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Abstract

This paper introduces a model of household consumption and savings in which

household members have imperfectly aligned altruistic preferences. Specifically, member

A values his own consumption more than member B values A’s consumption. Each

period, members independently choose the amount of household wealth to consume as

Nash best responses. At each point in time, the household consumes a higher fraction

of wealth than under the full commitment Pareto optimum. Ex-ante Pareto optimal

household consumption plans are not subgame perfect because both members wish

to deviate to increase their own consumption. As a result the household is willing

to pay for a technology that commits them to an optimal lifetime consumption plan.

Despite both members individually having time consistent exponential discount rates,

equilibrium household consumption dynamics are captured by a single representative

agent with a hyperbolic discount factor that is microfounded in the degree of preference

misalignment within the household.
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Are households able to carry out optimal consumption and savings plans? Recent evidence

shows that households value technologies that allow them to commit to increase savings and

that these raise savings rates (Thaler and Benartzi 2004; Ashraf, Karlan, and Yin 2006).

This is inconsistent with standard models of consumption and savings based on individual

maximization. One explanation is that individuals have hyperbolic discount factors or self

control problems that render optimal savings plans time inconsistent so that individuals

will, ex-post, wish to save less than planned (for example: Thaler Shefrin 1981; Laibson

1997; Laibson, Repetto, and Tobacman 2003; Harris and Laibson 2001). This paper takes

a different approach and shows that the same under-saving and time inconsistency arises

endogenously in a household where the individual members place more weight on the utility

from their own consumption than their partner does. This occurs despite the individual

members of the household being fully rational and having time consistent preferences.

There is abundant evidence that household members do not have perfectly aligned pref-

erences. For example, household consumption decisions are different when money is received

by one partner or the other (Lundberg, Pollak, and Wales 1997, Phipps and Burton 1998,

Ashraf 2009). In the model I propose here the household is comprised of two members who

each choose how much of the combined household wealth to spend on their own private

consumption. The crucial assumption I make is that household members have imperfectly

aligned altruistic preferences. Specifically, member A cares more about the utility from his

consumption than B cares about A’s consumption and vice versa. Both members have the

same exponential time preferences and agree on the optimal savings rate for the household.

I characterize the household’s equilibrium consumption path without commitment as a sub-

game perfect Nash equilibrium in consumption choices. This is the equilibrium that obtains

when household members are unable to enforce contracts conditional on their consumption

choices. The household is unable to carry out the optimal consumption plan ex-post because

both members wish to deviate and increase their own consumption. This intuition is closely
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related to the theoretical literature on dynamic commons problems that has been used to

study national underinvestment (Lancaster 1973, Tornell and Velasco 1992), overexploitation

of natural resources (Levhari Mirman 1980), and sovereign debt (Amador 2008).

The household is willing to pay for a technology that allows them commit to any Pareto

optimal consumption plan. The model allows me to numerically calculate the value of com-

mitment. I show that it is increasing in the degree to which members value their own utility

over their partner’s.

Next I find the preferences of a single representative agent that would achieve the same

time path of consumption as the household. This representative agent is shown to have

time preferences with the same exponential discount factor as the household members and

a hyperbolic discount factor. This is despite both household members individually having

the same time consistent exponential discount rates and not being hyperbolic discounters.

The hyperbolic discount factor is microfounded in the misalignment of preferences between

the two household members. It is decreasing (i.e. is “more hyperbolic”) when household

members have more divergent interests.

I extend the basic model in several ways. First, I generalize the results beyond the case of

log utility functions to allow individual members of the household to have CRRA preferences.

I show that the distortion to the full commitment path and the value of commitment are

increasing in the elasticity of intertemporal substitution. Next, I introduce a public non-

rival consumption good that is shared by both members of the household. I show that it is

only in the consumption of private goods that the commitment problem occurs. As a result

the intertemporal inefficiency and the value of commitment are strictly decreasing in the

importance of these public goods in the household.

One interpretation of this paper is that it provides a microfoundation for hyperbolic sav-

ings and consumption behavior at the household level. However the psychological evidence

for hyperbolic discounting is conducted primarily at the level of the individual (Ainslie 2001).

To accommodate this, I extend the model to allow the individual members of the household
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to have hyperbolic time preferences. Not surprisingly, this exacerbates the inefficiency of

the household consumption path and further increases the value of commitment technologies.

More interestingly, I show that hyperbolic individual preferences amplify the household prob-

lem and that the value of commitment when both problems are combined is roughly twice

its value when both problems are considered in isolation. As such, the goal of the paper is

not to replace individual hyperbolic preferences as a description of decision making. Rather

my purpose is to show that intrahousehold decision making also naturally renders optimal

intertemporal plans time inconsistent and that in combination both channels can produce

sizeable distortions to optimal savings plans and create large demands for commitment tech-

nologies.

This paper is closely related to the theoretical literature that incorporates misaligned

preferences within the household (see Lundberg and Pollack 2007; Browning, Chiappori,

and Lechene 2006 for comprehensive surveys of the literature). In these papers, household

decision making is modeled as the outcome of an efficient bargaining process and the focus

is directed to determining what determines the threat points and bargaining weights of each

household member. Evidence on the question of whether households are able to enforce

Pareto efficient allocations is mixed. Chiappori and Donni (2009) point out that tests for

static efficiency (see for example Bobonis 2009, Browning and Chiappori 1998, and Chiappori

et al 2002) find in the affirmative whereas tests for dynamic efficiency find the opposite (see

for example de Mel et al 2009, Duflo and Udry 2004, Mazzocco 2007, Robinson 2011, Udry

1996). Since this paper is interested in the intertemporal decision making of the household

I study the equilibrium that obtains when commitment is not possible. However, it is not

my objective to argue that households suffer the time inconsistency problem without taking

actions to mitigate it. Rather the goal is to show that households have an inherent tendency

to undersave and to provide a framework for assessing the types of strategies that households

may employ to achieve savings levels closer to the optimum.

The paper proceeds as follows. Section I sets up the base model. Section II characterizes
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the equilibrium consumption choices of the household, compares them to the full commitment

solution, and computes the value of commitment for the household. Section III characterizes

the preferences of the household’s representative agent. Section IV generalizes the basic

model in several ways, by allowing household member to have CRRA preferences, to consume

a shared public consumption good, and to individually have hyperbolic time preferences.

Section V studies an alternate consecutive move version of the model designed to show that

the equilibrium studied in the base model is the only one robust to the assumed timing

of consumption within a period. Section VI discusses empirical implications of the model

including strategies that the household might adopt to mitigate the undersaving problem.

Section VII concludes.

I Model of Household Consumption

The household has two members indexed by  labeled  and . Time is discrete and

indexed by . The household is formed at the beginning of period  = 1. Both household

members live for  years. Each year contains  ≥ 1 periods so that there are  periods in

total. For the bulk of the analysis it is sufficient to think of  = 1 however in Section V I will

consider the limiting case as consumption decisions are made in continuous time by letting

 →∞. I assume that the household remains together for their entire lives with certainty.

A Preferences

Each period household member  consumes a single consumption good. Let  denote

the amount of this good consumed by member  in period . The utility derived by member

 from their own consumption in period  is

 = ln (1)
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Note that member  does not directly derive utility from member ’s consumption. Later in

Section IV I extend the model to also allow for a non-rival public consumption good which

is consumed jointly by both household members.

Both household members discount utility from future consumption using exponential dis-

count factor 
1
 ∈ (0 1). The individual discounted utility of household member  in period

 is

 =

−X
=0



 + (2)

Thus  is the utility of household member  absent any concern for the utility of the other

household member. Note that these are standard time preferences so that when considered

on their own the optimal consumption plan for each household member will be time consis-

tent. Only in Section IV do I extend the model to also allow the individual members of the

household to have time inconsistent preferences.

One of the defining characteristics of the household is that its members are altruistic. I

capture this by supposing that member  places weight  ∈ (0 1) on their own utility and
weight 1 −  on the utility of the other member. I focus on the case where the altruism

between household members is imperfect by assuming that

∆ ≡  − (1− ) ≥ 0 (3)

In words, ∆measures the degree to which member  places more weight on her own discounted

utility  than member  6=  places on . When∆ = 0, both members agree on the weights

to place on their own individual utility with the simplest case being  =  = 1
2
. The

framework can also be used to study the case where members care more about each other

than themselves (∆  0) however since the evidence on household consumption decisions

suggests this is generally not the case I will not focus on this scenario.
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The total discounted utility of member  at  is

 =  + (1− ) (4)

This is the object each household member will maximize when taking actions at .

B Household Budget Constraint

The present value of all combined household wealth at the beginning of  = 1 is 1.

I set aside household labor supply decisions and take 1 as given. The second defining

characteristic of the household is that all wealth is combined so that both household members

have full access to the remaining combined wealth in each period. This assumption is made

to keep the framework as close to the standard unitary model of intertemporal decision

making. Moreover the 2002 General Social Survey (Smith et al 2011) finds that 53 per

cent of all married households in the US share all financial wealth suggesting that this is

a natural benchmark characterization of the household budget constraint. Consideration

of commitment strategies that involve household members having separate accounts is left

for future work. For simplicity I normalize the price of the consumption goods consumed by

both household member to one. Any wealth not consumed by the household is saved between

periods at a gross risk free interest rate of 
1
 . Household wealth evolves according to the

following

+1 = 
1
 ( −) (5)

where

 =  +  (6)

is total household expenditure in period . The wealth of the household at  can be interpreted

as the present value of lifetime earnings less the present value of all consumption prior to

period . In effect, I assume that both household members can borrow and lend against the
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combined lifetime income of the household in a frictionless capital market at gross annual

interest rate . As a result in any period, the household is able to spend at most the total

value of all remaining household wealth .

C Decision Making

Household members cannot commit to a path of consumption. As a result, household

members are unable to enforce mutually agreed levels of consumption, either in the present

or the future. Household members non-cooperatively simultaneously decide how much of the

household wealth  to spend on their own private consumption  ≥ 0 each period. The
dynamic equilibrium path of consumption will be the Nash subgame perfect solution to the

consumption game between these two members. Let a single “*” denote the non-cooperative

equilibrium quantities ∗.

Since both members make consumption decisions simultaneously it is possible that both

members could attempt to spend more than total household wealth. To avoid this problem

I assume that both members are able to consume at most half the total household wealth in

any single period:

 ≤ 

2
 (7)

This condition can be made arbitrarily weak by making  large. For example, (7) implies

that within a year one member can withdraw up to 

¡
1− 1

2

¢
. As  → ∞ this implies

that all wealth can be withdrawn in any finite period of time. By imposing (7) I ensure

+ ≤ and hence have a well defined budget constraint for each household member’s

consumption problem each period. I show in the Appendix that (7) does not bind in any

period    if and only if

| − | ≤ 
1
  (8)

I assume that (8) holds. Note that when  is large 
1
 → 1 and this constraint places almost

no limit on parameters.
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I have chosen to require (7) in order to avoid imposing arbitrary tie breaking rules to

deal with situations where members attempt, in total, to spend more than . Depending

on the rule chosen other possible equilibria may arise in the simultaneous move consumption

game. In Section V I revisit this problem by assuming that household members make consec-

utive consumption decisions. In that setting a simple one person budget constraint in which

members are able to spend up to the full amount of remaining household wealth is imposed.

I show that the equilibrium studied here is arbitrarily close to the unique equilibrium from

that model as  →∞ thus demonstrating that this assumption is not crucial for the results

studied below. Note that, in equilibrium, condition (7) will only bind in the final period of

the household’s life and will ensure that in that period  =


2
.

D Full Commitment Problem and the Value of Commitment

To evaluate the optimality of the non-cooperative equilibrium consumption path, I com-

pare it to the consumption path that would be achieved if the household was able to fully

commit to consumption choices at the start of  = 1. Consider the problem the household

would face in setting a full commitment path. Whenever  6= 1
2
household members will

disagree over the optimal allocation. However any allocation that they would choose must be

Pareto optimal and hence I characterize the solution to the following full commitment Pareto

problem:

max
{{}=

=1 }∈{}
Π = 1 + (1− )1 (9)

subject to 1 −
X
=1

−
−1
 [ + ] ≥ 0 and (10)

{ }=

=1
≥ 0. (11)

where  ∈ [0 1] is the Pareto weight placed on the objective of member . Let a double
“**” denote the full commitment Pareto optimal consumption quantities ∗∗ that solve this
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problem.

To quantify the welfare loss incurred by the household under the non-cooperative equilib-

rium I calculate how much the household would be willing to pay at  = 1 for a technology

that allowed them to commit to an optimal consumption path. Let  ∗1 (1) be the dis-

counted lifetime utility that will be achieved by household member  absent commitment as

a function of initial household wealth. Let  ∗∗1 (1 (1− )  ) be the counterpart for the

case where the household has spent a fraction  of their initial wealth 1 to achieve the

full commitment plan that places weight  on the preferences of member . The value of

commitment ∗∗ is defined as the most that the household will pay while ensuring that there

exists a weight  so that the purchase is a Pareto improvement for both members. Formally

∗∗ solves:

∗∗ = max


 (12)

subject to  ∗∗1 (1 (1− )  ) ≥  ∗1 (1) for  ∈ {} , and  ∈ [0 1] 

An analytical solution for ∗∗ is intractable in most cases so this will be solved for numerically.

II Consumption Choices and the Value of

Commitment

A Non-Cooperative Equilibrium Consumption Choices

The equilibrium consumption path is solved in the Appendix. The equilibrium level of

consumption by member  in period    is

∗ =


1 +∆+
P−

=1 



 (13)
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By assumption the equilibrium consumption in period  =  is ∗ =


2
. This is the

unique interior equilibrium.1 The allocation of consumption within any period is determined

the weights each member place on their own utility

∗
∗

=





If member  places more weight on his own utility than  places on hers then  will have

a larger share of consumption in each period. Total equilibrium household expenditure in

period  is

∗
 =

1

1 + 1
1+∆

P−
=1 




 (14)

The share of wealth that is spent in any period    is strictly increasing in ∆, the degree

to which household members weigh their own individual utility more than their partner’s.

The dynamics of equilibrium consumption between periods is

∗
+1

∗


= ()
1


Ã P−(+1)
=0 




∆+
P−(+1)

=0 



!
 (15)

The higher is ∆ the more downward sloping is the equilibrium consumption path. The

dynamics of household consumption is determined only by ∆ and not the particular values

of  and  that give rise to that degree of misalignment. So two households in which both

household members are care slightly more for themselves with  =  = 06 will have an

identical path of total consumption as one in which one member cares more for himself and

the other cares equally for both with  = 07 and  = 05. The only difference in these

household will be the consumption share of each member within a period but the total level

of consumption will be identical.

1There is another set of trivial equilibria in which both members set ∗ = 0. This is optimal only

becasue of the log utiltiy assumption. If instead I assume the period utility function to be  = ln ( + )

for any arbitrarily small   0 this equilibrium would not exist. No equivalent of this equilibria exists in the

consecutive move version of the model in Section V. Hence I ignore this for the rest of the paper.
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B Comparison to Full Commitment Consumption Path

To assess the optimality of the equilibrium consumption path that the household will

achieve without commitment, I compare it to the set of Pareto optimal consumption paths,

one of which would be chosen if the household had access to perfect commitment at  = 1.

The total level of consumption that the household would commit to in any period is

∗∗
 =

1

1 +
P−

=1 



 (16)

The optimal total level of consumption is not affected by the Pareto weight  given to each

member in the planning problem. Comparing the full commitment solution to the equilibrium

level of consumption leads directly to the following proposition:

Proposition 1: If ∆  0 then in any period    the non-cooperative equilibrium level

of consumption is higher than the amount that the household would commit to conditional on

entering the period with wealth .

The proof of Proposition 1 comes directly by comparing (14) with (16). The intuition

for this result is as follows. When making their consumption choices each household member

trades off the benefit of a dollar spent on consumption for themselves versus a the benefit of

saving a dollar for the combined household. Both household members place weight  on the

utility from their own consumption relative to a combined weight of unity for the discounted

value of household savings. Thus, in total, the household acts as though it places weight

1+∆ on it’s current self relative to the combined future interest of the household. The social

planner, for any Pareto weight  always places the same weight on the discounted utility of

the household in each period. Put differently, the full commitment solution is not subgame

perfect because at least one household member will wish to unilaterally deviate from this

allocation by spending slightly more on themselves. There is no distortion to savings only

when member  cares about her own utility as much as  does (∆ = 0). In this case both
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members have the same objective and the non-cooperative growth rate of consumption is

identical to the full commitment equilibrium.

The dynamics of consumption under the full commitment consumption path are given by:

∗∗
+1

∗∗


=  (17)

Thus a direct corollary of Proposition 1 is that the slope of the consumption path in the

non-cooperative equilibrium is strictly below the slope of the full commitment consumption

path whenever ∆  0. This is seen immediately by comparing (15) and (17).

The equilibrium consumption path is compared to the full commitment solution in Figure

1 assuming  = 50,  = 095,  = 1
095
, and  = 1. The figure illustrates that early in

the life of the household the equilibrium level of consumption is higher than under the full

commitment solution. When both members place 60% weight on their own utility ( =  =

06) in total the household spends over 18% more than it would under the full commitment

solution in the first year. If this altruism is reduced so that  =  = 07 then the household

overspends by more than 37% in the first year of it’s life. The under-provision of savings means

that later in the households life they consume much less than under the full commitment

optimum. If  =  = 06 then the household consumption is less than 60% of the level

that the household would like to commit to for each of the last five years of the households

life.

In the full commitment solution, only the allocation of consumption within each period is

determined by the Pareto weight assigned to each household member in the planning problem.

For a given Pareto weight  the ratio of each members consumption in any period    is

∗∗
∗∗

=
 + (1− ) (1− )

(1− )  +  (1− )


From this expression we see that if member  was given full control to chose the consumption

path of both members then the ratio of her consumption to her partner’s would be 
1− in
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each period.

C The Value of Commitment

Having shown that the allocation of consumption achieved in the non-cooperative solution

is inefficient I now turn to quantifying this inefficiency. To do this I ask what fraction ∗∗

of the household’s initial wealth would both household members agree to spend in order to

achieve a Pareto efficient allocation. I defer the discussion of the particular mechanisms that

the household may employ to achieve efficiency to Section VI. Due to the assumption of

log utility ∗∗ will be independent of the level of initial household wealth. Despite this, an

analytical solution is in most cases intractable. Instead I solve for this fraction numerically

in Figure 2. Panel A shows that the value of commitment increases monotonically with the

weight that household members place on their own utility relative to the utility of the other. A

household in which both members place weight  = 06 on their own utility will be prepared

to pay up to 1.61% of the present value of their total wealth to achieve full commitment. If

both members place weight  = 07 on their own utility the undersaving problem is more

severe and they would be willing to pay up to 5.62% of total household wealth to eliminate

this inefficiency.

Panel B shows that the value of commitment varies non-monotonically with the discount

rate of the household members. This stems from the fact that there are two countervailing

forces. First, when  is larger, both household members care more about the future and

hence are willing to pay more to avoid the effect that undersaving will have on their future

consumption levels. Conversely, increasing  raises both household members individual desire

to save and thus mitigates the problem. Panel B shows that this first force dominates for

most values of  and is only reversed by the second force when  is very close to unity.2

Panel C considers the effect of changing the pattern of self interest within the household

holding ∆ constant at 0.2. When  = 06 then both household members are equally self

2Qualitatively, the same non-monotonic relationship obtains for all other reasonable paramter choices.
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interested since  = 06. Conversely when  = 07 then  = 05 implying that A cares

more about his own utility than ’s but that  cares equally for both. Recall that (14) and

(15) show that the dynamic path of consumption for the household is identical under both

scenarios, it is just the allocation of that consumption within each period that is different.

The results in Panel C indicate that the value of commitment is increasing with the degree

of asymmetry of self interest in the household. However, noting the y-axis, the magnitude of

this effect is second order when compared to changes in ∆ as shown in Panel A.

III Representative Agent

Typically household savings and consumption decisions are modeled as if they are made by

a single optimizing representative agent. If the interests of household members are perfectly

aligned (∆ = 0) then this assumption involves no loss of generality since both members have

the same objective function. In this case the representative agent will have the same time

preferences as the individual household members. In this section I find the representative

agent for a household in which the interests of its members are not perfectly aligned. Of

particular interest, I ask whether it is possible to find a representative agent that would

achieve the same consumption path and what time preferences would this agent have. We

know already that the time preferences of the representative agent must be different to that

of its individual members since those preferences are time consistent and would give rise a

consumption path identical to the full commitment solution.

Since the primary focus of this paper is the intertemporal choices of the household I

consider a representative agent with preferences over the level of total household consumption

. Matching the allocation of consumption within each period between  and  is not

interesting because in equilibrium these are consumed in a constant ratio.3 Consider the

problem of a single representative agent who chooses the level of , each period. The period

3This can be achieved by using a more general period utility function over  and  of the form

 =  ln +
¡
1− 

¢
ln does not alter the time preferences found in Proposition 2.
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utility of the representative agent is

 = ln (18)

The discounted utility of the representative agent at time  is

 =  + Ω

−X
=1




 + (19)

where  ∈ (0 1] is a standard exponential discount factor and Ω ∈ (0 1] is a quasi hyperbolic
discount factor of the type introduced by Laibson (1997). While more general utility functions

and discount functions could be considered the results below show that this form is sufficiently

flexible to represent the household. The representative agent faces the same intertemporal

budget constraint as the household (5).

As stressed by Laibson (1997), when Ω  1 any optimal path of consumption from the

perspective of the representative agent at  will be time inconsistent. When considering the

representative agent without commitment, I study the problem where the agent is aware of

this time inconsistency and takes it into account when making consumption choices each

period. As a result the consumption path chosen by the representative agent will be found

by backward induction where consumption choices are subgame perfect best responses given

the resulting choices that they will lead to in the future. The consumption path of the

representative agent with and without commitment is solved in the Appendix.

Proposition 2: The representative agent without commitment has an identical path of total

consumption as the household without commitment if:

  =  and

 Ω =
1

1 +∆


Whenever   2 and is finite this is the unique set of time preferences that replicate he
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consumption path of the household.

Proposition 2 is proved in the Appendix. The key result in Proposition 2 is that ∆  0

implies Ω  1. Thus, when household members care more about their own utility than

their partner does, the representative agent for the household must have hyperbolic time

preferences. This microfoundation for the hyperbolic discount factor of the representative

agent captures the central intuition for the household undersavings result documented in

Proposition 1. At any point in time, when a household member decides how much to spend

on private consumption he places weight  on the utility from this consumption relative to

unity for the combined marginal utility of an additional dollar of savings. Since in equilibrium

both members are making the same trade-off, in total they act as though they are currently

worth 1+∆ relative to unity for their combined marginal utility from future savings. In total,

despite the fact both members of the household have standard exponential time preferences,

the household acts as if it always discounts the entire future with hyperbolic discount factor

Ω =
1

1+∆
 1. Note that if both household members care about their own utility as much

as their partner does (∆ = 0) then only in this case does the representative agent also have

standard exponential time preferences (Ω = 1). Thus, even if we believe that individuals

have time consistent exponential preferences, modelling households savings and consumption

decisions as if the household has standard time consistent preferences is valid only if we

assume that household members have perfectly aligned objectives.

IV Generalizing Household Preferences

This section studies several extensions to the preferences assumed for household members

in the model studied so far. First, I allow household members to have CRRA period utility

functions to study how the results vary with the elasticity of intertemporal substitution of

the household members. Next, I study how the presence of public consumption goods within

the household impacts equilibrium savings. Finally, I allow the individual members of the
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household to have time inconsistent hyperbolic time preferences of the type emphasized by

Laibson (1997). The goal is to show how these extensions affect household savings decisions

and the value of commitment. I will consider each extension one at a time and in isolation

so as to highlight the differences from the base model results presented above.

A CRRA Utility

The model presented so far, by assuming log period utility, has implicitly concentrated on

the case where the elasticity of intertemporal substitution (EIS) for both household members

is unity. The literature which has sought to estimate the EIS has produced mixed results.

Estimates range between being close to zero (Hall 1988, Dynan 1993) to being as high as

two (Blundell, Browning and Meghir 1994; Mulligan 2002; and Gruber 2006). I study how

the household saving problem changes with different values of the EIS by replacing the log

period utility function in (1) with a CRRA utility function of

 =

1− 1



 − 1


1− 1


 (20)

Here  is the EIS of each household member. The log utility case studied so far is a special

case of this utility function where  = 1. The rest of the framework remains the same as

before.4

An analytical solution to the non-cooperative equilibrium is fully characterized in the

Appendix. In this generalized setting the solutions for equilibrium consumption choices are

generally intractable. To avoid this I focus on numerical examples illustrating the resulting

equilibrium household consumption path. These are presented in Figure 3. Panel A shows

how the equilibrium consumption path of the household varies with the EIS and compares it

to the full commitment consumption path. In each case I assume that both members place

4I generalize assumption (8) and assume
¯̄̄
()

1
 − ()

1


¯̄̄
≤
³


1


1−
 2−1

´ 1


. As demonstrated in the

appendix this is necessary and sufficient to ensure (7) does not bind for any    .
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weight  = 06 on their own utility. Note first that since these are drawn for  = 1

, the

full commitment consumption path is flat and identical for each value of . The panel shows

that degree of undersavings is increasing in the EIS. For these parameters, when  = 05,

the household spends over 8% more than the full commitment level of consumption in the

first year of its life. If instead,  = 15 then household consumption is more than 30% higher

than optimal level. Of course when the EIS is higher the utility cost from an intertemporal

inefficiency of a fixed size is also lower. So as we increase the EIS the size of intertemporal

inefficiency increases but the utility cost of a given distortion falls.

Panel B shows which of these countervailing forces dominates by showing how the value

of commitment varies with the EIS. As in Panel A, this is drawn assuming  = 06 for both

household members. The clear comparative static result from Panel B is that the value of

commitment increases with the EIS. Despite the fact that the utility cost of a given distortion

is lower, the increased size of the intertemporal inefficiency dominates this effect. For the

parameters assumed in Figure 3, the household will be willing to pay 0.77% of household

wealth to achieve full commitment if  = 05. If instead  = 15 the household will be willing

to pay 2.54% of household wealth to achieve full commitment.

A-1 Representative Agent with CRRA Utility

I now show that under certain conditions the representative agent results of Section III

can be generalized to the case where individual household members have CRRA utility. To

do this consider the same representative agent as before except now replace the log period

utility function in (18) with

 =

1− 1



 − 1


1− 1


 (21)

Proposition 3: Assume the household is symmetric so that  = . Assume also that

household members and the representative agent have CRRA utility as per (20) and (21).

The representative agent without commitment has an identical path of total consumption as
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the household without commitment if:

  =  and

 Ω =
1

1 +∆


Whenever   2 and is finite this is the unique set of time preferences that replicate he

consumption path of the household.

Thus the logic of the representative agent from the log case carries over to the more

general CRRA case in the case where the household is perfectly symmetric. Outside of the

symmetric case it is not possible to find two constant for  and Ω that will replicate the

consumption path of the household.

B Public Consumption Good

B-1 Setup with Public Consumption

So far I have assumed that all consumption goods are consumed individually by one

member or the other. As such,  only contributes utility to household member  in so far

as  cares about the utility of . However one advantage of being in a household is that it

allows the household members to share non-rival public consumption goods such as housing,

children, and consumer durables. To study how this impacts the intertemporal consumption

that the household will achieve suppose that there is a second good,  that provides utility

directly to both household members. The total level of public consumption is the sum of the

amount purchased in each period by both household members

 =  +
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where  is the amount of the public consumption good purchased by member  in period

. Assume now that the period utility of member  is

 =  ln + (1− ) ln

where  ∈ [0 1] captures the relative weight that household members place on private con-
sumption relative to public consumption.5 This period utility function replaces the simple

period utility function in (1) which is just a special case were  = 1. Apart from this change

the preferences of the household members remain the same as described for the base model

in (2), (3), and (4).

I assume that public consumption is also continuous and decided non-cooperatively. Each

period both members simultaneously chose how much of the remaining household wealth to

spend on  ≥ 0 and  ≥ 0. As before, consumption choices are chosen non-cooperatively
as Nash equilibrium subgame perfect best responses to each other. To avoid the possibility

that household members spend more than total household wealth I adapt (7) to assume that

 + ≤ 

2
 (22)

To ensure this condition never binds outside of  =  I adapt (8) to now assume

| − | ≤ 1− + 
1



(23)

which, since   1, is less restrictive than (8). Total expenditure in period  is now

 =  +  + + (24)

5The model can be extended to allow each member to place different weights on public versus private

cosnumption. If we assume that members are unable to reverse the consumption decision of the other

( ≥ 0) then the level of public consumption will be determined by the level desired by the member with
the highest weight on public consumption (lowest value of ).
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The intertemporal budget constraint (5) remains the same as before. The benchmark full

commitment planning problem is amended in the same way to incorporate the public con-

sumption good.

B-2 Non-Cooperative Equilibrium Consumption Choices with Public Consump-

tion

The model with public household consumption is solved in the Appendix. The primary

focus is to study how the presence of this shared consumption goods affects the intertemporal

decisions of the household. The equilibrium level of consumption by member  in period   

is

∗ =


1 + ∆+
P−

=1 



 (25)

Since it doesn’t matter who buys a given unit of the public consumption good the in-

dividual choices of  and  are not uniquely determined in equilibrium. However the

total level of public consumption is uniquely determined in equilibrium and is

∗
 =

1− 

1 + ∆+
P−

=1 



 (26)

Total equilibrium consumption in each period is

∗
 =

1

1 + 1
1+∆

P−
=1 






The full commitment optimal level of total consumption is the same as before as described

in (16).

Proposition 4: In the model with public consumption, if ∆  0 then in any period  

 the non-cooperative equilibrium level of consumption is higher than the amount that the

household would commit to conditional on entering the period with wealth .

This highlights the importance of private consumption in the intertemporal distortion to
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household savings. This is the decision which is distorted because it requires each member to

trade off between their own utility and the combined interests of the household. Since both

household members value themselves more than the other this creates a distortion whereby

each member doesn’t fully internalize the benefit of savings relative to the utility gain from

private consumption. When deciding on the level of public consumption each member trades

off the combined interest of the household today versus the future combined interest. This

trade-off is not distorted by the self interest of the individual household members. In the

extreme, if all consumption were public ( = 0) then both members would have the same

objective and would choose an intertemporally efficient consumption path even if they cared

very little for their partner (i.e. if∆ was large). This intuition is captured in the intertemporal

preferences of the representative agent for household with public consumption.

Proposition 5: In the model with public consumption, the representative agent without com-

mitment has an identical path of total consumption as the household without commitment

if:

  =  and

 Ω =
1

1 + ∆


Whenever   2 and is finite and ∆  0, this is the unique set of time preferences that

replicate he consumption path of the household.

Thus the representative agent for the household remains a single agent with a hyperbolic

discount factor. The size of the hyperbolic discount factor is now microfounded in the degree

to which household members disagree over the relative weight they assign to each others

private consumption. The larger the fraction of household consumption that is private, the

smaller will be Ω and hence the further will the household be from the time consistent con-

sumption path it would like to commit to. This intuition is captured in Figure 4 which plots
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the value of commitment as a function of . The value of commitment is strictly increasing

in the weight that both household members place on private versus public consumption. This

demonstrates that the savings problem is less severe in a household where members draw a

larger fraction of their utility directly from the same things. This suggests that increases in

the importance of shared consumption, say through having children, may also reduce the sav-

ings distortion. In addition, it implies that one reason why household are more likely to form

amongst people with more shared interests is that this helps alleviate the over consumption

problem.

C Hyperbolic Household Members

The central message of this paper is that households whose members have misaligned

preferences will be unable to carry out optimal consumption plans without a commitment

technology. To emphasize that divergent preferences within the household are sufficient to

render optimal consumption and savings plans time inconsistent I have studied a model in

which individuals have standard exponential time preferences. Hence the members of the

household, left to themselves, are able to carry out optimal consumption and savings plans.

However considerable evidence in both psychology and economics suggests that individuals

have hyperbolic time preferences (for example Ainslie 1992, Frederick et al 2002). For this

reason, I now study how time inconsistency in the individual time preferences of the household

members interacts with the time inconsistency exhibited by the combined household.

To do this I re-examine the base model introduced in section I. The only change to that

setup is to the time preferences of both household members so that (2) is replaced with

 =  +Ψ

−X
=1



 + (27)

where Ψ ≤ 1 is the hyperbolic discount factor used by both household members to discount
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future utility relative to the present.6

The equilibrium of the model is solved in the Appendix along with the full commitment

optimal allocation. The equilibrium level of consumption by member  in period    is

∗ =


1 +∆+Ψ
P−

=1 



 (28)

and total consumption

∗
 =

1

1 + Ψ
1+∆

P−
=1 




 (29)

For a given level of wealth the household will consume more in a period if the members

are more hyperbolic (Ψ lower) and have more misaligned preferences (∆ larger). For all

periods after  = 1 the optimal level of household consumption is still given by (16). Direct

comparison shows that the household consumes more than the full commitment fraction of

wealth in every period   1 whenever Ψ
1+∆

 1. This is the analog to Proposition 1 but

the commitment problem is now exacerbated by the inconsistent time preferences of the

household members.

By comparing (29) to the case where Ψ = 1 it is clear that the representative agent result

of Section III can be extended directly to the case where household members have hyperbolic

time preferences.

Proposition 6: In the model where household members discount future utility with a hyper-

bolic discount factor Ψ ≤ 1, the representative agent without commitment has an identical
path of total consumption as the household without commitment if:

  =  and

 Ω =
Ψ

1 +∆


6I also amend the assumption in (8) with | − | ≤ Ψ
1
 to ensure (7) does not bind in any period

   .
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Whenever   2 and is finite this is the unique set of time preferences that replicate he

consumption path of the household..

This proposition makes clear that the time inconsistency of the households overall con-

sumption path is amplified when the individual members are themselves hyperbolic. This

point is made clearer by considering how the value of commitment is effected when the in-

dividual members of the household are hyperbolic. This is shown in Figure 5 which plots

the value of commitment considers a household in which both members place symmetric

weight on their own utility versus their partners (i.e.  =  = ). The relationship

between the value of commitment and  is shown for for Ψ = 085 and Ψ = 1.7 When

household members place the same weight on each other’s utility ( =  = 05) the value

of commitment with Ψ = 085 is 1.19% of household wealth. This is the force that Laib-

son (1997) documents showing that hyperbolic individuals will value commitment to prevent

themselves from deviating from the ex-ante optimal consumption plans in the future. Con-

versely, when  =  = 05852 and Ψ = 1 the household is also willing to spend 1.19% of

its lifetime wealth to achieve full commitment and overcome the inefficiency due purely to

the divergence in both member’s objectives. A household which faces both problems, so that

 =  = 05852 and Ψ = 085 will pay 4.82% of household wealth for commitment. This is

more than double (2.44 percentage points higher) than the sum of the value of commitment

(1.19% + 1.19%) from considering both of these forces in isolation. The striking result here

is that misaligned preferences within the household significantly amplifies the welfare cost

inconsistent time preferences of its individual members. This amplification comes from the

fact that the household’s value of commitment is strongly convex in Ω.
8

7I choose Ψ = 085 to match the calibration parameters used in Laibson 1997.
8This is demonstrated in Table II of Laibson 1997.
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V Consecutive Consumption Choices

The model studied above has highlighted the way that non-cooperative consumption de-

cisions by household members who care more about their own utility than their partner does

will lead to over consumption relative to the optimal full commitment solution. This has been

shown in a standard model of intertemporal consumption and savings with the only innovation

being that the household has two members with imperfectly aligned altruistic preferences and

that they share the same pool of wealth. Because I assumed that both household members

decided consumption simultaneously this creates the theoretical possibility that household

members could attempt to spend more than the total amount of all household wealth. To

avoid specifying arbitrary tie breaking rules to deal with such a scenario I assumed in (7)

that each member is able to spend no more than half of the household’s wealth in any period.

Since the number of periods per year  is potentially very large this is not a very restrictive

assumption. However it is still artificial and thus it is important to demonstrate the results

are robust to alternate ways of dealing with this problem.

The focus of this section is consider the same model but to remove this restriction and

instead assume that household members make consumption decisions consecutively within

any period. By assuming consecutive moves the model can revert to a standard budget con-

straint whereby each member can spend up to the full amount of remaining household wealth

each time they consume. The purpose of this section is to study this alternate assumption

and establish that when  is large the simultaneous move equilibrium studied above is the

limiting case of the unique equilibria reached in the consecutive move setup.

A Consecutive Move Setup

Assume that the preferences of the household members is unchanged from the setup in

Section I. The timing of decisions and the budget constraint facing each member is now

as follows. The household starts the period with wealth of . Without loss of generality,
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assume that member A is able to decide her own level of consumption first subject to

 ≤ (30)

Thus  is free to spend up to all of the household’s remaining wealth. After this decision is

made, the interim level of household wealth is

f = −  (31)

Member  learns how much wealth the household has remaining and chooses her own con-

sumption level subject to

 ≤ f (32)

Thus  is able to spend up to the full amount of remaining household wealth. From one

period to the next wealth evolves in the same way as before as specified in (5). As before

consumption choices are chosen non-cooperatively and are found as subgame perfect best

responses at each point in time.

B Non-Cooperative Equilibrium Consumption Choices

The consecutive move version of the model is solved in the Appendix. The unique equi-

librium consumption choice of member’s  and  as a function of  are

∗ =


1 +
P−

=1 



 and (33)

∗ =

Ã


 +
P−

=1 



!Ã
1 +

P−
=1 


 − 

1 +
P−

=1 



!


The unique equilibrium level of total consumption in any period is

∗
 =

Ã
1

1 +
P−

=1 



!Ã
(1 +∆)

P−
=1 


 + 

 +
P−

=1 



!
 (34)
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The equilibrium consumption choices are slightly complicated because of the stackelberg

leader and follower dynamics within each period. This encourages  to consume slightly

more to strategically lower the amount of consumption from . Apart from this within

period strategic consumption motive the forces governing both consumption decisions are

identical to before. As the length of each period becomes arbitrarily small (i.e.  gets large)

then the magnitude of these within period strategic incentives will diminish as well. This is

established formally in the following Proposition which is proved in the Appendix.

Proposition 7: As  → ∞ the equilibrium consumption choices of the consecutive move

game become arbitrarily close to the simultaneous move equilibrium as defined in (13) and

(14). Formally,

lim
→∞

∗

∗
= 1 and lim

→∞
∗



∗


= 1

Proposition 7 establishes that the equilibrium studied in the simultaneous move model is

not a by-product of the arbitrary expenditure limits assumed in (7). Moreover, any additional

equilibria that might have arisen in that model were a different assumption made to deal with

potential overdrawing would not be robust to minor variations in the timing of consumption

decisions.

VI Empirical Implications

The central empirical prediction of the paper is that, left to their own devices, multiperson

households will overconsume relative to their ex-ante desired consumption path. In anticipa-

tion of this problem these households will be prepared to pay for mechanisms which achieve

full commitment. There are several challenges to identifying this empirically. First, much

of the evidence that households demand savings commitment technologies such as saving in

illiquid assets could be fully explained by household members having hyperbolic time prefer-

ences (see for example Beshears et al 2011, Laibson 1997, Laibson et al 1998). In principal
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one way to distinguish these mechanisms is to identify a demand for savings commitment

in multiperson households that is not present in single person households. However naive

empirical comparisons of savings rates or commitment products between single and married

households are likely to be confounded by selection into marriage.9 A sharper empirical dis-

tinction between these competing theories comes from looking at commitment technologies

designed to prevent unilateral consumption deviations by individual household members. A

chief example is saving in the form of assets that require the approval of both spouses to

draw against. If the household members source of time inconsistency comes only from time

preferences then this will not alter consumption and savings decisions at all. However joint

approval for withdrawals will force the household members to bargain over the level of total

consumption and any efficient bargaining solution will fully internalize the benefits of savings.

Several of the most important household saving assets require joint approval to withdraw or

borrow against. As a primary example, the 1984 Retirement Equity Act revised the rules

governing all retirement plans covered by the 1974 Employee Retirement Income Security Act

(ERISA) to require exactly this form of joint approval. This covers all assets held by married

households in 401(k) plans, IRA accounts, and defined benefit plans and thus accounts for the

bulk of US retirement savings outside of housing. The presence of these laws suggest that law

makers were trying to remedy a savings problem due to suboptimal unilateral withdrawals.

Aura (2005) shows that the passing of these laws did in fact increase savings for households af-

fected by this law change. Similarly, joint ownership of a house prevents a household member

borrowing against home equity savings without the approval of his spouse.10

Time inconsistency within the household may also arise from each household member hav-

ing different discount rates.11 Jackson and Yariv (2011) study this problem in a generalized

9As an example, if selection in the marriage market implies that individuals with more hyperbolic time

preferences remain unmarried then we may observe the same savings patterns and demand for commitment

products for single and married households despite the fact that married households demand comes from

misaligned preferences within the household.
10In community property states within the US joint approval is required even when the deed is held in the

name of one spouse.
11Schaner (2011) provides evidence that the difference of time preferences within the household can affect
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setting and show that the time inconsistency problem persists even if household members are

forced to bargain efficiently each period. Thus savings in assets with joint approval would not

solve this problem and thus is unlikely to explain the prevalence of this commitment feature

either.

The theory also suggests that household members will have a different propensity to

consume out of wealth depending on whether it is shared with their spouse or not. If one

member secretly receives income that the other is unaware of (and they are able to consume

privately) then the permanent income hypothesis will apply and the effect on consumption will

be smoothed over time. However wealth shocks that are known by all household members

will exhibit a higher marginal propensity to consume as each member strategically tries

to claim a higher fraction of the shared resource. Evidence for this variation in marginal

propensity to consume is provided by Goldberg (2011) who conducts an experiment in rural

Malawi in which she studies the consumption decision of individuals who win a raffle. She

randomly varies whether a raffle winnings are received publicly or privately and shows that

individuals for whom the raffle is publicly observed have a marginal propensity to consume

out of wealth in the first week that is 35% percent higher. The random assignment of

information condition rules out any explanation due to time preferences. Similarly, Asraf

(2009) conducts an experiment on households in the Philippines and shows that the decision

to consume or save out an income shock depends on whether the shock is privately observed

by one household member or common knowledge to both.

The theory in this paper can also be distinguished from time inconsistency due to hy-

perbolic time preferences with respect to the over consumption durable goods. Evidence for

hyperbolic time preferences suggests that utility as close as one month away or less is heavily

discounted (see for example Frederick et al 2002 and Shapiro 2005). Thus these preferences

explain deviations towards goods and services that provide instant gratification. The ten-

dency to over consumption of durable goods such as sports cars, jewelry, sports equipment,

the decision to save in seperate or joint accounts.
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and luxury clothes is therefore inconsistent with this hyperbolic individual discount rates.

Such purchases are however consistent with the theory in this paper since both household

members wish to smooth their own consumption over time. Moreover if durable good pur-

chases are costly to reverse then they provide a way for each household member to credibly

achieve a stackelberg leader advantage over their partner. Part of the strategic incentive to

make such purchases will be lowering the consumption of a member’s partner. By extension of

the same argument we should expect to see commitment mechanisms, such as intrahousehold

punishments directed to limiting these purchases.

The model also predicts that the way assets are held within the household can be used

to address the tendency to over consume. For example, in the base model the household

may be able to achieve an optimal consumption path if wealth is held separately.12 The

division of accounts within the household cannot be understood as a solution to hyperbolic

time preferences of household members. Survey evidence suggests that separate accounts

are used by many US household Grose (2011). They are also common outside of the US

as well. For example a 2006 survey of Japanese wives found that fifty percent held secret

savings (referred to in Japan as "hesokuri") (see Alexy 2007). Anderson and Baland (2002)

show that participation in rotating savings and credit associations within Kenya is largely

accounted for by married women, suggesting it is a strategy to protect savings from her

husbands consumption demands.

VII Conclusion

This paper introduces a model of household consumption and savings in which household

members have imperfectly aligned altruistic preferences. I show that the household is un-

able to achieve the optimal consumption path without commitment and have computed the

12This solution may breakdown if household members cannot commit ex-ante not to make intra-housheold

transfers. Once public consumption is introduced seperate accounts can also be rendered ineffective if members

can freeride on the provision of the public good from each other.
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amount that the household would willing to pay for commitment. For example, punishment

strategies between the household members or separate bank accounts for each member may

improve the efficiency of the consumption path if they are credible. In addition, saving in the

form of assets that require joint approval for withdrawal may also alleviate the problem. A

formal consideration of these strategies using the framework provided here is left for future

work.
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VIII Appendix

A Non-Cooperative Equilibrium Household Consumption with Log Utility

This section of the Appendix solves for subgame perfect equilibrium non-cooperative

household consumption decisions. I solve a generalized model in which both members have

a period utility function that places weight  on the utility from private consumption and

1 −  on the utility from public consumption  as introduced in Section IV. I also allow

individual members to have a hyperbolic discount factor Ψ (as introduced in Section IV).

The results for the rest of the paper will be special cases of the results I find here where  = 1

and/or Ψ = 1.

A-1 Equilibrium at  = 

In the final period  =  member  takes  and  as given and solves the

following problem:

max
 

 [ ln + (1− ) ln ( + )] (35)

+(1− ) [ ln + (1− ) ln ( + )]

subject to



2
−  − ≥ 0 and (36)

  ≥ 0. (37)

Since (35) is strictly increasing in  and  it follows that (36) will bind with equality

and hence can be substituted into the objective. Ignoring terms which  takes as given we
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can rewrite her problem as

max


 ln

µ


2
−

¶
+ (1− ) ln ( + ) (38)

subject to



2
− ≥ 0 and (39)

 ≥ 0 (40)

Start by ignoring the boundary conditions (39) and (40) on  . The first order condition

for the unconstrained problem rearranges to give:

 =
(1− ) 

2
− 

1−  (1− )
 (41)

Since the objective is strictly concave in  , using the boundary conditions (39) and (40)

on  gives that ́’s unique best response to any possible choice of  ≥ 0 is


 ( ) =

(




2
− if  ≤ 1−




2

0 if   1−




2

)
(42)

where  ≡ 1− 

1−  (1− )
 0 and

 ≡ 

1−  (1− )
∈ (0 1) 

Note that 
 ( ) is weakly decreasing and hence the most that  will spend on public

consumption is


 (0) =

1− 

1−  (1− )



2

which is strictly less than the upper bound 

2
since   0. Thus ((39)) can be ignored.

Note that 
 (0)  0 and hence  =  = 0 cannot be a Nash equilibrium. If

 ≥ 


then ∗

 = 


2
and ∗

 = 0 is a Nash equilibrium. In this case

equilibrium, private consumption will be

∗ = (1−  )


2
and ∗ =



2


Since    1 then this equilibrium is unique. A symmetric argument, applies when

 ≤   . Finally, if  ∈
³
  





´
then there is an interior nash

equilibrium. This is found by substituting the interior portion of ’s reaction function into

the reaction function of :

∗
 =

 − 

1−



2

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To total expenditure on public consumption in this interior solution is

∗
 =

µ
 (1− ) +  (1− )

1−

¶


2


The equilibrium level of private consumption in this interior solution is

∗ =

µ
1−  − 

1−

¶


2


Thus the equilibrium value of member ’s objective function is

 = ln + 

where  is a constant term that depends on parameters in the following way

 ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∙
 ln (1−  )

+(1− ) ln ( )− ln 2 if  ≤  ⎡⎢⎢⎢⎢⎣
 ln

³
1− − 

1−

´
+(1− ) ln

³
1− − 

1−

´
+(1− ) ln

µ
 (1− )+ (1− )

1−

¶
− ln 2

if  ∈
³
  





´
∙
(1− ) ln (1−  )

+(1− ) ln ( )− ln 2 if  ≥ 



⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


A-2 Solve for Subgame Perfect Consumption Path by Induction

I conjecture the following form for the subgame perfect household allocation.

Conjecture 1 The subgame perfect equilibrium housheold allocation from  until  is pro-

portional to . That is, for any period  ∈ {1  } the subgame perfect equilibrium levels
of private and public consumption can be written as ∗+ = + and ∗

+ = +

for  ∈ {0 1   − } where + and + are strictly positive constants independent of
.

I will establish this conjecture by induction below. Consider the problem that each house-

hold member faces in period    . Member  takes  and  as given and solves the

39



following:

max


 ln + (1− ) ln ( +) + (1− ) ln (43)

+Ψ

−X
=1





£
 ln

∗
+ + (1− ) ln

∗
+ + (1− ) ln

¡
∗

+

¢¤
subject to

+1 = 
1
 ( −  −  − −) , (44)



2
−  − ≥ 0, (45)

 ≥ 0, and (46)

 ≥ 0. (47)

Conjecture 1 implies that

Ψ

−X
=1





£
 ln

∗
+ + (1− ) ln

∗
+ + (1− ) ln

¡
∗

+

¢¤
= +1 ln+1 + 

where +1 ≡ Ψ

−X
=1





and  is a constant. In equilibrium the budget constraint will bind. Log utility will ensure

∗  0 in equilibrium and hence (46) can be ignored for now and verified later. Ignoring

terms that ́ takes as given in  and substituting (44) into the objective, ’s problem can be

rewritten as

max


 ln + (1− ) ln ( +) (48)

++1 ln ( −  −  − −)

subject to



2
−  − ≥ 0 and (49)

 ≥ 0. (50)

Start by ignoring (49) and (50). The first order conditions for the unconstrained problem are

 :




− +1

 −  −  − −

= 0 (51)

 :
1− 

 +

− +1

 −  −  − −

= 0 (52)

The first order condition for  implies that

 =  + =
1− 

1− + +1
[ −  − ]  (53)
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Hence for any given level of , , and  both members agree on the optimal level of .

Since it is funded jointly they are indifferent as to who pays for it. Equation (51) implies

 =  [ −  −]  (54)

where  ≡ 

+1 + 
∈ (0 1) 

Substituting ’s analog of (54) into ((54)) gives

 =
 (1− )

1− 
[ −]  (55)

Combining (53) and (55) gives the equilibrium level of public consumption

∗
 =

Ã
1− 

1 + ∆+Ψ
P−

=1 



!
 (56)

Combining (55) and (56) gives the equilibrium level of private consumption for each member

∗ =

Ã


1 + ∆+Ψ
P−

=1 



!
 (57)

Equilibrium total expenditure is thus

∗
 = ∗

 + ∗ + ∗ =

Ã
1

1 + Ψ
1+∆

P−
=1 




!
 (58)

These solutions were derived for the unconstrained problem ignoring (49) and (46). The

expression for ∗ in (57) demonstrates that (46) is slack. It just remains to show that (49)
is not violated for either household member. First note that ∗

   for any    and

hence the expenditure limit can at most be violated for one household member. Since both

members agree on the level of public consumption and are indifferent who pays for it then

(49) will be satisfied if and only if ∗ ≤ 

2
for both members. This requires

 ≤ 1 + ∆+Ψ
P−

=1 



2


This constraint is more restrictive the higher is  and hence holds in every period if it is true

for the household member with the largest  in period  =  − 1. This requires

max { } ≤ 1 + ∆+Ψ
1


2

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Using the fact that ∆ =  +  − 1 this re-arranges to

| − | ≤ 1− +Ψ
1



 (59)

I assume (59) holds and hence (49) is also slack. Thus, conditional on Conjecture 1 being

true (56), (57) and (58) are the unique subgame perfect equilibrium consumption choices.

The final step of the derivation is to prove Conjecture 1 by induction. As the first step,

note that Conjecture 1 is verified for  =  above. Next observe that (56) and (57) give

equilibrium consumption levels that are proportional to . Observe also that using (58) we

can compute +1 as

+1 = 
1


Ã
Ψ

1+∆

P−
=1 




1 + Ψ
1+∆

P−
=1 




!


which is also proportional to. By extension of (56) and (57) this implies that
∗
+1 

∗
+1 

∗
+1

are also proportional to . The same argument applies for any period   . Hence this

establishes Conjecture 1 by induction.

B Solution to Household Allocation with Full Commitment

This section of the Appendix solves for the full commitment Pareto optimal household

allocation. I solve a generalized model in which both members have a period utility function

that places weight  on the utility from private consumption and 1 −  on the utility from

public consumption  as introduced in Section B. Also, I allow individual members to have

a hyperbolic discount factor Ψ as introduced in Section C. The results for the rest of the

paper will be special cases of the results I find here where  = 1 and/or Ψ = 1.

The problem is to solve

max
{}=

=1

Π = 1 + (1− )1 (60)

subject to 1 −
−1X
=0

−

 [1+ + 1+ +1+] ≥ 0 and (61)

{ }=

=1
≥ 0. (62)

The objective of this problem can be re-written as

Π = (1− )1 + 1 (63)

where  ≡  +  (1−  − ) (64)
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using the expressions for 1 and 1 (63) becomes

Π = (1− )

"
ln1 +Ψ

−1X
=1



 ln1+

#
(65)

+

"
ln1 +Ψ

−1X
=1



 ln1+

#

+(1− )

"
ln1 +Ψ

−1X
=1



 ln1+

#


I will start by ignoring the non-negativity constraints in (62) and verify that these hold later.

Writing the Lagrangian for the remaining problem with Γ ≥ 0 being the multiplier on the
resource constraint we have

max
{}=

=1

(1− )

"
ln1 +Ψ

−1X
=1



 ln1+

#
(66)

+

"
ln1 +Ψ

−1X
=1



 ln1+

#

+(1− )

"
ln1 +Ψ

−1X
=1



 ln1+

#

+Γ

"
1 −

−1X
=0

−

 [1+ + 1+ +1+]

#


The first order conditions give the optimal level of expenditure on each type of consumption

in every period as a function of Γ:

1 : ∗∗1 =
(1− )

Γ
(67)

1+ : ∗∗1+ =
(1− )Ψ




Γ−



(68)

1 : ∗∗1 =


Γ
(69)

1+ : ∗∗1+ =
Ψ




Γ−



(70)

1 : ∗∗
1 =

1− 

Γ
(71)

1+ : ∗∗
1+ =

(1− )Ψ



Γ−



(72)

where  ∈ {1 2   − 1} and “**” indicates solution to the full commitment problem. In
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the first period, the optimal level of total expenditure is

∗∗
1 = ∗∗1 + ∗∗1 +∗∗

1 =
1

Γ
 (73)

For any period after the first, the optimal level of total expenditure is

∗∗
1+ =

Ψ



Γ−



 (74)

Since the optimal allocation will exhaust the household budget constraint it must be that

1 = ∗∗
1 +

−1X
=1

∗∗
1+





=
1

Γ

"
1 +Ψ

−1X
=1





#

which implies that

Γ∗∗ =
1 +Ψ

P−1
=1 




1

 (75)

Combining (75) with (73) and (74) gives

∗∗
1 =

1

1 +Ψ
P−1

=1 



1 (76)

and for   1

∗∗
 =

Ψ
−1


1 +Ψ
P−1

=1 




−1
 1

Note that under the full commitment allocation household wealth evolves as

 = 
−1
 1 −

−1
 ∗∗

1 −
−1X
=2


−
 ∗∗



= 
−1
 1Ψ

" P−1
=−1 




1 +Ψ
P−1

=1 



#

and so


−1
 1 =



Ψ

Ã
1 +Ψ

P−1
=1 


P−1

=−1 



!


Hence for   1, ∗∗
 can be re-written as

∗∗
 =

Ψ
−1


1 +Ψ
P−1

=1 





Ψ

Ã
1 +Ψ

P−1
=1 


P−1

=−1 



!

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This simplifies to

∗∗
 =

1

1 +
P−

=1 



 (77)

This fully describes the total level of consumption each period under full commitment. The

optimal levels of ∗∗, 
∗∗
, and ∗∗

 follow immediately by using (67) through (72) to get

the following constant consumption shares within each period.

∗∗
∗∗



= (1− )

∗∗
∗∗



= 

∗∗


∗∗


= 1− 

Note that the optimal solution satisfies (62).

C Representative Agent

This section of the Appendix solves the problem of the representative agent without

commitment. Since the representative agent is allowed to have hyperbolic time preferences

I study for the subgame perfect equilibrium path ∗
 where the agent rationally anticipates

the consumption choices she will make later in life (i.e. does not naively and incorrectly

expect to follow the optimal consumption plan for the rest of her life). The goal is to find

values for  and Ω that ensure 
∗
 = ∗

 in every period.

C-1 Equilibrium Consumption

In the final period  =  the representative agent will optimal consume all remaining

wealth

∗
 = 

In order to solve for equilibrium consumption choices for all    I make the following

conjecture.

Conjecture 2: The subgame perfect equilibrium household allocation of the representative

agent from  until N is proportional to . That is, for any period  ∈ {1  }
the subgame perfect equilibrium levels of  can be written as ∗

+ = + for  ∈
{0 1   − } where + are strictly positive constants independent of .

I establish Conjecture 2 by induction. Consider the problem that the representative agent
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faces in period   

max


ln + Ω

−X
=1




 ln

∗
+ (78)

subject to

+1 = 
1
 ( −) , (79)

 ≤, and (80)

 ≥ 0. (81)

I will solve this problem ignoring (80) and (81) and verify that these are satisfied at the

end. Using Conjecture 2, substituting (79) into the objective function, and ignoring constant

terms transforms the problem to

max


ln + Ω

−X
=1




 ln ( −)  (82)

The first order condition for this problem is

1

∗


− Ω

P−
=1 





 −∗


= 0

Which can be rearranged to give the equilibrium consumption choice of the representative

agent in any period as

∗
 =

1

1 + Ω

P−
=1 





 (83)

I can now prove Conjecture 2 by induction. First, observe that it is verified for  = 

above. Next, observe that (83) shows that ∗
 is proportional to. Moreover, since wealth

will evolve under these equilibrium choices as

+1 =


1
Ω

P−
=1 





1 + Ω

P−
=1 







then +1 is also proportional to . By extension of (83) this implies 
∗
+1 is proportional

to  and so on for all
©
∗

+

ª−
=1

. This establishes Conjecture 2.

C-2 Equivalence with Household Equilibrium

Comparing (58) and (83) we see that ∗
 = ∗

 if

 =  and Ω =
Ψ

1 + ∆
 (84)
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To establish that (84) is a necessary condition consider what is required to achieve equivalence

in  =  − 1 and  − 2. This requires

 =  − 1 : Ω
1

 =

Ψ

1 + ∆


1
 and (85)

 =  − 2 : Ω

h


1

 + 

2



i
=

Ψ

1 + ∆

h


1
 + 

2


i
 (86)

To satisfy (85) it must be that

Ω =
Ψ

1 + ∆

µ




¶ 1


 (87)

Substituting (87) into (86) gives

Ψ

1 + ∆

µ




¶ 1
 h


1

 + 

2



i
=

Ψ

1 + ∆

h


1
 + 

2


i
which upon simplification uniquely requires  =  and therefore implies that Ω =

Ψ
1+∆

must also hold. Thus (84) is a necessary condition for equivalence if   2 and finite. Note

that if  = 2 then any combination of Ω and  that satisfies (87) is sufficient and (84) is

therefore not a necessary condition. This establishes Proposition 2.

D CRRA Utility

In this section of the Appendix I analytically characterize the non-cooperative equilibrium

levels of household consumption. I then characterize the solution to the associated planners

problem with full commitment. Finally, I characterize the solution for the representative

agent with CRRA utility and establish equivalence in the symmetric case where  = .

Since these steps mirror many of the proofs in the first three sections of the Appendix I keep

derivations brief. To simplify notation let  = 1

.

D-1 Non-Cooperative Equilibrium Household Consumption with CRRA Utility

To start I conjecture a form for the value function of each member in any.

Conjecture 3: The subgame perfect equilibrium household allocation when member’s have

CRRA utility gives rise to a value function for member  in period of the form

 () =
Υ

1− 


1−


where Υ is a positive constant independent of .

Conjecture 3 will be proved by induction. Consider the problem faced by member  in

period  using the assumed form of the value function for period + 1. They will choose 

taking  as given to solve
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max




1− 
()

1−
+
1− 

1− 
()

1−
+ 

1

Υ+1

1− 


1−
+1 (88)

subject to

+1 = 
1
 ( −  − ) , (89)

 ≤ 

2
, and (90)

 ≥ 0. (91)

Start by ignoring (90) and (91). Substituting (89) into (88) and ignoring terms that  takes

as given allows us to rewrite her problem as

max




1− 
()

1−
+ 

1


1−


Υ+1

1− 
( −  − )

1−


The first order condition is


−
 − 

1


1−
 Υ+1 ( −  − )

−
= 0

Rearranging this gives ́’s best response to any :

 = ( − ) (92)

where

 =
1

1 +

µ

1
 

1−
 Υ+1



¶ 1


∈ (0 1) (93)

Solving both members best response functions simultaneously gives the subgame equilibrium

consumption choices of

∗ =
(1−)

1−

 (94)

Total equilibrium consumption in period  is thus

∗
 =

∙
 + − 2

1−

¸
 (95)

Using (95) gives that in equilibrium household wealth evolves according to

+1 = 
1


µ
1− − +

1−

¶
 (96)

Putting (94) and (96) into (88) we can write the value function for both member  in

period :

 () =
Υ

1− 


1−
 (97)
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where

Υ = 

µ
(1−)

1−

¶1−
(98)

+(1− )

µ
(1−)

1−

¶1−
+

1
Υ+1

µ


1


µ
1− − +

1−

¶¶1−


In the final period equilibrium consumption will be

∗ =


2
for  =  (99)

Thus the value function for each household member in the final period is:

 ( ) =
Υ

1− 
( )

1−
where Υ =

µ
1

2

¶1−
 (100)

This verifies Conjecture 3 for  =  . Moreover, (98) and (98) show that conditional on the

conjecture being true for + 1 then it is also true for . Hence this establishes Conjecture 3

by an argument of induction.

Note that (100) defines Υ . Using Υ and (98) fixes Υ−1. By the same argument
a recursive application of (98) fixes the entire series {Υ}

=1
for  = . This series and

(93) then fixes the entire series {}

=1
for  = . And this using (94) and (95) fixes the

entire series of equilibrium consumption decisions
©
∗
ª

=1
for  =  and {∗

 }

=1.

Finally, we need to check that the constraints (90) and (91) are satisfied. The solution

for optimal consumption demonstrates that (91) is satisified. Since
∗


is increasing in  it

is sufficient to show that (90) holds for  =  − 1 for both members. Using (94), we have
that

∗−1
−1

≤ 1
2
if and only if

−1 (2−−1) ≤ 1 (101)

Note that using (100) and (93) gives that

−1 =
1

1 +

µ

1
 

1−


21−

¶ 1


 (102)

Observe that −1 is strictly increasing in  and so ensuing (101) holds for the member

with highest  will be necessary and sufficient. Combining (101) and (102) and rearranging

gives

()
1
 − ()

1
 ≤

Ã


1


1−


21−

! 1


 (103)
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Since (103) must hold for both members we require

¯̄̄
()

1
 − ()

1


¯̄̄
≤
Ã


1


1−


21−

! 1


 (104)

Note that when  = 1 (i.e. the log utiltiy case) (104) reduces to (8). Since we assume

paramters satisfy this condition this verifies that (90) is satisified everywhere along the equi-

librium consumption path.

D-2 Full Commitment Consumption Path with CRRA Utility

I now characterize the full commitment consumption path in the case where both members

have CRRA period utility functions. I do this by supposing that 1 is divided between

member  and  so that  receives (1− )1 and  receives 1 where  is defined

in (64). For both members the optimal path of consumption will be characterized by the

standard envelope condition:



∆

⎧⎪⎨⎪⎩
¡
∗∗ +∆

¢
1− 

1−
+ 

1


³
∗∗+1 −

1
∆
´

1− 

1−⎫⎪⎬⎪⎭
∆=0

= 0 (105)

which simplifies to give the standard Euler equation relating the optimal choice of consump-

tion in one period to the next:

∗∗+1 = ()
1
 ∗∗  (106)

Equation (106) implies that

∗∗ = ()
−1
 ∗∗1 (107)

Since the optimal allocation must exhaust the wealth allocated to  it must be that

∗∗1 +
∗∗2


1


+
∗∗3


2


+ +
∗∗


−1


= (1− )1

which in combination with (107) gives that

∗∗1 =
(1− )1P−1

=0 
where  ≡ ¡1−¢ 1

  (108)

Combining (108) and (107) gives the optimal level of consumption for member  in every

period

∗∗ = ()
−1


"
1− (1−) 1



1− (1−)

#
(1− )1 (109)
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By symmetry, the full commitment solution for  is

∗∗ = ()
−1


"
1− (1−) 1



1− (1−)

#
1 (110)

Adding (109) and (110) gives the optimal level of total household consumption in each period:

∗∗
 = ()

−1


"
1− (1−) 1



1− (1−)

#
1 (111)

This fully characterizes the optimal allocation for the household when both members have

CRRA period utility functions.

D-3 Representative Agent with CRRA Utility

I establish the equivalance of the representative agent and the symmetric non-cooperative

household ( = ) by finding necessary and sufficent conditions on  and Ω. To start, I

make the following supposition:

Supposition 1: Suppose that for some  ∈ {1  − 1}the representative agent and a sym-
metric household have the same consumption path from +1 onwards (conditional on starting

+ 1 with the same wealth).

The consumption path of the representative agent can be written as

{∗
 }=

=+1 =
©

+1+1 


+2+1  


+1

ª
 (112)

Supposition 1 implies that for both 

©
∗

ª=

=+1
=

½

+1

2
+1


+2

2
+1 




2
+1

¾
 (113)

Anticipating a consumption path of (112) for any wealth left into period + 1 the repre-

sentative agent will choose  to solve

max


()
1−

1− 
+ Ω

"
−X
=1






¡

+

¢1−# (+1)
1−

1− 

subject to +1 = 
1
 ( −)

Substituting the constraint into the objective reduces the representative agent’s problem to

max


()
1−

1− 
+ Ω

"
−X
=1






¡

+

¢1−# ³ 1
 ( −)

´1−
1− 
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which can be re-written as

max


()
1−

1− 
+

Ω

1− 
Υ+1 ( −)

1−

where

Υ+1 ≡ 
1−


−X
=1






¡

+

¢1−
 (114)

The first order condition for the representative agent’s problem is


−
 −ΩΥ+1 ( −)

−
= 0

and can be simplified to give the choice of conumption in period  of:

∗
 =

1

1 + (ΩΥ+1)
1


 (115)

Now consider the problem faced by household member  in period  anticipating a consumption

path of (113) to follow in +1 onwards conditional on the level of wealth+1. She will take

 as given and choose  to solve

max




1− 
()

1−
+
1− 

1− 
()

1−
+

"
−X
=1





µ

+

2

¶1−#
(+1)

1−

1− 

subject to +1 = 
1
 ( −  − ) 

Substituting the constraint into the objective reduces member ’s problem to

max




1− 
()

1−
+
1− 

1− 
()

1−
+

"
−X
=1





µ

+

2

¶1−# ³ 1
 ( −  − )

´1−
1− 

which can be re-written as

max




1− 
()

1−
+
1− 

1− 
()

1−
+

Υ+1

1− 
( −  − )

1−

where

Υ+1 ≡
µ
1

21−

¶


1−


−X
=1





¡

+

¢1−
=

µ
1

21−

¶
Υ+1 (116)

The first order condition is


−
 −Υ+1 ( −  − )

−
= 0
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By an argument of symmetry it must be that ∗ = ∗ and so this can be simplified to give

∗ =
1

2 +
³
Υ+1



´ 1




Since the household is symemtric, total household expenditure in period  will be twice ∗:

∗
 =

2

2 +
³
Υ+1



´ 1


 (117)

Equating (115) and (117) shows that, conditional on starting the period with , the

representative agent will have the same level of consumption as the household in period  if

and only if

2ΩΥ+1 = Υ+1 (118)

Using (114) and (116) we can rewrite (118) as

2Ω

−X
=1






¡

+

¢1−
=

−X
=1





¡

+

¢1−


Equating terms, this will hold if

 =  and Ω =
1

2
(119)

To show that (119) are necessary conditions, note that If  = 2 then any combination of

Ω and  for which 2Ω
1

 = 

1
 will satisify this. If   2 then for this to be true in

every period requires

 =  − 1 : 2Ω
1

 = 

1
 (120)

 =  − 2 : 2Ω

h


1



¡

−1

¢1−
+ 

2



¡



¢1−i
= 

1


¡

−1

¢1−
+ 

2


¡



¢1−
(121)

Substituting (120) into (121) shows that for both to hold requires  = . With (120) this

gives Ω =
1
2
is and demonstrates that (119) is necessary and sufficient whenever   2.

If these conditions hold then Suppostion 1 can be proved by induction. Note that the

Supposition is true for  =  − 1 since all remaining wealth is consumed in the final period
for both the representative agent and the non-cooperative household (i.e. 

 = 1). This

proof then establishes the conjecture for  =  − 2 and so on by iteration. This establishes
Proposition 3.
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E Consecutive Consumption Choices

This section of the Appendix solves for the unique equilibrium consumption path in the

consecutive move version of the model introduced in Section V of the paper.

E-1 Equilibrium at  = 

In the final period member  will optimally consume all remaining wealth:

∗ =
f  (122)

Anticipating (122), member  will choose  to solve

max


 ln + (1− ) ln ( −  ) (123)

subject to  ≥ 0 and (124)

 −  ≥ 0. (125)

Ignoring (124) and (125) since they will not bind at the optimal choice, ’s consumption

choice is characterized by the first order condition



∗

− 1− 

 − ∗

= 0 (126)

Rearranging (126) and combing with (122) gives the equilibrium consumption levels for 

and  in  =  :

∗ =  and (127)

∗ = (1− )  (128)

And total equilibrium consumption in  =  is simply

∗
 = . (129)

E-2 Solve for the Subgame Perfect Consumption path by Induction

I conjecture the following form for the subgame perfect household allocation.

Conjecture 4: The subgame perfect equilibrium household allocation from  until  is

proportional to . That is, for any period  ∈ {1  } the subgame perfect equilibrium
levels of ∗ and ∗ can be written as ∗+ = + for  ∈ {0 1   − } where
+ are strictly positive constants independent of .

I establish Conjecture 4 by induction. The problem that member  solves in any period
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 taking f as given is:

max


 ln +

−X
=1





£
(1− ) ln

∗
+ +  ln

∗
+

¤
(130)

subject to

+1 = 
1


³f − 

´
, (131)

 ≥ 0, and (132)f −  ≥ 0. (133)

Conjecture 4 implies that

−X
=1





£
(1− ) ln

∗
+ +  ln

∗
+

¤
= +1 ln+1 +  (134)

where

+1 ≡
−X
=1



 (135)

and  is a constant. In equilibrium (132) and (133) will not bind and hence I ignore those

constraints and verify this later. Using (134) in (130) and substituting in the intertemporal

budget constraint (131) allows me to simplify ’s problem to:

max


 ln + +1 ln
³f − 

´


The first order condition is




− +1f − 

= 0

which gives ’s best response for any given level of f:

e∗ = 

 + +1

f (136)

Note that (136) verifies that (132) and (133) are satisified in equilibrium.

Member  will anticipate (136) and choose  to solve

max


 ln + (1− ) ln e∗ + −X
=1





£
 ln

∗
+ + (1− ) ln

∗
+

¤
(137)

subject to (136),

+1 = 
1


³
 −  − e∗´ , (138)

 ≥ 0, and (139)

 −  ≥ 0. (140)
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I ignore (139) and (140) and verify that they are satisified at the end. Using the analog

of (132) for  and substituting (138) and (136) into (137) we rewrite ’s problem (ignoring

constants) as:

max


 ln +
¡
(1− ) + +1

¢
ln ( − ) 

The first order condition is



∗


− (1− ) + +1
 − ∗



= 0

Which gives ’s optimal consumption choice as

∗
 =



1 + +1
 (141)

Note that (141) demonstrates that (139) and (140) are satisfied as conjectured. Substituting

(141) into (136) gives ’s equilibrium consumption choice as a function of :

∗
 =



 + +1

µ
1 + +1 − 

1 + +1

¶
 (142)

Adding (141) and (142) gives the equilibrium level of total consumption in period :

∗
 =

Ã
1

1 +
P−

=1 



!Ã
 + ( + )

P−
=1 




 +
P−

=1 



!
 (143)

Note finally that Conjecture 4 was verified about for the case of  =  . Moreover (141)

and (142) demonstrate that it is true for  =  − 1 and so on by iteration. This establishes
Conjecture 4 by induction.

E-3 Comparison of Consecutive and Simultaneous Move Equilibria

Comparing (14) to (143) gives

∗


∗


=
Σ2 + (1 + )Σ + 

Σ2 +
³


+

+ ( + )
´
Σ + 

where Σ ≡
P−

=1

h


1


i
. Taking the limit of this ratio as  →∞ requires finding

lim
→∞

∗


∗


= lim
→∞

Σ2 + (1 + )Σ + 

Σ2 +
³


+

+ ( + )
´
Σ + 


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Since both the numerator and denominator tend to infinity we can apply L’Hopital’s rule to

get

lim
→∞

∗


∗


= lim
→∞

Σ

(2Σ + (1 + ))

Σ


³
2Σ +


+

+ ( + )
´

= lim
→∞

2Σ + (1 + )

2Σ +


+
+ ( + )



Again both the numerator and denominator tend to infinity so we can re-apply L’Hopital’s

rule to get

lim
→∞

∗


∗


= lim
→∞

2Σ + (1 + )

2Σ +


+
+ ( + )

= lim
→∞

2Σ


2Σ


= 1

This establishes Proposition 7.
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Figure 1 
Equilibrium and Full Commitment Consumption Path 

This plot shows the equilibrium level of total household expenditure in every period without commitment X*
t and the 

optimal full commitment consumption path X**
t. It is drawn using the following parameters: Initial household wealth is 

W1=3,000,000, the exponential discount factor is =0.95, the gross interest rate is R=1/0.95, the household exists for 
T=50 years and there are N=1 period within each year. The figure compares the scenario where household members 
place weight on their own utility of  =0.6 and  =0.7.  
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Figure 2 
Comparative Statics: The Value of Commitment 

These plots show the fraction of W1 that the household would be willing to pay at t=1 to achieve the full commitment 
consumption path. Due to log additive utility functions this fraction is invariant to the choice of W1. Each panel shows 
how the value of commitment varies with: == the weight household members place on their own utility (Panel A); 
 the discount factor of each household member (Panel B), the weight member A places on her own utility holding 
ΔA +B - 1=0.2 constant. Apart from the variable on the x-axis, each plot is drawn using the following parameters: 
the weight both household members place on their own utility is  =0.6, their exponential discount factor is 
=0.95, the gross interest rate is R=1/0.95 and the household exists for T=50 years with N=1 periods per year.  
 

Panel A: The Value of Commitment and the Weight on Own Utility  

 
 

Panel B: The Value of Commitment and Household Member Discount Factor  
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Figure 3 
Household with CRRA Preferences 

These plots study how changing the EIS varies the consumption path and value of commitment for the household. 
Each panel is drawn using the following parameters: Initial household wealth is W1=3,000,000, A=B=0.6, exponential 
discount factor is =0.95, the gross interest rate is R=1/0.95, the household exists for T=50 years and there are N=1 
period within each year. Panel A shows the equilibrium level of total household expenditure in every period without 
commitment X*

t for values of EIS of 0.5, 1, and 1.5 as well as the optimal full commitment consumption path X**
t.(it is 

the same for all three parameters). Panel B shows how the value of commitment varies with the EIS. 
 

Panel A: Consumption Paths for Different Values of EIS 
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Figure 4 
The Value of Commitment with Public Consumption 

This plot shows the fraction of W1 that the household would be willing to pay at t=1 to achieve the full commitment 
consumption path for different values of  Due to log additive utility functions this fraction is invariant to the choice of 
W1. It is drawn using the following parameters: the weight both household members place on their own utility is =0.6, 
their exponential discount factor is =0.95, the gross interest rate is R=1/0.95 and the household exists for T=50 years 
with N=1 periods per year.  
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Figure 5 
Comparative Statics: The Value of Commitment with Hyperbolic Individuals 

These plots show the amount the household would be willing to pay at t=1 (as a fraction of W1) to achieve the full 
commitment consumption path. Due to log additive utility functions this fraction will be invariant to the choice of W1. 
The figure shows how the value of commitment varies with i.e varying both symmetrically). It is drawn for 
individual hyperbolic discount factors of =1 and =0.85 holding other parameters constant at, =0.95, R=1/0.95, 
T=50, and N=1. 
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