. In each panel, the solid line plots the Fisher information for the information

structure shown in Figure 4 (the optimal structure subject to an upper bound on C),

while the dashed line plots the Fisher information for the optimal information struc-

ture in the case of the same prior distribution, but where the structure is optimized

subject to an upper bound on the mutual information I (also equal to one-half a

binary digit).

As discussed above, when the relevant constraint is the mutual information (Sims’s

RI hypothesis), the optimal structure discriminates equally well among nearby levels

of luminance over the entire range of possible levels: in fact, IFisher(x) is constant

in this case. In the theory proposed here instead (an upper bound on C), the opti-

mal information structure implies a greater ability to discriminate among alternative

states within an interval concentrated around the mean level of log luminance µ, but

almost no ability to discriminate among alternative levels of luminance when these

are either all more than one standard deviation below the mean, or all more than one

standard deviation above the mean. Hence the theory predicts that someone moving

from one of these two environments to the other should have very poor vision, until

their visual system adapts to the new environment. The theory is also reasonably

consistent with Laughlin’s (1981) observations about the visual system of the fly:

not only that only contrast is perceived, but that sharper discriminations are made

among nearby levels of contrast in the case of those levels of contrast that occur most

frequently in the environment.

28For the interpretation of this as a measure of the discriminability of nearby states in the neigh-

borhood of a given state x, see, e.g., Cox and Hinkley (1974).
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Both this application and the one in the previous section, then, suggest that the

hypothesis of an optimal information structure subject to an upper bound on the

channel capacity C required to implement it can explain at least some important

experimental findings with regard to the nature of visual perception. Since the hy-

pothesis formulated in this way is of a very general character, and not dependent on

special features of the particular problems in visual perception discussed above, it

may be reasonable to conjecture that the same principle should explain the character

of perceptual limitations in other domains as well.

2 A Model of Inattentive Valuation

I now wish to consider the implications of the theory of partial awareness proposed

in the previous section for the specific context of economic choice. I shall consider

the hypothesis that economic decisionmakers, when evaluating the options available

to them in a situation requiring them to make a choice, are only partially aware of

the characteristics of each of the options. But I shall give precise content to this

hypothesis by supposing that the particular imprecise awareness that they have of

each of their options represents an optimal allocation of their scarce information-

processing capacity. The specific constraint that this imposes on possible relations

between subjective valuations and the objective characteristics of the available options

is modeled in a way that has been found to explain at least certain features of visual

perception, as discussed in the previous section.

2.1 Formulation of the Problem

As an example of the implications of this theory, let us suppose that a DM must

evaluate various options x, each of which is characterized by a value xa for each of

n distinct attributes. I shall suppose that each of the n attributes must be observed

separately, and that it is the capacity required to process these separate observations

that represents the crucial bottleneck that results in less than full awareness of the

characteristics of the options. As a consequence, the subjective representation of

each option will also have n components {ra}, though some of these may be null

representations — in the sense that the value of component ra for some a may be the

same for all options, so that there is no awareness of differences among the options
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on this attribute. The DM’s partial awareness can then be specified by a collection

of conditional probabilities {pa(ra|xa)} for a = 1, . . . , n. Here it is assumed that

the probability of obtaining a particular subjective representation ra of attribute a

depends only on the true value xa of this particular attribute; this is the meaning of

the assumption of independent observations of the distinct attributes.29

The additional constraint that I shall assume on possible information structures

is an upper bound on the required channel capacity (1.8). Because of the assumed

decomposability of the information structure into separate signals about each of the

attributes a, the solution for the optimal prior probabilities π∗ in problem (1.8) can

be obtained by separately choosing prior probabilities π∗
a for each attribute a that

solve the problem

max
πa

I(pa;πa), (2.1)

which depends only on the type of signal that is obtained about attribute a. (This

follows from the standard result that the total capacity, in Shannon’s sense, of a set

of n independent communication channels that can be operated in parallel is equal

to the sum of the capacities of the individual channels.)

The total capacity C is then just the sum
∑

a Ca, where Ca is the maximized

value of problem (2.1). I shall suppose that there is an upper bound on the possible

capacity C that can be used to evaluate options of this kind, or alternatively that

additional processing capacity C can be allocated to this task only at some positive

unit cost θ. In either case, the shadow cost of allocating additional capacity Ca to the

evaluation of attribute a will have to be the same for all attributes, and this is what

makes it possible to draw conclusions about the relative amount of attention that

will be paid to different attributes by the DM. It is simplest to consider the case in

which there is also a common shadow cost of additional processing capacity for other

tasks about which the same DM is concerned, and that this cost θ is little affected

by variations in the amount of capacity allocated to awareness of the particular kind

of options under consideration. In this case, the value of θ can be taken as given in

solving for the optimal degree of partial awareness of the options in this particular

decision problem.

Finally, I shall suppose that the DM values options according to the sum u =

29As discussed in the previous section, additional constraints of this kind on the set of possible

information structures are necessary in order for there to be any possibility of understanding actual

perceptual systems as optimal subject to an information-processing constraint.
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∑
a xa of their values along the various dimensions. (I assume that the measures of the

various attributes have been scaled so that a unit increase in any attribute increases

the DM’s utility by an equal amount; this is purely a notational convenience.30) And

I shall assume that the information structure is optimal in the sense of minimizing

the mean squared error of the DM’s estimate û of the value of the option, where û is

the optimal estimate of u given the subjective representation r.

The mean squared error associated with an estimate û(r) can be defined only

using a particular prior probability distribution π(x) over the possible objective char-

acteristics x of the options that the DM may encounter. Hence optimality can only be

relative to a particular prior distribution, to which a particular information structure

(described by the conditional probabilities p(r|x)) may be better or worse adapted.

My goal here is to derive implications of the hypothesis of optimal adaptation of the

information structure to a particular prior; I shall not seek to provide a theory of how

the prior should be determined. A standard assumption in economic models of choice

under imperfect information, of course, is that the prior coincides with the objective

probabilities with which different options may be encountered by the DM. The prior

may be interpreted that way here, as well; but the conclusions derived would equally

follow in the case of a subjective prior that does not necessarily coincide with any

objective probabilities.31

The characterization of the optimal estimate is simplest in the case that the prior

assumes that the value of each attribute is distributed independently of the others.

Then the optimal estimate x̂a of each attribute is a function only of component ra of

the subjective representation, and the mean squared error of the estimate û =
∑

a x̂a

30The assumption of additive separability of utility in the different attributes is instead an im-

portant restriction, here adopted for the sake of simplicity. The assumption of linearity is not in

itself a restriction, as we may suppose that the value of the attribute is subject to a nonlinear trans-

formation that makes utility linear in the transformed value. Linearity only becomes a restriction

in conjunction with the further assumption that the prior probability distribution of values for xa

is Gaussian: I am then assuming Gaussianity of the distribution of transformed values, after the

transformation required to make utility linear in xa.
31There is a certain amount of experimental evidence indicating that it is possible to manipu-

late the choices of experimental subjects among options with unchanged objective characteristics,

simply by providing additional options (that are not chosen), or directing the subject’s attention

to particular possibilities in other ways. I would propose to interpret these findings as examples of

manipulation of the subject’s prior by changes in the experimental setting; these changes do not

always involve the provision of objectively relevant information.
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is just the sum of the mean squared errors of the component estimates x̂a.We can then

solve separately for the optimal information structure pa(ra|xa) for a given attribute,

as the one that minimizes the mean squared error of the optimal estimate x̂a(ra), given

the (marginal) prior distribution πa over possible values of xa, for a given processing

capacity Ca allocated to the perception of this attribute. The value of Ca depends

only on the information structure chosen for the perception of attribute a. If the

shadow cost θ of additional capacity is given independently of the total capacity C

used to evaluate the option, then it is possible to solve for the optimal information

structure for an individual attribute a, without any reference to the information

structures chosen for the other attributes.

The optimal information structure for any attribute can be defined as the choice

of a set of possible representations R, conditional probabilities p(r|x) for each possible

objective state x, and an estimation rule x̂(r)32 so as to minimize the mean squared

error

E
[
(x− x̂)2

]
, (2.2)

subject to an upper bound on the required channel capacity C defined in (1.8).

(Here the expectation E[·] means an integral using the joint distribution for (r, x)

implied by the prior π(x) for the objective states and the conditional probabilities

p(r|x).) The notation used here assumes that the estimate x̂ is a deterministic function

of the representation r, and one can show that this is optimal. One also easily

sees that the identity of the representations R is irrelevant to the solution: it only

matters how many different representations belong to the set, and the extent to which

the probability distributions over representations associated with different objective

states x are similar or different. Hence one can equivalently state the problem in

terms of a direct choice of conditional probabilities p(x̂|x) of different estimates x̂

of the value of the attribute. In this case, the required channel capacity C is the

maximum value of the mutual information between x and x̂, where the maximization

is again over all possible prior distributions {π(x)}.
I show in the Appendix that this problem is equivalent to the choice of a measure

px = p(·|x) over the set of possible estimates x̂ for each objective state x, and another

measure q over that same set of possible estimates that is independent of the objective

32Here I omit the subscripts a associated with the particular attribute under consideration. More

precisely, one should refer to a set Ra, conditional probabilities pa(ra|xa), and an estimation rule

x̂a(ra).

33



state, so as to minimize (2.2) subject to the constraint that

D(px||q) ≤ C (2.3)

for each possible state x.33 Here the expectation E[·] in (2.2) is an integral using

the joint distribution over values (x̂, x) implied by the prior π(x) and the conditional

probabilities {px}; and for any measures p, q over the set of possible estimates,

D(p||q) ≡ Ep

[
log

p(x̂)

q(x̂)

]
is the relative entropy (or Kullback-Leibler divergence) between the two measures,

in which expression Ep[·] denotes an integral using the measure p over the possible

values of x̂. The relative entropy is only defined in the case that px is absolutely

continuous with respect to the measure q; this means that px cannot assign positive

probability to any events that have zero probability under q. Constraint (2.3) thus

assumes that the measure px has this property for each possible state x.

Here the measure q is not part of the definition of the information structure —

that is fully specified by the conditional probabilities {px} — but only a convenient

mathematical representation of the constraint upon possible choices of the {px}. The
collection of measures px for different objective states x must all be such that they

satisfy a bound of the form (2.3) for some common measure q. The optimal choice of q

in the mathematical problem stated above is the one that relaxes the constraints (2.3)

in the way that is most helpful in allowing the mean squared error of the estimate x̂

to be reduced.

The relative entropy is a measure of how different the probability distribution px

is from the “typical” probabilities q of occurrence of the various representations (or

estimates).34 The complexity of the signal that must be sent from one’s senses (or

more generally, from earlier stages of processing of information about this feature of

one’s situation) in state x is greater the more different the distribution of subjective

representations is required to be in state x than what it typically is. The constraint

33More precisely, the problem is to choose a joint distribution of possible values (x̂, x) with

marginal distribution corresponding to the prior π(x), subject to a constraint that (2.3) hold almost

surely (i.e., for values of x that occur with probability 1 under the prior).
34Note that the relative entropy is necessarily non-negative, and equal to zero only if the two

distributions are identical (almost surely). For further discussion, see e.g., Cover and Thomas

(2006).
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(2.3) indicates that under this conception of the cost of information processing, the

available capacity C constrains how different the distribution of subjective represen-

tations associated with any particular state can be from the “typical” distribution.

Under the Sims version of RI, instead, the corresponding constraint can be writ-

ten35

E[D(px||q)] ≤ C, (2.4)

where the expectation E[·] integrates over possible values of x using the prior π(x).

According to that theory, processing capacity constrains only the average complexity

of the signal that may be sent about the environment to later stages of processing;

sending highly complex signals (to produce subjective representations quite unlike

the typical ones) is not a problem as long as the states in which they are sent occur

with sufficiently low frequency. Under the theory proposed here, instead, processing

capacity limits the degree to which subjective representations can differ in any state.

The capacity Ca allocated to the DM’s awareness of a given attribute a is itself

assumed to represent an optimal allocation of some total processing capacity. Hence

in deriving the optimal information structure for a given attribute, C should also be

chosen, along with q and the {px}, so as to minimize

E
[
(x− x̂)2

]
+ θC (2.5)

for some unit cost of capacity θ > 0, subject to the constraint that (2.3) hold for all

x. The value of θ may either be taken as externally given, or may be solved for so as

to imply capacity demands {Ca} for the several attributes that sum to some given

total capacity available for evaluation of this type of option.

2.2 Optimal Information Structures

Even when x (the value of a particular attribute) is a continuous variable and the

prior is described by a density function π(x), the solution to the above problem

will generally involve only a discrete set of possible subjective representations, and a

corresponding discrete set of possible estimates {x̂i}, where i indexes the particular

35This is equivalent to a requirement that the conditional probabilities {px} be chosen so that

I ≤ C, where I is the mutual information defined in (1.1). Note that the measure q that minimizes

E[D(px||q)] is p ≡ Epx, and that E[D(px||p)] = I.
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subjective representation of the attribute. The measure q is correspondingly a dis-

crete measure (that can be specified by a set of probabilities {qi}), and the optimal

information structure is given by a set of functions {pi(x)}, where pi(x) indicates the
probability of observing subjective representation i (and hence of making estimate

x̂i) when the objective state is x. We may assume without loss of generality that

qi > 0 for all i, since the absolute continuity requirement implies that the function

pi(x) would have to equal zero (almost surely) in the case of any representation i

with a zero probability under the measure q. The functions pi(x) take values between

zero and one for all x, and satisfy
∑

i pi(x) = 1 for all x. Figure 4 above presents

an example of an optimal information structure, for a case in which the prior π(x) is

Gaussian, and θ is large enough for the optimal allocation of processing capacity to

this attribute to be only one-half a binary digit per observation.36

As shown in the Appendix, an optimal information structure is characterized by

a system of equations of the following form. For each objective state x, let Î(x) be
the subset of the discrete set of possible representations I) for which the squared

error |x̂i − x|2 implied by the representation is minimized. (Typically, there will be a

single minimum-distortion representation, but for certain special states x, there will

be multiple equidistant representations.) Then let

q̂(x) ≡
∑
i∈Î(x)

qi

be the total probability of occurrence of representations in the minimum-distortion

set for state x, under the measure q. Then for any state x such that

q̂(x) ≥ e−C , (2.6)

it is possible to find a measure px over the set I with a support contained in Î(x)
that satisfies (2.3). In this case, the constraint (2.3) does not bind, and pi(x) = 0 for

any representation x /∈ Î(x): only minimum-distortion representations ever occur in

this state. If Î(x) consists of a single representation ı̂(x),37 then pı̂(x)(x) = 1. More

generally, px will be some measure with support on the discrete set Î(x) that satisfies
the bound (2.3).38

36That is, Ca = 0.5 log 2. Given that the standard deviation σa is equal to 1 in the figure, this

corresponds to a value θ = 0.997, using the result from Table 1 below.
37Note that this is the generic case.
38Except when (2.6) holds with equality, the solution for px is indeterminate in this case.
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When (2.6) does not hold,39 constraint (2.3) binds, and the probability of occur-

rence of each possible subjective representation i will be given by

pi(x) =
qi exp{−θ(x)−1|x− x̂i|2}∑
j qj exp{−θ(x)−1|x− x̂j|2}

, (2.7)

where θ(x) ≥ 0 is a Lagrange multiplier associated with the constraint (2.3) for that

state x. This implies that there is at least some probability of occurrence of every

possible subjective representation, in the case of each objective state x. However,

those representations that lead to a more accurate estimate of the state are relatively

more likely to occur.

In particular, if the state x is a single real variable (as in the examples plotted

in Figure 4), then (2.7) implies that for any pair of representations i, j, and any two

states x, y for which (2.6) does not hold,

log
pi(x)

pj(x)
− log

pi(y)

pj(y)
= 2(x̂i − x̂j)

[
x− x̄i,j

θ(x)
− y − x̄i,j

θ(y)

]
,

where x̄i,j ≡ (x̂i + x̂j)/2 is the mean of the estimates implied by the two representa-

tions. If the shadow value of relaxing the constraint (2.3) is the same for both states,

then representation i will have a greater relative likelihood of occurrence in the case

of state x if and only if the sign of x−y is the same as the sign of x̂i− x̂j (a monotone

likelihood ratio property). But even if x̂i > x̂j while x < y, it is possible for represen-

tation i to be relatively more likely in the case of state x, if both x and y exceed x̄i,j

(so that i is the more accurate representation of either state) and θ(y) > θ(x) to a

sufficient extent (so that the capacity constraint prevents sharp discriminations from

being made as to which subjective state will arise, to a greater extent in the case of

state y), or if instead both x and y are less than x̄i,j and θ(x) > θ(y) (so that j is

more accurate for both states, and less sharp discriminations are made in state x).

Given the state-independent probabilities qi and the estimates x̂i associated with

the various subjective representations i ∈ I, the value of θ(x) can be determined for

39Often, the condition does not hold for any x; this is true of the various numerical examples

discussed in this paper. Condition (2.6) cannot hold unless the measure q assigns a sufficiently large

probability to the small number of representations (generally only one) that are closest to the true

state x, while at the same time C must be a sufficiently large positive quantity. But if C is not small,

an optimal information structure will allow for many different representations, and the measure q

will not assign too much probability to any one of them.
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any state x for which (2.6) does not hold, by increasing the assumed value of θ until

the measure px defined by (2.7) satisfies (2.3) with equality.40 In this way, assumed

values {qi} and {x̂i} give rise to uniquely defined41 conditional probabilities {pi(x)}
and a Lagrange multiplier θ(x) for each objective state x.

The probabilities q are then given by

qi =

∫
pi(x)θ(x)π(x)dx∫

θ(x)π(x)dx
(2.8)

for each possible representation i. (This expression is well-defined and positive for

each i, as long as (2.6) is violated for some set of states with positive measure under

the prior π(x). If this is not the case, the measure q is undefined, but is not needed

to describe the optimal information structure, since (2.7) applies at most to a set

of states assigned measure zero under the prior.) Thus the measure q indicates the

overall frequency of occurrence of the various subjective representations, if the weights

placed on the various possible objective states are given by the prior π(x) adjusted

by a factor θ(x) reflecting the value of additional capacity in that state.

Finally, for each subjective representation i, the estimate x̂i is just the optimal

(minimum mean-squared-error) estimate of x when representation i is observed, if a

posterior π(x|i) is formed using Bayes’ Rule. That is,

x̂i =

∫
xpi(x)π(x)dx∫
pi(x)π(x)dx

(2.9)

for each possible representation i. (These conditional expectations will be well-defined

for each i, as long as i occurs with positive probability under the prior π(x).)

The optimal information structure for any capacity constraint C is therefore given

by a measure q and estimates {x̂i} that imply conditional expectations {pi(x)} and

multipliers θ(x) for all x in the support of π(x), such that (2.8) and (2.9) yield

40The geometry of this is illustrated in the Appendix.
41This is subject to the qualification that the measure px is indeterminate in the case that (2.6)

holds as a strict inequality and there is more than one element in the set Î(x). Note that the

indeterminacy of px in this case does not affect the calculation of q in (2.8). Nor does it matter for

the calculation of the {x̂i} in (2.9), unless the set of x for which px is indeterminate is of positive

measure under the prior. In the relatively special case that the prior π(x) assigns an atom to a value

x that is equidistant from two or more of the estimates {x̂i}, then the indeterminacy of the measure

px is resolved precisely by the requirement that (2.9) yield estimates for the representations i ∈ Î(x)
with the property that x is equidistant from them.

38



precisely this measure and these estimates.42 Associated with this solution will be a

Lagrange multiplier for the capacity constraint C, given by

θ =

∫
θ(x)π(x)dx. (2.10)

If we wish to solve for the optimal information structure for a given attribute a,

taking as given not the capacity Ca allocated to processing information about that

attribute, but rather the shadow value θ of additional capacity, which is equalized

across all attributes under an optimal allocation of attention across attributes, this

can be done by varying the assumed value of Ca in the constraints (2.3) until the

solution for the multipliers {θ(x)} implies the desired value of θ when substituted

into (2.10).

When C is chosen endogenously, the optimal value may or may not be positive.

As C is reduced to zero, the implied value of θ may well remain finite. For example,

in the case of a Gaussian prior N(µ, σ2), the upper bound on θ is given by 1.32σ2, as

shown in Table 1 below. This means that there are finite shadow values of processing

capacity for which it will be optimal to pay no attention at all to a given attribute.

The optimal information structure involves measures px which are independent of x,

and hence convey no information, and as a consequence the optimal action will be

independent of the signal received about this attribute. One may then without loss

of generality assume that there is a single representation that is the same at all times

— which is the same as saying, there is no representation of this attribute at all.

2.3 Effects of the Prior on Discriminations of Value

A key implication of the theory just proposed is that the probability of occurrence

of different subjective representations, and hence of different estimates of the value

of the various attributes of a given option, depend not only on the objective values

of those attributes, but also upon the prior distribution for each of the attributes,

for which the DM’s perceptual system has been optimized. This implies an essential

reference-dependence of perceptions of value, though the importance of the reference-

dependence (in terms of the degree to which it alters the choices that the DM will

42The numerical algorithm used to solve these equations in the numerical examples presented in

the paper is discussed in the Appendix.
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make) will be greatest when the processing capacity allocated to the perception of a

particular attribute is small.

Here I illustrate the way in which changes in the prior change the predicted nature

of the discriminations that should be made among options that differ in a particular

attribute, through examples of numerical solutions of the equations stated above. In

these examples, I shall assume that the attribute can be measured by a single real

variable x, and I shall assume that the prior π(x) is a Gaussian distribution with mean

µ and standard deviation σ > 0. The optimal information structures for priors within

this family have an important invariance property. For a fixed value of the bound

C on processing capacity, the number of distinct subjective representations in the

set I is independent of µ and σ. Moreover, the conditional probability of occurrence

of each subjective representation i is of the form pi((x − µ)/σ), where the function

pi(z) is independent of µ and σ, when written in terms of the normalized state (i.e.,

the number of standard deviations by which the state x differs from the prior mean).

This invariance is illustrated in Figure 4, where the effect of a shift in µ is simply

a horizontal translation of the graphs of each of the functions {pi(x)}. The optimal

estimate of the state x̂i associated with a given subjective representation will be of

the form

x̂i = µ+ σẑi,

where ẑi (the estimated value of the normalized state) will be independent of µ and

σ. It follows that the mean subjective valuation (MSV) of this attribute,

E[x̂|x] ≡
∑
i

pi(x)x̂i,

will be of the form

E[x̂|x] = µ+ σϕ((x− µ)/σ),

where the function

ϕ(z) ≡ E[ẑ|z] (2.11)

is independent of both µ and σ, for a given value of C.

The shadow value θ of additional capacity will also be independent of µ, though

it does depend on σ; specifically, when C is held fixed, the value of θ will grow in

proportion to σ2. Hence if the cost of capacity θ is given and C is endogenously deter-

mined, the optimal capacity C will be a decreasing function of θ/σ2, or alternatively,
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an increasing function of σ2/θ, but independent of µ. This inverse relationship is il-

lustrated for various illustrative values of C in Table 1. Note that the optimal value

of C falls to zero, and the function ϕ(z) becomes a constant function, equal to zero

for all z, for all values of θ/σ2 above a finite critical value, approximately equal to

1.32.

C (bits) θ/σ2 ϕ(1)

0.01 1.317 0.011

0.25 1.165 0.283

0.50 0.997 0.531

0.75 0.801 0.742

1.00 0.580 0.918

1.25 0.424 1.007

1.50 0.315 1.031

2.50 0.092 0.987

3.50 0.026 0.996

4.50 0.009 0.999

Table 1: The relation between optimal capacity C and the cost of capacity θ, in the

case of a Gaussian prior. The value of ϕ(1) measures the average slope of the graph

of mean subjective value as a function of objective value, over the range of objective

values ±1 standard deviation around the mean.

In order to further illustrate the consequences of variations in the prior for the

stochastic subjective representation of value, it may be useful to present additional

numerical computations for the case of an information structure with C = 0.5 bits

(binary digits), shown in Figure 4. In this case, the optimal information structure

involves three possible subjective representations, as discussed earlier, and can be

completely specified by a single function p(z), in terms of which the the conditional
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probabilities of the three representations are

p1(z) = p(−z),

p2(z) = 1− p(z)− p(−z),

p3(z) = p(z).

The optimal estimates in the case of each subjective representation are similarly of

the form

ẑ1 = −ẑ, ẑ2 = 0, ẑ3 = ẑ,

for a certain quantity ẑ ≈ 0.84 (Both of these simplifications follow from the symmetry

of the problem.) One can further show analytically that the function p(z) satisfies

p′(z) < 0 for all z < −ẑ/2,

p′(z) > 0 for all z > −ẑ/2,

as illustrated in Figure 4.

Suppose that there are two options A and B, and that in the attribute currently

under consideration, xA > xB, so that A would be preferred (at least on this dimen-

sion) if accurately observed. What is the likelihood of its being viewed as superior

on this dimension by a DM with limited processing capacity? The answer depends

not only on the value of C, but on the prior to which the DM’s perceptual system is

adapted.

Let us first consider a prior with respect to which the options A and B are “typ-

ical,” namely, a Gaussian distribution with µ0 = (xA + xB)/2 and σ0 = (xA − xB)/2,

so that the average value of the attribute for options A and B is equal to the mean

value under the prior, and both A and B are an “average” distance from the prior

mean (i.e., one standard deviation). With respect to this prior, the normalized values

are zA = 1, zB = −1. When C = 0.5 bits, p(1) = 0.668, p(−1) = 0.037. Hence A

is perceived as superior (r = 3) on this attribute with probability 0.668, as ordi-

nary (r = 2) with probability 0.295, and as inferior (r = 1) with probability 0.037;

correspondingly, B is perceived as superior with probability 0.037, as ordinary with

probability 0.295, and as inferior with probability 0.667. Let us say that A is per-

ceived as strongly superior to B (A >> B) if A is perceived as superior and B is

perceived as inferior, while A is simply superior to B (A > B) if either A is perceived

as superior and B is not, or B is perceived as inferior and A is not. Then with this
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baseline prior, A is perceived as superior to B with probability 0.840, and as strongly

superior with probability 0.446.

These probabilities shift if the prior changes. For a general Gaussian priorN(µ, σ2),

and a capacity of 0.5 bits, the probability that A is perceived as strongly superior to

B will equal

Pr(A >> B) = p(zA)p(−zB) = p

(
µ0 + σ0 − µ

σ

)
p

(
µ+ σ0 − µ0

σ

)
This is plotted in panel (a) of Figure 6, as a function of (µ−µ0)/σ0 on the horizontal

axis and σ/σ0 (on a logarithmic scale) on the vertical axis. Note that Pr(A >> B)

depends only on these two ratios; the two axes of the figure show the effects of vari-

ation in the mean and standard deviation of the prior respectively. The probability

that A is perceived as at least somewhat superior to B is also a function only of those

two ratios, and this function is plotted in panel (b) of the figure.

One observes from panel (a) that when the prior mean is midway between xA

and xB, increases in the standard deviation of the prior lower the probability that A

will be perceived to be strongly superior. This is because the normalized value zA

falls, as a consequence of which p(zA) falls; and p(−zB) = p(zA) falls for the same

reason. If µ increases (so that the prior mean is closer to xA than to xB) for a given

standard deviation, the probability also falls. In this case, zA again falls, while −zB

rises by the same amount. Hence p(zA) falls while p(−zB) rises, and because log p(z)

is strictly concave in this region, log p(zA) falls by more than log p(−zB) rises, and

Pr(A >> B) falls. The same is true, however (simply switching the roles of zA and

−zB) if µ decreases. Hence Pr(A >> B) is maximized, for a given value of σ, when

µ = µ0 — that is, when the prior mean is precisely midway between xA and xB.

The effects of a change in the prior on Pr(A > B) are less easily summarized.

For values σ ≥ σ0 (that is, when the distance between xA and xB is no more than

two standard deviations), the qualitative effects of variations in µ and σ are the

same as those just discussed. However, for lower values of σ (so that xA and xB

are farther apart, relative to the range of variation expected under the prior), the

calculations are more complicated. Consider again the case in which µ = µ0. If σ is

sufficiently smaller than σ0, an increase in σ again causes zA = −zB to fall, but this

can increase the probability that A is perceived to be superior, as shown in panel (b).

The reason is that when σ0/σ > ẑ/2 ≈ 0.42, p(z) is a decreasing function of z for

z near zB = −zA = −σ0/σ. This implies that as σ rises (while still in this range),
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p(zB) = p(−zA) falls. This means that both the probability that rA > 1 (so that

A is not perceived to be inferior) and the probability that rB < 3 (so that B is not

perceived to be superior) increase.

Thus far we have considered the effects of changing µ and σ while holding the

upper bound C on processing capacity fixed. But as noted above, if θ is given and C

is endogenous, then a change in σ will require a change in C. The required change can

be determined by lining up the new value of σ2/θ with the appropriate row of Table 1

(note that the reciprocal of this quantity is given in the second column of the table),

and observing the value of C in that row. We must therefore also consider the effects

of such a change in C. An increase in C allows both an increase in the number of

distinct subjective representations of this attribute, and a reduction in the degree of

randomness of the subjective representations associated with given objective values

of the attribute. This allows the estimate x̂(r) to track the true value of the attribute

with greater accuracy.

For example, Figure 7 plots the function ϕ(z) defined in (2.11), for each of several

values of C, again for the case of a Gaussian prior. The function gives the mean

normalized subjective value as a function of the true normalized value of the attribute.

One sees that in each case, ϕ(z) is an increasing, antisymmetric function (ϕ(−z) =

−ϕ(z)), which is concave for z > 0 and correspondingly convex for z < 0. In fact,

for any finite positive C, ϕ(z) approaches a finite positive asymptote as z → +∞,

and a corresponding finite negative asymptote as z → −∞. The function necessarily

reaches an asymptote because the number of subjective representations in the optimal

information structure is finite (for any finite C), and there is accordingly some largest

(and some smallest) value x̂i. Hence it is a general prediction of this theory that there

should be diminishing sensitivity to larger departures of the value of the attribute —

in either direction — from its mean value under the prior. Eventually, there is no

further sensitivity at all to further increases in the magnitude of the departure.

It is worth noting that the diminishing sensitivity result depends on the assump-

tion of a constraint on the required capacity C, rather than on the mutual information

I. Under an optimal information structure subject to an upper bound on I (discussed

in section 1.3), ϕ(z) increases by less than the increase in z, but for each value of the

upper bound I, ϕ(z) is a linear function of z (ϕ(z) = kz, for some constant 0 < k < 1

that is increasing in I). Thus the sensitivity of the estimate of the attribute to changes

in the actual value of the attribute would be the same over the entire range of pos-
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sible values of the attribute. In the present theory, instead, ϕ′(z) is high for small

values of |z| (it may be near or even above 100 percent, if C is not extremely small),

but substantially lower for large values of |z|, and approaches zero for extreme values

of the attribute. This reflects the fact that under the criterion proposed here, it is

optimal to concentrate the perceptual system’s capacity for discrimination on those

parts of the range of possible values that occur with high probability, while under

the Sims criterion, there is no reason not to maintain equal discriminability over the

entire range.

The point at which the diminishing sensitivity becomes important in the present

theory depends on the value of C. The value of ϕ(1) reported in the final column of

Table 1 indicates the average value of the marginal sensitivity ϕ′(z) over the range

−1 ≤ z ≤ 1; while this is much less than 1 for values of C equal to 0.75 bits or

fewer, it is close to 1 for all values equal to 1.25 bits or higher. (This can also be seen

from the plots in the top panel of Figure 7.) On the other hand, the bottom panel

of Figure 7 shows that for larger values of |z|, the marginal sensitivity remains much

less than 1 even for considerably larger values of C. For any given range of values

of |z|, there is a minimum capacity C such that for any capacity limit of that size

or greater, the marginal sensitivity over that range will be fairly close to 1; but the

capacity C that is required is larger the wider the range of values of |z| in question.

3 Implications for Choice Behavior

I now discuss some of the implications of the model of inattentive valuation proposed

above for observed choice behavior. I shall assume that a DM chooses among available

options on the basis of the subjective evaluation of each option, choosing on any given

occasion the option that has the highest subjective evaluation at that time. (This

does not imply that the same choice will be made each time that a given DM is

presented with the same set of choices, since the subjective evaluation of the option

on each occasion for choice will be drawn from a certain probability distribution.)

The assumption that choice maximizes subjective value at the time of choice is

not the only reasonable one, given our assumption of limited information-processing

capacity; one might instead suppose that the information about the subjective values

of the various options that is used in the decision should also be limited, rather than

assuming that a precise ranking of options’ subjective values is possible. It is entirely
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possible to extend the theory in that direction, with the result that the probability

of choosing a particular option would be predicted to be higher when its subjective

evaluation is higher, though even precise knowledge of the current subjective valua-

tion would not suffice to yield a definite prediction about the option that would be

chosen on that occasion. For simplicity, however, I shall not pursue such an extension

of the theory here; the analysis below assumes that available information-processing

capacity is not a quantitatively relevant constraint at the stage at which a final de-

cision is made on the basis of the current subjective evaluations. This is a limiting

case of a more general theory that deserves further study.43 The qualitative conclu-

sions reached below as consequences of assuming non-trivial capacity constraints on

earlier-stage processing of information about the individual attributes of individual

options should continue to be relevant under that more general theory, even if the

precise quantitative implications of the simpler model examined here may require

modification.

3.1 Stochasticity of Choice

One immediate respect in which the predictions of this theory differ from standard

economic decision theory is that choice is predicted to be stochastic, even from the

standpoint of an observer who can measure the values of all relevant attributes of the

options available to the DM. This is because the theory proposed above implies that

there will be a distribution of subjective valuations, rather than a single numerical

value, associated with each option. This is not simply a theoretical possibility; it is a

nearly inevitable feature of the optimal information structure, according to the above

theory.

As long as the shadow value of processing capacity θ is positive, then for each

attribute i to which the DM pays any attention at all (i.e., the information structure

43The models of information-constrained choice in Woodford (2008) or Matejka and McKay (2011)

instead consider the polar opposite case: precise observations of the characteristics of all of the avail-

able options are assumed to be available as inputs to the final decision, but the amount of information

that can be used in that decision is subject to a (single, global) capacity constraint. As between the

two simplifications of the complete problem, it seems likely that abstraction from the consequences

of capacity constraints on earlier-stage processing will make an even greater quantitative difference.

Certainly the other type of theory is less consistent with observations such as the focusing effects

discussed in section 3.2 below.
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involves more than one possible subjective representation ra of that attribute), the

probability distribution of subjective representations will be non-degenerate in the

case of at least some objective values xa, that occur with positive probability (under

the prior to which the information structure is optimally adapted). Equation (2.10)

implies that if θ > 0, there must be a set of values x with positive measure for

which θ(x) > 0; and for any such value x, equation (2.7) then implies that there is

a positive probability of occurrence of each of the subjective representations ri that

occurs under any conditions. The randomness of the evaluation of this attribute then

implies randomness of the subjective ranking of options for at least some pairs of

options, that are encountered with positive probability according to the prior.

This non-standard prediction of the theory accords with a considerable amount

of empirical evidence. The stochasticity of choice in experimental situations has

long been noted by psychologists.44 In addition to the evidence from laboratory ex-

periments on individual decision problems, the hypothesis that choice is a random

function of the measured characteristics of goods is a standard specification in econo-

metric models of discrete choice (McFadden, 1974, 2001). The hypothesis that choices

are random, with the probabilities of different discrete options varying continuously

with the payoffs associated with each option — so-called “quantal response equilib-

ria” — has been argued by game theorists to provide a better explanation of observed

behavior in a variety of strategic situations (Goeree et al., 2008; Kets, 2007). And the

hypothesis of similarly quantal responses — captured by the econometric hypothesis

of a smooth “hazard function” rather than a sharp threshold for adjustment — has

been argued to better explain the timing of discrete adjustments by firms in a variety

of contexts, including adjustments of prices, of the firm’s labor force, and of its capital

stock (Caballero and Engel, 1993, 1999; Caballero et al., 1997).

In the economics literature, the preferred interpretation of stochastic observed be-

havior has been to suppose that choices are deterministic functions of an individual’s

preferences and constraints, but that preferences and/or costs of acting are subject to

(unobserved) random variation. Econometric models of discrete consumer decisions

44For example, Luce (1959) writes that his “presupposition ... that choice behavior is best de-

scribed as a probabilistic, not an algebraic phenomenon, ... is by now a commonplace in much

of psychology,” though “a comparatively new and unproven point of view in utility theory.” He

also suggests that “economists when pressed will admit that the psychologist’s assumption is prob-

ably the more accurate, but they have argued that the resulting simplicity warrants an algebraic

idealization” (p.2), a view that he seeks to rebut.
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are commonly justified in terms of a model of optimal choice in which the utility

associated with each good is random (McFadden, 1974); a popular interpretation of

“generalized S-s models” of discrete adjustments by firms is that each firm’s fixed cost

of adjustment is a random draw from a probability distribution, each time the firm

again considers whether to adjust (Caballero and Engel, 1999; Dotsey et al., 1999).

While these are possible interpretations of stochastic choice behavior, I believe

that there are important advantages of an interpretation in which the randomness

results from noise in the DM’s perceptions of the objects among which he must choose.

First of all, the assumptions about the random variations in the determinants of

choice that must be made to justify typical econometric specifications on conventional

grounds are often implausible. For example, they typically imply an independent

draw of the random preferences and/or random adjustment cost each time a decision

is made. But while random variation in these determinants of choice over time is

plausible enough, it is hardly obvious that a completely independent draw should

occur each time a choice is made (which should be extremely frequently, in a model of

the timing of discrete adjustments without information frictions). The independence

of the random component over time is instead a natural consequence of a model with

noisy observations of the objects of choice, if one supposes that the attributes of

the available options must be observed again (through the same capacity-constrained

perceptual system) each time a choice is made.

Similarly, the kind of “hazard function” for the occurrence of discrete adjustments

that is found to best fit the data is often one in which the probability of adjustment at

any time remains bounded away from zero even when the current gains from adjust-

ment (conditional on knowledge of the true state) fall to zero.45 This is possible under

the assumption of choice under full information with a random cost of adjustment,

but one must assume that the distribution from which the adjustment costs are inde-

pendently drawn at each choice point contains an atom of probability mass at a cost

of zero, as discussed in Woodford (2008). This is hardly a natural assumption about

the nature of random variation in adjustment costs. Under the assumption that the

choice situation is imperfectly observed, instead, it is easy to explain why there is

45For example, the hazard function that is non-parametrically estimated in Caballero et al. (1997)

has this property. As discussed in Woodford (2009), the large number of small price changes observed

in the size distribution of individual price changes, as documented by Midrigan (2010), can only be

explained by a hazard function for price adjustments of this kind.
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some probability of adjustment even when the (correctly evaluated) gains from ad-

justment are zero: the situation is with some probability mistakenly perceived to be

one in which adjustment would be worthwhile. This is not simply a possible form of

imperfect perception, but a consequence of an optimal information structure under a

theory of the cost of more precise information of the kind proposed here: the degree

of awareness of the choice situation that would be required to reduce the probability

of such mistakes to zero is much too costly (in terms of the required processing ca-

pacity) relative to the savings that would result from the elimination of unnecessary

adjustments.46

The hypothesis of imperfect awareness of the characteristics of the options in the

choice set is also a much more specific hypothesis, at least as formulated here, than

the hypothesis of random utility and/or random costs of action. While econometric

implementations of models of fully-informed choice with random fundamentals often

assume some specification of the random fundamentals with only a small number of

free parameters to be estimated, there is seldom a clear theoretical justification for

adoption of that specification; once one admits the hypothesis that the fundamentals

may vary randomly, the possible types of random variation are very many. The

hypothesis of random perception, in itself, is similarly subject to a very wide range

of possible interpretations and hence has similarly little predictive content. On the

other hand, the hypothesis of an optimal information structure given the statistics of

the set of choices that the DM expects potentially to encounter makes a much more

definite prediction. If it turns out that the predictions of a theory developed along

these lines are accurate — not simply in predicting that choices will be stochastic, but

in predicting the character of the stochastic relationship between objective conditions

and the choices that are made — then this will be an important reason to prefer such

a theory over the hypothesis of random fundamentals.

46This is particularly likely to be the case if the value of adjusting depends on a vector of attributes

of the firm’s current situation, each of element of which must be separately observed. Then awareness

of whether the complete vector is near one of the points at which the value of adjusting is zero will

not generally be possible without precise awareness of the value of each of the individual attributes

over a large range of possible values.
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3.2 Focusing Effects

The theory proposed above also implies that the probability of choosing a particular

option from a particular choice set will not depend solely on the true values u =
∑

a xa

of the various options. The entire vector of values of the various attributes xa, and

not simply their sum, is relevant, because the sensitivity of choice to variations in

value along the various dimensions will not generally be the same, even though (under

my choice of units) the true value of the option is equally sensitive to changes along

any dimension. Even if we consider only the MSV of each option,47 the MSV will

be a sum of the form
∑

a µa(xa), where the functions µa(·) for the various attributes

are not generally linear functions with identical slopes for each a. Indeed, even the

mean slopes E[µ′
a(xa)] will generally be generally different for different attributes, as

illustrated in Table 1 above.

As a particularly extreme example of differential salience of the various attributes

of the available options, we have seen that it is possible for some attributes to be com-

pletely ignored (in the notation used above, the subjective representation of options

along that dimension is the same for all options), even though the available options

vary to some extent along this dimension and the attribute is of some relevance to

the DM’s utility. (In the normal-prior case discussed above, this occurs if and only if

σ2
a ≤ 0.75 θ for a particular attribute.) More generally, Table 1 shows that decisions

are predicted to be more sensitive to variation in a particular attribute when the set

of potential options (according to the prior) includes a greater range of variation in

the contribution to utility from this attribute.

“Focusing effects” of this kind are frequently observed. For example, Schade and

Kahneman (1998) document a “focusing illusion” in judgments of life satisfaction

under alternative circumstances: they find that subjects judging the quality of life of

others living in California as opposed to the Midwest exaggerate the extent to which

people are happier in California, relative to subjects’ reports about their own life

satisfaction in the two locations, because of an excessive focus on the difference in

climate. Similarly, Kahneman et al. (2006) argue that people exaggerate the degree

to which greater wealth would contribute to their degree of happiness, both in life

choices and in certain kinds of survey questions, relative to the degree of effect that

47Under the choice rule proposed here, of course, the probability of choosing one option over

another is not solely a function of the means of the two distributions of subjective valuations.
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it actually has on experienced happiness, as measured by surveys that require people

to report their feelings in real time.

Koszegi and Szeidl (2011) point out that these and many other focusing effects

reported in the literature can be explained by a general hypothesis according to

which people place excessive weight on attributes in which their available options

differ more.48 Thus the weight placed on climate in judgments about hypothetical

life satisfaction in different locations is excessive because the options do obviously

differ significantly along this dimension; the fact that they also differ (to a smaller

extent) on many other dimensions that, cumulatively, result in people’s being no

happier on average in California is taken insufficiently into account. Similarly, people

may choose a higher-paying job despite other features that reduce their happiness

(such as longer commuting time, longer hours, and so on), because the difference

between the possible job options is not as great along any of the other individual

dimensions. This type of theory can simultaneously explain an apparent “present

bias” in some decisions (such as whether to exercise on an individual day), where a

large difference in present enjoyment must be balanced against smaller consequences

for satisfaction on many future days, and an apparent bias toward excessively future-

oriented choices in some other contexts (such as career decisions), where small costs

over many nearer-term dates must be balanced against a single large benefit that may

be far in the future. The same hypothesis offers an explanation for why firms can

apparently increase demand by splitting the prices of their products into multiple

components that consumers treat as separate attributes (Morwitz, Greenleaf, and

Johnson, 1998).

The theory proposed here predicts the existence of focusing effects of these kinds.

As shown in Table 1, an optimal information structure will increase the average

sensitivity of MSV to a particular attribute when the expected range of variation

from the utility contribution from that attribute is greater. Suppose that the prior

distribution of values for each attribute a is a normal distribution N(µa, σ
2
a). Then

the optimal information structure for each attribute will be of the kind computed in

48Bordalo et al. (2010, 2011) and Bordalo (2010) propose a more complex model of the determi-

nants of the relative “salience” of particular attributes of the options among which one must choose,

but one of their key ideas is similar: they argue that the salience of a particular attribute (payoffs

in a particular state of the world, in the case of choice between lotteries) is increasing in the degree

to which the options differ in that attribute.
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the numerical results described in section 2, but with a different amount of processing

capacity C allocated to the awareness of each attribute. If the total available capacity

is optimally allocated across the attributes, then the value of θ will be the same for

each a, and the value of σ/θ1/2 for each a will be proportional to σa. Thus the values

of C for the different attributes will be ordered in the same way as the values of σa

are ordered; and as shown in the table, a higher value of C means a higher average

sensitivity of MSV to the objective value of that attribute.

More precisely, the theory proposed here implies that the MSV of an option spec-

ified by a vector of attributes x will be given by∑
a

[µa + σaϕ(za;σa/θ
1/2)],

where ϕ(z; σ/θ1/2) is a function defined in section 2.3, and za ≡ (xa − µa)/σa is the

normalized value of attribute a. Hence the partial derivative of the MSV with respect

to increases in the value xa of any attribute is equal to ϕ(za;σa/theta
1/2). Because of

the properties of the ϕ(z; σ) function shown in Figure 7, we see that this derivative

is decreasing in the absolute value |za| for any given value of σa, and increasing in σa

for any given value of za.

More specifically, suppose that a DM must choose between two options x1 and

x2, and that the DM’s perceptual mechanism is furthermore adapted to a prior for

each attribute with mean and variance equal to the mean and variance of the sample

consisting of these two options only, so that µa = (x1
a+x2

a)/2, σa = |x1
a−x2

a|/2. Then
x2 will be valued more than x1 on average if and only if∑

a

λa(x
2
a − x1

a) > 0, (3.1)

where for each a, λa ≡ ϕ(1;σa/θ
1/2) is precisely the quantity reported in column 3

of Table 1, when σa/θ
1/2 is equal to the square root of the reciprocal of the value

reported in column 2. Thus in this case (for a given cost of processing capacity θ > 0),

the table can be used to directly read off the weights λa that indicate the degree of

distortion involved in the comparison of MSVs rather than true values.

The predicted focusing effect can easily lead to preference reversals. Suppose that

option 2 is substantially superior in one attribute (x2
0−x1

0 = b > 0), but inferior to the

same small extent (x2
a − x1

a = −c < 0) for each of a large number of other attributes,

52



a = 1, . . . , N. If b > 1.74 θ1/2 > c,49 then it is optimal for the DM’s perceptual

system to ignore attributes 1 through N altogether (λa = 0 for 1 ≤ a ≤ N), while

λ0 > 0. It follows that option 2 will be valued more on average, and will be chosen

more often, because the subjective representation of the options pays attention only

to the attribute in which option 2 is substantially superior.50 On the other hand, if

Nc > b, option 1 is objectively preferable to option 2; that is, the DM would prefer

it if enough attention were paid to the evaluation of the two options.

The most important difference between the theory proposed here and the one

proposed by Koszegi and Szeidl (2011) is that in their theory, the sensitivity to a

particular attribute is an increasing function of the range of variation in the value

of that attribute across the options in the DM’s current choice set,51 whereas here

it depends on the range of variation in that attribute under the prior to which the

information structure has been adapted.52 Of course, it makes sense to suppose that

the amount of variation present in the choice set will have some relation to the degree

49This condition depends on the value of θ. One can show, however, that θ necessarily falls in the

range where these bounds are satisfied, if and only if the total capacity C allocated to perception of

these N +1 attributes is positive, but less than the value of C corresponding to a value of 1.32(c/b)2

in the second column of Table 1. For example, if b is 7.1 times as large as c, then it is optimal to

allocate all processing capacity to the perception of attribute a = 0 as long as C is no greater than

3.5 binary digits.
50Note that even in this case, the model predicts only that option 2 will be chosen more often, not

that it will always be chosen. While option 2 is objectively superior with regard to attribute 0, the

subjective representation of this attribute of each of the options will be stochastic, and there will

remain a positive probability (less than 1/2) of option 1 being perceived to be superior to option 2

in this attribute. If the difference b is sufficiently great, this probability may be small.
51To be more precise, Koszegi and Szeidl assume that what is relevant is the set of options in a

DM’s “consideration set,” which may be only a subset of the full choice set, for reasons that are

exogenous to their theory of focus-dependent choice. But in any event, only the options currently

under consideration are assumed to determine the weight given to a particular attribute.
52There are a number of other technical differences, though these are less obviously crucial to the

qualitative predictions made about focusing effects. In Koszegi and Szeidl (2011), the subjective

valuation of a particular attribute is a deterministic linear function of the true utility contribution of

that attribute of the option, whereas in the present theory the relation is nonlinear and stochastic.

Also, in the theory of Koszegi and Szeidl, it is only the difference between the maximum and

minimum values of the attribute that are represented in the choice set that matters for the weight

placed on that attribute, whereas other features of the prior distribution also matter in the present

theory (which does not even assume that bounded minimum and maximum values necessarily exist

or differ across attributes).
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of variation in that attribute to which the DM’s perceptions have adapted; indeed,

one might reasonably suppose that marketers should have some ability to influence

the perceptual discriminations of their customers by varying the set of choices with

which they are presented (as is in the case of the well-documented “decoy effects”

discussed below). The assumption that the distribution of possibilities to which the

perceptual system has adapted is always precisely the set of options in the current

choice set would be one possible specification of the present model.

But while this would allow the model to make extremely sharp predictions (an

obvious appeal of the assumption of Koszegi and Szeidl), I find it implausible that

adaptation to changing choice situations should always be that rapid. I would sug-

gest instead that the prior should reflect experience with some class of decision situ-

ations, to which the current choice set belongs,53 but it hardly seems efficient (given

information-processing constraints) for each individual choice situation that is ever

encountered to be treated as its own category with its own, optimally tailored infor-

mation structure. Nor is it obvious that it is only one’s actual choices on different

occasions that contribute to the distribution of possibilities in the prior. It is well

known from experiments that choices from among a particular set of options can be

influenced by getting the subject to think about something, even if it is not part of

the choice set.54 This suggests that it may be most realistic to assume that the prior

distribution reflects the frequency with which one has considered options with this

particular attribute, including reasons for consideration of the option when one may

not have actually had an opportunity to choose it. Such an assumption about the

prior would be consistent with the interpretation proposed in section 1.3 for adapta-

tion phenomena in perceptual experiments.55

Gabaix (2010) proposes a theory of focusing effects that is even more closely re-

53More precisely, one should say, to which the current choice situation is perceived to belong —

as this classification should itself be subject to an information-processing capacity constraint, and

hence be only stochastically related to the actual characteristics of the current choice situation.
54The “anchoring effects” documented by Tversky and Kahneman (1974) are a celebrated example.
55Kahneman (1992) draws an analogy between anchoring effects in choice behavior and the obser-

vation in psychophysics experiments that judgments about the intensity of a stimulus are influenced

by other stimuli to which the subject has recently been exposed, even if not asked to express a

judgment about them. The explanation proposed here would be the same in both cases: merely

having paid attention to something to something that possesses the attribute in question influences

the prior distribution of values for that attribute to which a subject’s perceptions of that attribute

are then adapted.
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lated to the one proposed here. In Gabaix’s theory, like that of Koszegi and Szeidl,

decisions are based on a subjective valuation of the form
∑

a λaxa, where the weights

λa may differ from 1, the weight in the DM’s true utility function. But Gabaix pro-

poses that the weights {λa} are chosen so as to minimize the expected discrepancy

between true and subjective valuations, under a prior distribution for the values of

the attributes that will be encountered, subject to an upper bound on
∑

a |λa|. The
only important difference between Gabaix’s theory and the one proposed here is the

cost function (or constraint) that is assumed for possible mappings of the vector of

objective characteristics into subjective representations. Unlike the theory proposed

here, Gabaix assumes (at least in the leading example of his theory) that the sub-

jective representation must be a deterministic, linear function of the vector x, and

proposes a cost that depends on the coefficients of the linear function. The theory

proposed here is much less restrictive as to the relations between objective character-

istics and subjective representations that are considered, and indeed under the cost

function that I propose, the optimal relation is neither linear nor deterministic, even

in the quadratic-Gaussian case.

The particular cost function proposed by Gabaix is not derived from an underlying

theory of information-processing constraints, but is chosen to reflect the idea that

more “sparse” representations should be preferable. The theory proposed here does

not directly assume that sparsity is a goal in itself, and the optimal information

structure characterized above can easily imply that some attention will be paid to

all attributes. (This will typically be the case when there are not extreme differences

in the contributions of the different attributes to the overall degree of variation in

utility across possible options.) Nonetheless, the cost function proposed here also

implies the possibility of corner solutions, in which some attributes will be ignored

altogether though they contribute non-negligibly to variations in true utility across

options. (One such example has just been discussed.) It is surely true that sometimes

aspects of a choice situation are ignored altogether even when they are of some modest

relevance to the DM’s objective; but it is not clear that this occurs more often than

can be accounted for by the kind of theory proposed here, or as pervasively as Gabaix’s

theory would imply. And Gabaix’s theory gives no explanation for the stochasticity of

choice, or to phenomena connected with “diminishing sensitivity” to further increases

in a particular attribute, of the kind discussed below.
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3.3 Context Effects

Another difference between the theory proposed here and standard rational choice

theory is that choice that will be made between particular options are not predicted

to depend solely on the attributes of those options. Not only is the subjective rep-

resentation of each option different from the objective vector of attributes, but it

is not predicted to be a function solely of that vector of attributes, either. In the

theory proposed here, the DM’s perceptual system is optimized for a particular prior

distribution for each of the attributes of potential options; hence the probability of

choosing one option over another depends on what that (joint) prior distribution is

like. Presumably it is derived from experience (real or imagined) with particular

options that involve particular values of these attributes; this means that the prob-

ability that the DM will choose a given option over another can vary depending on

the context in which the choice between these options is presented to her. “His-

tory and experience” become important determinants of choice, as McFadden (1999)

comments in the passage quoted earlier.

In fact, context effects are often noted in the experimental psychology and be-

havioral economics literatures. An important class of context effects are choice-set

effects, in which the probability of choosing one option over another is affected by

which other options are also in the DM’s choice set. An especially well-documented

example is the “decoy effect,” often employed by marketers to manipulate consumer

behavior. Suppose that consumers may choose between two competing brands, and

that two brands differ in two different attributes, let us say quality and price. The

location of the two brands in this two-dimensional space are represented by points

A and B in Figure 8. Here the horizontal axis represents quality (increasing from

left to right) and the vertical axis represents price (increasing from top to bottom,

so that higher points are preferable on this dimension as well). In the case indicated

in the figure, neither brand dominates the other: one (brand B) is of higher quality,

but is also more expensive. It is well known to marketers that sales of brand B can

be increased by introducing a third option (the “decoy”) with characteristics at a

point such as C in the figure. The decoy is not intended to attract purchasers, as

it is dominated by brand B, though not by brand A. Nonetheless, a large number

of studies have confirmed that introduction of an “asymmetrically dominated” decoy

of this kind increases the number of buyers who will choose brand B and reduce the
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number who choose brand A (Huber et al., 1982; Heath and Chatterjee, 1995).

Such results are inconsistent with the standard theory of rational choice; in par-

ticular, they violate the usual axiom of “independence of irrelevant alternatives,”

according to which choice should be unaffected by the removal from the choice set of

options that are not selected even when included. They may, however, be consistent

with a model of inattentive valuation of the kind proposed here, if the addition of the

decoy changes the probability distributions for the various attributes to which the

DM’s perceptual system is adapted.

Suppose, for simplicity, that the probability distribution for each attribute to

which the perceptual system is adapted is a normal distribution with the same mean

and variance as the distribution of values of that attribute in the DM’s choice set.

(The assumption that the prior distribution is Gaussian allows us to use the results

from section 2 for numerical solution of the Gaussian case.) Then when A and B

are the only two brands available, the prior distribution is characterized by µa =

(xA
a + xB

a )/2 and σa = |xB
a − xA

a |/2 for each attribute. In this case, the normalized

values of the two goods are +1 and −1 for each attribute, though good B has the

greater value (+1) of the quality attribute, while good A is superior (a normalized

value of +1) with regard to price.

When the decoy C is added to the price set, the distribution of values of each

attribute now consists of {xA
a , x

B
a , x

C
a }, where on the price dimension xC

a < xB
a < xA

a ,

while on the quality dimension xA
a < xC

a < xB
a . This means that the mean value

µa of both attributes falls, but the mean decreases by more (as a fraction of the

difference between B and A on that attribute) in the case of the price attribute (i.e.,

the attribute for which the addition of the decoy extends the range of values reflected

in the distribution). Furthermore, the standard deviation σa of the quality attribute

decreases, but the standard deviation of the price attribute does not decrease as much

(in percentage terms), and may even increase.56

If we suppose that the capacity Ca allocated to perception of each of these at-

tributes remains the same after the addition of the decoy (though perceptual coding

is re-optimized for the new distribution of values for each attribute, subject to the

capacity constraint), and that that capacity happens to equal one-half of one binary

56A little algebra shows that the standard deviation of the price attribute increases if and only if

xC
a is enough less than xB

a for the distance of xC
a from the midpoint between xB

a and xA
a to be more

than
√
3/2 times the distance of xB

a from the midpoint.
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digit, then we have constructed an example in which the consequences of introduction

of the decoy can be read off from Figure 6. Note that under the initial distribution of

values for the attributes, brands A and B are located at normalized values za equal to

+1 and -1, corresponding to the situation represented by the point labeled I in Figure

6. The consequences of changes in the distributions after introduction of brand C for

the relative valuation of A and B are then shown in the two panels of the figure.

In these plots, the new distribution for the quality attribute will necessarily be

somewhere to the southeast of the point labeled I,57 while the new distribution for

the price attribute will be to the left of I — and even farther to the left of I than the

new quality distribution is to the right of I — and higher on the vertical axis than

the point representing the new quality distribution.

In panel (a) of Figure 6, we see that a simultaneous movement to a higher value

of σ and a greater horizontal distance from the µ = µ0 axis always reduces the

probability that the superior good on a given dimension will be regarded as strongly

superior. This means that, while in the absence of the decoy, there should be an

equal probability of recognition of the low-price good as strongly superior on the

price dimension and recognition of the high-quality good as strongly superior on the

quality dimension, with the decoy, there should be a smaller probability of recognition

of the low-price good as strongly superior in price than the probability of recognizing

the high-quality good as strongly superior in quality. Both the fact that the prior

is more diffuse with respect to the price attribute (after introduction of a high-price

decoy), so that brands A and B are not so many standard deviations apart on this

dimension, and the fact that the prior mean is shifted farther in the case of the price

attribute, making it particularly unlikely that brand B will be judged extreme on

this dimension, contribute to this conclusion.

In panel (b) of Figure 6, we can similarly observe the consequences for the prob-

ability of judging one brand to be at least somewhat superior on a given attribute.

Here movement farther from the µ = µ0 axis again always reduces the probability of

recognition of the superior brand as superior, but the effect of increasing σ does not

always have the same sign. Nonetheless, one observes that it is possible for the net

effect of the two changes to lower the probability of recognition of the superior brand

57Here I assume that while brand C is inferior to B in quality, it is nonetheless located to the

right of the midpoint of goods A and B on the quality dimension, so that the mean rises for this

attribute when brand C is introduced.
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as superior. Hence it can easily be the case that introduction of the decoy results in

there being a smaller probability of recognition of the low-price good as superior in

price than of recognizing the high-quality good as superior in quality.

In the above discussion, it has been assumed that equal processing capacity is

allocated to the perception of the two attributes; but this may not be realistic. In

their meta-analysis of studies of decoy effects, Heath and Chatterjee (1995) find a

greater ability of decoys to increase the market share of high-quality/high-price brands

(the case shown in Figure 8) than to increase the market share of low-price/low-

quality brands; but no such difference would be predicted by the model just sketched,

which is perfectly antisymmetric between brands A and B.58 Intriguingly, Heath and

Chatterjee also find in their own experiments that decoys increase the market share

of a high-quality/high-price target brand more, in the case of a “traditional” subject

population (MBA students at an urban, semi-private research-oriented university),59

but that decoys increase the market share of a low-price/low-quality target more

in the case of a “non-traditional” subject population (undergraduate students at a

rural, teaching-oriented state university). One might expect the former subjects to

pay more attention to differentiations in quality when choosing purchases, and less

attention to price, while the latter subjects pay more attention to price and less to

quality.60 In this case, the studies suggest that decoys are more effective in reducing

the attention paid to an attribute to which the subject is already relatively insensitive

than they are in reducing the attention paid to an attribute with which the subject

is highly concerned.

The theory proposed here predicts such an asymmetry, if we do not assume that

58The situation described is unchanged if one interchanges brands A and B and at the same time

interchanges the “price” and “quality” attributes.
59Here “traditional” means typical of the subjects used in other marketing studies, such as those

reviewed in their meta-analysis.
60For example, Heath and Chatterjee report that the “non-traditional” subjects are significantly

more likely to agree with the statements “I don’t care what others think about what I buy,” “I buy

less expensive brands,” and “I believe store brands are as good as national brands,” and significantly

less likely to agree that “I purchase products for their status value.” Curiously, they do not find

any significant difference in the two populations’ responses to statements that directly ask about

the importance of “quality” as opposed to saving money. It seems likely that while the “non-

traditional” population does pay more attention to cost, they prefer not to think of themselves as

sacrificing quality, but instead challenge whether conventional markers of quality represent higher

quality.
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equal processing capacity is allocated to perception of the two attributes. Suppose,

for simplicity, that the amount of capacity allocated to perception of quality is large

enough that we can (as an approximation) assume that the quality of each brand

is accurately observed, while there is (as above) only 0.5 bits of capacity allocated

to the perception of price. (This could be consistent with the theory of attention

allocation proposed in the previous section, if σquality >> σprice. Note that here I am

assuming that the subject’s perceptual system is adapted to a quality distribution

that is not calibrated on the basis of the range of qualities in the current choice set.)

Then brand B will be preferred to brand A if and only if

ŷA − ŷB < xB − xA, (3.2)

where y and x are used to refer to the vertical and horizontal axes in Figure 8 (i.e.,

to the price and quality attributes respectively), and ŷb is the estimate of brand b’s

value on the price attribute, given the subjective representation of that attribute for

that brand.

If we further suppose that the true price difference between the two brands exceeds

their true quality difference, by a factor

xB − xA ≈ 0.6(yA − yB),

then there will be a range of values of σprice around σ0 ≡ (yA−yB)/2 such that for any

prior in that range, (3.2) will hold as long as A is not perceived to be strongly superior

to B on the price dimension, but will fail if it is. If A is perceived to be superior, but

not strongly superior toB, ŷA−ŷB = 0.84σprice, but 0.84σ0 = 0.42(yA−yB) < xB−xA,

so that (3.2) holds as long as σ is not too much greater than σ0. If instead A is

perceived to be strongly superior to B, ŷA − ŷB is twice as large, and then since

1.68σ0 = 0.84(yA − yB) > xB − xA, (3.2) will not hold, unless σprice is substantially

less than σ0.

In this case, the probability that brand A will be preferred to brand B is equal

to Pr(A >> B), the quantity plotted in panel (a) of Figure 6. If we suppose that

perceptions of price are adapted to a prior that is calibrated to the mean and standard

deviation of the prices of the brands in the current choice set, then the prior when

only brands A and B are offered will correspond to point I in the figure. The model

then predicts that brand A should be chosen nearly 45 percent of the time. However,

the introduction of the asymmetrically dominated decoy C should lower µprice, while
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it may or may not raise σprice. It can be observed from Figure 6(a) that the reduction

of µ should lower Pr(A >> B), and hence lower the probability that brand A will

be preferred to brand B. If there is no reduction in σprice, or σprice actually increases,

then one can say unambiguously that the probability of preferring A to B must fall.

At the same time, Pr(A >> B) will still fall in the case of a sufficiently modest

decline in σprice. Hence if the degree to which C is more expensive than B is great

enough, the model clearly predicts a reduction in the probability of preferring brand

A to brand B.61

Of course, Figure 6 is computed under the assumption that the processing capacity

C allocated to the particular attribute remains unchanged despite variations in µ and

σ. In the previous section, we have discussed the fact that an increase in σa for some

attribute a should increase Ca, in order to maintain a common value of θ across

attributes. If the reallocation of processing capacity across different perceptual tasks

occurs more slowly than the adaptation of the coding scheme to make more efficient

use of the existing processing capacity for a given attribute, then the analysis above

suffices for the short-run effect of the introduction of the decoy brand. If instead we

suppose that the reallocation of processing capacity occurs equally quickly, then an

increase in σprice should increase Cprice (as discussed in the previous section), and this

should tend to counteract the reasons for a reduction in the perceived price advantage

of brand A discussed above. However, even in the latter case, it remains possible for

the introduction of the decoy to lower Pr(A >> B). For example, in the case that

brand C is not enough more expensive than brand B to actually raise σprice, there

would be no reason for Cprice to increase, and the effects are as discussed above.

Thus the asymmetric model explains in a fairly simple way why the introduction of

a decoy can shift purchases from a low-cost/low-quality brand to a high-quality/high-

cost brand. The same model predicts that the introduction of a decoy that is asym-

metrically dominated by the low-cost brand should not be equally effective at shifting

purchases to that brand. If Cquality is large, one cannot expect changes in the prior

distribution for the quality attribute to make any material difference for the perceived

61Heath and Chatterjee also report a “range effect,” according to which an increase in the range

of prices in the choice set (by introducing a brand C that is more expensive even than B) results in

a greater reduction in the market share of A than in the case that C is only dominated by B on the

quality dimension. The desirability of increasing the range of prices, so as to ensure an increase in

σprice, can be explained by the analysis presented here.
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difference in quality between the two brands; the effects of the prior on perceptions are

only significant when C is small. Hence the introduction of an unusually low-quality

decoy cannot be expected to reduce the salience of the quality differential between A

and B. The decoy would only be effective at increasing the market share of brand A

if it were able to increase the probability that A is perceived to be strongly superior

on the price attribute (i.e., the attribute on which it is superior). But Figure 6(a)

shows that adding an additional inexpensive option, and raising µprice above µ0, will

only lower the probability that A is perceived as strongly superior. The fact that

the introduction of a new brand that is not as inexpensive as B necessarily lowers

σprice should be helpful, but will not necessarily outweigh the effect of the increase in

µprice. Furthermore, to the extent that a reduction in σprice results in a reduction in

the processing capacity allocated to the perception of price, the introduction of the

decoy is even more counter-productive. Hence it should not be surprising if decoys

are less effective in this case.

Of course, the roles of “price” and “quality” in the analysis above are reversed

in the case of subjects for whom Cprice >> Cquality. Hence the theory also provides

a potential explanation for the finding by Heath and Chatterjee that in the case of

their “non-traditional” subject pool, decoys are more effective in shifting purchases

from a high-quality/high-price brand toward a low-price/low-quality brand than in

the opposite direction.

Bordalo (2010) and Bordalo et al. (2011) similarly propose to explain decoy

effects in terms of a shift in the relative salience of the brands’ differences along

different dimensions. In their theory, each choice option xj has a subjective valuation∑
a λ

j
ax

j
a, where the weight λ

j
a placed on attribute a in evaluating option j depends on

the “salience ranking” of that attribute for that option. The salience of attribute a for

option j depends on the degree of contrast between the value xj
a of this attribute for

option j and the distribution of values of attribute a across the entire choice set;62 the

weights {lambdaja} are then determined by an ordinal ranking of the saliences of the

various attributes of option j. Note that in this theory, unlike those of Koszegi and

62The precise mathematical definition of salience is slightly different between Bordalo (2010) and

Bordalo et al. (2011). In the first paper, it is a sum of pairwise contrasts between option j and

each of the other options in the choice set, whereas in the second it is simply a measure of the

contrast between xj
a and the mean value of attribute a over the elements of the choice set. These

two definitions do not lead to equivalent rankings because “contrast” is not a linear function of the

two quantities being compared.
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Szeidl (2011) or Gabaix (2011) discussed above, the weights {lambdaja} are specific to

each option j, rather than being the same for all options, because the relative salience

of the various attributes can differ across options.

The Bordalo et al. definition of “salience” as an increasing function of contrast

implies that the sensitivity of the subjective valuation of option j to variation in the

value of a given attribute a depends on the degree of contrast between the value xj
a

and a distribution of values for that attribute. The theory proposed here is similar,

insofar as the probability of a given subjective valuation of an option along a par-

ticular dimension is predicted to be a function of where the value xj
a falls within a

prior probability distribution for attribute a. There are, however, some important

differences between the present theory and theirs. In their theory, subjective valua-

tion is a deterministic function of the objective characteristics of the options in the

choice set. This yields simpler and sharper predictions, but fails to account for the

stochasticity of observed choice. In their theory, salience is also a function purely of

the attributes of the options in the choice set, rather than of “prior distributions”

for the various attributes that may derive from other experience. This makes the

theory’s predictions in a given application much less ambiguous; but it means, for

example, that their theory offers no explanation for the asymmetry between the use of

a decoy to increase demand for a high-quality/high-price good and the use of a decoy

to increase demand for a low-price/low-quality good. I believe that it will instead

have to be accepted that “history and experience” matter for choice, as McFadden

proposes, despite the difficulties that this implies for clean hypothesis testing.

3.4 Reference-Dependent Valuations

One of the most celebrated findings of Kahneman and Tversky (1979) is that when

choosing among gambles, people appear to evaluate gains and losses from individual

choices rather than the different final situations that they may reach after a sequence

of events. This notion is, of course, quite contrary to a basic postulate of the standard

theory of expected utility maximization. Kahneman (2003, 2011) calls this postulate

“Bernoulli’s error.” “Bernoulli’s model is flawed,” he writes, “because it is reference-

independent: it assumes that the value that is assigned to a given state of wealth

does not vary with the decision maker’s initial state of wealth” (Kahneman, 2003, p.

460).
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For example, Kahneman and Tversky present different groups of experimental

subjects with the following two choices:

Problem 1 In addition to whatever you own, you have been given 1000. You are

now asked to choose between (a) winning an additional 500 with certainty, or (b) a

gamble with a 50 percent chance of winning 1000 and a 50 percent chance of winning

nothing.

Problem 2 In addition to whatever you own, you have been given 2000. You are

now asked to choose between (a) losing 500 with certainty, and (b) a gamble with a

50 percent chance of losing 1000 and a 50 percent chance of losing nothing.

They report that substantial majorities of their subjects choose the sure thing in

Problem 1, and the gamble in Problem 2. Yet in each of the two problems, the choice

is between identical probability distributions over possible final wealth states: option

(a) yields one’s initial wealth plus 1500 with certainty, while option (b) yields one’s

initial wealth plus 1000 with a 50 percent probability and one’s initial wealth plus 2000

the other 50 percent of the time. Thus the evaluation of these options is evidently

not merely a function of the probabilities assigned to different final wealth states.

Kahneman and Tversky propose instead that in each problem, the different possible

final wealths are evaluated relative to a reference point corresponding to the wealth

possessed prior to the decision; it is the fact that the reference point is higher by 1000

in Problem 2 that results in a different evaluation of the relative attractiveness of the

two lotteries.

The theory of inattentive valuation proposed here provides an explanation for

such findings, that remains a variant of rational choice theory, and that still include

the standard (von Neumann-Morgenstern) theory of choice over lotteries as a limiting

case (the case in which the processing capacity allocated to the evaluation of one’s

options is large enough). Suppose that, as in Bordalo et al. (2010), we treat each

of the possible outcomes for a lottery as separate attributes that must be evaluated.

In the above example, we may suppose that each of the four options (two in each

problem) has two attributes: the final wealth achieved in each of two states, that occur

with equal probability, and so receive equal weight in the DM’s utility function. (In

the case of a sure thing, we assign the option the same value of both attributes, as the

outcome is the same in both states.) Choice between two options will then depend
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on the relative size of the subjective estimate
∑2

s=1 x̂s for the two options, where

for each option, x̂s is the subjective estimate of the value of final wealth in state s

under that option. The estimate x̂s for each state will be a function of the subjective

representation rs of the value of final wealth in that state.

According to the theory presented above, the conditional distribution p(rs|xs) over

subjective representations in the case of a given objective final wealth xs is adapted

to a particular distribution of possible final wealths associated with choice situation

of that kind. The distribution to which the DM’s perceptions of value are adapted

may well be different in situations like Problem 1 than in situations like Problem

2; hence the subjective perceptions of options (a) and (b) may be different in the

two problems, even though the probability distributions over final wealth in the two

options are the same in both problems. This is the way in which valuations are

predicted to be reference-dependent in the present theory.

For example, suppose that the DM recognizes the class of choice situations in

which “you have been given 1000, and now are asked to choose between lotteries”

as different from the class of situations in which “you have been given 2000, and

now are asked to choose between lotteries,” and so perceives the options presented

using a perceptual system that has been optimally adapted to different distributions

of potential outcomes in the two cases. If the DM has no reason to expect the types

of gains and losses that may be offered by the lotteries to depend on her wealth at

the time that the choice is presented, then the prior distribution over possible levels

of final wealth should indeed be different between the two classes of situations: the

entire probability distribution should be shifted up by 1000 in the case of the second

class. If the distribution of possible net gains from a lottery payoff in either state

of the world is assumed to be a Gaussian distribution, then for either state of the

world, in both classes of choice situations the prior distribution over possible final

wealths should be a Gaussian distribution N(µ, σ2), and the standard deviation σ of

this distribution should be the same for both classes of situations, but the mean µ

should be higher by 1000 for the second class. Since the standard deviation σ is the

same for both classes of situations, then — supposing that the ex ante probability

of encountering choice situations in the two classes is also expected to be equal — it

makes sense for the same processing capacity C to be allocated to perceptions of the

value of outcomes in each of the two cases. Then if the optimal information structure

for situations in class 1 involves conditional probabilities {p1(rs|xs)}, for some set
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of possible subjective representations {rs} and values of xs on the real line, then

the optimal information structure for situations in class 2 will involve conditional

probabilities {p2(rs|xs)} defined over the same domain, where

p2(rs|xs) = p1(rs|xs − 1000)

for each subjective perception rs and each possible final wealth level xs.

Reversals of the preference ordering of the kind reported by Kahneman and Tver-

sky can easily be explained by reference-dependence of this sort in the way that

subjective perceptions of value are coded. For example, suppose that in each of the

two classes of choice situations, the prior distribution over possible net gains in state

s is expected to be N(0, 1000), and the processing capacity allocated to the percep-

tion of the value of outcomes in each class of situations is one-half a binary digit.

Then the optimal information structure in each case is of the kind shown in Figure 4,

where one unit on the horizontal axis in the figure should now be interpreted as an

increase in wealth by 1000. The mean normalized subjective value (MNSV) assigned

to each lottery in each of the two choice situations is then shown in Figure 9. Here

the horizontal axis x indicates the amount by which the DM’s final wealth exceeds

initial wealth, and the vertical axis plots ẑ, the DM’s estimate of the normalized value

(i.e., (−̂µ)/σ, where x̂ is the estimate of x). Each of the two sigmoid curves plots

the function E[z|x] for one of the two classes of choice situations: the black curve

for class 1 (the prior with µ = 1000) and the grey curve for class 2 (the prior with

µ = 2000).63Note that since z is a linear transformation of x (with the same linear

transformation applied for all possible outcomes in a given class of choice situations),

whichever of a pair of lotteries has the higher MNSV ẑ will also have the higher MSV,

and should on average be preferred.

In the case of option (a), which results in x = 1500 with certainty, the MNSV

is given by the black dot above x = 1500 on the curve corresponding to the given

choice situation. In the case of option (b), the MNSV for one state will be given

by the black dot above x = 1000 on the appropriate curve, while the MNSV for the

other state will be given by the black dot above x = 2000 on that same curve. The

overall MNSV for option (b), averaging the MNSVs for the two equiprobable states,

will then be given by the white dot above x = 1500, the midpoint of the dashed line

63Each of these curves reproduces the function ϕ(z) plotted in Figure 7 for the case C = 0.5 bits,

with a suitable linear transformation of the horizontal axis.
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connecting the two black dots representing the MNSVs for the individual states. The

figure clearly shows that in this numerical example, option (a) should be preferred

on average to option (b) in Problem 1 (the black dot is higher than the white dot),

while option (b) should be preferred on average to option (a) in Problem 2 (the white

dot is higher than the black dot, in this case). Hence the experimental results of

Kahneman and Tversky are quite consistent with this model of valuation.

While the theory proposed here exhibits reference-dependence, there is not really

a “reference point” as proposed by Kahneman and Tversky. Perceptions are relative,

in the proposed theory, but they are relative to a probability distribution of values

to which the DM’s perceptual system has adapted. In the example above, the only

kind of change in the prior distribution that is considered is a shift in the mean, with

the distribution of values relative to the mean remaining unchanged; in such a case,

it is possible to say that what is perceived is x relative to the prior mean, and so one

can think of the mean as a “reference point.” But in fact, the theory of the coding

of perceptions of value proposed here is not based in any way on direct comparison

of the actual value with the prior mean or any other single reference value.64 In

the interpretation proposed in section 1.3, this is also true of adaptation in visual

perception — the phenomenon to which Kahneman and Tversky appeal in arguing

for the psychological realism of assuming there to be a “reference point.”

The theory proposed here also makes it clear that, in general, there is no reason to

associate the reference point with the status quo, either at the time that a decision is

made or some earlier time. The coding of perceptions of value is predicted to depend

on the prior distribution of potential values to which the DM’s perceptual system

has adapted. This prior is presumably based on previous experience, but it need not

be determined by the DM’s current situation or situation in the recent past — it

might instead reflect a range of situations encountered in the past. Moreover, the

64In the theory of reference-dependent choice of Koszegi and Rabin (2006), the reference point

is also replaced by an entire probability distribution of reference values, but the reason for this is

not very closely related to the one developed here. In the theory of Koszegi and Rabin, the only

thing that matters for choice, apart from “consumption utility” that is assumed to be observed with

perfect precision, is a set of pairwise comparisons between each possible outcome and each of the

individual reference values in a certain distribution, determined by the distribution of outcomes that

may actually occur. Each of the contributions to “gain-loss utility” from one of these comparisons

depends only on the outcome and the individual reference value in question; none of these individual

components of the evaluation depend on the entire distribution.
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range of past situations that should determine the prior are not those that have been

experienced most recently, but rather those that represent situations most similar to

what the DM understands his current situation to be. In fact, the prior represents an

expectation about the possible outcomes in situations like the current one. Changes

in the status quo are relevant only because one’s current situation is often the most

relevant basis for a prediction of one’s future; when other bases for prediction exist,

these are what should be relevant.65

Insofar as it predicts that outcomes are evaluated not in absolute terms, but

relative to the DM’s expectations, this theory is related to the theory of reference-

dependent choice proposed by Koszegi and Rabin (2006); and a fair amount of ev-

idence suggests that expectations are indeed important for reference-dependent be-

havior (e.g., Crawford and Meng, 2011). There are, however, notable differences

between this theory and that of Koszegi and Rabin. Koszegi and Rabin propose that

the relevant expectation should be what they DM ordinarily receives in a situation

like the current one, given the choice that she characteristically makes — what could

have been received in options that are not chosen has no effect on the reference point.

In the theory proposed here, instead, the DM’s perceptual system is adapted to allow

more accurate evaluation of the kind of options that one expects to have occasion

to evaluate in a situation like the current one — hence all of the options that one

expects to evaluate (and needs to be able to see without too much distortion) are

relevant, not simply the ones that are chosen.

More generally, Koszegi and Rabin’s theory is really about the reaction to ob-

taining an outcome different from what was expected, and the way in which choice

should be affected by correct anticipation of that aspect of the way that one will

be affected (through this predictable reaction) by the outcomes that can result from

one’s various choice options — under the assumption that outcomes are perfectly

perceived when they occur, and also perfectly perceived in anticipation when consid-

ering which option to choose. (All surprises that occur represent intrinsic uncertainty

about which state of the world will occur, not any misperceptions of what one will

receive in a particular state.) Thus it is not a theory of distorted perceptions at all.

65Kahneman and Tversky themselves argue that the reference point may well be determined by

expectations rather than correspondingly simply to the status quo (1979, pp. 286-288). The present

theory proposes a more specific model of the way in which expectations are relevant, though still

without fully specifying the time at which the relevant expectations are formed.
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In the present theory, instead, differences between outcomes and expectations matter

because of the difficulty that one has recognizing things that one was not prepared

for.

The present theory can explain not only the reference-dependence of valuations,

but also another key feature of the behavior documented by Kahneman and Tversky

(1979): the coexistence of apparent risk-aversion in the domain of gains with appar-

ently risk-seeking behavior in the domain of losses. Thus in the case of Problem 1

above (a choice between certain and uncertain gains), the typical respondent preferred

the sure thing, even though both options imply the same mean final wealth; whereas

in Problem 2 (a choice between certain and uncertain losses), the typical respondent

preferred to gamble. In fact, both types of behavior are difficult to square with the

standard theory that postulates maximization of the expected utility of final wealth;

while the postulate of risk aversion (understood essentially in the way proposed by

Bernoulli) is a staple of textbook accounts of choice under uncertainty, the degree of

risk aversion with respect to final wealth that would have to be assumed to explain

people’s observed aversion to randomness of gains in individual gambles of modest

size is extraordinary, and quite inconsistent with other observed choices, as shown by

Rabin (2000). But the puzzle is even sharper when one recognizes that the hypothesis

of risk aversion (a strictly concave von Neumann-Morgenstern utility function) that

might be invoked to explain choice in Problem 1 is certainly contradicted by observed

choice in Problem 2.

Kahneman and Tversky explain both types of behavior by hypothesizing that

choice depends on an evaluation of potential gains and losses from the individual

decision, and that such prospects are valued in accordance with a weighted average

of a certain nonlinear function of the net gain in each possible outcome, where the

weights depend on the probability of occurrence of the different outcomes,66 and the

nonlinear “value function” is concave for gains but convex for losses. The explanation

provided by the present theory has a similar formal structure. The MSV assigned

to each of the lotteries in a given choice situation will be an average of the MSVs

of the final outcomes in each of the possible states, and the MSV for each state will

66Another key feature of prospect theory is the proposal that the relative weight on each outcome is

a nonlinear function of the true probability. I do not propose any interpretation of this nonlinearity

here; in cases like Problems 1 and 2 above, this issue does not arise, as the probability of each

outcome is the same.
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be a nonlinear function of the normalized objective final wealth in that state, which

is a linear transformation of the net gain in wealth as a result of the choice. The

nonlinear function used to convert objective values into mean subjective values is a

linear transformation of the function ϕ(z) plotted in Figure 7 and again in Figure 9;

and as we have seen, it is concave for z > 0 but convex for z < 0.

The present theory, however, derives this shape of the transformation function

from deeper theoretical assumptions, rather than directly assuming it on the basis

of observed behavior. The proposed theoretical derivation is closely related to the

explanation for the shape of the “value function” proposed by Kahneman and Tversky

(1979), who attribute both the concavity in the case of gains and the convexity in the

case of losses to diminishing sensitivity to progressively larger changes of either sign,

which they regard as a further instance of a general property of perception, that “the

psychological response is a concave function of the magnitude of physical change”

(p. 278). The present theory offers a deeper explanation, in terms of the efficient

use of limited information-processing capacity, for this general phenomenon, which

is then also applied to judgments of value, as Kahneman and Tversky propose. It is

worth noting that the present theory predicts the existence of diminishing sensitivity

to both gains and losses, without having to assume that gains and losses are coded

separately. Instead, we have considered the optimal subjective representation of a

single real variable that may be either larger or smaller than the prior mean, and

found that there should be diminishing sensitivity to larger departures from the prior

mean in either direction.

The theory presented here does not explain all aspects of the value function pos-

tulated by Kahneman and Tversky (1979). In the examples computed above, the

transformation function is antisymmetric (ϕ(−z) = −ϕ(z)), whereas Kahneman and

Tversky propose as one of the key properties of their value function that it is “steeper

for losses than for gains.” The antisymmetry is not, however, a general prediction of

the type of theory proposed here; it obtains in the case analyzed in section 2 only

because of the assumed symmetry of the loss function with respect to over- and un-

derestimates of the true value and the assumed symmetry of the prior distribution

around its mean. An extension of the theory to cases with other loss functions and/or

other types of prior distributions will be an important topic for further investigation;

it would be interesting to know if the kind of asymmetry proposed by Kahneman and

Tversky can be explained through such a generalization.
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Kahneman and Tversky (1979) also propose that there should be a kink in the

value function at the point of zero gain or loss, so that the negative value assigned to

a loss of a given size is a multiple greater than 1 of the negative of the value assigned

to a gain of the same size, even when the size of the gain is made arbitrarily small.

This feature of prospect theory has received particular emphasis in the subsequent

literature, notably because of the explanation that it provides for “endowment ef-

fects.”67 The theory proposed here provides no explanation for a kink at the value

of an attribute corresponding to the prior mean (or any other conception of the “ref-

erence point”); indeed, as noted above, there is really no “reference point” in this

theory.

It is possible that a more adequate theory would hypothesize separate coding

of gains and losses, as a consequence of which different valuations of small gains

and small losses could easily be possible. (This would mean assuming additional

constraints on the class of possible subjective representations than those assumed

in the relatively parsimonious theory explored here.) On the other hand, there are

other possible explanations for endowment effects than the hypothesis of a kink in the

mapping of objective values into subjective perceptions of value. It may be that people

perceive more accurately the attributes of objects already in their possession than ones

that they do not possess (but can see); or it may be that they make inferences about

the value of objects from the fact that someone else would offer an exchange, and not

simply from what they can observe about the objects’ characteristics. Hence it may

be possible to understand endowment effects, within a more general theory, without

changing the account given here of choice between lotteries.

4 Conclusions

I have proposed a theory of errors in the valuation of options confronting economic

decisionmakers. In this theory, valuations are optimal, in the sense of minimizing

the mean of squared evaluation error, subject to an information-theoretic constraint

on the processing capacity required to observe the attributes of the options with a

particular degree of precision. I have shown that the resulting theory implies an

inevitable form of reference-dependence of valuations, insofar as the mapping from

67See, for example, Kahneman (2011), chap. 27.
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objective characteristics to subjective valuations that will be optimal depends on the

prior distribution of potential valuations to which the DM’s perceptual system has

adapted.

I have argued that a theory of this kind predicts a number of types of departures

from the implications of full-information rational choice theory that have been ob-

served to occur in human decisions. These include stochastic variation in the choice

that is made from among a fixed set of options, focusing effects, decoy effects, val-

uation of risky options on the basis of the distribution of gains and losses from the

individual choice rather than implications for final wealth after many random events,

and the coexistence of risk-aversion with respect to gains with risk-seeking with re-

spect to losses. Other modifications of standard decision theory have been proposed,

of course, in order to account for each of these anomalies. The theory offered here,

however, offers the prospect of unified explanation of all of them on the basis of

a single departure from standard assumptions. For that reason, I believe that the

implications of this type of theory deserve to be analyzed in further detail.
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Figure 4: Optimal information structures for a capacity limit C equal to one-half

a binary digit, when the prior distribution is N(µ, 1). Plots show the probability of

each of three possible subjective representations, conditional on the true state. Panel

(a): µ = −2. Panel (b): µ = +2.
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Figure 5: Fisher information IFisher(x) measuring the discriminability of each ob-

jective state x from nearby states under optimal information structures. Solid line

corresponds to the optimal structure subject to a limit on the capacity C, dashed line

to the optimal structure subject to a limit on mutual information. The two panels

correspond to the same two prior distributions as in Figure 4.

81



0.
3

0.
3

0.
3

0.3

0.3

0.3

0.
4

0.
4

0.4

0.40.
44

58

0.4458

0.
47

µ−µ0

σ0

σ
/
σ

0

Pr[A >> B]

−1 0 1
0.5

1

2

0.
8

0.
8

0.
8

0.8

0.8

0.
83

0.
83

0.83

0.83

0.
83

8

0.838

0.838

0.8395

µ−µ0

σ0

σ
/
σ

0

Pr[A > B]

−1 0 1
0.5

1

2

II
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B = µ0 − σ0, and the

processing capacity allocated to perception of the attribute is 0.5 bits. Panel (a) shows

the probability that A is perceived as strongly superior, panel (b) the probability that

it is perceived as at least somewhat superior. The point I indicates the baseline prior

(µ0, σ0).
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Figure 7: Mean normalized subjective value as a function of actual normalized value

z of a particular attribute, under different values of the capacity limit C. Panel (a)

gives more details of the effects of tight capacity limits for z of modest size. Panel

(b) shows the effects of higher capacity limits in the case of more extreme z.
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Figure 8: Location of three brands in attribute space. Introduction of the “decoy”

brand C increases market share of “target” brand B at the expense of competitor A.
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Figure 9: Mean normalized subjective value (vertical axis) for each of the possible

lotteries in two choice problems studied by Kahneman and Tversky (1979). The

horizontal axis shows final wealth in excess of initial wealth, in each of the two

possible states under a given lottery. Black dots plot MNSV of the outcome in an

individual state; white dots plot the MNSV for a gamble in which the outcomes in

the two possible states are the two black dots at the endpoints of the dashed line.

Black line: plot of E[z|x] when the DM is initially given 1000. Black line: plot of

E[z|x] when the DM is initially given 1000. Grey line: plot of E[z|x] when the DM is

initially given 2000.

85


