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Abstract	
	

We estimate the time until the Social Security trust fund runs out by simulating an 

overlapping generations model with stochastic life spans, immigration, aggregate shocks, and a 

tax and transfer policy calibrated to the U.S. economy. This class of fiscal policy problems also 

highlights the need for a solution method that can accommodate unstable steady states and 

nonstationarity. We detail such a solution method in which we linearize the model around the 

current state, updating the approximated characterizing equations each period.  Our baseline 

simulation is calibrated to match the forecast of the Social Security Trustees report.  We find that 

the major source of uncertainty is not economic fluctuations, but uncertainty about the 

fundamental processes driving the economy and Social Security system.  We show that changes 

in policy must be quite large to avoid trust fund insolvency within the next three decades. 
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1.		Introduction	and	Literature	Review	

A	large	amount	of	current	research	is	focused	on	the	effects	of	changing	fiscal	policy	

in	the	United	States,	both	with	regard	to	countercyclical	policy	(see	Christiano,	et	al	(2010),	

Kumhof,	et	al	(2010),	and	Zubiary	(2010))	and	to	reducing	the	national	debt	(see	Gomes,	et	

al	 (2010)	and	Traum	and	Yang	(2010)).	Regarding	questions	about	reducing	the	national	

debt,	 the	two	main	contributors	 to	U.S.	deficit	spending	now	and	 long	 into	 the	 future	are	

the	 Social	 Security	 system	 and	 the	 government	 health	 care	 benefits	 of	 Medicare	 and	

Medicaid	 (see	 CBO	 (2010)).	 Because	 Social	 Security	 policy	 (as	 well	 as	 Medicare	 and	

Medicaid	 policy)	 affect	 age	 cohorts	 differently,	 overlapping	 generations	 (OLG)	 dynamic	

stochastic	general	 equilibrium	(DSGE)	models	are	 the	 theoretical	 tool	of	 choice	 for	 these	

studies.	

In	 this	 paper,	we	 calibrate	 an	 OLG	model	with	 stochastic	 life	 spans,	 immigration,	

aggregate	shocks,	and	a	 tax	and	transfer	program	similar	 to	Social	Security	 to	 the	United	

States.	We	simulate	this	model	in	order	to	estimate	the	time	until	the	Social	Security	trust	

fund	runs	out,	as	well	as	95	percent	confidence	 intervals	around	that	point	estimate.	Our	

simulations	 imply	 that	 the	 Social	 Security	 trust	 fund	 is	 likely	 to	 run	 out	 in	 26	 years.	

However,	95	percent	confidence	intervals	suggest	that	the	trust	fund	could	run	out	anytime	

between	24	and	30	years	from	now.	

An	additional	contribution	of	this	paper	is	that	we	detail	a	solution	method	for	the	

broad	 class	 of	 DSGE	 models	 that	 have	 unstable	 steady	 states	 and	 are	 characterized	 by	

nonstationarity.	 Recent	 official	 projections	 have	 noted	 that	 the	 current	 state	 of	 U.S.	 tax	

policy	is	not	sustainable	(see	CBO	(2010)	and	GAO	(2007))	and,	therefore,	is	not	a	steady‐

state.	 However,	 current	 DSGE	 solution	 methods	 rely	 on	 the	 models	 exhibiting	 long‐run	

stationarity.	 	 Our	 solution	 method	 accommodates	 nonstationarity	 by	 linearizing	 the	

characterizing	equations	of	the	model	around	the	current	state	each	period	and	updating	

those	 approximations	 each	 successive	 period.	 This	 solution	 technique	 is	 similar	 to	 the	

adaptive	 control	 method	 of	 approximating	 around	 some	 path	 of	 central	 tendency	 (see	

Kendrick,	 2002).	However,	 our	method	 lets	 the	 path	 around	which	 the	 approximation	 is	

based	be	determined	each	period	by	the	approximation	forecast.	
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The	paper	proceeds	as	 follows.	 Section	2	 lays	out	 the	model.	 Section	3	presents	a	

stationary	 version	 of	 the	 model.	 Section	 4	 presents	 the	 unstable	 steady	 state	 and	 the	

calibration.	 Section	5	details	 the	updating	 linearization	around	 the	 current	 state	 solution	

method	and	a	simulation	of	the	trust	fund.	Section	6	presents	how	some	policy	experiments	

change	the	simulated	time	path	of	the	trust	fund	balance,	and	Section	7	concludes.	

	

2.		The	Model	

Demographics	

Households	 live	 for	 a	 maximum	 of	 S	 periods.	 	 Each	 period	 a	 new	 cohort	 of	

households	 is	 born	 and	 some	portion	of	 existing	households	of	 all	 ages	die.	 	 In	 addition,	

each	period	new	households	of	various	ages	immigrate	into	the	economy.		The	populations	

of	households	of	various	ages	evolve	according	to	the	following	laws	of	motion.	

௦ܰାଵ
ᇱ ൌ ௦ܰሺߩ௦ାଵ ൅ 1	for	௦ାଵሻߡ ൑ ݏ ൑ ܵ െ 1	 (2.1)	

Where	 ௦ܰ	is	the	population	aged	s,	ߩ௦ାଵ	is	the	probability	the	household	lives	to	age	

ݏ ൅ 1	given	 it	 has	 already	 lived	 to	 age	,ݏ	ߡ௦ାଵ	is	 the	 immigration	 rate	 for	 households	 as	 a	

faction	of	 the	current	age	ݏ	population.	 	A	prime	on	a	variable	(′)	denotes	 its	value	 in	 the	

following	period.	

Age	1	households	arrive	via	birth	after	all	immigration	has	occurred	and	agents	are	

one	period	older.	

ଵܰ
ᇱ ൌ ∑ ௦݂ ௦ܰ

ௌ
௦ୀଵ 		 	 (2.2)	

Where	 ௦݂	is	the	fertility	rate	for	households	of	age	s.	

	

Households	

The	 objective	 of	 existing	 households	 is	 to	 maximize	 the	 expected	 value	 of	 utility	

over	their	lifetime.		All	households	are	endowed	with	the	same	amount	of	labor	at	a	given	

age.	 	We	assume	 they	do	not	work	when	young,	prior	 to	age	E,	 and	cease	working	at	 an	

exogenously	given	retirement	age	of	R.	

Households	accumulate	capital	over	time	by	saving	a	portion	of	their	wage	income.		

They	also	receive	a	transfer	payment	(denoted	T)	each	period	which	are	the	proceeds	from	

liquidating	the	capital	of	the	households	that	die	at	the	end	of	the	previous	period.		Finally,	
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households	participate	in	a	public	social	security	system	by	paying	a	portion	of	their	wage	

income	in	taxes	up	to	age	ܴ െ 1,	and	receiving	a	benefit	payment	(denoted	b)	each	period	

thereafter	until	death.	

For	 ease	 of	 analysis	 we	 choose	 to	 set	 up	 the	 households’	 problems	 as	 dynamic	

programs	 and	write	 them	using	 Bellman	 equations.	 	 For	 individuals	 in	 a	 generic	 cohort,	

aged	s	this	is:	

௦ܸሺΩሻ ൌ max௞ೞశభᇱ ሼܿ௦ሽݑ ൅ ሼܧ௦ାଵߩߚ ௦ܸାଵሺΩᇱሻሽ		

Where	Ω	is	the	information	set,	u{.}	is	the	within‐period	utility	function,	and	β	is	the	

household’s	subjective	discount	factor.	 	Note	that	because	households	do	not	live	forever,	

their	value	functions	vary	by	age.	

Household	consumption	is	defined	by	the	following	budget	constraint.	

ܿ௦ ൌ ℓത௦ሺ1ݓ െ ߬ሻ ൅ ሺ1 ൅ ݎ െ ሻ݇௦ߜ െ ݇௦ାଵ
ᇱ ൅ ܾ௦ ൅ ܶ	 (2.3)	

for	1 ൑ ݏ ൑ ܵ	

Where	w	is	the	wage	rate,	ℓത௦	is	the	household	endowment	of	labor	ate	age	s,	τ	is	the	

tax	rate	on	labor	income,	r	is	the	return	on	capital,	δ	is	the	rate	of	capital	depreciation,		݇௦	is	

the	 household’s	 holdings	 of	 bonds	 coming	 into	 the	 period,	ܾ௦	is	 the	 pension	 benefit	

payment	received,	and	T	is	a	lump‐sum	transfer.	

The	solution	gives	the	following	Euler	equation:	

௖ሼܿ௦ሽݑ ൌ ௖ሼܿ௦ᇱሽሺ1ݑሼܧ௦ାଵߩߚ ൅ ᇱݎ െ 		ሻሽߜ (2.4)	

Where	ݑ௖ሼ. ሽ	denotes	the	marginal	utility	of	consumption.	

We	use	versions	of	equation	(2.4)	for	1 ൑ ݏ ൑ ܵ െ 1.	

In	order	to	solve	for	its	own	transition	function,	݇௦ାଵ
ᇱ ൌ ݇௦ሺΩሻ,	the	household	needs	

know	 the	 value	 functions	 for	 ages	 s	 and	 s+1	 and	 it	 needs	 to	 form	 an	 expectation	 of	 the	

aggregate	capital	stock,	ܭ′.		This	means	it	also	needs	to	know	the	transition	functions	of	all	

the	other	households	and	their	arguments.	 	The	transition	functions	for	the	oldest	cohort	

are	 trivial.	 	 Since	 ௌܸାଵሺΩᇱሻ ൌ 0,	 the	 household	will	 choose	݇ௌାଵ
ᇱ ൌ 0.	 	 Transition	 functions	

for	other	cohorts	will	be	found	using	numerical	techniques	explained	below.	

	

Firms	
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Firms	hire	 labor	and	capital	 to	produce	 final	goods	which	are	either	consumed	or	

invested	 as	 new	 capital	 goods.	 	 They	 use	 a	 simple	 Cobb‐Douglas	 production	 technology.		

The	representative	firm’s	problem	is:	

max௄,௅ ሻଵିఈܮఈሺ݁௚௧ା௭ܭ െ ܭݎ െ 		ܮݓ

Where	K	 is	 the	capital	hired	by	 the	 firm,	L	 is	 the	amount	of	 labor	 it	hires,	g	 is	 the	

exogenous	 growth	 rate	 of	 labor‐augmenting	 technology,	 and	 z	 is	 a	 stochastic	 technology	

shock.	

The	solution	is	characterized	by	the	following	three	equations.	

ݎ ൌ 		ܭ/ܻߙ 	 (2.5)	

ݓ ൌ ሺ1 െ 		ܮ/ሻܻߙ 	 (2.6)	

ܻ ൌ 	ሻଵିఈܮఈሺ݁௚௧ା௭ܭ 	 (2.7)	

Technology	is	assumed	to	evolve	over	time	according	to	the	following	law	of	motion.	

ᇱݖ ൌ ߰௭ݖ ൅ ݁௭′;	݁௭ᇱ~݅݅݀ሺ0, 	௭ଶሻߪ 	 (2.8)	

		

Government	

Each	period	the	government	collects	revenues	and	makes	payments	on	two	separate	

accounts.	 	 The	 first	 is	 a	 redistribution	 of	 the	 capital	 of	 deceased	 households	 over	 the	

current	population.		We	assume	an	equal	share	for	each	household	regardless	of	age.		Since	

this	is	a	pure	redistribution	scheme,	the	account	must	balance	each	period.	

ܶ′ ൌ
∑ ேೞሺଵିఘೞሻ௞ೞ
ೄ
ೞసభ

∑ ேೞ
ᇲೄ

ೞసభ
		 	 (2.9)	

The	second	is	the	social	security	system,	which	accumulates	a	balance	over	time	on	

a	trust	fund,	denoted	H,	as	illustrated	below.	

ᇱܪ ൌ ሺ1 ൅ ܪሻݎ ൅ ∑ ௦ܰ߬ݓℓത௦ோିଵ
௦ୀா െ ∑ ௦ܾܰ௦

ௌ
௦ୀோ 		 (2.10)	

Benefits	are	assigned	when	a	household	 retires	at	age	R	 and	are	a	 function	of	 the	

average	index	of	monthly	earnings	(AIME)	at	retirement.		The	index	is	inflated	each	year	by	

the	percent	growth	in	wages.		For	simplicity	we	use	the	trend	growth	of	the	economy	which	

is	very	similar	 in	our	model	to	the	growth	of	wages.	 	We	assume	that	the	benefit	 is	some	

fraction,	θ,	of	this	value.	

ܾோ ൌ 	ோܽߠ 	 (2.11)	

For	any	individual	AIME	evolves	as	a	running	average	over	ages	ܧ	to	ܴ	according	to:	
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ܽ௦ାଵ
ᇱ ൌ ೞషಶషభ

ೞషಶ
ܽ௦ሺ1 ൅ ݃ሻ ൅ భ

ೞషಶ
ܧ	for	ℓത௦ݓ ൑ ݏ ൑ ܴ െ 1	 	

However,	since	there	 is	 immigration	 in	our	model,	new	individuals	who	have	zero	

past	 earnings	 for	purposes	of	AIME	calculations	are	 continually	entering	 the	 cohort.	 	We	

take	the	weighted	average	of	the	surviving	domestic	workers’	AIME	and	zero	for	immigrant	

workers	when	calculating	the	cohort’s	new	value	next	year.	

ܽ௦ାଵ
ᇱ ൌ ఘೞశభ

ఘೞశభାఐೞశభ
ൣೞషಶషభ

ೞషಶ
ܽ௦ሺ1 ൅ ݃ሻ ൅ భ

ೞషಶ
ܧ	for	ℓത௦൧ݓ ൑ ݏ ൑ ܴ െ 1		 (2.12)	

Once	set	at	 retirement	benefits	 remain	constant	until	death,	however	 immigration	

averaging	applies	in	this	case	also.		New	immigrants	of	retirement	age	or	older	receive	no	

benefits.	

ܾ௦ାଵ
ᇱ ൌ ఘೞశభ

ఘೞశభାఐೞశభ
ܾ௦	for	ݏ ൐ ܴ	 	 (2.13)	

In	 order	 to	 assure	 the	 government	 does	 not	 violate	 a	 transversality	 condition	we	

assume	that	the	tax	(τ)	and	replacement	(θ)	parameters	are	state	dependent	and	adjust	as	

the	size	of	the	trust	fund	nears	some	upper	or	lower	bounds	(Hmin	&	Hmax).	

߬ ൌ ቐ
߬ଵሺܪሻ ௠௜௡ܪ ൑ ܪ ൑ ௟௢௪ܪ
߬̅ ௟௢௪ܪ ൑ ܪ ൑ ௨௣ܪ

߬ଶሺܪሻ ௨௣ܪ ൑ ܪ ൑ ௠௔௫ܪ

		

߬ଵ
ᇱ ሺܪሻ ൏ 0,	߬ଵሺܪ௠௜௡ሻ ൌ 1,	߬ଵሺܪ௟௢௪ሻ ൌ ߬̅	

߬ଶ
ᇱ ሺܪሻ ൏ 0,	߬ଶ൫ܪ௨௣൯ ൌ ߬̅,	߬ଵሺܪ௠௔௫ሻ ൌ 0	 (2.14)	

ߠ ൌ ቐ
ሻܪଵሺߠ ௠௜௡ܪ ൑ ܪ ൑ ௟௢௪ܪ
߬̅ ௟௢௪ܪ ൑ ܪ ൑ ௨௣ܪ

ሻܪଶሺߠ ௨௣ܪ ൑ ܪ ൑ ௠௔௫ܪ

		

ଵߠ
ᇱሺܪሻ ൐ ௠௜௡ሻܪଵሺߠ	,0 ൌ ௟௢௪ሻܪଵሺߠ	,0 ൌ 	ߠ̅

ଶߠ
ᇱሺܪሻ ൐ ௨௣൯ܪଶ൫ߠ		,0 ൌ ௠௔௫ሻܪଵሺߠ	,ߠ̅ ൌ ∞	 (2.15)	

	

Market‐clearing	and	Aggregation	

The	capital	and	labor	market	clearing	conditions	are	given	by:	

ܭ ൌ ∑ ௦ܰ݇௦
ௌ
௦ୀଵ ൅ 		ܪ 	 (2.16)	

ܮ ൌ ∑ ௦ܰℓത௦
ௌ
௦ୀଵ 		 	 (2.17)	

There	 is	also	a	goods	market	clearing	condition,ܻ ൅ ሺ1 െ ܭሻߜ ൌ ∑ ܿ௦ ൅ ௌ′ܭ
௦ୀଵ ,	but	 it	

is	redundant	by	Walras	Law.	
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Equations	(2.1)	through	(2.18)	define	the	model.	 	There	are	 	ܵ ൅ 1	exogenous	state	

variables:	the	cohort	populations,	ሼ ௦ܰሽ௦ୀଵ
ௌ 	,	and	the	technology	shock,	z.		Since	capital	prior	

to	age	E	is	assumed	to	be	zero,	there	are	2ሺܵ െ ሻܧ ൅ 1	endogenous	state	variables:	the	bond	

holdings	 for	 each	 cohort,	ሼ݇௦ሽ௦ୀாାଵ
ௌ ,	 AIME	 for	 each	 cohort	 from	 labor	 force	 entry	 until	

retirement,	ሼܽ௦ሽ௦ୀா
ோିଵ,	 benefits	 for	 every	 cohort	 thereafter,	ሼܾ௦ሽ௦ୀோ

ௌ ,	 and	 the	 balance	 on	 the	

social	security	trust	fund,	H.	

	

3.		Stationarizing	the	Model	

Our	model	as	written	is	non‐stationary.	 	Technology	has	a	 trend	rate	of	growth,	g,	

and	the	population	may	also	be	growing	over	time.		We	can	write	equations	(2.1)	&	(2.2)	in	

matrix	notation.	

ᇱۼ ൌ ડۼ	;	ડ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ଵ݂ ଶ݂ ଷ݂
ଶߩ ൅ ଶߡ 0 0
0 ଷߩ ൅ ଷߡ 			0			

⋯ 		 ௌ݂ିଵ 				 ௌ݂
⋯ 				0 				0
⋯ 				0 				0

	⋮ 	⋮ ⋱
						0					 					0				 					0				
	0 	0 	0

⋱ ⋮ 	⋮
⋱ 0 	0
⋯ ௌߩ ൅ ௌߡ 	0 ے

ۑ
ۑ
ۑ
ۑ
ې

	

Where	ۼ	is	the	ܵ ൈ 1	vector	of	cohort	populations.		We	define	the	total	population	as	

ൌ ૚ଵൈௌۼ	.	 	 The	 growth	 rate	 of	 the	 population	 comes	 from	 	ܰᇱ ൌ ሺ1 ൅ ݊′ሻܰ	and	 by	

substitution	this	is	݊′ ൌ ૚భൈೄડۼ

૚భൈೄۼ
െ 1			

In	 order	 to	 solve	 our	 model	 using	 the	 numerical	 techniques	 we	 propose,	 it	 is	

necessary	 to	 transform	 the	non‐stationary	variables	 to	 stationary	ones.	 	 Some	per	 capita	

variables,	 such	 as	 consumption	 and	 wages,	 will	 grow	 at	 the	 long‐run	 rate	 of	 g.	 	 We	

transform	these	variables	by	defining	a	stationary	version	that	removes	this	growth.	 	We	

denote	 these	 transformed	 variables	 with	 a	 carat	 (^).	 	 ොݔ ≡ ௚௧݁/ݔ 		 for	

ݔ ∈ ሺሼ݇௦ሽ௦ୀଶ
ௌ , ሼܽ௦ሽ௦ୀா

ோ , ሼܾ௦ሽ௦ୀோ
ௌ , ሼܿ௦ሽ௦ୀଵ

ௌ , 	ሻݓ

To	transform	the	cohort	populations	we	need	to	remove	a	unit	root,	which	we	do	by	

dividing	by	the	total	population,	N.		ݔො ≡ ݕ	for		ܰ/ݔ ∈ ሺሼ ௦ܰሽ௦ୀଵ
ௌ , 	ሻܮ

Finally	 some	 aggregate	 variable	 grow	 at	 the	 rate	݃	and	 also	 have	 a	 unit	 root.		

ොݔ ≡ ݕ	for		ሺܰ݁௚௧ሻ/ݔ ∈ ሺܻ, ,ܭ 	ሻܪ
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If	we	assume	a	within‐period	utility	function,	ݑሺܿሻ ൌ భ
భషം
ሺܿଵିఊ െ 1ሻ,	the	transformed	

equations	that	define	the	stationary	model	are:	

ᇱݖ ൌ ߰௭ݖ ൅ ݁௭′;	݁௭ᇱ~݅݅݀ሺ0, 	௭ଶሻߪ 	 (3.1)	

݊′ ൌ ૚భൈೄሺડതାડ෠ሻۼ෡

૚భൈೄۼ෡
െ 1			 	 (3.2)	

෡ܰ௦ାଵ
ᇱ ሺ1 ൅ ݊ᇱሻ ൌ ෡ܰ௦ሺߩ௦ ൅ ௦ߡ ൅ ௦ାଵߝ

ᇱ ሻ	 	 (3.3)	

	 for	1 ൑ ݏ ൑ ܵ െ 1	

෡ܰଵ
ᇱሺ1 ൅ ݊ᇱሻ ൌ ∑ ሺ ௦݂൅ߥଵ

ᇱሻ ෡ܰ௦
ௌ
௦ୀଵ 		 	 (3.4)	

ܿ̂௦ ൌ ෝℓത௦ሺ1ݓ െ ߬ሻ ൅ ሺ1 ൅ ݎ െ ሻ෠݇௦ߜ െ ሺ1 ൅ ݃ሻ෠݇௦ାଵ
ᇱ ൅ ෠ܾ

௦ ൅ ෠ܶ	 (3.5)	

	 for	1 ൑ ݏ ൑ ܵ	

ܿ̂௦
ିఊ ൌ ሼሾܿ̂௦ᇱሺ1ܧߚ ൅ ݃ሻሿିఊሺ1 ൅ ᇱݎ െ 		ሻሽߜ (3.6)	

	 for	1 ൑ ݏ ൑ ܵ െ 1	

ݎ ൌ ߙ ෠ܻ/ܭ෡		 	 (3.7)	

ෝݓ ൌ ሺ1 െ ሻߙ ෠ܻ/ܮ෠		 	 (3.8)	

෠ܻ ൌ 	෠ሻଵିఈܮ෡ఈሺ݁௭ܭ 	 (3.9)	

෠ܶ ′ ൌ
∑ ே෡ೞሺଵିఘೞሻ௞෠ ೞ
ೄ
ೞసభ

ሺଵା௡ᇱሻ∑ ே෡ೞ
ᇲೄ

ೞసభ
		 	 (3.10)	

෡ᇱሺ1ܪ ൅ ݃ሻ ൌ ෡ܪ ൅ ∑ ෡ܰ௦߬ݓෝℓത௦ோିଵ
௦ୀா െ ∑ ෡ܰ௦ ෠ܾ௦

ௌ
௦ୀோ 		 (3.11)	

ොܽ௦ାଵ
ᇱ ሺ1 ൅ ݃ሻ ൌ ఘೞశభ

ఘೞశభାఐೞశభ
ൣೞషಶషభ

ೞషಶ
ොܽ௦ ൅

భ
ೞషಶ
	ෝℓത௦൧ݓ (3.12)	

	 for	ܧ ൑ ݏ ൑ ܴ െ 1	

෠ܾ
ோ ൌ ߠ ොܽோ	 	 (3.13)	

෠ܾ
௦ାଵ
ᇱ ሺ1 ൅ ݃ሻ ൌ ఘೞశభ

ఘೞశభାఐೞశభ
෠ܾ
௦	 	 (3.14)	

	 for	ݏ ൐ ܴ	

෡ܭ ൌ ∑ ෡ܰ௦ ෠݇௦
ௌ
௦ୀଵ ൅ 		෡ܪ 	 (3.15)	

෠ܮ ൌ ∑ ෡ܰ௦ℓത௦
ௌ
௦ୀଵ 		 	 (3.16)	

	

	

4.		Calibration	and	Steady	States	

Table	 1	 lists	 the	 parameters	 of	 the	 model	 which	 will	 need	 to	 be	 given	 specific	

numerical	values.	
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We	 set	 the	 number	 of	 periods	 in	 our	 model	 and	 interpret	 the	 period	 so	 that	 S	

periods	corresponds	 to	100	years.	 	We	assume	agents	become	financially	 independent	at	

and	enter	 the	 labor	 force	at	age	16,	which	gives	ܧ ൌ roundሺ భల
భబబ
ܵሻ.	 	We	assume	retirement	

occurs	at	age	67	so	that	ܴ ൌ roundሺ లళ
భబబ
ܵሻ.		The	depreciation	rate	is	set	to	correspond	to	an	

annual	 rate	 of	 ߜ	;5% ൌ 1 െ ሺ1 െ 0.05ሻଵ଴଴/ௌ.	 	 Similarly,	 β	 is	 chosen	 to	 yield	 an	 average	

annual	 rate	 of	 time	 preference	 of	 approximately	 2%	when	 coupled	with	 the	 age‐specific	

mortality	hazard.	 	And	g	 is	 chosen	 to	yield	an	annual	growth	rate	of	 technology	of	1.0%,	

݃ ൌ ሺ1 ൅ 0.01ሻଵ଴଴/ௌ.			

The	 capital	 share	 in	 GDP	 (α)	 is	 set	 to	 0.35.	 	 γ	 is	 the	 intertemporal	 elasticity	 of	

substitution	and	we	set	 this	 to	1.0,	which	yields	 logarithmic	utility.	 	The	benefit	 to	AIME	

ratio	(θ),	or	replacement	rate	is	set	to	.40.		The	payroll	tax	rate	(τ)	is	chosen	to	make	total	

social	security	benefits	and	taxes	equal	in	the	steady	state.	

Effective	labor	supply,	fertility	rates,	survival	rates	and	immigration	rates	by	age	are	

estimated	 using	 data	 from	 a	 variety	 of	 sources.	 	 Data	 on	 effective	 labor	 comes	 from	 the	

Bureau	 of	 Labor	 Statistics’	 Current	 Population	 Survey.	 	 Data	 on	 immigration	 rates	 come	

from	 the	 US	 Census	 Bureau.	 	 Fertility	 rates	 come	 from	 Nishiyama	 &	 Smetters	 (2007).		

Cumulative	 survival	 rates	 come	 from	 the	 Center	 for	 Disease	 Control’s	 (CDC)	 mortality	

tables.	 	 	 	We	 fit	 polynomials	 to	 the	data	by	 age.	 	 For	 fertility	 and	 immigration	we	 fit	 the	

number	of	births	or	immigrants	of	a	certain	age	as	a	percent	of	the	population	of	that	age.	

Data	for	effective	labor	supply	comes	from	quarterly	earnings	data	for	2001	through	

2010.	 	We	use	 earnings	because	our	 effective	 labor	 includes	both	hours	worked	 and	 the	

productivity	of	 the	worker.	 	 Since	wage	 rates	 should	be	proportional	 to	productivity,	we	

can	 simply	 use	 earnings	 which	 is	 hours	 worked	 times	 the	 wage	 rate	 per	 hour.	 	 We	

normalize	so	that	the	average	earnings	over	the	ages	reported	is	one.		We	then	fit	earnings	

by	age	to	the	average	age	of	the	cohort	using	a	6th‐order	polynomial	in	the	age.		Since	these	

polynomials	are	ill‐behaved	at	the	ends,	we	interpolate	exponentially	to	get	better	fit	there.		

Figure	1	shows	the	data	and	the	 fitted	curve.	 	When	we	simulate	we	choose	the	size	of	a	

period	in	years,	and	use	this	fitted	curve	to	get	effective	labor	for	each	cohort.	

Data	 for	 immigration	 is	 available	 from	 2005	 detailing	 the	 number	 of	 those	 who	

immigrated	between	2000	and	2005.	 	 Immigrants	are	grouped	 into	cohorts	of	 five	years.		
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We	calculate	the	number	of	immigrants	as	a	percentage	of	the	US	population	in	2000.		We	

then	fit	this	percentage	by	age	to	the	average	age	of	the	cohort	using	a	6th‐order	polynomial	

in	the	age.		We	interpolate	linearly	at	the	ends.		Figure	2	shows	the	data	and	the	fitted	curve.		

When	we	simulate	we	choose	the	size	of	a	period	in	years,	and	use	this	fitted	curve	to	get	

immigration	rates	for	each	cohort.	

For	 fertility	 rates	 the	 data	 are	 available	 in	 5‐year	 cohorts	 as	well.	 	 Fertility	 rates	

below	age	15	and	above	age	50	are	effectively	zero.		We	proceed	as	above	and	fit	this	data	

with	a	3rd‐order	polynomial	in	age.		Again	we	interpolate,	but	only	on	the	upper	end.		The	

data	and	fitted	curve	are	shown	in	Figure	3.	

For	 survival	 rates,	 we	 fit	 data	 on	 the	 cumulative	 probability	 of	 surviving	 to	 a	

particular	age.		We	infer	the	conditional	survival	rates	from	this	fitted	polynomial.		Data	are	

available	for	10‐year	cohorts.		We	fit	this	with	a	third‐order	polynomial	and	interpolate	on	

the	upper	end	so	 that	mortality	reaches	100%	at	age	100.	 	The	data	and	 fitted	curve	are	

shown	in	Figure	4.	

For	both	fertility	and	survival	rates	we	introduce	exogenous	changes	over	time	that	

are	 consistent	with	 the	 social	 security	 trustees’	 assumptions.	 	The	 trustees	 assume	a	 life	

expectancy	of	22.9	and	24.8	years	beyond	age	65	for	males	and	females	in	the	year	2085.		

We	 treat	calibrate	our	survival	 rates	over	 time	so	 that	 the	average	 life	expectancy	 for	all	

agents	in	the	model	at	age	65	converges	to	the	average	of	the	trustees	assumptions	(23.6)	

for	 males	 and	 females	 by	 2085.	 	 The	 initial	 life	 expectancy	 at	 the	 beginning	 of	 the	

simulation	is	19.6	years.	

For	fertility	the	trustees’	intermediate	assumption	is	that	total	fertility	rate	will	drop	

from	its	current	value	of	2.06	to	2.00	by	the	year	2035.	 	We	estimate	an	AR(1)	model	for	

total	 fertility	 using	 the	 trustees’	 report	 data	 since	 1997	 and	 find	 an	 autocorrelation	

parameter	of	.889.		We	assume	that	fertility	rates	across	all	ages	decay	from	their	current	

values	at	this	rate	per	year	converge	to	a	total	fertility	rate	of	2.00	in	the	long‐run.	

The	threshold	levels	for	adjusting	policy	from	equations	(2.14)	&	(2.15)	are	set	such	

that	 taxes	 and	 transfers	begin	 to	 change	when	 the	 size	of	 trust	 fund	 reaches	50%	of	 the	

capital	stock,	either	positive	or	negative.		The	second	threshold	is	when	the	size	is	100%.	
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With	the	model	calibrated	we	can	easily	solve	for	the	steady	state.		We	do	so	using	

numerical	techniques.		The	steady	state	is	summarized	in	Table	2	and	in	Figure	5.	

	

5.		Solution	and	Simulation	

We	propose	solving	and	simulating	our	model	in	the	same	way	that	many	dynamic	

stochastic	 general	 equilibrium	 (DSGE)	models	with	 infinitely‐lived	agents	 are	 solved	 and	

simulated	by	linear	approximation.	 	To	see	the	parallels	we	first	outline	the	methodology	

for	the	infinitely‐lived	representative	agent	case.	

Consider	a	simple	infinitely‐lived	agent’s	problem.	

ܸሺ݇; zሻ ൌ max௞ᇱ ሺܿሻݑ ൅ ;ሼܸሺ݇ᇱܧߚ 			ሻሽݖ

With	ܿ ൌ ℓതݓ ൅ ሺ1 ൅ ݎ െ ሻ݇ߜ െ ݇ᇱ,	ݕ ൌ ,ሺ݇ݕ ݎ	,ሻݖ ൌ ,௞ሺ݇ݕ ݓ	&	ሻݖ ൌ ,ሺ݇ݕ ሻݖ െ ,௞ሺ݇ݕ 	.ሻ݇ݖ

The	Euler	equation	in	this	case	is:	

௖ሺܿሻݑ ൌ ௖ሺܿ′ሻሺ1ݑሼܧߚ ൅ ′ݎ െ 		ሻሽߜ 	 (5.1)	

The	 single	 endogenous	 state	 variable	 is	 k	 and	we	 have	 assumed	 there	 is	 a	 single	

technology	shock,	z.		To	solve	this	model	we	first	log‐linearize	our	Euler	equation	about	the	

model’s	steady	state.		We	can	write	this	in	the	form	below,	where	the	tildes	(~)	denote	log‐

deviations	from	steady	state	values.	

௧ሼܶܧ ൅ ܨ ෨݇௧ାଵ ൅ ܩ ෨݇௧ ൅ ܪ ෨݇௧ିଵ ൅ ௧ାଵݖ̃ܮ ൅ ௧ሽݖ̃ܯ ൌ 0		 (5.2)	

Where	F,	G,	H,	L	&	M	 are	 coefficients	 that	 are	 functions	of	parameters	 and	 steady	

state	values.		When	linearizing	about	the	steady	state,	T	will	be	zero.	

Assuming	 a	 log	 linear	 law	 of	 motion	 for	 z,	 ௧ାଵݖ̃	 ൌ ሺ1 െ ܰሻ̅ݖ ൅ ௧ݖ̃ܰ ൅ ݁௧ାଵ,	 and	

assuming	 that	 the	 transition	 function,	݇௧ାଵ ൌ ߶ሺ݇௧, 	,௧ାଵሻݖ can	also	be	written	 in	 log‐linear	

form	we	can	find	its	coefficient	values.	

෨݇
௧ାଵ ൌ ܲ ෨݇௧ ൅ ௧ାଵݖ̃ܳ ൅ ܷ		 	 (5.3)	

The	techniques	for	finding	the	numerical	values	of	P	&	Q	are	well‐known	and	involve	

solving	a	quadratic	 in	P.	1		 Solution	 techniques	 for	U	are	 less	commonly	used,	but	easy	 to	

derive.	 	They	can	be	 shown	 to	yield	a	U	 equal	 to	 zero	when	 linearizing	about	 the	 steady	

state.	

                                                 
1 See Uhlig (1999) or Christiano (2002). 
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Next,	 consider	 an	 OLG	 model	 with	 a	 similar	 setup.	 	 An	 age	 s	 agent	 solves	 the	

following	problem.	

௦ܸሺ݇௦, zሻ ൌ max௞ೞశభᇱ ሺܿ௦ሻݑ ൅ ሼܧߚ ௦ܸାଵሺ݇௦ାଵ
ᇱ, zᇱሻሽ		

With	 ܿ௦ ൌ ℓത௦ݓ ൅ ሺ1 ൅ ݎ െ ሻ݇௦ߜ െ ݇௦ାଵ
ᇱ ,	 ܭ ൌ ∑ ௦ܰ݇௦

௃
௜ୀଵ ,	 ݕ ൌ ݂ሺ݇; zሻ ,	 ݎ ൌ ௞݂ሺ݇; zሻ ,	

ݓ ൌ ݂ሺ݇; zሻ െ ௞݂ሺ݇; zሻ݇	

The	Euler	equation	in	this	case	is:	

௖ሺܿ௦ሻݑ ൌ ௖ሺܿ௦ାଵݑሼܧߚ
ᇱ ሻሺ1 ൅ ′ݎ െ 			ሻሽߜ

	

If	we	set	up	and	solve	each	agent’s	problem	and	 then	stack	 the	variables	 for	each	

agent	such	that	ܠ ≡ ൥
ଵݔ
:
ௌݔ
൩,	we	get	the	following	matrix	representation	of	the	model2,	where	

bold	variables	indicate	matrices.	

,ܓሺ܄ ሻݖ ൌ maxܓᇱ ሻ܋ሺܝ ൅ ,ᇱܓሺ܄ሼܧઢߚ 		ᇱሻሽݖ

with ܋ ൌ रതሺ1ݓ െ ߬ሻ ൅ ሺ1 ൅ ݎ െ ܓሻߜ െ ઢܓ′ ,	 ܭ ൌ ૚ଵൈௌ ⋅ ሺۼ ∘ ሻܓ ,	 ݕ ൌ ;ܭሺݕ zሻ ,	

ݎ ൌ ;ܭ௞ሺݕ zሻ,	ݓ ൌ ;ܭሺݕ zሻ െ ;ܭ௞ሺݕ zሻܭ ,	ઢ ≡ ൤
૙ሺௌିଵሻൈଵ ۷ሺௌିଵሻൈሺௌିଵሻ

0 ૙ଵൈሺௌିଵሻ
൨ .	 ,ܓሺ܄	 	are	ሻ܋ሺܝ	and	ሻݖ

S×1	vector‐valued	functions.	

The	stacked	Euler	equations	are:	

ሻ܋௖ሺܝ ൌ ሻሺ1′܋௖ሺܝሼܧઢߚ ൅ ′ݎ െ 		ሻሽߜ 	 (5.3)	

where	ܝ௖	is	an	S×1	vector	of	the	derivatives	of	ܝሺ܋ሻ	with	respect	to	the	sth	element	of	

c.		Note	that	the	final	Sth	row	is	dropped	since	the	S	aged	agent	has	no	Euler	equation.		

We	can	solve	and	simulate	this	model	just	as	we	do	the	DSGE	model	above.	

We	write	the	log‐linearized	versions	of	the	Euler	equations	in	the	following	form:	

܂௧ሼܧ ൅ ሚܓ۴ ௧ାଵ ൅ ሚܓ۵ ௧ ൅ ሚܓ۶ ௧ିଵ ൅ ௧ାଵݖ̃ۺ ൅ ௧ሽݖ̃ۻ ൌ 0		 (5.4)	

We	use	the	same	numerical	techniques	as	above	to	solve	for	the	matrices	P	&	Q	 in	

the	log‐linearized	transition	functions.	

ሚܓ	 ௧ାଵ ൌ ሚܓ۾ ௧ ൅ ௧ାଵݖ̃ۿ ൅ 		܃ 	 (5.5)	

                                                 
2 Note that a ' always denotes next period, not a transpose.  A transpose is denoted with a T superscript, instead. 
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To	simulate	our	particular	model	we	use	the	linearized	transition	functions	for	our	

stationary	model	laid	out	in	section	3.3			

෩௧ାଵ܆ ൌ ෩௧܆۾ ൅ ෨௧ାଵ܈ۿ ൅ 		܃ 	 (5.6)	 	

Where	܆௧ ൌ ሾሼ݇௦,௧ାଵሽ௦ୀଶ
ௌ 	ሼܽ௦,௧ାଵሽ௦ୀாାଵ

ோ 	ሼܾ௦,௧ାଵሽ௦ୀோ
ௌ ሿ	and	܈௧ ൌ ሾݖ௧	ሼ ௦݂,௧	ߡ௦,௧	ߩ௦,௧ሽ௦ୀଵ

ௌ ሿ.	

Along	with	the	exogenous	laws	of	motion	defined	by	equations	(3.1)	–	(3.4)	which	

we	rewrite	collectively	as:	

෨௧ାଵ܈ ൌ ෨௧܈ۼ ൅ 		௧ାଵ܍ 	 (5.7)	

Our	technique	works	only	as	an	approximation,	since	the	P	and	Q	coefficients	in	(5.6)	

will	 generally	 vary	 from	 period	 to	 period.	 	 We	 are	 therefore	 introducing	 an	 additional	

source	of	approximation	error.		However,	the	benefit	is	a	reduction	the	approximation	due	

to	the	Taylor‐series	expansion	of	our	behavioral	equations.			Since	these	are	normally	taken	

about	 the	 steady	 state,	 and	 our	 simulations	 are	 only	 rarely	 in	 the	 steady	 state,	 the	 first	

approximation	error	is	much	smaller	than	the	second.		We	illustrate	this	below.	

	

We	begin	 our	 simulation	with	 initial	 conditions	 for	 the	 log‐deviations	 of	 the	 state	

variables,	܆௧	&	܈௧,	from	their	steady	state	values.		We	also	draw	a	series	of	random	shocks	

for	the	values	of	܍௧	in	each	period.	Equations	(5.5)	&	(5.6)	allow	us	to	generate	a	time	series	

for	the	log‐deviations	of	our	state	variables	from	their	steady	states.	

We	 can	 reconstruct	 the	 stationary	 versions	 of	 state	 variables	 by	 treating	 them	 as	

percent	 deviations	 using	ݔො௧ ൌ 	.௫෤೟݁ݔ̅ 	We	 can	 also	 construct	 the	 total	 population	 using	 an	

initial	value,	 the	 formula	 ௧ܰାଵ ൌ ሺ1 ൅ ݊௧ାଵሻ ௧ܰ,	and	by	noting	 that	݊௧ାଵ	is	a	 function	of	our	

stationary	state	variable	by	equation	(3.5).	

Finally,	 we	 can	 construct	 non‐stationary	 variables	 by	 putting	 in	 the	 appropriate	

trend	and/or	unit	root,	ݔ௧ ൌ ݁௚௧ݔො௧,	ݔ௧ ൌ ௧ܰݔො௧	or	ݔ௧ ൌ ௧ܰ݁௚௧ݔො௧.	 	Once	we	have	a	time‐series	

for	 all	 state	 variables	 in	 the	 non‐stationary	 model,	 we	 can	 find	 the	 value	 of	 any	 other	

variable	of	interest	by	using	the	appropriate	structural	equation(s)	from	section	2.	

	
                                                 
3 We use equations (3.9), (3.15), (3.16) & (3.17) as the dynamic equations which are linearized.  Equations (3.1) 

– (3.4) define the exogenous laws of motion.  The remaining equations are used as definitions. 



 

15 

 

The	methodology	above	works	well	for	simulations	where	the	state	of	the	economy	

deviates	only	in	a	neighborhood	about	the	steady	state.		However,	our	model	is	dynamically	

unstable.	 	 This	 means	 that	 even	 if	 we	 start	 out	 at	 the	 model’s	 steady	 state	 values,	 the	

stochastic	shocks	will	drive	us	away	from	that	point	and	the	model	will	explode	thereafter.		

We	need	a	simulation	technique	that	will	be	accurate	when	we	are	far	from	the	steady	state.	

One	technique	that	fits	the	bill	is	to	linearize	about	the	current	state	of	the	economy	

rather	 than	 around	 the	 steady	 state.	 	We	 can	 use	 equations	 (5.4),	 (5.5)	 &	 (5.7),	 but	 we	

reinterpret	 the	 tilde	 as	 the	 deviation	 of	 the	 variable	 from	 its	 value	 now,	 rather	 than	 its	

value	in	the	steady	state.		We	rewrite	these	equations	noting	that	the	coefficients	will	now	

be	time	dependent	since	we	linearize	about	a	different	point	each	period.	

࢚܂௧ሼܧ ൅ ෩௧ାଵ܆࢚۴ ൅ ෩௧܆࢚۵ ൅ ෩௧ିଵ܆࢚۶ ൅ ෨௧ାଵ܈࢚ۺ ൅ ෨௧ሽ܈࢚ۻ ൌ 0		 (5.8)	

෨௧ାଵ܈ ൌ ෨௧܈ۼ ൅ ሺۼ െ ۷ሻሺ܈௧ െ തሻ܈ ൅ 	௧ାଵ܍ (5.9)	

෩௧ାଵ܆ ൌ ෩௧܆࢚۾ ൅ ෨௧ାଵ܈࢚ۿ ൅ 	࢚܃ 	 (5.10)	

	

In	this	case	the	matrices	࢚܂	and	࢚܃	will	generally	not	be	zero.		Since	the	current	state	

is	ሺ܆௧, ,௧ିଵ܆ሺ	becomes	this	period	next	to	move	we	when	௧ሻ܈ 	immediately	found	is	௧܈		.௧ିଵሻ܈

by	 using	 (5.5).	 	 So	 we	 linearize	 about	 the	 point	ሺ܆௧ିଵ, 	.௧ሻ܈ 	 This	 means	 (5.9)	 can	 be	

rewritten	as:	

෩௧ାଵ܆ ൌ 	࢚܃ 	 (5.11)	

	:be	to	shown	be	can	࢚܃

࢚܃ ൌ െሺ۴࢚ ൅ ࢚۾࢚۴ ൅ ࢚܂ሻିଵሾ࢚۵ ൅ ሺ۴࢚ۿ࢚ ൅ ۼሻሺ࢚ۺ െ ۷ሻሺ܈௧ െ 		തሻሿ܈ (5.12)	

Simulation	proceeds	by	first	setting	the	values	of	the	initial	state.		As	one	simulates	

each	period	sequentially:	

 (5.9)	gives	the	next	value	for		܈௧.			

 One	solves	for	the	values	of	࢚۾, ,࢚ۿ ,௧ିଵ܆ሺ	about	linearizing	by	࢚܃	& 		.௧ሻ܈

 (5.10)	gives	the	next	value	for	܆෩௧	

 (5.11)	gives	܆௧ ൌ ௧܆	 ൅ 	.࢚܃

 One	then	proceeds	to	the	next	period.		
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When	the	number	of	state	variables	is	large,	as	it	is	in	our	model,	computation	of	the	

,࢚۾ 	are	matrices	these	that	shows	(5.11)	Equation		burdensome.	very	be	can	matrices	࢚ۿ	&

not	necessary	 for	calculating	next	period’s	state,	but	equation	(5.12)	shows	 that	 they	are	

needed	to	accurately	calculate	࢚܃.	

It	 is	 possible	 to	 approximate	࢚۾, 	,࢚ۿ	& however,	 and	 avoid	 calculating	 them	 each	

period	 of	 the	 simulation.	 	 This	 can	 be	 done	 by	 calculating	 the	 values	 for	 some	 carefully	

chosen	 states	 only	 once	 –	 perhaps	 the	 steady	 state,	 or	 other	 states	 near	 which	 the	

simulation	will	need	to	be	performed	–	and	using	these	fixed	values	every	period	in	(5.12).		

Since	this	will	introduce	inaccuracies,	we	run	a	simulation	to	gauge	how	important	they	are	

in	our	model.		Figure	6	plots	the	time	paths	of	the	trust	fund	and	the	Social	Security	surplus	

for	 the	baseline	parameterization	of	 our	model	using	S=50,	which	 corresponds	 to	2‐year	

periods.		The	exact	simulation	illustrated	is	the	one	where		࢚۾, 	each	for	computed	are	࢚ۿ	&

period	in	the	simulation.		The	approximate	simulation	uses	the	steady	state	values	of	P	&	Q,	

but	 calculates	 a	 new	 value	 of	࢚܃	each	 period.	 	 Finally,	 for	 comparison	 purposes	 we	 also	

show	 the	 results	 of	 linearizing	 about	 the	 steady	 state	 and	 using	 the	 same	 linearized	

transition	function	each	period.		The	approximation	method	works	quite	well,	matching	the	

exact	method	very	closely.	 	 It	generates	mean	absolute	deviations	of	 .0071	and	 .0010	 for	

the	trust	fund	and	surplus,	respectively.		The	corresponding	values	for	linearizing	about	the	

steady	 state	 are	 .1883	 and	 .0141.	 	 We	 use	 this	 approximation	 when	 simulating	 for	 the	

remainder	of	the	paper.	

	

6.		Policy	Experiments	

With	the	basic	methodology	in	place,	we	are	now	ready	to	proceed	with	simulation	

of	the	model.		We	first	simulate	a	baseline	model	where	we	calibrate	the	initial	state	of	the	

economy	to	match	the	current	situation	in	the	US.		We	focus	on	the	time‐path	of	the	Social	

Security	 trust	 fund,	ܪ௧.	 	 We	 then	 consider	 a	 policy	 change,	 resimulate	 the	 model,	 and	

compare	the	resulting	time‐path	with	the	baseline.		

As	 we	 have	 noted,	 however,	 the	 model	 is	 unstable	 and	 will	 rarely	 generate	 the	

values	reported	in	Table	2	and	Figure	5.	 	 In	order	to	simulate	the	model	we	need	to	first	

choose	a	starting	state.		The	state	is	defined	by	S	values	for	each	population	cohort,	1	value	
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for	the	aggregate	productivity,	S‐E	values	for	asset	holdings	of	each	cohort,	R‐E‐1	values	for	

the	average	index	of	monthly	earnings	(AIME)	for	each	cohort	of	workers,	S‐R+1	values	for	

the	benefits	paid	to	each	cohort	of	retirees,	and	1	value	for	the	trust	fund.		The	values	we	

have	chosen	are	shown	in	Tables	7	–	10.	

We	fit	the	initial	distribution	of	the	population	to	match	that	of	the	US	population	for	

2010.		This	fitted	polynomial	is	shown	in	Table	7	along	with	the	steady	state	distribution	of	

the	population.	

The	distribution	of	asset	holdings	by	age	is	calibrated	to	wealth	data	by	age	groups	

from	 2007	 reported	 by	 the	 US	 Census	 Bureau.	 	 Table	 8	 shows	 the	 data,	 the	 fitted	

polynomial	and	steady	state	distribution	for	asset	holdings.	

The	initial	distribution	of	Average	Index	of	Monthly	Earnings	(AIME)	by	age	comes	

from	a	random	sample	of	1%	of	social	security	participants	available	on	the	Social	Security	

Administration’s	 website.	 	 We	 took	 the	 history	 of	 wage	 earnings	 for	 individuals	 in	 the	

sample	 and	 applied	 the	 wage	 indexation	 adjustments	 published	 by	 the	 Social	 Security	

Administration	to	get	an	AIME	value	for	each	individual.		We	then	sorted	individuals	by	age	

and	calculated	the	average	value	 for	each	age	group.	 	This	 is	 the	data	which	 is	plotted	 in	

Figure	9	along	with	the	fitted	values	and	steady	state	values	for	ages	16	to	67.	

The	 initial	value	of	benefits	are	 from	the	Social	Security	Trust	Fund	annual	 report	

and	use	data	 for	 the	average	monthly	benefit	by	age	 	 as	of	December	2006.	 	This	data	 is	

reported	in	Figure	10.	

While	these	calibration	exercises	pin	down	the	relatives	sizes	of	the	variables	across	

cohorts,	 they	give	 to	guidance	as	 to	how	 large	 the	values	are	relative	 to	 the	steady	state.		

We	 therefore	 assume	 that	 variables	 have	 the	 same	 average	 value	 across	 cohorts	 as	 the	

steady	state.	 	The	one	exception	 is	 the	overall	 capital	 stock,	which	we	assume	 is	actually	

above	its	steady	state	value	by	25%.		This	gives	us	short‐run	dynamics	consistent	with	the	

current	economic	slowdown.	 	For	similar	reasons	we	also	assume	the	current	technology	

level	 is	one	standard	deviation	below	 the	 trend	value.	 	Finally,	we	choose	an	 initial	 trust	

fund	balance	that	yields	a	ratio	of	taxes	collected	to	that	balance	of	23.32%,	which	matches	

the	numbers	from	the	Social	Security	Trustee’s	report.	
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The	 baseline	 benefits	 replacement	 rate	 is	 assumed	 to	 be	 40%,	 and	 the	 baseline	

payroll	tax	rate	is	.72	times	the	steady	state	value,	which	would	yield	a	long‐run	trust	fund	

balance	of	zero.		This	value	is	chosen	to	match	the	Trustee’s	report	forecast	that	the	trust	

fund	will	go	to	zero	in	2037.	

We	 run	 1,000	 Monte	 Carlo	 simulations	 of	 the	 economy	 from	 this	 starting	 point,	

which	we	set	as	the	year	2011.	 	All	of	our	simulations	use	S=50,	corresponding	to	2‐year	

periods.	 	 Figure	 11	 plots	 the	 time	 path	 of	 a	 zero	 shock	 simulation	 along	 with	 90%	

confidence	bands	 from	the	Monte	Carlos.	 	The	simulations	show	that	 the	 trust	 fund	rises	

gradually	until	it	peaks	in	2019	and	then	falls	explosively	in	a	negative	direction.		The	trust	

fund	 turns	 negative	 for	 the	 first	 time	 in	 2037.	 	 The	 social	 security	 surplus	 (taxes	minus	

benefits)	starts	off	negative,	rises	almost	to	a	break‐even	point	in	2015	and	then	explodes	

negatively.		The	sudden	upswing	at	the	end	of	the	sample	in	figure	11	for	the	Social	Security	

surplus	is	a	result	of	the	forced	change	in	taxes	and	benefits.	

We	compare	this	baseline	time	path	with	the	following	broad	sets	of	policies:	

 Reductions	in	benefits.	

 Increases	in	the	payroll	tax.	

 Changes	in	immigration	policy.	

 Increases	in	the	growth	rate	of	technology.	

One	way	 to	 restore	 long‐run	balance	 to	 the	system	would	be	 to	 lower	 the	 level	of	

benefits	to	retirees.		To	explore	this	option	we	consider	a	change	in	the	replacement	rates.		

Holding	current	benefit	 levels	constant	we	reduce	the	percent	of	calculated	AIME	paid	as	

benefits	 to	 retirees	 starting	 in	 the	 current	 year.	 	 The	 drop	 in	 the	 rate	 is	 immediate	 and	

permanent,	but	since	it	does	not	affect	the	benefits	of	older	cohorts	its	effects	on	the	trust	

fund	are	gradual	and	build	up	only	slowly	over	time.		Figure	12	plot	the	average	and	90%	

confidence	bands	over	1000	simulations	for	the	baseline	and	three	different	reductions	in	

the	replacement	rate.		Reducing	the	replacement	rate	by	25%	is	sufficient	to	restore	fiscal	

balance	in	the	long‐run,	but	a	reduction	of	10%	is	not.	

Figure	 13	 shows	 the	 effects	 of	 increasing	 the	 payroll	 tax.	 	 As	 with	 benefits	

reductions,	small	changes	are	insufficient.		A	tax	increase	of	25%,	reverses	the	tendency	for	

the	trust	fund	to	fall	in	the	long‐run,	but	a	10%	increase	is	not	large	enough.	
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Figure	14	shows	the	effects	of	simultaneously	raising	taxes	and	lowering	benefits	by	

the	same	amount.		Here	a	change	of	10%	is	almost	sufficient	to	restore	fiscal	balance,	and	a	

change	of	25%	is	more	than	adequate.	

For	the	case	of	increased	immigration	we	double	the	halve	immigration	rates	for	all	

cohorts	we	exacerbate	the	insolvency	problem;	the	trust	fund	turns	negative	about	4	years	

earlier	 as	 do	 changes	 in	 fiscal	 policy.	 	 By	 comparison,	 doubling	 immigration	 rates	

postpones	these	problems,	but	does	not	eliminate	them.	 	The	trust	fund	turns	negative	in	

2075,	rather	than	2037.	

Increased	growth	is	argued	to	be	one	way	to	resolve	Social	Security	insolvency.		To	

test	this	we	simulate	our	model	with	growth	rates	of	technology	of	3%	per	year	and	5%	per	

year.	 	 The	 time	 paths	 are	 plotted	 in	 figure	 16.	 	 Technical	 progress	 clearly	 improves	 the	

fiscal	 situation.	 	With	2%	growth	 the	 trust	 fund	 still	 turns	negative,	 albeit	15	years	 later	

than	the	baseline.		3%	growth	is	sufficient	to	eliminate	Social	Security	insolvency,	even	in	

the	long	run.	

The	conditions	necessary	to	ensure	the	trust	fund	does	not	go	negative	for	the	above	

simulations	seem	unlikely.		Benefits	must	fall	by	between	10%	and	25%	or	taxes	must	rise	

roughly	the	same	amount.		Growth	must	be	three	times	higher	than	is	currently	the	case	to	

eliminate	 the	 eventual	 insolvency	 of	 the	 system.	 	 We	 consider	 finally	 a	 more	 balanced	

policy	approach.		We	increase	taxes	by	10%,	lower	the	replacement	rate	by	10%,	increase	

immigration	by	50%,	and	assume	that	technology	growth	rises	from	1%	to	1.5%.		The	time	

path	for	this	scenario	is	plotted	in	figure	17.		The	figure	shows	that	the	trust	never	falls	into	

deficit.	

	

7.		Conclusions	

This	paper	has	presented	an	OLG	model	with	relatively	short	periods.		Rather	than	

solve	the	model	exactly,	we	have	linearized	it	and	have	done	so	about	the	current	state	of	

the	 economy,	 rather	 than	 about	 the	 steady	 state.	 	 This	 allows	 us	 to	 solve	 and	 simulate	

models	 with	much	 greater	 dimensionality	 that	 we	 could	 by	 solving	 exactly	 using	 either	

analytical	or	numerical	methods.		In	addition,	by	linearizing	about	the	current	state	rather	

than	about	 the	steady	state,	we	are	able	 to	more	accurately	simulate	our	model	which	 is	
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locally	unstable	near	the	steady	state.		This	accuracy	comes	at	a	cost	of	greater	computing	

time,	but	for	relatively	simple	models	like	ours,	this	cost	is	not	overwhelming.	

Our	model	still	suffers	from	the	curse	of	dimensionality,	however.	 	For	example	as	

the	size	of	the	periods	in	the	model	get	smaller,	the	number	of	cohorts	rises.		The	number	

of	state	variables	in	the	model	is	3ܵ െ ܧ2 ൅ 1.	 	So	as	the	number	of	cohorts	rises,	so	does	

the	state	space.		With	large	enough	state	spaces	the	computation	of	the	linear	coefficients	P	

&	Q	in	the	transition	function	becomes	computationally	burdensome.	

A	model	with	idiosyncratic	shocks	to	members	of	cohorts	would	be	intractable	with	

our	solution	method.	 	For	example,	a	ten‐period‐lived‐agent	model	with	only	2	values	for	

an	 idiosyncratic	 shock	each	period	would	give	2ଵ଴ െ 1 ൌ 1023	different	agents	of	various	

ages,	 whereas	 our	 current	 model	 with	 hundred‐period‐lived	 agents	 has	 100	 different	

agents.	

Despite	its	reliance	on	a	representative	agent	for	each	cohort	our	model	does	yield	

some	useful	results.	 	 	First,	no	single	policy	on	its	own	is	sufficient	to	resolve	the	looming	

insolvency	of	Social	Security.	 	Taxes	must	be	raised	by	roughly	25%	in	order	to	do	so.		Or	

benefits	could	be	cut	by	roughly	the	same	amount.		Neither	of	these	fixes	seems	feasible	in	

the	 current	 political	 climate.	 	 Easing	 immigration	 restrictions	 moves	 things	 in	 the	 right	

direction,	 but	 has	 insufficiently	 large	 effects.	 	 Finally,	 steady	 state	 growth	 needs	 to	 be	

implausibly	high	to	solve	the	fiscal	crisis	on	its	own.		

While	none	of	these	policies	 is	sufficient	on	its	own	to	solve	the	problem,	a	mix	of	

policies	looks	promising.		Increasing	taxes	and	lowering	benefits	for	new	retirees	by	10%,	

while	eliminating	wage	indexing	and	allowing	a	50%	increase	in	immigration	is	sufficient	

to	solve	the	problem	if	 long	run	growth	can	also	be	raised	by	50%,	as	shown	in	our	final	

simulation.		Similar	mixes	of	policy	would	also	be	sufficient.		However	any	solution	requires	

the	implementation	of	a	number	of	policy	changes.	

The	 fundamental	 instability	 of	 the	 Social	 Security	 system	 makes	 long‐run	

predictions	 very	 imprecise.	 	 Any	 Social	 Security	 system	 that	 defines	 fixed	 benefits	while	

relying	 on	 stochastic	 tax	 revenues	will	 be	 subject	 to	 this	 instability.	 A	more	 appropriate	

arrangement	would	be	for	benefits	to	be	somehow	dependent	on	the	state	of	the	economy.		

This	seems	like	a	fruitful	area	for	future	research.	
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Figure	1	

Data	and	Fitted	Curve	for	Effective	Labor	by	Age4	

	

	
	
	 	

                                                 
4 Data are from the US Bureau of Labor Statistics’ Current Population Survey. 
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Figure	2	

Data	and	Fitted	Curve	for	Immigration	Rates	by	Age5	

(immigration	rates	are	over	a	5‐year	period)	

	

	 	

                                                 
5 Data are from the US Census Bureau. 
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Figure	3	

Data	and	Fitted	Curve	for	Fertility	Rates	by	Age6	

(births	per	1000	for	females	of	indicated	age	per	year)	

	

	

	 	

                                                 
6 Data are from Nishiyama (2004). 
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Figure	4	

Data	and	Fitted	Curve	for	Mortality	Hazard	Rates	by	Age7	

(natural	logarithms	of	probabilities)	

	

	

                                                 
7 Data are from the US Center for Disease Control’s mortality tables. 
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Figure	5	

Steady	State	Values	of	Selected	Variables	by	Age	
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Figure	6	

Comparison	of	Simulation	Methods	for	the	Trust	Fund	and	Social	Security	Surplus	
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Figure	7	

Starting	and	Steady	State	Distributions	of	the	Population	by	Age	
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Figure	8	

Starting	and	Steady	State	Distributions	of	Capital	by	Age	
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Figure	9	

Starting	and	Steady	State	Distributions	of	AIME	by	Age	
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Figure	10	

Starting	and	Steady	State	Distributions	of	Benefits	by	Age	
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Figure	11	

Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	in	the	Baseline	Case	
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Figure	12	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	with	Reduced	Benefits	
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Figure	13	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	with	Higher	Taxes	
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Figure	14	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	with	Lower	Benefits	and	

Higher	Taxes	
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Figure	15	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	with	Different	Immigration	

Schemes	
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Figure	16	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	with	Higher	Growth	Rates	

for	Technology	
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Figure	17	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	under	a	Balanced	Reform	

Scenario	(preliminary	based	on	S=25,	100	Monte	Carlos)	
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Table	1	
List	of	Model	Parameters	

S	 	 maximum	age	in	periods	

E	 	 period	workers	enter	the	labor	force	

R	 	 period	workers	retire	

ሼ݂௦̅ሽ௦ୀଵ
ௌ 		 average	fertility	rates	by	age	

ሼߡ௦̅ሽ௦ୀଶ
ௌ 		 average	immigration	rates	by	age	

ሼ̅ߩ௦ሽ௦ୀଶ
ௌ 	 average	survival	rates	by	age	

ሼℓത௦ሽ௦ୀଵ
ௌ 	 effective	labor	endowment	by	age	

߬		 	 payroll	tax	rate	

	ߜ 	 capital	depreciation	rate	

	ߚ 	 subjective	discount	factor	

g	 	 growth	rate	of	technology	

	ߛ 	 coefficient	of	relative	risk	aversion	

	ߙ 	 capital	share	in	GDP	

	ߠ 	 pension	benefits	as	percent	of	AIME	

In	addition	we	have	parameters	governing	the	stochastic	processes.	

߰௭	 	 autocorrelation	

	௭ଶߪ 	 variance	
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Table	2	

Baseline	Calibration	&	Selected	Steady	State	Values	

α	 0.35	 	ഥܭ 5.6705	
γ	 1	 	ഥܪ 0.0000	

݃̅
*
	 0.01	 തܻ	 3.1975	

δ
*
	 0.05	 	ܥ̅ 2.4695	

β
*
	 0.992	 ̅	ܫ 0.8241	

θ	 0.4	 	തܮ 0.8086	

S	 50	 ݎ̅
*
	 0.0943	

	ഥݓ 2.5705	
		 		 തܶ 	 0.1348	
		 		 	തܤ 0.1316	

ത݊
*
	 0.0068	

τ	 0.0456	
	

	 	 	 *	values	are	quoted	in	per	annum	terms	
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