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Bargaining over an Endogenous Agenda

Vincent Anesi∗
University of Nottingham

Daniel J. Seidmann†

University of Nottingham

September 20, 2011

Abstract
We present a model of bargaining in which a committee searches over the policy

space, successively amending the default by voting over proposals. Bargaining ends
when proposers are unable or unwilling to amend the existing default, which is then
implemented. We characterize the policies which can be implemented from any initial
default in a pure strategy stationary Markov perfect equilibrium for an interesting class
of environments including multi-dimensional and infinite policy spaces. Minimum-
winning coalitions may not form, and the set of equilibrium policies may be unaffected
by a change in the set of proposers. The set of stable policies (which are implemented,
once reached as default) forms a weakly stable set; and conversely, any weakly stable
set is supported by some equilibrium. If the policy space is well ordered then the
committee implements the ideal policy of the last proposer in a subset of a weakly
stable set. However, this result does not generalize to other cases, allowing us to
explore the effects of protocol manipulation. Variations in the quota and in the number
of proposers may have surprising effects on the set of stable decisions. We also show
that equilibria of our model are contemporaneous perfect ε-equilibria of a related
model of repeated implementation with an evolving default; and that stable decisions
in semi-Markovian equilibria form the largest consistent set.

JEL classification: C78, D71, D72.

Keywords: bargaining, evolving default, stable set.

1 Introduction

The task of a committee is to select a policy to implement from some policy space. As
Compte and Jehiel (2010) note, committees in effect search over the policy space by endoge-
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nously drawing policies/proposals, and implement a proposal according to a stopping rule.
Thus, in conventional noncooperative bargaining models such as Rubinstein (1982) and
Baron and Ferejohn (1989), players propose in sequence, and a policy is implemented once
a winning coalition of players agree to a proposal. In agenda voting models, by contrast,
a default policy is pitted against alternative policies in a sequence of binary votes. This
model is usually justified as a naturalistic representation of procedure in Congressional
committees. However, it may be relevant elsewhere as a model in which the committee
searches by taking a single policy (the current default) seriously at a time; and a policy is
implemented when it can no longer be displaced by an alternative.

We analyze a model of bargaining which marries these two perspectives: the game
starts with an initial default. Players have the opportunity to propose amendments to
the default in a fixed sequence (the protocol). If a winning coalition of voters accepts the
proposal then the default is amended: the committee takes a new policy seriously. The new
default may then in turn be amended. A default is implemented when all of the proposers
have failed to amend it: either because they have chosen not to propose an alternative
or because their proposals have not secured sufficient support from voters. Payoffs in the
game only depend on the policy implemented. The agenda is endogenous in two senses
here: chosen proposals determine both the policies on the agenda and the order in which
they are considered.

This model in fact describes the way that we (a committee of two with a unanimity
quota) have written this paper: we have worked with a running draft (the default), which
we have only changed when we agreed that a new version improved on the default; and
we have only circulated the paper when we have been unable to find any revision which
improves on the current version.

We use an algorithmic technique to characterize the policies which can be reached in a
pure strategy stationary Markov equilibrium from any initial default and for any protocol.
An equilibrium strategy combination defines an outcome function, which determines the
policy implemented from any default, on or off the equilibrium path. We show that the
range of this mapping — i.e. the image of the policy space (the set of possible initial
defaults) — is a weakly stable set in a related simple game. We obtain the related simple
game by restricting the set of winning coalitions to those which contain a proposer; and a
weakly stable set of policies satisfies the same strict internal stability conditions as a (von
Neumann-Morgenstern) stable set, but external stability is weakened to allow for weak
social preference. Conversely, for any closed weakly stable set, we construct equilibria, the
image of whose mapping is exactly that weakly stable set. These observations imply that
the policies which can be implemented is the union of weakly stable sets.
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Equilibria in our model have some striking properties: a winning coalition may amend a
default to a policy which is implemented, leaving all coalition members worse off than at the
initial default; the size principle — according to which only minimum-winning coalitions
should form — may fail; and a player who does not propose may earn all of the surplus
from agreement.

We exploit these results to consider how a committee chair can affect the policy reached
from a given default by changing the protocol for a fixed set of proposers. Changing
protocols may affect the policy reached from a given default. However, varying the order
in which a given set of proposers move does not affect the set of winning coalitions or
of weakly stable sets; so the image of an equilibrium is unchanged. Accordingly, fix an
equilibrium whose image is a given weakly stable set. If the policy space is well ordered (no
player is indifferent between any two policies) then a chair who proposes cannot improve on
a protocol in which she proposes last; and the protocol does not affect the policy reached
from any default if and only if all proposers top-rank the same policy out of those in the
weakly stable set which are socially preferred to the default. These results do not generalize
to games in which a player may be indifferent between policies where, as we demonstrate,
the chair may be best off proposing first.

Our set theoretic approach also allows us to assess the effect of variations in the quota.
According to a natural conjecture, at least as many initial defaults are implemented, the
larger is the quota. Indeed, more initial defaults might be implemented because coalitions
which could destabilize policies are no longer winning with a larger quota. We provide
conditions for this conjecture to be true; but we also show that the conjecture may be false
because changes in the set of winning coalitions have potentially conflicting effects on the
internal and external stability conditions for a set of policies to be weakly stable.

We end the paper by extending our analysis in two directions:
According to our model, players only receive (undiscounted) payoffs when a policy is

implemented. However, our model has essentially the same game tree as a model without
a stopping rule in which either the current default or an agreed policy is implemented each
round and becomes the new default; and players earn the net present value of the stream
of utilities earned from the implemented policies. One might therefore conjecture that
equilibria in our model are the limit of equilibria in the alternative model with repeated
implementation as players become more patient. This conjecture is true if the policy space
is finite and well ordered. Indeed, equilibrium strategy combinations in our model are
then also equilibria of the related model when players are patient enough. More generally,
we show that, for every ε > 0, an equilibrium strategy combination in our model is a
contemporaneous perfect ε-equilibrium of the model with repeated implementation when

3



players are patient enough.
Any weakly stable set is contained in the largest consistent set. We provide weaker con-

ditions on the stationarity of strategies under which the image of any equilibrium mapping
is a consistent set, and the union of stable policies is contained in the largest consistent
set.

After reviewing the related literature in the next subsection, we present the model in
Section 2. We characterize equilibria in Section 3, and explore how the policy implemented
varies with the protocol and with the set of winning coalitions in Section 4. In Section 5, we
provide micro-foundations for the largest consistent set, and construct contemporaneous
perfect ε-equilibria in games with repeated implementation. We conclude in Section 6, and
briefly discuss variants on our model with bargaining round the table; random protocols;
non-singleton proposals; refinements; and mixed strategy equilibria. We relegate longer
proofs to an Appendix.

Related literature

The literature contains various related models of bargaining with an evolving default in
which a policy is only implemented once negotiations end:

In Bernheim et al (2006), the policy space is finite and well ordered. The default is
amended over a finite number of rounds, and the default at the end of the last round
is implemented. Any Condorcet winner of the original game is implemented if there are
enough proposers or at least one proposer top ranks the Condorcet winner. Bernheim et
al also show that the last proposer’s ideal policy (her own project alone) is implemented
in a pork barrel example without a Condorcet winner. We allow for an infinite number
of rounds, but equilibria in our model with a well ordered policy space also exhibit the
power of the last word for a given weakly stable set. If preferences are generated by the
pork barrel example then there is a unique, singleton weakly stable set, which consists of
a bare majority of projects and may exclude the last proposer’s project; and this policy is
implemented in our model. The analogy between our results relies on our use of backward
induction arguments which, in Bernheim et al’s model, start with the exogenously fixed
last proposal in the tree. Our argument, by contrast, relies on our stopping rule: a default
which is not amended by any proposer is implemented, ending the game. In further contrast
to Bernheim et al, and to the rest of the literature surveyed below, we allow for an infinite
policy space without requiring that it be well ordered (no indifference).

Harsanyi (1974) provides micro-foundations for stable sets by presenting a bargaining
model in which a policy is only implemented when a default is not amended. Each equilib-
rium of this model supports a weakly stable set, as in our model. However, in contrast to
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Bernheim et al (2006) and this paper, a chair selects coalitions which simultaneously pro-
pose policies, and her payoff depends on the number of times that the default is amended.
Harsanyi’s model therefore typically allows several policies to be implemented in equilib-
rium because players and the chair respectively only care about the implemented policy
and the number of amendments.1 By contrast, we are primarily interested in the policy
implemented from a given initial default. Our approach yields much tighter predictions
about the implemented policy, and also allows us to address issues of protocol manipula-
tion. We compare Harsanyi’s model with a variant on our model with a dynamic protocol
in the Appendix.2

Harsanyi argues that stability does not adequately capture social dominance in non-
simple games, where a policy might be indirectly but not directly dominated. Chwe (1994)
picks up this theme, arguing that only policies outside the largest consistent set can be
excluded when players are far-sighted. Chwe also sketches a view of committees akin to our
interpretation, with the important difference that he treats bargaining itself cooperatively.
Our results provide noncooperative foundations for the largest consistent set in simple
games. The contrast to weakly stable sets turns on the stationarity of strategies, rather
than on far-sightedness.

Our model is also related to Baron and Ferejohn’s (1989) open rule game, where pro-
posers can amend the existing default. In contrast to Bernheim et al (2006), this game can
last indefinitely; but, in contrast to our model, the game only ends when a player proposes
moving the previous question. The difference in stopping rules is crucial, as many of our
results rely on backward induction arguments which do not apply to open rule bargaining.

Following Baron (1996), a recent literature has studied equilibria of games with repeated
implementation (as described in the last subsection). The most closely related paper is
Acemoglu et al (forthcoming), which essentially shares our game tree, but allows the set
of winning coalitions to depend on the default.3 Acemoglu et al prove existence when
social preferences are acyclic (their Theorem 2).4 We focus on characterization, rather
than existence results, but explore a much larger class of policy spaces which includes
non-acyclic social preferences. To see why we eschew existence results, consider games
with a well ordered policy space. Any weakly stable set is then stable; so existence of an
equilibrium in our model is equivalent to existence of a stable set in simple games. It is

1Consider, for example, cases in which several policies in a stable set socially dominate the initial
default.

2In contrast to Harsanyi (1974) and this paper, Hortala-Vallve (forthcoming) studies play in a related
model without a stable set.

3Acemoglu et al. allow for some exogenous proposals (and exploit this possibility in their proofs).
4See Duggan and Kalandrakis (2011) and Kalandrakis (2004) and (2010) for existence results in related

models.
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well known that stable sets may not exist, even if the policy space is finite (e.g. when there
are Condorcet cycles), but stable sets have been characterized for some games with infinite
policy spaces, such as three player divide the dollar games.5 More general conditions for
existence remain an open question. We sidestep this issue by characterizing those equilibria
which exist; and this approach allows us to study a much wider class of policy spaces.

Given this approach, Anesi (2010) is related most closely to this paper. Anesi demon-
strates that that any stable set is the absorbing set of some Markov perfect equilibria in
a legislative bargaining game with a finite, well ordered policy space, random proposers
and repeated implementation.6 We extend Anesi (2010) in two respects. First, the model
provides bargaining foundations for (weakly) stable sets in a larger class of environments,
allowing for infinite policy spaces that are not well ordered. Second, we obtain a complete
equivalence between the class of stable sets and the class of absorbing sets of Markov per-
fect equilibria when the policy space is finite and well ordered. Anesi only proved that the
former is a subset of the latter, demonstrating by example that the legislature may choose
policies outside stable sets.7 The latter result turns on the supposition that proposers are
selected randomly. We address the implications of random proposers in our model in the
Conclusion.

Our assumption that the default can be amended recalls a literature (surveyed by
Austen-Smith and Banks (2005)) in which players vote successively over a finite, well
ordered agenda. (Our algorithmic approach highlights the similarities.) This literature has
largely focused on successive elimination and amendment agendas, in which a default is
implemented when it (respectively) beats the next contender and all subsequent contenders.
Duggan (2006) is related most closely to our paper. He assumes that players first add
policies to an amendment agenda according to some protocol, and the committee then
votes over the agenda; so the agenda is endogenous in our sense. In contrast, our model
integrates proposing and voting; a given policy may be repeatedly placed on the agenda,
which need not be finite; and the default is implemented when it has not been amended.8

We follow the literature by considering how a chair could manipulate the agenda - though
in our model, the chair directly manipulates the protocol (the order in which proposers are
recognized) because the agenda itself is endogenous.

5Ordeshook (1986) discusses these issues; Hirai (2009) provides some recent results. More generally,
Lucas (1992) surveys the literature on stable sets.

6Acemoglu et al show (in an online Appendix) that equilibria in their model support the unique stable
set, which coincides with the largest consistent set.

7Anesi (2006) obtained the equivalence between stable sets and absorbing sets of equilibrium processes
of coalition formation (cf. Konishi and Ray (2003)) in a cooperative model of committee voting over a
finite well ordered policy space. Our model provides noncooperative bargaining foundations for stable sets.

8Our model therefore integrates features of successive elimination and amendment agendas.
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2 The model

We consider a finite committee consisting of m ≥ 1 proposers, M ≡ {1, . . . ,m}, and n ≥ 2

voters, N ≡ {1, . . . , n}. The set of committee members, or players, is thus C ≡ M ∪ N .
A player may be both a proposer and a voter, but we also allow for the possibility that
M ∩N = ∅. Our model therefore encompasses agencies (such as the EPA and the FDA)
which consult stakeholders, the FOMC (whose meetings are attended by the nonvoting
Federal Reserve Bank Presidents) and the Supreme Court (where opinions are notoriously
drafted by clerks), as well as committees which restrict deliberation to voters, such as
juries.

Let X be a compact metric space of policies, which may be finite or a subspace of finite-
dimensional Euclidean space. The preferences of each player i ∈ C on X are represented
by a weak order ≽i. Let ≻i and ∼i denote the asymmetric and symmetric parts of ≽i,
respectively. We will say that the policy space is well ordered if every player has a linear
order over X. We assume that preferences are continuous. Specifically:

Assumption A0. Continuous Preferences: For all i ∈ C, and all x ∈ X, the upper and
lower contour sets of x associated with ≽i are closed.

The committee has to reach a collective choice from X, with initial default policy
x0 ∈ X. Decision making takes place as follows. Each of a (possibly) infinite number of
discrete rounds, indexed by t = 1, 2, . . ., starts in the shadow of an ongoing default policy
xt−1. For each possible default x ∈ X, there is a fixed protocol πx : {1, . . . ,mx} → M ,
mx ∈ N, that determines the order in which the proposers (i.e. the players in M) are given
the opportunity to propose policies to amend x = xt−1. That is, when x ∈ X is the current
default, protocol πx allows for mx opportunities to amend x and, for each k ∈ {1, . . . ,mx},
the kth opportunity is given to proposer πx(k) ∈ M . Each proposer i ∈ M has at least
one opportunity to amend the default in every round:

∣∣π−1
x (i)

∣∣ ≥ 1 for all i ∈ M and all
x ∈ X. We denote the collection of protocols by π ≡ {πx}x∈X .

The outcome of a vote depends on the set of winning coalitions of voters W ⊆ 2N \{∅}.
Throughout, we make the following assumption:

Assumption A1. W is

(i) monotonic: S ∈W and N ⊇ S′ ⊇ S implies S′ ∈W; and

(ii) proper: S ∈W implies (N \ S) /∈W.

In words: (i) every superset of a winning coalition is winning, and (ii) a coalition and its
complement cannot both be winning.
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Bargaining is then represented as follows:9

1. If the kth proposer, πxt−1(k), is given the opportunity to make a proposal, she proposes
ytk ∈ X.

2. a) If ytk ̸= xt−1 then ytk is put to an immediate vote against xt−1. Members of N

sequentially vote ‘yes’ or ‘no’ (in an arbitrary order). If the set of players who voted
‘yes’ is an element of W then ytk is accepted; otherwise it is rejected and xt−1 remains
the default.

b) If ytk = xt−1 (i.e. the proposer ‘passes’) then there is no voting and xt−1 remains
the default.

3. a) If ytk ̸= xt−1 is accepted then it displaces xt−1 as the default policy and the round
ends.

b) If ytk ̸= xt−1 is rejected or if there is no voting because ytk = xt−1 and k < mx, then
the game moves to step 2 with k increased by 1; if k = mxt−1 , xt−1 is implemented
and the game ends.

Players only care about the policy which is eventually implemented, rather than the
route from the initial default to the implemented policy. When comparing two different
paths, each player i ∈ C thus prefers the one yielding the best final policy outcome with
respect to ≽i. We assume that bargaining indefinitely makes all players worse off than if
any policy is implemented after a finite number of rounds.10 Let Γ

(
π, x0

)
be the bargaining

game defined by this process.
Following the lead of the previous literature, our main focus will be on subgame perfect

equilibria of Γ(π, x0) in which players use pure stationary Markov strategies. A strategy
consists of two components, one specifying a player’s choice when given the opportunity
to propose, the other specifying a voter’s choice after a proposal is made. In proposal
stages, strategies only depend on the default and the identity of the remaining proposers
in the current round; in voting stages, strategies only depend on the current default, the
proposal just made, votes already cast, and the remaining proposers in the current round.
Unless otherwise stated, we will refer to stationary Markov pure strategy equilibria as
‘equilibria.’11

9A similar bargaining process is used in Acemoglu et al. (forthcoming).
10We make this assumption in order to ensure that the one-shot deviation principle applies even though

the game is not continuous at infinity. We could dispense with this assumption in games with a finite
policy space by supposing that payoffs are discounted by the number of rounds, and that players are
patient enough: such games would be continuous at infinity.

11In Section 5, we will also consider strategies that are measurable with respect to other elements in the
history of the game.
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Our restriction to pure strategies precludes existence in some well known cases, such as
the Condorcet Paradox; in other cases, there may be multiple equilibria. We will discuss the
implications of allowing for mixed strategy equilibria and of refining our solution concept
in the Conclusion.

Any stationary Markov strategy σ generates an outcome function fσ, which assigns
to every x ∈ X and every k ∈ {1, . . . ,mx} the unique final outcome fσ(x, k) eventually
implemented (given σ) when x is the ongoing default and the kth proposer is about to move
(in any round t). Of particular interest is fσ

(
x0, 1

)
as it gives the final policy outcome of

the game from any initial default x0 ∈ X when players act according to σ. As we will often
refer to it in what follows, we will sometimes abuse notation and write fσ

(
x0

)
instead of

fσ
(
x0, 1

)
. The characterization of this function for all possible equilibria of Γ

(
π, x0

)
is

the subject matter of the next section.

3 Equilibrium characterization

3.1 Computation

There are two principal sorts of questions we want to address: the first concerns the
determination of equilibrium behavior and policy outcomes from any initial default; the
second concerns how institutional details affect the set of policy outcomes. We address the
former in this section, and postpone the latter to Section 4.

First of all, we need to modify the collection of winning coalitions, W, in order to
obtain a collection of coalitions that better accounts for the distribution of power among
committee members. Let W ≡ {S ⊆ C : (S ∩N) ∈W & (S ∩M) ̸= ∅}. That is, a coali-
tion S belongs to W if the voters in S constitute a winning coalition and S includes at
least one proposer. Note that W inherits monotonicity and properness from W.

We define two social preference relations, which we call strict and weak dominance
relations respectively, as follows: for all x, y ∈ X,

xPy ⇐⇒ ∃S ∈ W : x ≻i y , ∀i ∈ S ,

xRy ⇐⇒ ∃S ∈ W : x ≽i y , ∀i ∈ S .

A subset of policies V ⊆ X is said to be P -internally stable if and only if it satisfies

(ISP ) ∀x, y ∈ V : ¬(xPy).

Furthermore, Y is said to be R-externally stable if and only if it satisfies

(ESR) ∀x ∈ X \ V , ∃y ∈ V : yRx.
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We say that V is a weakly stable set if and only if it is both P -internally stable and
R-externally stable. The collection of weakly stable sets is denoted by V.

Weakly stable sets will play a central role in the analysis to follow. Before we proceed
any further, it is therefore worth discussing some of their properties. First of all, a (von
Neumann-Morgenstern) stable set is a weakly stable set which is P -externally stable (which
is defined by replacing R with P in (ESR)). Conversely, when the policy space X is well
ordered (i.e., when all the ≽i’s are linear orders), V corresponds to the collection of stable
sets. This is not true when X is not well ordered: there may be policy sets that are weakly
stable but not stable, as the following example illustrates:

Example 3.1. Let M = N = {1, 2, 3}, X = {x, y, z} and every pair of players is
winning, with preference orderings z ≻1 x ≻1 y, x ∼2 y ≻2 z, and y ≻3 x ∼3 z. It is easy
to confirm that yPz, and that {x, z} is weakly stable, but is not stable. ({x, y} is stable.)

�

The predictive power of weakly stability, like stability, depends on other parameters
of the model: there may be a unique and small weakly stable set (e.g. any Condorcet
solution); there may be a unique but large weakly stable set (e.g. every division of the
pie in two-player bargaining: see Example 3.2 below); there may be several weakly stable
sets (e.g. in three-player divide the pie bargaining: cf. Ordeshook (1986) Ch 9.2); and no
weakly stable set need exist (e.g. in the Condorcet Paradox example).

Finally, a weakly stable set may contain Pareto dominated policies; and the closure
of a weakly stable set is itself weakly stable. To see the latter, suppose there is some
x ∈ ∂V that does not belong to V . Evidently, V ∪ {x} satisfies (ESR). If V ∪ {x} does
not satisfy (ISP ) then there exists v ∈ V such that either vPx or xPv. In the former case,
by continuity of individual preference relations, there exists a neighborhood of x, Nx, such
that v P -dominates all the elements of Nx. As x ∈ ∂V , Nx ∩ V ̸= ∅ and, therefore, v P -
dominates some members of V : a contradiction of (ISP ). In the latter case, by continuity
of individual preference relations, there exists a neighborhood of x, Nx, such that any
x′ ∈ Nx P -dominates v. As x ∈ ∂V , Nx∩V ̸= ∅ and, therefore, v is P -dominated by some
member of V : a contradiction of (ISP ).

We now return to our main purpose in this section, which is to describe an algorithmic
procedure capable of finding the set of possible equilibrium policy outcomes from any
initial default x0 ∈ X. We first need some more notation. For any binary relation Q

on X, x ∈ X and any subset Y ⊆ X, we use the notation Q(x) ≡ {y ∈ X : yQx},
QY (x) ≡ {y ∈ Y : yQx}, and M(Q,Y ) ≡ {y ∈ Y : ∀y′ ∈ Y \ {y} , y′Qy implies yQy′}.
The elements of the latter set will often be referred to as the Q-maximal policies in Y .
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Our procedure starts with a weakly stable set V ∈ V. It then constructs a tree Tπ (V, x)

— whose nodes are elements of V ∪{x} — as follows. The initial node of Tπ (V, x) is x. If
x /∈ V then the successors of x in the tree are obtained in mx steps k = mx,mx− 1, . . . , 1:

• k = mx: The set of immediate successors of x is

sπmx
(V, x) ≡

∪
Y⊆RV (x)

M
(
≽πx(mx), PV (x) ∪ {x} ∪ Y

)
.

• 1 ≤ k ≤ mx − 1: For each yk+1 ∈ sπk+1 (V, x), the set of immediate successors of yk+1 is

sπk (V, yk+1) ≡
∪

Y⊆RV (yk+1)

M
(
≽πx(k), PV (yk+1) ∪ {yk+1} ∪ Y

)
.

If x ∈ V then the tree has a single path in which all nodes are equal to x: sπk (V, x) = {x}
for each k = 1, . . . ,mx.

Having constructed the tree Tπ (V, x) with the above procedure, we obtain a (possibly
empty) set of terminal nodes of paths of length mx. Let F π(V, x) be the set of terminal
nodes that belong to V : that is, y ∈ F π(V, x) if and only if there exists a sequence
(y1, . . . , ymx+1) such that y1 = y ∈ V , ymx+1 = x, and yk ∈ sπk (V, yk+1) for each k =

1, . . . ,mx.
The idea behind this construction is as follows. Suppose that all players believe that the

bargaining process ‘converges’ to V , in the sense that, starting from any default, bargaining
must lead to a policy in V which will never be amended. Thus, when considering whether
and how to amend the initial default x /∈ V , they only consider policies in V . Suppose the
mxth proposer, πx(mx), is given the opportunity to make a proposal in the first round. The
set of policies she can induce includes the default x (if she passes, the unamended default
will be implemented) and the set of policies in V that winning coalitions are willing to
accept. The latter set must include PV (x). Indeed, if an offer y in V is accepted then
it will be implemented; if it is rejected then x will be implemented. Consequently, voters
who strictly prefer y to x must vote ‘yes’. Voters who are indifferent between x and y

may vote either ‘yes’ or ‘no’. Thus, the set of policies that the last proposer can induce
is of the form PV (x) ∪ {x} ∪ Y , where Y ⊆ RV (x). The set Y is determined by the
voting behavior of indifferent voters. For instance, a situation where indifferent voters
always vote ‘no’ can be described by setting Y = ∅, while a situation where indifferent
voters always vote ‘yes’ can be described by setting Y = RV (x). Thus, each path of the
tree corresponds to a different assumption about voting behavior. The mxth proposer
must optimally choose a policy, ymx , which is Rπx(mx)-maximal in that ‘feasible set’ and,
therefore, ymx ∈ sπmx

(V, x). Now, consider the (mx − 1)th proposer’s choice. She faces
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the same problem as the mxth proposer, except that x must be replaced by ymx : players
anticipate that if the (mx − 1)th proposer’s proposal is rejected then ymx will be the final
policy outcome. Hence, the policy ymx−1 she chooses to induce belongs to sπmx−1 (V, ymx).
Moving backward, we can repeatedly apply the same reasoning to all proposers until the
first, πx(1), whose choice must thus be in F π(V, x).

c

a b

bba

a a b a b

Figure 1: Tree Tπ ({a, b}, c)

Before we proceed any further, it may be helpful to illustrate this intuition with a
simple example. Suppose there are three proposers/voters — i.e.: M = N = {1, 2, 3} —
and X = {a, b, c}. The set of winning coalitions W = W is the collection of majority
coalitions (i.e. those coalition that include at least two players). Players’ preferences are:
a ≻1 b ≻1 c, b ≻2 a ≻2 c, a ∼3 b ≻3 c. Assume further that the initial default is x0 = c,
and that the protocol is defined as πx(i) = i for all x ∈ X and all i ∈ N , thus completing
the description of game Γ

(
π, x0

)
. The tree Tπ ({a, b}, c) is depicted in Figure 1 — it is

readily checked that {a, b} is a weakly stable set. The set of immediate successors of the
initial node, c, is sπ3 ({a, b}, c) = {a, b}. Indeed, the last proposer is player 3 and her ideal
policies in P{a,b}(c) ∪ {c} are a and b (in this example, R{a,b}(c) = P{a,b}(c) = {a, b}).
Intuitively, proposer 3 anticipates that either a or b would be voted up while c would be
the final outcome if she passed. Hence, she optimally proposes either a or b. Suppose
she proposes the former. The set of immediate successors of node a ∈ sπ3 ({a, b}, c) is
sπ2 ({a, b}, a) = {a, b}. To see this, note first that P{a,b}(a) = ∅ and R{a,b}(c) = {a, b}.
Thus, a is ≽2-maximal in {a}, and b is ≽2-maximal in {a, b}. The reason why policy a

12



may be the only option to proposer 2 is that voter 3, who is indifferent between a and b,
may vote ‘no’ when offered b. If she does then player 1, anticipating that default c will be
amended to her ideal policy a if she makes no proposal, optimally passes. Formally, {a} =
M (≽1, {a, b}) = sπ1 ({a, b}, a), so that a is a final node of tree Tπ ({a, b}, c). This completes
the description of the dotted path in Figure 1. One could apply the same procedure and
intuition to the other paths of Tπ ({a, b}, c), so as to obtain F π ({a, b}, c) = {a, b}.

The intuition above is confirmed by our first two results:

Proposition 1. Suppose that V is the closure of a weakly stable set, and let f ∈ V X be a
selection of F π(V, ·): f(x) ∈ F π(V, x) for all x ∈ X. There exists an equilibrium σ such
that fσ(x) = f(x) for all x ∈ X. Hence,

∪
x∈X fσ(x) = V .

This proposition says that, if V is the closure of a weakly stable set (and is therefore
a weakly stable set itself) then any selection f(·) of F π(V, ·) can be supported by an
equilibrium of Γ

(
π, x0

)
. Put differently, all final nodes of length-mx paths in tree Tπ (V, x)

are equilibrium policy outcomes of continuation games starting with x as the initial default.
In particular, all policies in F π(V, x0) are equilibrium outcomes of Γ

(
π, x0

)
. We assume

that V is the closure of a weakly stable set to ensure that F π(V, x) is nonempty: if V is
not closed then the set M

(
≽πx(k), PV (yk+1) ∪ {yk+1} ∪ Y

)
may be empty.

We will say that an equilibrium supports a weakly stable set V when exactly the
initial defaults in V are not amended in that equilibrium. (Recall that we use the term
‘implementation’ to refer to the policy reached in Γ

(
π, x0

)
.

This result prompts the following question: Can there be equilibria of Γ
(
π, x0

)
, whose

outcomes do not belong to F π(V, x0)? The next proposition answers this question in the
negative.

Proposition 2. If σ is an equilibrium of Γ
(
π, x0

)
then there exists V ∈ V such that

fσ(x) ∈ F π(V, x) for x ∈ X. Hence, V =
∪

x∈X fσ(x).

To prove Propositions 1 and 2, we establish stronger results. First, weak stability of
V implies that, for every x ∈ X and every length-mx path (x, ym(x), . . . , y1(x)) of tree
Tπ (V, x) with y1(x) ∈ V , there exists an equilibrium σ such that fσ (x, k) = yk(x) for
each k ∈ {1, . . . ,mx}. Second, for every equilibrium σ of Γ

(
π, x0

)
and every x ∈ X, there

exists a weakly stable set V and a length-mx path (x, ym(x), . . . , y1(x)) of Tπ (V, x), with
y1(x) ∈ V , such that yk(x) = fσ(x, k) for each k ∈ {1, . . . ,mx}. Thus, the construction
of trees associated with weakly stable sets also provides a complete characterization of
equilibrium behavior both on and off equilibrium paths.

The policies which can be implemented in Γ
(
π, x0

)
depend on the initial default unless

some policy is a weak Condorcet winner: viz. it weakly dominates every other policy.
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Propositions 1 and 2 jointly yield a complete characterization of the set of policy
outcomes that can be reached from any particular default policy x0 ∈ X.

Corollary 1. Let Σ∗ (π, x0) be the set of equilibria of Γ
(
π, x0

)
. The set of equilibrium

policy outcomes in Γ
(
π, x0

)
is given by∪

σ∈Σ∗(π,x0)

fσ
(
x0

)
=

∪
V ∈V

F π
(
V, x0

)
.

An immediate implication of this result is that the set of policy outcomes that can
result from all equilibria and from all initial defaults is the union of all weakly stable sets.
Put differently, a policy in X can be obtained as the policy outcome of the bargaining
game from some initial default if and only if it belongs to some weakly stable set. Thus, as
a byproduct of our analysis, we obtain a new bargaining interpretation for (weakly) stable
sets in voting games; one which, in contrast to the existing literature (e.g., Anesi (2006)),
extends to situations with an infinite policy space.

The weakly stable sets in a game only depend on the protocol via M , the set of
proposers. Propositions 1 and 2 imply that variations in the protocol do not affect the set
of policies which can be implemented across initial defaults. However, as we will see in the
next section, variations in the protocol may affect the policies which can be implemented
from a given initial default.

3.2 Properties of the equilibrium correspondence

In this subsection, we illustrate some interesting properties of the equilibria of Γ
(
π, x0

)
via some examples which will prove useful in subsequent sections.

Example 3.2. Suppose that two players (1 and 2) can divide a pie, earning their share
of the pie, if and only if they both agree; that player 1 proposes before player 2 in each
round; and that both players earn 0 at the initial default (x0). If x1 denotes player 1’s
share then the policy space consists of x0 and every x1 ∈ [0, 1]. This policy space is not
well ordered because each player is indifferent between x0 and a division which yields her
none of the pie. There is a unique weakly stable set, consisting of every division of the pie.
Γ
(
π, x0

)
then has a unique equilibrium outcome in which player 2 takes the whole pie.

�

Example 3.3. Consider the preferences in Bernheim et al’s (2006) benchmark pork
barrel model, where each player i earns bi if her project is implemented, and pays cj > 0

for every project j implemented; the policy space is well ordered; and any bare majority
(viz. (n+1)/2, n odd) of voters is winning. Suppose, in addition, that every player is both
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a proposer and a voter. We will now argue that this game has a unique weakly stable set,
consisting of a single policy: the (n+ 1)/2 cheapest projects are implemented:

Well ordering and a majority quota imply that the game is strong; so any weakly stable
set must be a singleton, say y. Bernheim et al’s additional assumption A3 implies that a
bare majority of the projects is implemented in our model.12 To see this, consider a policy
x which differs from y by removing some of the projects implemented at y. Every player
whose project is implemented at x and every player whose project is not implemented at
y prefers x over y. Hence, y would fail external stability if more than a bare majority of
projects were implemented. On the other hand, if fewer than a bare majority of projects
were implemented at y then A3 implies that a policy x which adds a bare majority of
projects to y would be preferred over the latter by all of the beneficiaries.

In light of these arguments, a weakly stable set must implement the cheapest projects
(policy y∗). To see this, suppose that another policy (y) with a bare majority of bene-
ficiaries formed a weakly stable set. By construction, some player must be a member of
both coalitions. This player must prefer y∗ over y, as must the bare minority of players
who are beneficiaries at y∗; so y∗ would strictly dominate y, contrary to external stability.
Hence, {y∗} is the unique weakly stable set and, by Propositions 1 and 2, y∗ is the unique
equilibrium policy.

�

Example 3.4. Suppose that any two out of three players can agree to any division of
a dollar. It is well known that the union of stable sets for this game is the entire triangle:
viz. every division of the dollar (cf. Ordeshook (1986) Ch 9.2). If at least two players can
propose then W is the set of pairs of players. As every stable set is weakly stable, the set
of weakly stable policies is also the entire triangle. This observation implies that a player
who cannot propose may nevertheless earn the entire dollar in some equilibrium of a game
whose initial default is no agreement. By contrast, a player who cannot propose earns 0
in Baron and Ferejohn’s (1989) closed rule model. Furthermore, policies in the interior of
the triangle may be implemented in an equilibrium, contrary to the size principle, which
also holds in Baron and Ferejohn’s (1989) closed rule model.13

�

We argued above that {x, z} is a weakly stable set in Example 3.1; so there is an
equilibrium in which these policies alone can be implemented from any initial default.

12This assumption states that a mutually beneficial policy (relative to the default) exists for all coalitions
of (n+ 1)/2 or fewer individuals.

13See also Wilson (1971) on main simple stable sets. On the other hand, the size principle fails in Baron
and Ferejohn’s open rule model when players are impatient enough.
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Consider a protocol in which players propose in the order 1, 3, 2 in each round and suppose
that y is the initial default. It is readily checked that path (y, x, z, z) is a path of tree
Tπ ({x, z}, y): x ∈ sπ3 ({x, z}, y) , z ∈ sπ2 ({x, z}, x), and z ∈ sπ1 ({x, z}, z). Consequently,
there is an equilibrium in which player 1 = πy(1) passes, player 3 = πy(2) amends the
default to z, which is then implemented. This equilibrium demonstrates that a committee
can implement a policy which is strictly dominated by the initial default. This property
must hold in Bernheim et al’s (2006) benchmark pork barrel model (Example 3.3. above)
when there is no Condorcet winner: the last proposer’s ideal policy is then implemented;
but it violates Acemoglu et al’s (forthcoming) Desirability Axiom.

We record the arguments in this subsection as

Observation 1. a) A player who does not propose may nevertheless earn all of the surplus
from agreement;

b) The size principle may fail in an equilibrium;
c) The members of some winning coalition may all strictly prefer the initial default x0

to the final policy outcome.

4 Comparative statics

In this section, we consider how variations in the model’s parameters affect the policies
that are implemented from any initial default. In Section 4.1, we explore the effect of
changing the protocol on the policies implemented in a given weakly stable set. In Section
4.2, we focus on the implications of changes in the set of weakly stable sets.

4.1 The protocol

Thus far, we have studied play in games with a fixed protocol. In this subsection, we
study situations in which a player, the chair, chooses a protocol π ∈ Π after observing the
initial default x0; and the game Γ

(
π, x0

)
is then played. In order to describe the chair’s

decision problem in such situations, we must make an assumption about her preferences
over protocols. To do so, we need to address the implications of multiple equilibria.

Indeed, the analysis of equilibria in the previous section revealed that there may be
equilibrium multiplicity at two levels in the bargaining game (for a given protocol π). First,
Proposition 1 says that any weakly stable set can be supported by an equilibrium. The
possible multiplicity of weakly stable sets may thus be a source of equilibrium multiplicity.
Second, Proposition 1 also implies that, for a given weakly stable set V ∈ V, any terminal
node of tree Tπ

(
V, x0

)
is the policy outcome of some equilibrium of Γ

(
π, x0

)
. Hence, each

weakly stable set may contain several equilibrium policy outcomes. As the chair chooses
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protocols π that will apply in the bargaining game Γ
(
π, x0

)
, her choice will depend on

her anticipations about future behavior in that game, and therefore we must make an
assumption about her predictions of equilibrium behavior in Γ

(
π, x0

)
for every protocol

π.
One extreme assumption would be that the chair prefers a protocol π1 to another

protocol π2 if there are equilibria σ and σ′ of Γ
(
π1, x

0
)

and Γ
(
π2, x

0
)
, respectively, such

that she prefers the equilibrium policy fσ1
(
x0

)
in Γ

(
π1, x

0
)

to the equilibrium policy
fσ2

(
x0

)
in Γ

(
π2, x

0
)
. The difficulty with this assumption is that, for any protocols π1

and π2, one will typically find pairs of equilibria in Γ
(
π1, x

0
)

and Γ
(
π2, x

0
)

such that the
chair both prefers π1 to π2 and π2 to π1, leaving her indifferent between all protocols. At
the other extreme, one could assume that the chair prefers π1 to π2 if she prefers all the
equilibrium policies in Γ

(
π1, x

0
)

to all those in Γ
(
π2, x

0
)
. With this assumption, however,

it will typically be the case that the chair neither prefers π1 to π2 nor π2 to π1. Based on
our characterization results in Section 3, our assumption — as we formally elaborate on
below — will instead be that the chair prefers π1 to π2 if, for every weakly stable set V ,
she prefers all the policies implemented in equilibria supporting V in Γ

(
π1, x

0
)

to all the
policies implemented in equilibria supporting V in Γ

(
π2, x

0
)
.

Accordingly, we will exploit Proposition 2 by focussing on the implications of protocol
variations when equilibria which support a given weakly stable set are played, allowing us
to use the structure of weakly stable sets.14

We divide this subsection’s results into two parts. First, we define conditions under
which the policy implemented from any initial default is independent of the protocol —
thus leaving the chair indifferent over all protocols — and provide necessary and sufficient
conditions for cases in which the policy space is both finite and well ordered. We then
characterize conditions under which the chair cannot improve on proposing last each round:
the analog of Bernheim et al’s (2006) power of the last word.

4.1.1 Order independence

Propositions 1 and 2 simplify the set of equilibrium policies we must consider when eval-
uating the impact of the protocol on equilibrium outcomes. However, as explained above,
there still remains a potential multiplicity of equilibria to be evaluated. This evaluation
can be simplified by grouping equilibria into classes, where each element of a class supports
an identical weakly stable set. From Proposition 2, we thus obtain a partition of the set of
equilibria. We will say that the bargaining game exhibits ‘order independence’ if the set

14We could, alternatively, focus on the set of policies implemented across equilibria, and therefore across
weakly stable sets; but the union of weakly stable sets is typically not weakly stable.
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of equilibrium policies within each partition element is independent of proposal orders in
the protocol.

Formally, let Π be set of protocols π, as defined in Section 2 (holding M constant).
The tree construction in the previous section gives us a clear description of the equi-
libria of Γ(π, x0) for each π ∈ Π, Σ∗ (π, x0). We know from Proposition 2 that each
member of Σ∗ (π, x0) supports those policies in some weakly stable set V . We can
therefore partition Σ∗ (π, x0) into a collection

{
Σ∗
V

(
π, x0

)}
V ∈V∗ , where V∗ ⊆ V is the

class of weakly stable sets that are supported by some equilibrium of Γ(π, x0) : V∗ ≡
{V ∈ V : F π(V, x) ̸= ∅ , ∀x /∈ V }. This partition groups together those equilibria that sup-
port identical weakly stable sets. We say that the class of games

{
Γ(π, x0) : π ∈ Π & x0 ∈ X

}
satisfies order independence if the following statement is true for any initial default x0 ∈ X

and any V ∈ V∗: F π1
(
V, x0

)
= F π2

(
V, x0

)
for any π1, π2 ∈ Π.15

Here are two cases which satisfy order independence:

1. If the game has a Condorcet winner then this policy is the only weakly stable set.
Propositions 1 and 2 imply that this policy is implemented for every protocol and
from every initial default.

2. There are four policies {a, b, c, d} and four players, who are both voters and proposers
(i.e.: M = N = {1, 2, 3, 4}), and whose preferences are

a ≻1 b ≻1 c ≻1 d

b ≻2 c ≻2 d ≻2 a

c ≻3 d ≻3 a ≻3 b

d ≻4 a ≻4 b ≻4 c

Every coalition of at least three players is winning.16 For every policy x, a unique
policy weakly dominates x; and the weakly stable sets are {a, c} and {b, d}. Con-
sequently, the games {Γ(π, x0)} satisfy order independence: for example, if {b, d} is
supported in equilibrium and a is the initial default then d must be implemented,
irrespective of the protocol; and any default in {b, d} is stable, irrespective of the
protocol. The same argument applies when c is the initial default; and analogous
arguments apply for equilibria which support {a, c} and any initial default.

General conditions which ensure order independence turn out, however, to be unin-
structively complex. Nevertheless, we can make much more progress by focussing on cases

15We define order independence by fixing the weakly stable set implemented and varying the protocol,
whereas Moldovanu and Winter’s (1995) definition fixes a given strategy combination.

16This example appeared in Anesi (2006).
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in which X is both finite and well ordered (so any weakly stable set is stable). The following
result will be useful:

Proposition 3. If X is finite and well ordered then, for any x /∈ fσ (X) and every equi-
librium σ of Γ

(
π, x0

)
:

fσ (x) = M
(
≻π(k), R(x) ∩ fσ (X)

)
,

where k ≡ max
{
l ∈ {1, . . . ,mx} : M

(
≻π(l), R(x) ∩ fσ (X)

)
≻π(l) x

}
.

In Proposition 3, the kth proposer is the last proposer among those who have an
incentive to amend the ongoing default x in equilibrium σ; namely those who strictly
prefer some equilibrium policy that is ‘reachable’ to the default. Denoting by V = fσ(X)

the weakly stable set supported by σ (Proposition 2), we will refer to those ‘amenders of
x’ as

M(V, x) ≡ {i ∈M : M (≻i, R(x) ∩ V ) ≻i x} ⊆M .

Proposition 3 thus implies that the ideal policy in R(x)∩ V of the last amender according
to π is implemented in every equilibrium σ ∈ ΣV

(
π, x0

)
. Note that, while the identity of

the last amender of x depends on which element of Π we consider, the set of amenders of
x is the same for all permutations of π.

Interestingly, while a non-amender (say, i) would pass if she were the last proposer in
a round, she might otherwise amend x0: for example, to some v ∈ V in an equilibrium if,
after i passed, the next amender would propose a policy v′ which weakly dominates v and
is strictly worse for i.

Using the proposition above, we can characterize conditions for order independence
when the policy space is finite and well ordered.

Proposition 4. If X is finite and well ordered then order independence is satisfied if and
only if the following is true for any weakly stable set V ∈ V: For each x /∈ V and all
i, j ∈M(V, x),

M (≻i, R(x) ∩ V ) = M (≻j , R(x) ∩ V ) . (1)

Condition (1) offers a very simple necessary and sufficient condition for order indepen-
dence in the finite, well ordered case: the bargaining game satisfies order independence if
and only if, for any weakly stable set V and any possible default x, all amenders of x share
the same ideal policy among those in V which dominate x. Although very simple, this
condition seems to be quite demanding. One can therefore expect that in most cases there
will be room for manipulation of the protocol. This is the subject matter of Section 4.1.2.
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4.1.2 Manipulating the protocol

In this subsection, we explore conditions under which the chair can influence the policy
implemented from a given default by varying the protocol. We will simplify exposition by
supposing that the chair is a proposer.

X well ordered: ‘power of the last word’

Our main results above concerned cases in which the policy space is well ordered: Propo-
sition 4 then specifies conditions under which the chair is indifferent across all protocols
(order independence). These conditions are satisfied if there is a Condorcet winner. The
chair can also not affect the policy implemented in Bernheim et al’s (2006) related model
with an exogenous deadline (and well ordered policy space) if there is a Condorcet winner.

On the other hand, Proposition 3 implies that a chair who wants to amend the initial
default can never improve on making the last proposal at the initial default when the
policy space is well ordered. This feature is reminiscent of the ‘power of the last word’
in Bernheim et al’s (2006) pork barrel model, which we included above as Example 3.3:
they show that the last proposer’s ideal policy (her own project) is implemented in every
equilibrium.

However, there are important differences between our respective results. In particular,
Proposition 3 implies that the last amender gets her best policy in some weakly stable
set that weakly dominates the initial default rather than her best policy. We argued
above that the only weakly stable set consists of the cheapest bare majority of projects.
The chair’s best protocol might therefore not entail implementation of her own project, in
radical contrast to Bernheim et al’s result. This difference reflects an important distinction
between our respective use of backward induction arguments. In Bernheim et al, the
game must end after the last proposal; in our model, any amendment must lead to the
implementation of a policy in a weakly stable set. More generally, Bernheim et al’s result
relies on the pork barrel structure and the existence of winning coalitions which exclude
some players. This allows the final proposer to play off putative members of the winning
coalition. Proposition 3, by contrast, allows for cases in which only the grand coalition is
winning: e.g. in variants on Example 3.2 where the pie can only be split in a finite number
of proportions.

General case: ‘power of the last two words’

We now turn to cases in which the policy space is not well ordered. We start with a useful
result, which states that the set of policies which can be implemented in equilibrium — i.e.,
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from Corollary 1:
∪

V ∈V F π
(
V, x0

)
— only depends on the protocol at the initial default:

πx0 .

Proposition 5. Let π1 ≡
{
π1
x

}
and π2 ≡

{
π2
x

}
be two protocols in Π. If π1

x0 = π2
x0 then∪

V ∈V
F π1 (

V, x0
)
=

∪
V ∈V

F π2 (
V, x0

)
.

Thus, the chair’s best protocols only depend on the protocol at the initial default. In
particular, Proposition 5 implies that, for any π ∈ Π, there is a constant protocol π̄ —
i.e. π̄x = π̄y for all x, y ∈ X — such that the same policies are implemented in Γ

(
π, x0

)
and Γ

(
π̄, x0

)
. As the chair’s choice of protocols only affects her payoff via πx0 , the chair

cannot improve on selecting some π̄ which is constant across X.17

This result is of independent interest; but we will exploit it here to simplify our analysis
of protocol manipulation by the chair: we can without loss of generality restrict attention
to constant protocols. Fix a weakly stable set V ∈ V , a policy x0 /∈ V , and some constant
protocol π ∈ Π. To lighten the notation, let xk ≡M (≽k, V ) and yk ≡M

(
≽k, RV

(
x0

))
for

each amender k ∈ M
(
V, x0

)
: xk and yk are amender k’s ideal policies in V and RV

(
x0

)
,

respectively.
Write K ∈M

(
V, x0

)
for the last amender according to π. We have already seen that,

when X is well ordered, if the chair j is an amender then she can never improve on making
the last proposal (i.e., being the last amender: j = K): from Proposition 3, yK must be
implemented in equilibrium. If she is not an amender then she is best off choosing π (and
therefore the last amender K) such that yK ≽j yk for all k ∈M

(
V, x0

)
.

If X is not well-ordered then there is an equilibrium in which K amends x0 to yK .
However, we will now argue that a chair who is an amender can improve on protocol π (in
which she is the last amender K) if xK ̸= yK . To see this, take another constant protocol
πi which differs from π by adding a proposal by some player i ∈ M

(
V, x0

)
immediately

after K, and consider Γ
(
πi, x

0
)

in which protocol πi applies at every default. Player K is
better off in some equilibrium with protocol πi than with π if and only if the following is
true:

(Ci) There is v ∈
[
V \RV

(
x0

)]
which weakly dominates yi (i.e.: vRyi) such that v ≻K yK

and v ≻K yi.

It is readily checked that, when (Ci) holds, a path of tree Tπi
(
V, x0

)
describes an equi-

librium of Γ
(
πi, x

0
)

in which: any proposal by a player moving before K to amend x0 is
17Proposition 5 also applies in a different ‘dynamic’ game where the chair selects the next proposer

immediately after each vote which does not end the game (see the last section of the Appendix for a formal
proof).
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rejected; K successfully proposes v; any other proposal by K would be rejected; and player
i would amend x0 to yi if K did not amend x0.

Suppose (Ci) holds for i = K. In this case, the chair K ∈M
(
V, x0

)
is best off with a

protocol in which she is the penultimate and the last proposer if xK /∈ RV

(
x0

)
and xKRyK :

in the equilibrium of Γ
(
πK , x0

)
described in the previous paragraph, all proposers pass till

the chair (who is the last amender in πj) makes the last two proposals, at the first of which
x0 is amended to xK . All players anticipate that rejecting xK would result in yK being
proposed and accepted. Since xKRyK , a winning coalition of voters is (weakly) better off
accepting xK . This result contrasts with equilibria in Diermeier and Fong’s (2011) game
with repeated implementation and a single proposer, who may lose and cannot gain if she
proposes more than once.

Now suppose that (Ci) holds for i ̸= K. The chair K would then be better off in an
equilibrium if she were the penultimate but not the last amender. By the same argument
as in the previous paragraph, the equilibrium of Γ

(
πi, x

0
)

would yield policy v (≻K yK).
This result contrasts with the equilibria in Bernheim et al (2006) and with our results for
well ordered X, where each amender is at least as well off proposing last.

We summarize the discussion above in

Proposition 6. If the policy space is not well ordered then the chair may prefer to make
the last two or the penultimate proposals over only proposing last.

4.2 The set of winning coalitions

Thus far, we have considered how varying the protocol affects play for a given set of
weakly stable sets. In this subsection, we explore the effects of changing the set of winning
coalitions, and thereby the weakly stable sets. We consider two reasons why the winning
coalitions might change: in Section 4.2.1, we study the effects of increasing the quota; in
Section 4.2.2, we consider how changing the number of proposers affects play.

4.2.1 Quotas

In conventional bargaining models with spatial preferences on the real line, an increase in
the quota makes voters with more extreme preferences decisive. The committee can only
amend a default if the decisive voters agree; so committees with a greater quota have a
larger gridlock interval.18 We will discuss this conclusion in the context of our model with
an arbitrary policy space.

18See Compte and Jehiel (2010) for a collective search perspective.
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We say that Γ
(
π, x0

)
is a quota game if the collection of winning coalitions (of voters)

W is of the form Ws ≡ {S ⊆ N : |S| ≥ s} with s ≥ n+1
2 . Our goal is thus to study how the

set of equilibrium policies of a quota game is affected by an increase in the quota. Given
the collection of winning coalitions (of voters) Ws, we can define the corresponding social
preference relations Rs and Ps, and the corresponding collection of weakly stable sets Vs as
we did in Section 3. An immediate consequence of our characterization results is that, in
our context, the conclusion above can be reformulated as: q > r implies that

∪
Vr ⊆

∪
Vq

(where
∪
Vs ≡ {v ∈ X : v ∈ V for some V ∈ Vs}). We will refer to this property as the

Conjecture, and to “q > r implies
∪
Vr ⊂

∪
Vq” as the strong form of the Conjecture.

A sufficient condition for the Conjecture is that there is enough conflict of interest that
X ∈ Vq, for we must then have

∪
Vr ⊆ X =

∪
Vq for any r. Indeed, X ∈ Vr implies

X ∈ Vq, but the converse is false; so the strong form of the Conjecture may hold when
there is enough conflict of interest that X ∈ Vq, but not enough that X ∈ Vr.

At the other extreme of enough common interest, there is a Condorcet winner (which
must be the only stable set) with the higher quota. The same policy must then be the
Condorcet winner with the lower quota; so the Conjecture trivially holds. Indeed, the
strong form of the Conjecture may hold if xPry for every other policy y, but there is y ̸= x

such that ¬ (xPqy).
We now turn to intermediate cases, where there is no Condorcet winner for quota r

and X /∈ Vq. The former condition implies that ¬ (xPry) and ¬ (yPrx) for some policies
x ̸= y; the latter condition implies that there are x, y ∈ X such that xPqy; and r < q

implies that xPry. Hence, no V ∈ Vr or V ′ ∈ Vq can contain both x and y.
We approach these cases from two perspectives. We first consider whether, for any

V ∈ Vr, there is V ′ ∈ Vq such that V ⊆ V ′ when X is well ordered; we then consider cases
where

∪
Vs = X for some s ∈ {q, r}.

If X is well ordered and V is a stable set then no set of policies which contains V

can be a stable set. If V ∈ Vr then V satisfies Pq-internal stability. Define UV as
{x ∈ X \ V : ¬ (yRqx) ,∀y ∈ V }. If UV is empty for every V ∈ Vr then every stable set
with quota r is also a stable set with quota q. Indeed, if X is well ordered then the games
with quotas q and r have the same stable sets, so the Conjecture holds.

However, V would fail external stability with quota q if UV were nonempty for some
V ∈ Vr. As V satisfies Pr-external stability, we cannot have xPqy for any x ∈ UV and
y ∈ V . Now consider a game with the same players and preferences, a quota of q but
possible policies of UV (rather than X), and let TV be a stable set of this game. We must
then have TV ∪V ∈ Vq. The strong form of the Conjecture then holds if UV is nonempty for
some V ∈ Vq, and some TV exists for every nonempty UV . More generally, the Conjecture
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holds if every game with possible policies U ⊆ X has a stable set with quota q.
We now turn to the other perspective, demonstrating by example that the Conjecture

might fail for intermediate cases because
∪
Vq ⊂ X =

∪
Vr, even if X is well ordered:

Example 4.1. Suppose that X = {w, x, y, z}, all players propose (i.e., M = N), and
there are two quotas: r < q. Social preferences satisfy xPry, wPrz, yPrw, zPrx, ¬ (xPrw),
¬ (wPrx), ¬ (yPrz), ¬ (zPry), ¬ (xPqy), wPqz, yPqw, and zPqx.

The strict social preferences and r < q imply that this game is intermediate in the sense
above. If the quota is r then there are two stable sets: {w, x} and {y, z}; so

∪
Vr = X. As

r < q, we must also have: ¬ (xPqw), ¬ (wPqx), ¬ (yPqz), and ¬ (zPqy). These conditions
imply that {y, z} ∈ Vq. We will now argue that x cannot be in any stable set when the
quota is q. Policy x alone cannot be a stable set because zPqx, which also implies that
z cannot be in any stable set containing x. No stable set can contain x and y because it
would have to include w to dominate z; and this would violate (ISPq) because yPqw. The
latter also excludes any stable set which contains x and w, but not y. In sum, x is in no
stable set, so

∪
Vq ⊂

∪
Vr = X, contrary to the Conjecture.

�

Note that Example 4.1 is structured such that the game restricted to {w, x, y} does not
have a stable set with quota q. On the other hand, it is easy to construct intermediate case
examples in which the strong form of the Conjecture holds because

∪
Vr ⊂ X =

∪
Vq.

To see this, modify the example above by adding v to X, and consider social preferences
which satisfy xPqry, wPqz, yPqw, zPqx, ¬ (xPqw), ¬ (wPqx), ¬ (yPqz), ¬ (zPqy), uPrv and
¬ (uPqv) ∀u ̸= v. No set in Vr can contain v, which is contained in both sets in Vq, whose
union is X.

We summarize the arguments above in

Proposition 7. Suppose Γ
(
π, x0

)
is a quota game. An increase in the quota weakly

expands the set of equilibrium decisions if, for the higher quota, there is a Condorcet winner
or if X is a stable set or if the game restricted to each subset of decisions has a stable set.
However, an increase in the quota may contract the set of equilibrium decisions in other
intermediate cases.

4.2.2 Adding proposers

It is widely believed that players can never lose if they are given the opportunity to propose:
for a proposer could always make an offer which will be rejected. This argument has been
influential, for example, in the design of regulatory agencies, which are required to include
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stakeholders in their decision making process; and the argument is correct in our model
for any fixed weakly stable set. However, adding a proposer can change the set of coalitions
in W, and thereby the weakly stable sets. Consequently, as we argue below, a player may
be worse off if she is given the opportunity to propose.

We will henceforth focus on the special case where there is initially a single proposer
(say, player 1): both for expositional convenience and in order to compare our results
with Diermeier and Fong (2011), who study a model with repeated implementation. They
show that the single proposer may be worse off when she has the opportunity to propose
in several rounds than when she proposes once in the game. This property is clearly
impossible in our model: on the one hand, adding another proposal by player 1 does not
change the set of weakly stable sets; on the other hand, player 1 could pass at her first
opportunity to propose. The same argument implies that the set of policies which can be
implemented in some equilibrium is unchanged by adding another proposer (say, player 2)
with the same preferences as player 1.

Adding a proposer with different preferences from player 1 may affect play for two
reasons. We have argued above that, for given weakly stable sets, player 1 may be better
off if player 2 proposes before her, provided that X is not well ordered. We will now
demonstrate by example that adding a proposal by player 2 may make player 1 better
off and player 2 worse off because of changes in the weakly stable sets, even if X is well
ordered.

Example 4.2. There are four policies: X = {w, x, y, z}, and X is well ordered. If
player 1 can alone propose — so that all winning coalitions in W include her — then zPw

and wPx; and no other pair of policies can be socially ranked. The only weakly stable set
is then {x, y, z}. In particular, an initial default of x is then implemented.

Player 2’s preferences are x ≻2 y ≻2 z ≻2 w. If player 2 can propose then we have
yP ′z, zP ′w and wP ′x; and no other pair of policies can be socially ranked. In this case,
the only weakly stable set is {w, y}. Player 1 is then better off when the initial default is
x because w is then implemented.

Our results in Section 3 then imply that player 2 is strictly better off not proposing
when the initial default is either w or x, and only gains from proposing if z is the initial
default.

�
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5 Extensions

5.1 Implementation

According to the model analyzed above, payoffs only depend on the policy (if any) that
is eventually implemented, at which point the game ends. In a variant on our model,
bargaining continues indefinitely; but payoffs are determined by the policy implemented.
Equilibrium outcomes in this related model clearly correspond to equilibrium outcomes in
our model because play after implementation is payoff-irrelevant. The extensive form in
this variant is exactly that studied in the literature on repeated implementation, where
players earn a per-round utility which depends on the ongoing default, and payoffs are the
net present value of the utilities earned each round. Consequently, for any fixed strategy
combination, each player’s payoff in a repeated implementation model with a discount
factor δ ≃ 1 is close to that in the variant on our model. This observation suggests that,
for every ε > 0, there is δ < 1 such that an equilibrium strategy combination in our
model (or, more precisely, in the related model) might be an ε-equilibrium in the repeated
implementation model. We explore such an intuition in this subsection.

More specifically, we consider a variant of Γ
(
π, x0

)
in which the bargaining process

continues ad infinitum. At the end of each round t, t = 1, . . . ,∞, the new default policy
xt is implemented and each player i receives an instantaneous payoff (1− δ)ui

(
xt
)
, where

δ ∈ (0, 1) is the common discount factor and ui ∈ RX is a continuous utility function which
represents ≽i — Assumption A0 guarantees that such a utility function exists. Thus, player
i’s payoff from a sequence of defaults

{
xt
}∞
t=1

is (1 − δ)
∑∞

t=1 δ
t−1ui

(
xt
)
. We will refer

to the game thus obtained as Γδ
(
π, x0

)
. We will say that an equilibrium of Γδ

(
π, x0

)
is

absorbing if there is a round T such that xt = xT for every subsequent round: t > T .19

Our next result confirms the intuition above: If we weaken the equilibrium concept by
only requiring approximate best responses, we can obtain a similar result as Proposition 1
in the repeated implementation model Γδ

(
π, x0

)
, when δ is large enough. Indeed, Propo-

sition 8 below states that some equilibria of Γ
(
π, x0

)
are also contemporaneous perfect

ε-equilibria (Mailath et al., 2005) of Γδ
(
π, x0

)
when δ is close enough to 1.

We abuse terminology in the next two results by identifying equilibria in our model —
σ ∈ Σ∗ (π, x0) — with equilibria in the related model with continued (but payoff-irrelevant)
bargaining:

Proposition 8. Let V be the closure of a weakly stable set. There exists σ ∈ Σ∗
V

(
π, x0

)
19Existence and characterization of absorbing equilibria in legislative bargaining games with repeated

implementation are discussed in Acemoglu et al (forthcoming), Anesi (2010) and Diermeier and Fong
(2011).
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such that the following is true: for any ε > 0, there exists δε ∈ (0, 1) such that σ is a
contemporaneous perfect ε-equilibrium of Γδ

(
π, x0

)
for all δ > δε.

Proposition 8 implies that every policy which can be implemented in our game, the
union of weakly stable sets, is a possible policy outcome in a contemporaneous perfect ε-
equilibrium of the game with repeated implementation. Our last result in this subsection
strengthens this result for the case of finite, well ordered X:

Proposition 9. If X is finite and well ordered then there exists δ̄ ∈ (0, 1) such that the
following statement is true whenever δ > δ̄: σ is an equilibrium of Γ

(
π, x0

)
if and only if

it is an absorbing stationary Markov equilibrium of Γδ
(
π, x0

)
.

As δ becomes arbitrarily close to 1, player i’s discounted payoff from a (converging)
sequence of defaults

{
xt
}

becomes arbitrarily close to her instantaneous payoff from the
limit policy, say xT :

∞∑
t=1

δt−1ui
(
xt
)
→ ui

(
xT

)
as δ → 1 .

The assumption that X is finite and well ordered thus guarantees that there exists a
sufficiently large δ < 1 (δ̄) such that players evaluate sequences of defaults similarly in
Γδ

(
π, x0

)
and Γ

(
π, x0

)
: only final (or limit) policies matter. Put differently, xPiy if and

only if player i strictly prefers any sequence of defaults converging to x to any sequence
converging to y.

5.2 The largest consistent set

In this subsection, we study the relation between our framework and that in Chwe (1994).
Although the latter’s approach to farsighted coalitional stability is cooperative, it is closely
related to ours: as in our model, when a coalition S contemplates a deviation from the
ongoing default, its members anticipate (and only take into account) the final outcome
that will result from the sequence of deviations triggered by S’s initial deviation. Chwe
argues that the set of stable outcomes — i.e., those that are immune to these farsighted
coalitional deviations — should satisfy a consistency condition, which in the context of our
paper is defined as follows.

Say that a set of policies Z ⊆ X is consistent if and only if the following is true for all
z ∈ Z: for any x ∈ X and S ∈ W, there exists z′ ∈ Z, where z′ = x or z′Rx, such that
z ≽i z

′ for some i ∈ S.
In words, any element z of a consistent set Z is ‘stable’ in the sense that each winning

coalition S anticipates that a deviation from z will eventually lead to another policy z′

in Z which makes at least one member of S worse off. Interestingly, Chwe (1994) shows
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that there exists a largest consistent set, Z: Z consistent implies Z ⊆ Z and Z is itself
consistent. Thus, Z comprises all the policies that are immune to farsighted coalitional
deviations.

Our next goal is to study the relationship of our bargaining model to the largest con-
sistent set. We have analyzed the model in previous sections by characterizing its Markov
stationary equilibria. We have shown that every Markov stationary equilibrium imple-
ments a weakly stable set. Although it is readily checked that a weakly stable must be
consistent and, therefore, a subset of the largest consistent set, the converse is not true:
a consistent set may not be weakly stable, so that in general Z /∈ V. In this subsection,
we weaken stationarity, and show that the ensuing set of equilibria implement the largest
consistent set.

To do so, we first need some definitions. In general, a history at some stage of the
game describes all that has transpired in the previous rounds and stages (the sequence of
defaults and proposers, their respective proposals and the associated pattern of votes). We
call a ‘partial round-t history’ any list

(
x0, S1, x1, . . . , St−1, xt−1

)
where Ss ∈ W stands

for the winning coalition which amended xs−1 to xs. Let Ht be the set of round-t partial
histories — H1 ≡

{
x0

}
being the null history — and let H ≡

∪∞
t=1H

t be the set of
partial histories. Call a strategy ‘semi-Markovian’ if the proposals and voting behavior it
prescribes at any (complete) round-t history only depend on the partial history, i.e. on the
sequence of defaults and coalitions that changed defaults:

(
x0, S1, x1, . . . , St−1, xt−1

)
.20

As in the case of stationary Markov strategies, we can now associate outcome functions
with semi-Markovian strategies. Any semi-Markovian strategy σ generates an outcome
function ϕσ, which assigns to every history h ∈ H and every k ∈ {1, . . . ,mxt−1} the
unique final outcome ϕσ(h, k) eventually implemented (given σ) when h is the current
partial history and the kth proposer is about to move. We are particularly interested in
ϕσ

(
x0, 1

)
, which describes the policy implemented in Γ

(
π, x0

)
if players act according to

σ. We will sometimes abuse notation and write ϕσ
(
x0

)
instead of ϕσ

(
x0, 1

)
.

We now turn to the characterization of semi-Markovian equilibria — i.e., subgame
perfect equilibria of Γ

(
π, x0

)
in which all players use semi-Markovian strategies. It turns

out that the tree construction introduced in Section 3 can also be applied to consistent sets
to obtain semi-Markovian equilibria. More specifically, if Z be a consistent set then each
length mx0 path of tree T

(
Z, x0

)
ending with a policy in Z describes behavior in round 1

20More formally, let Ht(h) be the set of (complete) round-t histories of Γ
(
π, x0

)
that share the same

partial round-t history h. Thus, Ht ≡
{
Ht(h)

}
h∈Ht is a partition of the set of round-t histories and

H ≡
∪∞

t=1 H
t a partition of the set of histories of Γ

(
π, x0

)
. A strategy σ is semi-Markovian if it is

measurable with respect to H — i.e., σ prescribes the same behavior at any two histories that belong to
the same partition element Ht(h).

28



in some semi-Markovian equilibrium. Hence, there exists a semi-Markovian equilibrium σ

in which a policy in Z is ‘agreed on’ immediately: if the initial default x0 belongs to Z, it
is implemented at the end of round 1; otherwise, it is amended to some policy in Z that is
implemented at the end of round 2. Our next result mirrors Proposition 1.

Proposition 10. Suppose that Z is the closure of a consistent set, and let f ∈ ZX be any
selection of F π(Z, ·): f(x) ∈ F π(Z, x) for all x ∈ X. There exists a collection {σx}x∈X
such that, for all x ∈ X, σx is a semi-Markovian equilibrium of Γ (π, x) and ϕσx (x) = f (x).
Hence,

∪
x∈X ϕσx(x) = Z.

The last part of the statement in the proposition says that, for any consistent set Z and
initial default x0, we can construct an equilibrium of Γ

(
π, x0

)
, σ in which the final policy

outcome reached from x0 must belong to Z. Inspection of the proof (in the Appendix)
reveals that more is true: the final policy outcome reached from any partial history h ∈ H

must belong to Z; so that ϕσ(H) ≡
∪

h∈H ϕσ(h, 1) = Z. The next result establishes that
the converse is also true.

Proposition 11. If σ is a semi-Markovian equilibrium then ϕσ(H) ≡
∪

h∈H ϕσ(h, 1) must
be a consistent set.

Thus, for any semi-Makovian equilibrium, the set of policy outcomes that can be
reached from all possible partial histories is a consistent set and, therefore, a subset of
the largest consistent set Z: ϕσ(H) ⊆ Z for all semi-Markovian equilibria σ. Furthermore,
we know from Proposition 10 that any policy z ∈ Z is the outcome of a semi-Markovian
equilibrium of Γ (π, z). Consequently, we have

Corollary 2. Let ΣNM
(
π, x0

)
be the set of semi-Markovian equilibria of Γ

(
π, x0

)
. The

set of all semi-Markovian equilibrium policy outcomes that can be obtained from any initial
default in X coincides with the largest consistent set:∪

x0∈X

∪
σ∈ΣNM (π,x0)

ϕσ
(
x0

)
= Z .

Thus, the predictions of our noncooperative bargaining framework coincide with those
of Chwe’s (1994) largest consistent set when we use semi-Markovian strategies. This result
provides noncooperative foundations for the largest consistent set, extending Proposition
8 in Acemoglu et al. (forthcoming) to non-acyclic preferences.

6 Conclusion

We have presented a model of bargaining in which the committee takes a single policy
seriously at any time, and implements this policy if none of the proposers is willing or
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able to amend it. We have characterized the policies which can reached from any initial
default, and shown that every equilibrium of the model supports a weakly stable set. We
have provided conditions for a chair to manipulate the protocol, showing that she cannot
improve on proposing last if the policy space is well ordered. We have also shown, inter
alia, that an increase in the quota can contract the set of stable policies. In the remainder
of this section, we will discuss some directions in which our model and our analysis could
be extended:

6.1 Changing the model

Round the table bargaining

According to our model, there is a fixed protocol at every default, specifying the order in
which proposers move. This assumption and the Markovian solution concept preclude a
natural stopping rule: proposers sit round a table, and the first proposer in any new round
sits next to the player who amended the previous default. This is inconsistent with our
approach because we identify ‘states’ with ‘defaults’ when defining Markovian strategies.
We could obtain analogous results for bargaining round the table with another definition
of a state.

Multi-issue bargaining

We have supposed that a proposal must be a single policy. In some negotiations, it seems
natural to suppose that players can provisionally agree to subsets of the policy space: e.g.
when each dimension of the policy space represents an issue. Problems of this sort have
been analyzed in the literature (cf. Winter (1997)) on the additional supposition that
issues which have been agreed upon are no longer on the table. The history of the Oslo
Process suggests that this supposition is problematic: no partial agreement is finalized
until all issues have been addressed. An extension of our model could address this feature:
proposals are subsets of the policy space, but the game can only end when a proposal
which specifies a single point is agreed (and not amended).

Random proposers

We have assumed that the protocol at any default specifies the exact order in which players
propose in a given round. This simplifies our stopping rule: a default is implemented if
it is not amended by any proposer. If the identity of the next proposer were determined
randomly (as in Baron and Ferejohn (1989)) then the stopping rule could require that each
proposer have an opportunity to amend before the default is implemented. This variant
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might have different properties from our model when there are more than two proposers
because players do not know the remaining protocol when the first proposer is selected,
precluding the backward induction arguments which we have used so extensively.

6.2 Changing the solution concept

Mixed strategy equilibria

We have argued that every (pure strategy) equilibrium supports a weakly stable set. In
cases like the Condorcet Paradox, there is no weakly stable set, and therefore no equilib-
rium. However, there may be equilibria if we allow for mixed strategy equilibria. Consider,
for example, a symmetric version of the Condorcet Paradox with three policies and three
proposers/voters, each of whom earn 0, 1 or 2 from any policy. We can show that there is
a mixed strategy Markov perfect equilibrium in which each player proposes her top ranked
policy, and a single voter mixes between accepting and rejecting each proposal. According
to this equilibrium, each policy is equally likely to be implemented at any default. Play on
the equilibrium path almost surely ends with implementation of some policy. (We provide
further details in the last section of the Appendix.)

Refinements

Although weakly stable sets may not exist, simple games often have multiple weakly stable
sets, implying equilibrium multiplicity in our noncooperative game. As policies in weakly
stable sets are (weakly) Pareto efficient, commonly used refinements which are based on
Pareto perfection and renegotiation-proofness have no bite in our bargaining game without
discounting. Acemoglu et al (2009) have recently developed an equilibrium refinement
concept for voting and agenda-setting games like ours: Markov Trembling Hand Perfect
Equilibrium (MTHPE). A (stationary Markov) equilibrium σ is Markov trembling-hand
perfect if and only if there is some sequence of totally mixed stationary Markov strategies{
σk

}
such that σk → σ and σ dictates each ‘agent’ — MTHPE is defined in the agent-

strategic form — a best response to her opponents’ perturbed strategies in σk for all
k = 1, . . . ,∞.

We conclude this paper with an observation, which shows that restricting attention to
MTHPEs will typically not reduce the set of equilibrium outcomes in our game.

Observation 2. If X is finite and well ordered then the set of (pure strategy) MTHPE
policies coincides with the set of equilibrium policies (and is therefore the union of stable
sets).
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The proof of this observation (which is provided in the last section of the Appendix)
shows that something even stronger is true: for every stable set V ∈ V, there is a (pure
strategy) MTHPE σ that supports V : fσ = V . This reinforces the noncooperative founda-
tions our bargaining model provides for stable sets.

Appendix

Proof of Proposition 1

Let V ∈ V, and let f ∈ V X be a selection of F π(V, ·). By construction of F π(V, x), for
every x ∈ X, there exists a vector (y1(x), . . . , ym+1(x)) such that:
• if x ∈ V , then f(x) = y1(x) = . . . = ym+1(x) = x;
• if x /∈ V , then f(x) = y1(x) ∈ V , x = ym+1(x), and yk(x) ∈ sπk (V, yk+1(x)) for

each k = 1, . . . ,m. The latter condition implies that yk(x) is one the kth proposer’s ideal
policies in a set Ak (V, yk+1(x)) ≡ PV (yk+1(x))∪{yk+1(x)}∪Y , where Y ⊆ RV (yk+1(x)).

We now define the strategy profile σ = (σi)i∈N . If the ongoing default is x ∈ X then
player i = πx(k) proposes yk(x) (if given the opportunity) with yk(x) = x being interpreted
as ‘pass’. Therefore, all proposers pass when the current default belongs to V .

When the ongoing default is x and the kth proposer has just proposed to change x to
y ̸= x, σi prescribes legislator i to vote ‘yes’ if and only if one of the following conditions
hold:

(A) x ∈ V and y1(y) ≻i x;

(B) x /∈ V , y1(y) ∈ Ak (V, yk+1(x)), and y1(y) ≽i yk+1(x);

(C) x /∈ V , y1(y) /∈ Ak (V, yk+1(x)), and y1(y) ≻i yk+1(x).

To prove the proposition, we proceed in three steps. The first step shows that fσ(x, 1) =

f(x) for all x ∈ X. Step 2 shows that there is no voting stage in which a voter, say i, has a
profitable one-shot deviation from σi. Step 3 demonstrates that there is no proposal stage
in which a proposer, say j, has a profitable one-shot deviation from σj . Combined, Steps
2 and 3 show that no player has a profitable one-shot deviation from σ. This proves that
no player can profitably deviate from σ in a finite number of stages. Finally, as infinite
bargaining sequences constitute the worst outcomes for all players, this proves that σ is an
equilibrium.

Step 1: fσ(x) ≡ fσ(x, 1) = y1(x) for all x ∈ X and, in particular, and fσ(x) = x for
all x ∈ V .
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Consider an arbitrary round t starting with default xt−1 = x. If x ∈ V , then the result
is trivial: all proposers pass and x is implemented at the end of the round. Suppose then
that x /∈ V . Let l = max{k ∈ {1, . . . ,mx} : yk(x) ̸= yk+1(x)} (external stability with
respect to Rπ ensures that this set is nonempty), and suppose that the lth proposer is
given the opportunity to make a proposal. By construction of (yk(x)), this implies that
yl(x) ∈ V and therefore yl(x) = y1 (yl(x)) ∈ Al (V, yl+1(x)). The definition of voting
strategies (condition (B)) then implies that all members of {i ∈ N : yl(x) ≽i yl+1(x)} vote
‘yes’, so that yl(x) = xt. As xt = yl(x) ∈ V , all proposers pass in round t+ 1 and yl(x) is
implemented.

Now consider the (l−1)th proposer. Suppose that she is given the opportunity to make
a proposal. By definition of proposal strategies, she must propose yl−1(x) ∈ Al−1 (V, yl(x)).
By definition of Al−1 (V, yl(x)), this implies that {i ∈ N : yl−1(x) ≽i yl(x)} ∈W. There-
fore, condition (B) implies that yl−1(x) is accepted and implemented at the end of the next
round.

Repeating this argument recursively for every l = 1, . . . , l − 2 . . ., we obtain that
fσ(x, 1) = y1(x). This proves that fσ(x, 1) = f(x) for all x ∈ X.

Step 2: Consider a proposal y by the kth proposer when the ongoing default is x ̸= y. σi

prescribes i ∈ N to vote ‘yes’ whenever fσ(y, 1) ≻i f
σ (x, k + 1), and to vote ‘no’ whenever

fσ (x, k + 1) ≻i f
σ(y, 1).

From Step 1, we know that fσ(y, 1) = y1(y) ∈ V .
If x ∈ V , then it will be implemented at the end of round t if the kth proposer fails

to amend it: by definition of the proposal strategies, all the remaining proposers will pass.
Hence, fσ (x, k + 1) = x. As a consequence, fσ(y, 1) ≻i f

σ (x, k + 1) implies y1(y) ≻i x,
which in turn implies that i must vote ‘yes’ (condition (A) in the definition of voting
strategies). Similarly, fσ (x, k + 1) ≻i f

σ(y, 1) implies x ≻i y1(y). Hence, i must vote ‘no’.
If x /∈ V , then fσ (x, k + 1) = yk+1(x). To see this, suppose first that no proposer

l > k amends x. We then have yk+1(x) = . . . = ym(x) = x = fσ (x, k + 1). Now suppose
that the lth proposer is the next proposer (after the kth) who makes a successful proposal,
yl(x) ̸= x. By construction, this implies that yk+1(x) = . . . = yl(x) ∈ V . As a consequence,
fσ (x, k + 1) = fσ (yl(x), 1) = yl(x) = yk+1(x).

Thus, fσ(y, 1) ≻i f
σ (x, k + 1) implies that y1(y) ≻i yk+1(x). Conditions (B) and (C)

in the definition of voting strategies then imply that legislator i votes “yes.” Similarly,
fσ (x, k + 1) ≻i f

σ(y, 1) implies she votes ‘no’.

Step 3: In any proposal stage with ongoing default x, the kth proposer cannot gain by
offering some y ̸= yk(x) and conforming to σπx(k) thereafter.
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Suppose first that x ∈ V . In such a case, σπx(k) prescribes the kth proposer to pass
(i.e., yk(x) = x). If she has a profitable deviation at this stage, then she must be able to
successfully make some proposal y ̸= x such that fσ(y, 1) = y1(y) ≻πx(k) x. Indeed, if she
does not deviate then all the remaining proposers will pass (yl(x) = x for all l) and x will
then be the final outcome. Nevertheless, if proposal y is successful, then condition (A) in
the definition of voting strategies implies that there is a winning coalition whose members
all strictly prefer y1(y) ∈ V to x ∈ V ; a contradiction with V satisfying (ISP ).

Now suppose that x /∈ V . In such a case, σπx(k) prescribes the kth proposer to propose
yk(x) ∈ AV

k (yk+1(x)) (where yk(x) = x means that she should pass). Suppose that,
instead, she chooses some y ̸= yk(x). The resulting outcome will be fσ(y, 1) = y1(y) if y
is a successful proposal (i.e.: y1(y) ∈ RV (yk+1(x))), or fσ(y, 1) = yk+1(x) if she passes or
y is an unsuccessful proposal. Such a deviation, however, cannot be profitable. Indeed,
yk(x) is by definition ≽πx(k)-maximal in [RV (yk+1(x)) ∪ {yk+1(x)}].

Proof of Proposition 2

The proof of Proposition 2 hinges on the following lemma.

Lemma 1. If σ is an equilibrium of Γ
(
π, x0

)
then fσ(X) ≡

∪
x∈X fσ (x) is a weakly stable

set.

Proof: Let σ be an equilibrium of Γ
(
π, x0

)
. To prove the lemma, we must show that

fσ(X) satisfies (ISP ) and (ESR).
(ISP ). If |fσ(X)| = 1 then P -internal stability is trivial; so suppose that |fσ(X)| ≥ 2.

Imagine that fσ(X) does not satisfy (ISP ). This implies that there are two policies in
fσ(X), say x and y, such that xPy. By definition of fσ(X), x and y are fixed points of
fσ(·, 1). An immediate consequence of xPy is therefore that there is a winning coalition
S ∈ W such that fσ(x, 1) ≻i f

σ(y, 1) for every i ∈ S. But this implies that any proposer in
S could successfully propose to amend y to x; a contradiction with σ being an equilibrium
of Γ

(
π, x0

)
.

(ESR). Suppose that fσ(X) does not satisfy (ESR). This implies that there exists a
policy x /∈ fσ(X) such that, for all y ∈ fσ(X), ¬ (yRx). In particular, ¬ [fσ(y, 1)Rx] for
all y ∈ fσ(X). Consequently, in any S ∈ W and any y ∈ fσ(X), there is at least one
player who strictly prefers x to fσ(y, 1).

Now consider the continuation game that starts with x as the ongoing default pol-
icy. Suppose the last potential proposer, πx (mx), is given the opportunity to amend x

with some policy y ̸= x. Players anticipate that fσ(y, 1) ∈ fσ(X) will eventually be imple-
mented if x is amended, and that x will be implemented otherwise. As no winning coalition
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including proposer πx (mx) would support the amendment, x should be implemented. As
a consequence, another proposer must amend x in equilibrium.

Now consider πx (mx − 1). We can repeat the same reasoning as with πx (mx). If
πx (mx − 1) offers to change x to some policy y ̸= x, all committee members will antic-
ipate that this will lead to fσ(y, 1) being the final outcome if the amendment is voted
up, and to x being implemented otherwise. Again, no winning coalition would support
the amendment and x would be implemented. Repeating this argument recursively until
committee proposer πx(1), we obtain the desired contradiction.

�

We now return to the main proposition. Let σ = (σi)i∈N be an equilibrium of Γ
(
π, x0

)
.

From Lemma 1, we know that there exists V ∈ V such that fσ(X) = V . Evidently, for all
x ∈ V , we have {fσ(x, 1)} = {x} = F π(V, x).

Now consider an arbitrary x /∈ V , and an arbitrary round starting with x as the ongoing
default. Suppose that (possibly off the equilibrium path) the mxth proposer is given the
opportunity to amend x. When she offers a policy y ̸= x, voters compare fσ(y, 1) ∈ V

with x. Therefore, voter i must vote ‘yes’ if fσ(y, 1) ≻i x, may vote either ‘yes’ or ‘no’ if
fσ(y, 1) ∼i x, and must vote ‘no’ otherwise. The acceptance set faced by the mxth proposer
— i.e., the set of policies y ̸= x that would be accepted by a winning coalition to amend x

— must then be the set of policies y such that fσ(y, 1) belongs to [PV (x) ∪ Y ] ⊆ V , where
Y is some (possibly empty) subset of RV (x). As a consequence, if σπx(mx) prescribes
the mxth proposer to amend x with ȳmx ̸= x, then fσ (x,mx) = fσ (ȳmx , 1) must be
≽πx(mx)-maximal in [PV (x) ∪ Y ∪ {x}] (x is always feasible to the mxth proposer, for she
can always pass). If σπx(mx) prescribes the mxth proposer not to amend x — i.e. to pass
or to make an unsuccessful proposal — then fσ (x,mx) = x must be ≽πx(mx)-maximal in
[PV (x) ∪ Y ∪ {x}]. This proves that ymx ≡ fσ (x,mx) ∈ sπm(V, x).

Proceeding recursively, one can use the same argument to show that, for each k =

1, . . . ,mx − 1, yk ≡ fσ (x, k) ∈ sπk(V, x): just substitute yk+1 for x in the argument above.
Since x /∈ V = fσ(X), there must be some proposer k who amends x, so that fσ (x, k) ̸=
x. This proves that the finite sequence (y1, . . . , ymx , x) ≡ (fσ(x, 1), . . . , fσ (x,mx) , x)

constitutes a path of tree Tπ(V, x) whose terminal node belongs to V . Hence, fσ(x) ∈
F π(V, x).

Proof of Proposition 3

Let σ be an equilibrium. Proposition 2 implies that there must be some weakly stable set
V such that fσ (X) = V . Consider the kth proposer as defined in the statement of the
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proposition. If she failed to amend the ongoing default x then nobody else would, and x

would be implemented at the end of the round. As she strictly prefers her ideal policy in
the set of equilibrium policy outcomes that dominate x — i.e.: M

(
≻π(l), R(x) ∩ fσ (X)

)
— to x, she must successfully propose that policy in equilibrium.

We therefore need to show that no proposer who is given the opportunity to amend x

before the kth proposer can successfully do so. Suppose first that the (k − 1)th proposer
successfully offers some policy y. This implies there is a winning coalition in W whose
members all strictly prefer fσ (y, 1) ∈ V to M

(
≻π(l), R(x) ∩ fσ (X)

)
∈ V : a contradiction

with V satisfying (ISP ). Applying this argument recursively from the (k − 2)th proposer
until the first, we obtain the result.

Proof of Proposition 4

(Necessity) Suppose that there exists some V ∈ V, a policy x /∈ V , and a pair of proposers
(i, j) in M(V, x) such that (1) does not hold. Let πi and πj be two elements of Π such that
πi(mx) = i and πj(mx) = j. As V ∈ V for both orders, Proposition 1 implies that there
exist equilibria σi and σj of Γ (πi, x) and Γ (πj , x) respectively, such that V = fσi (X) =

fσj (X). (Since X ⊇ V is finite, the closure of V is V itself.) As i and j are both amenders
of x in V , Proposition 3 implies that

F πi(V, x) = f σ̄i(x) = M (Pi, R(x) ∩ V ) ̸= M (Pj , R(x) ∩ V ) = f σ̄j (x) = F πj (V, x) ,

for all σ̄i ∈ Σ∗
V (πi, x) and σ̄j ∈ Σ∗

V (πj , x) such that V = f σ̄i(X) = f σ̄j (X) — the
inequality comes from (1) not being satisfied. This proves that order independence is not
satisfied.

(Sufficiency) Let V ∈ V and x /∈ V . We know from Proposition 3 that, for all π′ ∈ Π

and all σ ∈ Σ∗
V (π

′, x), the policy implemented when the default is x, fσ(x), must be the
ideal policy of the last amender of x within R(x) ∩ V . But condition (1) implies that
all amenders have the same ideal policy in R(x) ∩ V . As a consequence, whoever the
last amender is, and therefore whatever the order of proposers π′ ∈ Π, the outcome must
always be this common ideal policy. Hence

σ1 ∈ Σ∗
V (π1, x) & σ2 ∈ Σ∗

V (π2) =⇒ fσ1(x) = F π1(V, x) = F π2(V, x) = gσ2(x)

for all π1, π2 ∈ Π. This condition is also true when x ∈ V since, in such a case, fσ(x) =

F π′
(V, x) = x for all π′ ∈ Π and all σ ∈ Σ∗

V (π′, x).
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Proof of Proposition 5

By definition of Π, the same players propose at every default x ∈ X for each protocol π ∈ Π;
so the sets of winning coalitions, W, and weakly stable sets, V, are each constant across
Π. Inspection of the proof reveals that Proposition 2 holds irrespective of the protocols π

in Π. In other words, for any π ∈ Π and any equilibrium σ of Γ
(
π, x0

)
, fσ(X) is a weakly

stable set.
Now fix some weakly stable set V and some initial default x0 /∈ V , and consider any

pair π1 and π2 in Π such that π1
x0 = π2

x0 ≡ πx0 . Write x0k for any ≽k-maximal policy in[
V ∩R

(
x0

)]
∪
{
x0

}
, and define l as the last player in πx0 such that x0k = x0 for every

k > l. Any player k > l would pass at x0 because she weakly prefers the default over any
policy in V which weakly dominates x0. This property does not depend on the protocol
at other defaults; so if player k passes at x0 for protocol π1 then she also passes at x0 for
protocol π2. Player l would amend x0, with the result that x0l is implemented, because
she rightly believes that players k > l would otherwise pass, x0l is ≽l-maximal policy in[
V ∩R

(
x0

)]
∪
{
x0

}
, and members of a winning coalition weakly prefer x0l over x0. These

properties do not depend on the protocol at other defaults; so if player l amends x0 such
that x0l is eventually implemented for protocol π1 then x0l is also eventually implemented
when player l proposes at x0 for protocol π2. This observation implies that the same
policies are implemented in subgames which start with players k < l proposing at x0 with
protocols π1 and π2. The result then follows by taking the union of equilibrium policies,
fσ(X), over every equilibrium of Γ

(
πi, x0

)
for i = 1 and 2 (and applying Corollary 1).

Proof of Proposition 8

Let V ∈ V. For every x /∈ V , let Kx be the last proposer according to π who would be
willing to amend x if given the opportunity; that is:

Kx ≡ max
{
k ∈ {1, . . . ,mx} : v ≻π(k) x for some v ∈ RV (x)

}
.

Since V is R-externally stable, Kx is well-defined for all x /∈ V . Next, let the function
υ ∈ V X be defined by: (i) for all x ∈ V , υ(x) = x, and (ii) for all x /∈ V , υ(x) = ῡ, where ῡ

is ≻π(Kx)-maximal in RV (x) for all x /∈ V . That is, υ(x) is equal to x whenever x belongs
to V , and to some of the Kxth proposer ideal policies in RV (x) otherwise.

We now define σ as follows. If the ongoing default is x ∈ X, player i = π(k) proposes
υ(x) (with υ(x) = x interpreted as ‘pass’) if k ≥ Kx, and passes otherwise. Therefore, all
proposers pass when the current default belongs to V .

When the ongoing default is x and the kth proposer has just proposed to change x to
y ̸= x, σi prescribes voter i to vote ‘yes’ if and only if one of the following conditions holds:
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(A) x ∈ V and ui (υ(y)) > ui(x);

(B) x /∈ V , k ≥ Kx, and ui (υ(y)) ≥ ui (x);

(C) x /∈ V , k < Kx, and ui (υ(y)) > ui (υ(x)).

Applying the same argument as in the proof of Proposition 1 above, it is readily checked
that σ ∈ Σ∗

V (π).
21

Now fix ε > 0 and suppose that

δ ≥ δε ≡
∆− ε

∆
∈ (0, 1) ,

where ∆ ≡ maxi∈N max(x,y)∈X2 [ui(x)− ui(y)]. To prove the result, we proceed in two
steps.

Step 1: In any voting stage, each voter i’s continuation payoffs after any profitable
one-shot deviation from σi must be within ε of her continuation payoff from conforming to
σi.

Note first that, given σ, the policy implemented in any round starting with ongoing
default x is υ(x) for all x ∈ X: If x ∈ V , then all proposers pass and, therefore, υ(x) = x

is implemented at the end of the round; if x /∈ X, then the proposals by the first (Kx − 1)

proposers are voted down (by condition (C) in the definition of voting strategies and
internal stability), the Kxth proposer offers υ(x) which is voted up (condition (B)), and all
the remaining proposers pass. Once υ(x) ∈ V has been implemented, it is never amended
and is therefore implemented in all future periods. This implies that continuation payoff
to player i under the strategy profile σ at the start of any round with default x is ui (υ(x)).

Suppose first that σi prescribes voter i to vote ‘yes’ when the kth proposer offers y ̸= x.
Voter i profitably deviates by playing ‘no’ (and incurring an extra cost of ε) if and only if

(1− δ)ui(y) + δui (υ(y)) ≥ (1− δ)ui(x) + δui (υ(x))− ε .

The definition of voting strategies implies that ui (υ(y)) ≥ ui (υ(x)) whenever σi prescribes
i to vote ‘yes’. Consequently, the inequality above is satisfied whenever

(1− δ) [ui(x)− ui(y)] ≤ ε ,

which must be true since δ > δε.
Now suppose that σi prescribes player i to vote ‘no’ when the kth proposer offers y ̸= x.

Voter i cannot profitably deviate by voting ‘yes’ (and incurring an extra cost of ε) if and
only if

(1− δ)ui(x) + δui (υ(x)) ≥ (1− δ)ui(y) + δui (υ(y))− ε .
21Just use the following sequence (y1(x), . . . , ym+1(x)) for each x ∈ X: (i) if x ∈ V , then yk(x) = x for

each k, and (ii) if x /∈ V , then yk(x) = x for each k ≤ Kx, and yk(x) = x for each k > Kx.
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The definition of voting strategies implies that ui (υ(y)) ≤ ui (υ(x)) whenever σi prescribes
i to vote ‘no’. Consequently, the inequality above is satisfied whenever

(1− δ) [ui(y)− ui(x)] ≤ ε ,

which must be true since δ > δε.

Step 2: No proposer has a profitable deviation.
Let k ∈ π−1(i); that is, i is the kth proposer. Suppose, first, that x ∈ V . In such a

case, σi prescribes i to pass. If she has a profitable deviation at this stage, then she must
be able to amend x with some proposal y ̸= x. Indeed if she does not deviate then all
the remaining proposers will pass and x will then be the final outcome. Nevertheless, if
proposal y is successful, then condition (A) in the definition of voting strategies implies
that there is a winning coalition whose members all strictly prefer υ(y) ∈ V to x ∈ V ; a
contradiction with V satisfying (ISP ).

Now suppose that x /∈ V . If k > Kx then i has evidently no profitable deviation. To
profitably deviate, she would have to amend x with some proposal y ̸= x. But such a
proposal can only be successful if y ∈ RV (x); and Kx < k ∈ π−1(i) implies that i strictly
prefers x to any point in RV (x).

If k = Kx then i can deviate either by proposing y ̸= υ(x) or by passing. Suppose,
first, that she proposes y ̸= υ(x). Such a deviation cannot be profitable since υ(x) is
by definition i’s ideal policy in RV (x) and ui(υ(x)) ≥ ui(x): if proposal y is successful,
then it must belong to RV (x) ⊆ V (so that υ(y) = y) and therefore cannot improve
upon υ(x); if proposal y is unsuccessful, then the payoff from the deviation would be
(1− δ)ui(x) + δui(υ(x)) which must be lower than ui[υ(x)] ≥ ui(x).

Finally, if k < Kx, any proposal y by i which she strictly prefers to υ(x), is voted down
(condition (C) in the definition of voting strategies and P -internal stability of V .

Proof of Proposition 9

We first construct δ̄. For each i ∈ N and every pair (x, y) ∈ X2 such that ui(x) > ui(y),
let

∆i (x, y, δ) ≡ min
Tx,Ty∈{1,...,|X|}

δTxui(x) +
(
1− δTx

)
ui − δTyui(y)−

(
1− δTy

)
ūi ,

where ūi ≡ maxx∈X ui(x) and ui ≡ minx∈X ui(x). Since ∆i (x, y, δ) → ui(x) − ui(y) > 0

as δ → 1, δi(x, y) ≡ min {d ≥ 0 : ∆i (x, y, δ) ≥ 0} is well-defined. From now on, we assume
that

δ > δ̄ ≡ max
i∈N

max
x,y∈X:x≻iy

δi(x, y) ∈ (0, 1) .
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Suppose, first, that σ is an equilibrium of Γ
(
π, x0

)
. This implies that, at any stage of

this game, no player i has a profitable one-shot deviation from σi (given σ−i). Consider an
arbitrary stage of Γ

(
π, x0

)
, and let x be the final policy outcome if i does not deviate from

σi in that stage. Hence, any other policy outcome y ̸= x she could induce by a one-shot
deviation satisfies: ui(y) < ui(x). Suppose that, contrary to the statement of the result, i
has a profitable one-shot deviation at the same stage in Γδ

(
π, x0

)
. This implies that there

are two finite sequences {xt}t=1,...,Tx
and {yt}t=1,...,Ty

, and a policy y ∈ X such that

(1− δ)

Ty∑
t=1

δt−1ui (yt) + δTyui(y) > (1− δ)

Tx∑
t=1

δt−1ui (xt) + δTxui(x)

and ui(y) < ui(x) (recall that a one-stage deviation from an equilibrium strategy in
Γ
(
π, x0

)
must converge in a finite number of rounds). This is impossible when δ > δ̄.

By the one-shot deviation principle, σ is then an absorbing stationary Markov equilibrium
of Γδ

(
π, x0

)
.

Now suppose that σ is an absorbing stationary Markov equilibrium of Γδ
(
π, x0

)
. This

implies that no player i has a profitable one-shot deviation from σi (given σ−i) at any stage
of this game. Consider an arbitrary stage of Γδ

(
π, x0

)
, and let {xt}t=1,...,Tx+1 be the finite

sequence of policy outcomes (with x = xTx+1 being implemented indefinitely) if i does not
deviate from σi at that stage. Hence, any other sequence {yt}t=1,...,Ty+1 (with y = yTy+1

being implemented indefinitely) she could induce by a one-shot deviation satisfies:

(1− δ)

Ty∑
t=1

δt−1ui (yt) + δTyui (y) ≤ (1− δ)

Tx∑
t=1

δt−1ui (xt) + δTxui(x) .

This inequality implies that ui(x) > ui(y). To see this, suppose instead that ui(y) > ui(x).
δ > δ̄ then implies that ∆i(y, x, δ) > 0, so that

(1− δ)

Ty∑
t=1

δt−1ui (yt) + δTyui (y)−

[
(1− δ)

Tx∑
t=1

δt−1ui (xt)− δTxui(x)

]
≥ ∆i(y, x, δ) > 0 ;

a contradiction. At the equivalent stage in game Γ
(
π, x0

)
, ui(x) > ui(y) clearly implies

that player i has no profitable one-shot deviation in this stage. This in turn implies that
player i cannot profitably deviate from σi in a finite number of stages. Finally, as infinite
bargaining sequences constitute the worst outcomes for all legislators in Γ

(
π, x0

)
, this

proves that σ is an equilibrium of Γ
(
π, x0

)
.

Proof of Proposition 10

The first part of the proof puts in place some mathematical machinery that will be handy
when we come to construct the equilibrium σ. In what follows, we will indulge in a slight
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abuse of terminology by referring to partial histories as ‘histories’.
Let Z be the closure of a consistent set, and let f ∈ ZX be a selection of F π(Z, ·). We

will use a sequence (τl) ∈ (N ∪ {∅})∞ to construct σ. For a given history,22 each element of
this sequence must be thought of as a round in which players (both proposers and voters)
changed the default in accordance with σ. Given a round-t history h ∈ Ht, we define the
sequence (τl) and proposal strategies as follows:
• l = 1: τ1 is the first round in which an element of Z became the new default; if that

has not happened so far, then we write τ1 = ∅ and say that h ∈ H1. That is, H1 is the
set of histories in H at which no element of Z has ever been offered and accepted. (Note
that this was the case at the start of round τ1, so that h ∈ H1 when t = τ1.)

We now define proposal strategies at any history h ∈ H1. Let x = xt−1 be the ongoing
default at history h. By construction of H1, therefore, x /∈ Z. From the construction
of F π(Z, x), there exists a vector (z1(h), . . . , zmx+1(h)) such that: f(x) = z1(h) ∈ Z,
x = zmx+1(h), and zk(h) ∈ sπk (Z, zk+1(h)) for each k = 1, . . . ,mx. The latter condition
implies that zk(h) is one of the kth proposer’s ideal policies in a set Ak (Z, zk+1(h)) ≡
PZ (zk+1(h)) ∪ {zk+1(h)} ∪ Yk(h), where Yk(h) ⊆ RZ (zk+1(h)).

If h ∈ H1 then σi prescribes player i = πx(k) to propose zk(h) if zk(h) ̸= zk+1(h), and
to pass if zk(h) = zk+1(h).

• l ≥ 2: τl is the first round after τl−1 at which an element of

Zl ≡
{
z ∈ Z : xτl−1 ≽i z for some i ∈ Sτl+1

}
became the new default; if that has not happened so far then we let τl = ∅. In particular,
if τl = ∅ ̸= τl−1 then we write h ∈ Hl. By definition of τl−1, xτl−1 ∈ Z. Since Z is
consistent, Zl ∩ {z inZ : zRx} is nonempty for all x ∈ X. Using the tree Tπ

(
Zl, x

t−1
)
,

we can then obtain a vector (y1(h), . . . , ymx+1(h)) such that: x = zmx+1(h), and zk(h) ∈
sπk (Zl, zk+1(h)) for each k = 1, . . . ,mx. The latter condition implies that zk(h) is one of the
kth proposer’s ideal policies in a set Ak (Zl, zk+1(h)) ≡ PZl

(zk+1(h)) ∪ {zk+1(h)} ∪ Yk(h),
where Yk(h) ⊆ RZl

(zk+1(h)).
If h ∈ Hl then σi prescribes player i = πx(k) to propose zk(h) if zk(h) ̸= zk+1(h), and

to pass if zk(h) = zk+1(h). The idea behind this construction is that the kth proposer tries
to “punish” at least one of the “deviators” in Sτl+1 for not rejecting the kτl+1th proposer’s
offer to amend xτl .

So far, we have been silent about proposals at period-t histories such that t = τl + 1

(so that xt−1 = xτl). We denote the set of such histories by H0. At any history h ∈ H0,
22To lighten the notation, we voluntarily omit the sequence’s dependence on the history under consid-

eration.
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the ongoing default should be implemented: σi prescribes player i = πx(k) to pass. For
expositional convenience, we will sometimes say that i proposes zk(h) = x. Since {Hl}∞l=0

is a partition of H, the description of proposal strategies is complete.
We now turn to voting strategies. At a round-t history h ∈ Ht, following a proposal

y ̸= xt−1 by the kth proposer, σi prescribes voter i to act as follows:

(A) If h ∈ H0 (i.e.: t = τl + 1 for some l ∈ N) then i votes ‘yes’ iff z1(h, k, S, y) ≻i x
t−1

for any winning coalition S ∋ i;

(B) if h ∈ Hl (i.e.: τl−1 + 1 < t ≤ τl), l ̸= 0, and y ∈ Ak (Zl, zk+1(h)) then i votes ‘yes’ iff
y ≽i zk+1(h);

(C) if h ∈ Hl (i.e.: τl−1 + 1 < t ≤ τl), l ̸= 0, and y /∈ Ak (Zl, zk+1(h)) then i votes ‘yes’ iff
z1(h, k, S, y) ≻i zk+1(h) for any winning coalition S ∋ i;

where Z1 ≡ Z.
We establish the statement of Proposition 10 via a series of claims. The first two claims

provide useful characterization results about equilibrium policy outcomes. Claim 3 shows
that fσ(x) = f(x) for all x ∈ X. Claim 4 shows that there is no voting stage in which a
voter, say i, has a profitable one-shot deviation from σi. Claim 5 demonstrates that there
is no proposal stage in which a proposer, say j, has a profitable one-shot deviation from
σj . Claims 4 and 5 jointly show that no voter has a profitable one-shot deviation from
σ. This proves that no player can profitably deviate from σ in a finite number of stages.
Finally, as infinite bargaining sequences constitute the worst outcomes for all legislators,
this proves that σ is an equilibrium.

Claim 1: Consider the round following a history h ∈ H, and suppose the kth proposer
has just moved. If she has made no proposal or if her proposal is rejected, then the final
outcome will be zk+1(h).

Proof: If h ∈ H0, then the claim is trivial: zk+1(h) = . . . = zm+1(h) = xt−1 (all the
remaining proposers pass). Accordingly, suppose that h ∈ Hl with l ̸= 0. Since the kth
proposer has not amended x, the (k + 1)th proposer is given the opportunity to make a
proposal. By definition of proposal strategies, she proposes zk+1(h) if zk+1(h) ̸= zk+2(h),
and passes otherwise. If zk+1(h) ̸= zk+2(h) then zk+1(h)Rzk+2(h). Condition (B) in the
definition of voting strategies then ensures that proposal zk+1(h) ∈ Ak (Zl, zk+1(h)) is
accepted. As a consequence, the history at the start of the next round belongs to H0, so
that all proposers pass and zk+1(h) is implemented at the end of that round.

If zk+1(h) = zk+2(h) then the (k + 2)th proposer is given the opportunity to make a
proposal. We can apply the same argument as above to show that either zk+1(h) = zk+2(h)
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(̸= zk+3(h)) is implemented in the next round or zk+1(h) = zk+2(h) = zk+3(h). Going on
until the mxth proposer, we obtain the claim.

Claim 2: Let ϕσ(h; k) be the unique final outcome eventually enacted (given σ) when,
after history h ∈ H, the kth proposer is about to move. For all h ∈ H, ϕσ(h; k) = zk(h).
In particular, if h ∈ H0 then ϕσ(h; k) = zk(h) = xt−1.

Proof: If zk(h) ̸= zk+1(h) then zk(h) ∈ Zl. Condition (B) in the definition of voting
strategies then ensures that the kth proposer’s offer, zk(h) ∈ Ak (Zl, zk+1(h)), is accepted.
Therefore, the history at the start of the next round belongs to H0, so that all proposers
pass and zk(h) is implemented at the end of that round.

If zk(h) = zk+1(h) then, by definition of proposal strategies, the kth proposer passes.
From Claim 1, zk(h) = zk+1(h) is then the final outcome.

Claim 3: fσ
(
x0

)
= z1

(
x0

)
= f

(
x0

)
for all x0 ∈ X = H1.

Proof: Suppose first that the initial default (x0) is an element of Z: viz. zk
(
x0

)
= x0

for any proposer k. No proposer then offers to amend x0, which is implemented at the end
of round 1: fσ

(
x0

)
= x0 = z1

(
x0

)
= f

(
x0

)
.

Now suppose that x0 is not a member of Z, so that x0 ∈ H1. Since z1
(
x0

)
= f

(
x0

)
∈

F π
(
Z, x0

)
⊆ Z, at least one proposer tries to amend x0. The first proposer who does

so, say πx0(k), offers zk
(
x0

)
Rzk+1

(
x0

)
which, by condition (B) in the definition of voting

strategies, is accepted. This implies that τ1 = 1, which in turn implies that zk
(
x0

)
is never

amended and is therefore implemented at the end of round 2. By definition of proposal
strategies, zl

(
x0

)
= zk

(
x0

)
for all proposers l < k who do not try to amend x0. Hence,

fσ
(
x0

)
= zk

(
x0

)
= z1

(
x0

)
= f

(
x0

)
.

As this is true for any x0 ∈ X, this proves that fσ (X) ≡
{
fσ

(
x0

)
: x0 ∈ X

}
={

z1
(
x0

)
: x0 ∈ X

}
= Z.

Claim 4: Let h ∈ Ht. Suppose the kth proposer has made proposal y ̸= xt−1. Let
S−
i be the set of players who have already voted ‘yes’ when it is i’s turn to vote, and let

S+
i be the set of voters j who will vote after i and are prescribed to vote ‘yes’ by σj. If

S ≡ S−
i ∪{i}∪S

+
i is a coalition then σi prescribes i to vote ‘yes’ only if ϕσ(h, k, S, y; 1) ≽i

ϕσ (h; k + 1), and to vote ‘no’ only if ϕσ (h; k + 1) ≽i ϕ
σ(h, k, S, y; 1).

Proof: Claim 2 immediately implies that ϕσ(h, k, S, y; 1) = z1 (h, k, S, y) for all y ̸=
xt−1, and ϕσ (h; k + 1) = zk+1(h).

Suppose first that h ∈ H0. If player i votes ‘yes’ then, by condition (A), z1 (h, k, S, y) ≻i

xt−1. Claim 2 implies that xt−1 = zk(h) = ϕσ(h; k). Hence, z1 (h, k, S, y) ≻i x
t−1 implies

ϕσ(h, k, S, y; 1) ≻i ϕσ (h; k + 1) and, therefore, that ϕσ(h, k, S, y; 1) ≽i ϕσ (h; k + 1). If
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player i votes ‘no’ then, by condition (A), xt−1 ≻i z1 (h, k, S, y). This in turn implies that
ϕσ (h; k + 1) ≽i ϕ

σ(h, k, S, y; 1).
Now suppose that h ∈ Hl for some l ∈ N and that y ∈ Ak (Zl, zk+1(h)). If player i votes

‘yes’ then, by condition (B), y ≽i zk+1(h) = ϕσ (h; k + 1). Since y ∈ Ak (Zl, zk+1(h)) ⊆ Zl,
history (h, k, S, y) ∈ H0, which in turn implies that ϕσ(h, k, S, y; 1) = y (all proposers will
pass at a history in H0). Hence, ϕσ(h, k, S, y; 1) ≽i ϕ

σ (h; k + 1). If player i votes ‘no’ then,
by condition (B), zk+1(h) ≻i y. This in turn implies that ϕσ (h; k + 1) ≻i ϕ

σ(h, k, S, y; 1)

and, therefore, that ϕσ (h; k + 1) ≽i ϕ
σ(h, k, S, y; 1).

Finally, suppose that h ∈ Hl for some l ∈ N and that y /∈ Ak (Zl, zk+1(h)). If
player i votes ‘yes’ then, by condition (C), z1(h, k, S, y) ≻i zk+1(h). This implies that
ϕσ(h, k, S, y; 1) ≻i ϕ

σ (h; k + 1) and, therefore, that ϕσ(h, k, S, y; 1) ≽i ϕ
σ (h; k + 1). Simi-

larly, if i votes ‘no’ then (C) implies that zk+1(h) ≽i z1(h, k, S, y) and then ϕσ (h; k + 1) ≽i

ϕσ(h, k, S, y; 1).

Claim 5: Let h ∈ Ht be a history ending with default xt−1 = x. At this history, the
kth proposer cannot gain by deviating from σπx(k) at that stage and conforming to σπx(k)

thereafter.
Let i = πx(k).
Suppose first that h ∈ H0 (or, equivalently, t − 1 = τl): viz. σ dictates all proposers

to pass at h. Consequently, if i conforms to σi then the final policy outcome will be
xt−1 = xτl = zk+1(h). Hence, i can only profitably deviate by amending xt−1 with some
policy y such that y ≻i x

t−1. However, for any S ∈ W , history (h, k, S, y) belongs to Hl+1.
Claim 2 then implies that

ϕσ(h, k, S, y) = z1(h, k, S, y) ∈ Zl+1 ≡ {z ∈ Z : xτl = zk+1(h) ≽j z for some j ∈ S} .

Therefore, for each coalition S ∈ W , there is at least one member of S who weakly prefers
zk+1(h) to z1(h, k, S, y). Condition (C) guarantees that any proposal y ̸= xt−1 would be
rejected; so that i cannot profitably deviate from passing.

Now suppose that h ∈ Hl for some l ∈ N. Any proposal y such that ϕσ(h, k, S, y; 1) =

z1(h, k, S, y) /∈ Ak (Zl, zk+1(h)) must be unsuccessful. Indeed, condition (C) in the defini-
tion of voting histories implies that voters only vote ‘yes’ if they strictly prefer z1(h, k, S, y) ∈
Zl to zk+1(h). As PZl

(zk+1(h)) ⊆ Ak (Zl, zk+1(h)), every winning coalition includes at least
one player who votes ‘no’. Thus, as zk(h) is ≽i-maximal in Ak (Zl, zk+1(h)) ⊇ {zk+1(h)},
player i cannot improve upon proposing zk(h) when zk(h) ̸= zk+1(h) and passing otherwise.
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Proof of Proposition 11

Let σ be a semi-Markovian equilibrium. Suppose that, contrary to the statement of Propo-
sition 11, ϕσ(H) is not a consistent set. This implies that there exist o ∈ ϕσ(H), x ∈ X,
and S ∈ W such that, for all o′ ∈ ϕσ(H), one of the following conditions is true:

(a) o′ = x and o′ ≻i o for all i ∈ S;
(b) o′Rx and o′ ≻i o for all i ∈ S;
(c) ¬ (o′Rx).
Now consider a history h ∈ H at which, instead of following σ and implementing o at

the end of the round, some players have deviated as follows: a proposer πo(k) in S has
proposed to amend o with x and all members of S have voted ‘yes’. This deviation yields
a new outcome o′ ∈ ϕσ(H), which satisfies one of the conditions (a)-(c) above. As σ is
an equilibrium, some winning coalition in W must find it (weakly) profitable to induce o′

from x and, therefore, o′ cannot satisfy (c). As a consequence, o′ must satisfy either (a) or
(b).

Denote the last player in πo ({1, . . . ,mo})∩S by mS , and suppose that this player has
proposed amending o to x. Members of S anticipate that voting ‘yes’ will induce some
o′ ∈ ϕσ(H). As σ is semi-Markovian, it must still specify outcome o after an unsuccessful
attempt to amend it. All players in S, including mS , must then be strictly better off voting
for x if o′ satisfies either (a) or (b). Consequently, all voters in S would vote for x, and
player mS could profitably deviate from σ by proposing x, contrary to the supposition that
σ is a semi-Markovian equilibrium.

The Dynamic Game with Endogenous Protocol (footnote 17)

In this section, we establish the claim that Proposition 5 also applies in a different ‘dynamic’
game, Γd

(
π, x0

)
, where the chair selects the next proposer immediately after each vote

which does not end the game.
Γd

(
Π, x0

)
starts with the chair selecting a proposer from M . This player either passes

or proposes a policy in X, after which the players vote. A round necessarily ends if
the default is amended. If the default has yet to be amended then the chair can either
select a proposer from M or end the round, implementing the default. However, the
chair can only end the game if the protocol in the final round is an element of Π. In
particular, all M proposers have had an opportunity to propose. We construct payoffs as
for Γc

(
Π, x0

)
: players, including the chair, only care about the implemented decision. We

again characterize play via the equilibria of Γd
(
Π, x0

)
. Markov stationarity now requires

that the chair’s selection of proposer only depends on history via the default and the
number of proposals by each player thus far in the current round.
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The dynamic structure of Γd
(
Π, x0

)
is reminiscent of Harsanyi’s (1974) model, where

the chair solicits proposals at each default. By contrast, Harsanyi assumes that the chair’s
payoff is increasing in the number of amendments; so the equilibrium protocol in Γd

(
Π, x0

)
typically differs from that in Harsanyi (1974).

Proposition 5 implies that equilibrium proposals and voting in the dynamic game only
depend on history via the default and the selected protocol in the current round. Conse-
quently, the chair’s selection in any equilibrium only depends on the default and on her
previous selections that round. In equilibrium, the chair can anticipate whether and how
any player, selected as proposer, would amend the default. Fix an equilibrium, and write
the sequence of selections which the chair makes at x0 when the default is not amended
as πd

(
x0,Π

)
. Let πc

(
x0,Π

)
be an equilibrium choice in Γc

(
π, x0

)
. A chair who could

commit to protocols could always do at least as well as the chair in Γd
(
π, x0

)
by choosing

πc
(
x0,Π

)
= πd

(
x0,Π

)
. Conversely, the chair in Γd

(
Π, x0

)
could always do at least as well

as the chair in Γc
(
Π, x0

)
by replicating πc

(
x0,Π

)
. We therefore conclude that the same

set of policies can be implemented in an equilibrium of Γc
(
Π, x0

)
as in an equilibrium of

Γd
(
Π, x0

)
. In each case, an equilibrium protocol at x0 is a best protocol in the class of

games analyzed in Section 3.

Mixed Strategy Equilibria and MTHPEs

In this section, we provide proofs of our claims regarding mixed strategy equilibria and
Markov trembling-hand perfect equilibria in the Conclusion of the paper.

Mixed strategy equilibria

In this subsection, we substantiate a claim in the Conclusion: that a mixed strategy Markov
perfect equilibrium supports all three policies in a game which exhibits a Condorcet cycle:
where ‘supports’ means that the process converges almost surely to implementing some
policy. In light of the Condorcet cycle, there is no weakly stable set, and therefore no pure
strategy Markov perfect equilibrium.

Suppose that three proposers = voters i ∈ {1, 2, 3} have preferences over a policy space
{x, y, z} which are represented by utility functions ui:

Policies (w)
x y z

1 2 1 0

Players (i) 2 0 2 1

3 1 0 2
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Utilities ui(w)

and that the protocol is given by

(πx(1), πx(2), πx(3)) = (2, 3, 1) ;

(πy(1), πy(2), πy(3)) = (3, 1, 2) ;

(πz(1), πz(2), πz(3)) = (1, 2, 3) .

Consider the following strategy combination. At any default, each player proposes her
top-ranked policy; so, given the protocol, the default is implemented if it is not amended
by either of the first two proposers. At any default and after any proposal, the player who
top [resp. bottom] ranks the policy votes “yes” [resp. “no”], and the other player mixes.

In light of the symmetry across players, we write u for the initial default, U for the
player who top-ranks u, and whose preferences satisfy u ≻ v ≻ w. The players who top
rank v and w are respectively denoted by V and W . Thus, according to the protocol, the
order of proposers is V,W,U .

Write pvu for the probability that v is eventually implemented at the beginning of a
round with default u and Y v

u for the probability that the decisive player votes “yes” to
proposal v at default u.

If W proposes w [resp. v] then she is indifferent if and only if 2pww + puw = 1 [resp.
2pwv + puv = 1]. It is easy to confirm that U and V would respectively vote “no” and “yes”
if pst = 1/3. W then proposes w if and only if

Y w
u (2pww + pwu − 1) ≥ max{0, Y v

u (2p
w
v + puv − 1)}

These arguments imply that, if V does not amend then u is amended to w with prob-
ability Y w

u , and u is otherwise implemented. V then earns Y w
u (2pvw + pww).

If V proposes v then W is indifferent as a voter if and only if

Y w
u (2pww + puw − 1) = 2pwv + puv − 1

V then earns
Y v
u (2pvv + pwv ) + (1− Y v

u )Y
w
u (2pvw + puw)

Analogously, it is easy to confirm that W is decisive if V proposes w, and is indifferent if
and only if

2pww + puw − 1 = Y w
u (2pww + puw − 1)

V then earns
Y w
u (2pvw + pww) + (1− Y w

u )Y w
u (2pvw + pww)
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if she proposes w. Hence, V cannot profitably deviate if and only if

Y v
u (2pvv + pwv ) ≥ max {Y w

u (2pvw + pww) + (Y v
u − Y w

u )Y w
u (2pvw + pww) , Y

v
u Y

w
u (2pvw + pww)} .

All of these conditions are satisfied if pst = 1/3 for every s, t ∈ X. Accordingly, we will
construct {Y s

t } such that every pst satisfies this condition:
Given the strategy combination above, we have

puu = Y v
u p

u
v + (1− Y v

u )(Y
w
u puw + 1− Y w

u )

pvu = Y v
u p

v
v + (1− Y v

u )Y
w
u pvw

pwu = Y v
u p

w
v + (1− Y v

u )Y
w
u pww

These equations hold when psu = 1/3 as long as Y v
u + Y w

u = 1 + Y v
u Y

w
u .

In sum, we have constructed a mixed strategy Markov perfect equilibrium for a game
with no weakly stable set (and therefore no pure strategy equilibrium). This equilibrium
supports the entire policy space.

Markov trembling-hand perfect equilibria

In this subsection, we provide a proof of Observation 2:

Observation 2. If X is finite and well ordered then the set of MTHP equilibrium policies
coincide with the set of equilibrium policies (and is therefore the union of stable sets).

Proof: To prove this result, it suffices to show that, for every weakly stable set V ∈ V ,
there is an MTHP equilibrium σ which supports V . To do so, we will use the construction
described in the proof of Proposition 1. Consider the equilibrium described in that proof,
say σ̃, which is obtained by setting Y = ∅. In this equilibrium, all proposers pass if the
default x belongs to V . If x /∈ V then, for each k ∈ {1, . . . ,mx}, the kth proposer offers
yk(x) — i.e.: the ≻πx(k)-maximal element in PV (yk+1(x))∪ {yk+1(x)} — and voter i ∈ N

accepts this proposal if and only if y1 (yk(x)) ≻i yk+1(x) — where, for all x /∈ V , y1(x)
is the ideal policy of the last amender of x in PV (x) ∪ {x} and, for all v ∈ V , y1(v) = v.
Thus, if the current default x does not belong to V : all proposers who move before the last
amender of x make an unsuccessful proposal (by internal stability of V ); the last amender
amends x to y1(x); and (off the equilibrium path) proposers k who move after the last
amender choose yk(x) = x (i.e., they pass).

In equilibrium σ̃, as X is finite and well ordered, ‘agents’ (we are using the agent-
strategic form) play strict best responses in all voting stages and in proposal stages where
they are the last amenders. In proposal stages where they move before the last amender,
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they are indifferent between all proposals in X since (by internal stability of V ) all proposals
are voted down. In proposal stages where they move after the last amender, they are
indifferent between all proposals in X that are rejected. Let σ be a stationary Markov
strategy profile defined as follows:

• in stages where σ̃ prescribes strict best responses, σ coincides with σ̃;

• in proposal stages where the proposer moves before the last amender, σ prescribes
that proposer to offer her ideal policy in V ;

• in proposal stages where the proposer moves after the last amender, σ prescribes
that proposer to offer her ideal policy in V ∪ {x}, where x is the ongoing default.

By construction, σ must be an equilibrium of Γ
(
π, x0

)
and fσ (X) = V . (Either σ dictates

the same behavior as σ̃ or it dictates behavior that yield the same consequences as σ̃.) We
will now prove that it is Markov trembling-hand perfect (MTHP).

To do so, we first construct a sequence of strategy profiles {σm} as follows. At every
voting history, σm is defined as

σm(h) =
1

m
ῡ +

(
1− 1

m

)
σ(h)

where ῡ is a (completely mixed) voting profile such that the probability for every element
of V to be accepted is the same (for all defaults and proposers). At all proposal histories
h, σm is defined as

σm(h) =
1

m
σ′(h) +

(
1− 1

m

)
σ(h)

where σ′ is an arbitrary stationary Markov (completely) mixed strategy. Evidently, σm →
σ as m→∞.

To establish the result, we now have to show that for each player i ∈ N and every
history of the game h, the action prescribed by σi to the agent representing i at h, i(h),
is a best response to σm for all sufficiently large m. By construction of σ, this is obvious
in all voting stages and in the proposal stages where the agent is the last amender. We
can therefore concentrate on proposal stages in which proposers are indifferent between
proposals (given σ).

Let h be such a proposal stage (or history) with ongoing default x, and consider the
choice of the agent representing the kth proposer at this history, i = πx(k). Let pmk (y) be
the probability that proposal y by i is accepted, V m

i (y) the expected payoff of i when her
proposal y is accepted, and vmi her expected payoff when her proposal is rejected, given
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that all players play according to σm. Denoting by yi i’s ideal policy in V , the action
prescribed by σi to i(h) is a best response to σm if and only if

pmk (yi)V
m
i (yi) + [1− pmk (yi)] v

m
i ≥ pmk (y)V m

i (y) + [1− pmk (y)] vmi

or, equivalently,
pmk (yi) [V

m
i (yi)− vmi ] ≥ pmk (y) [V m

i (y)− vmi ] . (2)

for all y ∈ X.
Suppose first that x ∈ V . In this case, the voting behavior dictated by σ̃, and therefore

σ, makes any proposal in X unsuccessful. This implies that σm prescribes the same voting
behavior as ῡ. As a consequence, vmi → ui(x) and pmk (y) = pmk (y′) for all y, y′ ∈ V .
Moreover, by construction of σ, V m

i (y) → y1(y) ∈ V for all y ∈ X. As X is finite and
well ordered, i(h) cannot improve on proposing i’s ideal policy in V when m is arbitrarily
large: V m

i (yi)→ ui (yi) > ui(y)← V m
i (y) for all y ∈ V \ {yi}.

Suppose now that x /∈ V and that i moves before the last amender (at h). Under strat-
egy profile σ, every proposal by player i is rejected with a probability of 1. Therefore, all
proposals in V are accepted with the same probability under σm (i.e., the same probability
as under ῡ): pmk (y) = pmk (y′) for all y, y′ ∈ V . We can then use the same argument as in
the previous paragraph to show that (2) holds for sufficiently large m.

Finally, suppose that x /∈ V and that i moves after the last amender (at h). As
explained above, we can concentrate on proposals in V . We distinguish between three
different cases:

(1) i(h) proposes y ∈ PV (x). In this case, the resulting expected payoff to player i

when all agents play according to σm is given by pmk (y)V m
i (y) + [1− pmk (y)] vmi .

(2) i(h) passes. The resulting expected payoff to player i when all agents play according
to σm is then vmi .

(3) i(h) proposes v /∈ PV (x). In this case, the resulting expected payoff to player i

when all agents play according to σm is given by pmk (v)V m
i (v) + [1− pmk (v)] vmi .

When m becomes arbitrarily large, σm becomes arbitrarily close to σ, so that vmi →
ui(x) and V m

i (y)→ ui(y) for any proposal y ∈ V . Inspection of the three cases above (and
the corresponding payoffs) reveals that i(h) cannot improve on proposing player i’s ideal
policy in V ∪ {x} (which, i moving after the last amender, cannot be in PV (x)) when is
arbitrarily large, thus completing the proof of the result.
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