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Abstract

Infectious diseases induce externalities in private choices about prevention and therapy.
An improvement in either the technology of prevention or therapy may lead private agents to
decrease their preventive or therapeutic efforts, a phenomenon termed disinhibition by
epidemiologists.  If governments cannot or do not adopt interventions to internalize these
externalities, a technological improvement may even lead to disinhibition so extreme that the
infection rate rises.  In turn, a rise in the infection rate is a necessary but not sufficient condition
for immiserization, the paradoxical fall in welfare consequent on a technological improvement.
These issues are investigated in a model in which susceptibles may become infected and infecteds
may recover to be again susceptible.  Conditions are provided for when the infection rate can rise
depending on whether the improvement is to the technology of prevention or therapy and at
whom prevention or therapy is targeted, as well as other parameters of the model.  Results are
provided for a general formulation.
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0. Introduction

There is a strong intuition that infectious diseases exhibit externalities, and recent models

have formalized this notion (Goldman and Lightwood, 2002, Gersovitz, 2003 and Gersovitz and

Hammer, 2004).  In principle, governments can internalize externalities through a conventional

strategy of taxes and subsidies, as these authors show.  But in practice, much preventive and

therapeutic behaviour is unobserved and therefore cannot be taxed or subsidized, often because it

is intimate as in the case of sexually transmitted diseases.  This situation raises problems of the

second best, in particular, when there are improvements in prevention or therapy.

Epidemiologists’ worry that after such an improvement, people may slacken efforts to

prevent or recover from infection, a phenomenon they term disinhibition. Disinhibition could even

be so strong that infection rates may rise. Epidemiologists do not, however, focus on a

comprehensive welfare measure of such changes inclusive of their impacts on the costs of

prevention and therapy.  Moreover, epidemiologists do not distinguish between situations in

which the first-best has been implemented and it has not, an important distinction from a welfare

perspective.  Economists worry in general that when externalities have not been internalized,

seemingly desirable innovations might lead to a fall in well-being, immiserization.

A particular application of the principle of immiserization is that innovations in prevention

and therapy might produce immiserization, but under what conditions?  Answering this question is

the main goal of this paper which builds on Gersovitz and Hammer (2004).  It  requires a dynamic

model because the infection process is inherently dynamic but such models pose challenges of

tractability.  Although a number of  relatively general results are presented, the paper also uses a
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special functional form for a critical component of the model, the relation between preventive or

therapeutic inputs and the dynamics of the model.  This functional form has intuitive properties

and allows for the derivation of some analytical results when the general results on

disinhibition/immiserization are ambiguous. The special functional form may also be useful in

further closed-form examination of the economics of infection control for instance in the analysis

of multiple optimal steady states (Gersovitz, 2012) as well as in simulation.

1. The Social Planner and the First-Best

1.1 The Dynamic Constraints:

The starting point for this study of optimal policy toward infectious diseases is the

susceptible-infected-susceptible (SIS) model of mathematical epidemiology. It provides an

accounting for people in society, who belong to two mutually exclusive groups and are either

susceptible to infection or infected and infectious, that is capable of infecting the susceptibles.

Once susceptibles are infected, they recover probabilistically to be again susceptible.

The total number of people (N) is therefore the sum of the number who are: (1)

susceptible (S) and (2) infected and infectious (I):

The proportions of these groups in the population are denoted by s and i, with s + i = 1 .  The

birth rate of the population is  and deaths do not occur, so that the change in the population is:

The number of susceptibles changes according to:
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The first part of the right-hand side embodies the assumption that all newborns are susceptible.

The second part reduces the number of susceptibles by those people who become infected.  Under

the assumption of random contacts, the probability per contact of a susceptible person's meeting

an infected (and infectious) person, , is the proportion of infected people in the population,  = 

i = I/N = (1 -s) and is the same for all people.  The product, S, is the number of susceptibles who

do so.  The factor  is an adjustment incorporating both the rate of contact and the inherent

infectiousness of an infected.  The third part is the addition to the susceptible pool resulting from

the recovery of a fraction, , of the infecteds. Eqs. (1) - (3) can be solved for the change in the

proportion s:

which is a differential equation in one variable if ,  and  are fixed parameters.

Subsequent discussion replaces two parameters,  and , by endogenous functions of

preventive and therapeutic inputs,  themselves ultimately optimally-chosen implicit functions of

the single state s.  The main purpose is to consider how preventive and therapeutic actions by

governments and individuals endogenously affect the evolution of disease dynamics and how to

design public health interventions.  Without any such interventions, however, these parameters are

fixed, and the model of eq. (4) evolves to one of two possible steady states, either s = 1, the

infection dies out, or s* =  (+ )/ .  If   0<s*<1 so that the infection is endemic, s* is stable and

s =  1 is unstable.  Thus the problem of multiple endemic steady states does not arise in the simple

SIS model without endogenous  and .
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1.2 The Costs and Benefits of Interventions and the Social Planner’s Optimization:

The social planner’s objective function sums the well-being of individuals whether

susceptible or infected.  Absent the disease, each person in the society would have a level of

income of V0.  Utility is assumed linear in income, and so V0 would also be their level of utility.

When the disease exists, however, the social planner will likely be spending resources on

prevention to lower the chance of infection () and on therapies to increase the chance of

recovery ().  Either intervention may be targeted so that only a proportion of the population

receives the intervention and generates the associated costs.  Let j, j = a, b be the proportions of

the population that generate either preventive or therapeutic costs associated with an infectious

disease.  The j are targeting functions, and depend on s in special ways taking several forms with

some people getting access to prevention and/or therapeutic inputs.

A natural form of targeting is for prevention to target susceptibles (a = s) and for

therapeutic interventions to target infecteds (b = 1-s). Preventive targeting at everyone, a = 1,

with therapy targeted only at the infected, b = 1-s,  may, however, be at least as natural in

practice.  For instance, someone taking antibiotics to recover from cholera is hardly likely to think

it a good time to take a break from trying to drink safe water.  The difference between  a = 1 and 

a = s does have important implications for some qualitative properties of the model.   Mass

prevention and mass therapy may be appropriate for infections that are hard to diagnose,  a = 1

and  a = 1. Plausible alternatives also include: a = 1-s, or a = s(1-s) and b = 1 in combination

with the targeting functions just discussed; Gersovitz and Hammer (2004) provide more

discussion of these alternatives.  In this paper, I consider all eight possible combinations of these

expressions in terms of s for these two targeting functions.



5

In the social planner’s problem, the government directly controls the quantities of the  two

policy interventions,  preventive effort  of a  0 units per person at whom prevention is targeted

and therapeutic effort of b  0 units per person at whom therapeutic effort is targeted. The total

number of units of these interventions are therefore aaN and bbN. The levels of these health

inputs per targeted person affect the model through (a) and (b), and thereby determine

respectively the rate of new infections and the rate of recovery.  Nothing precludes (0) = 0, in

which case there is no recovery without some therapy although formally this special case of the

model would not be SIS in the absence of therapy. The controls exhibit positive but diminishing 

marginal products in the promotion of health through prevention and therapy so that: '<0, ">0,

'>0, "<0. Preventive inputs cost  pa per unit and therapeutic inputs cost pb per unit; total costs

of the interventions are therefore paaaN and pbbbN.  

To represent the possibility of improvements to prevention and therapy, I parameterize the

 and  functions as follows:

and

in which the j are constants unless altered by  technical change.  Important special cases of these

equations occur when either prevention or therapy (but not both) is entirely under discretionary 

private control and the other intervention is subject to the technical improvement. For instance,

prevention may involve effort that is continuously variable (say hand washing that can be done

more  vigorously and more often). Therapy may, however, consist of taking an antibiotic or not, a



     1In principle, eqs. (6a) and (6b) could be generalized to include parameters a  and b     
multiplying the exponents, -a and -b.  For the comparative analysis presented in this paper,
however, such parameters would only be nuisance parameters because they could be eliminated by
a change in the units of measurement of a or b.  Heffley(1982) uses a similar functional form in a
discussion of prevention and therapy but one that does not model the dynamics of infectious
diseases.
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better antibiotic is an increase in , taking the antibiotic may be the obvious choice both before

and after the innovation, and there may be no other therapeutic intervention so b = 0. The key

interaction is then between the change in  and the induced optimal changes in preventive effort,

a.  The reverse situation could also happen in which private choice is about therapy and the

innovation affects prevention about which there is no private decision.   So long as the i are

constant, however, these parameterizations do not place any restrictions on the properties of the

model which remains as general as the SIS model in Gersovitz and Hammer (2004).

A further specialization of the prevention and therapeutic functions uses an exponential 

form and makes the j additive so that  and :1

and

Although special, these formulations allow some unambiguous conclusions about technological

change.  Under these assumptions,

and
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These functional forms place an upper bound on  and .  As most people are all too aware, it is

often impossible either to ensure that one cannot be infected or to ensure that one will recover, no

matter what one spends on one’s health. Furthermore, if even when the social planner uses the

maximum amount of inputs and

then s = 1 must be a locally unstable equilibrium because it is unstable no matter the inputs a and

b.  Eq. (8a) gives the highest possible value of the proportion of susceptibles in the steady-state. 

Correspondingly, the lowest possible value of the steady-state proportion of susceptibles is:

when the social planner does nothing.  Taken together, the properties of eqs. (7a), (7b), (8a) and

(8b) make this functional form both  powerful in overcoming some intractabilities of the model

and at the same time consistent with some intuitions, such as that infinite inputs may not be able

to drive the model to a zero-infection steady state.

The social planner maximizes social welfare, W, as given by the present discounted value

of total income net of the total costs of the disease and the total costs of the interventions:
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in which r is the discount rate, V0 is income in the absence of the disease (received by everyone

who is alive whether well or sick), pI is the current money cost of being infected (and sick) such as

foregone wages while ill and including the monetary equivalent of pain and suffering and 

(1-s)N is the total number of the sick, and the remaining two terms are the total costs of the

preventive and therapeutic interventions. The integrand of eq. (9) is therefore the sum of the

current incomes of the susceptible and the infected less the total current costs of illness and health

interventions.  Note that there is no cost to any innovation,  i,.  These are assumed to be the

product of pure science and would be undertaken regardless of cost.  An alternative formulation

would be to assume that innovation is the outgrowth of public choice about investment in

innovative activity dependent on its costs and benefits inclusive of any second-best consequences

such as the potential for immiserization

Eq.(9) therefore provides the objective function while eqs. (2) and (4) provide the

dynamic  constraints on the optimization problem.  The current-value Hamiltonian, H, is:

in which (sN) and N are the current value multipliers and  and  are given by eqs. (5 and (5b). 

Because sN is the multiplier on the change in s, it has the interpretation of the value of a unit

increase in s on social welfare, W, and therefore s has the interpretation of the value of an

increase in s on the welfare of the representative person, or alternatively as the value of an

increase in one susceptible person on social welfare.

The first derivatives of H with respect to the controls, a and b, set equal to zero imply:



9

and

Under the assumptions on the j and on ' and ', the variable s must be positive if the first-order

conditions are to hold. The left hand sides of eqs. (11a) and (11b) show how the j play a critical

role in determining the marginal costs of the interventions by making them depend explicitly on

the state of the epidemic, s.  In the case of prevention, the relation between marginal cost and s

takes many forms including a direct and an inverse relation.

In addition, the dynamic equations for the multipliers imply:

and

The dynamic system of eqs. (4) and (11a-c) is independent of N and N although not of  and eq.

(11d) can be discarded. (This result would not hold if people died of the disease, Gersovitz and

Hammer, 2004).  The social planner recognizes that  = (1-s), hence the term (1 -2s) in eq. (11c).

Substitution of eqs. (11a) and (11b) into eqs. (4) and (11c) and setting the resulting

equations to zero produces the two isoclines of the dynamic system.  The simultaneous solution of

the isoclines for s and s yields all the steady states of the system.  At this point,  a lot of trouble
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begins.  In most economic problems, there is a unique optimal steady state.  In the analysis of the

control of infectious diseases, however, it is not clear what general condition on the primitives of

the problem rules out the possibility of multiple optimal steady states other than the condition that

the isoclines cross only once. Gersovitz (2012) discusses these issues further, but in this paper it is

assumed that the steady state is unique, as it may  be.

The slope of the s-isocline in s- space is:

and the slope of -isocline in s- space is:

in which the jk, j, k = s,  denote the corresponding numerators and denominators that precede

their introduction, the j subscript  denotes the isocline and the k subscript denotes a variable in

that isocline. The terms aj and bj for j = s and  refer to the partial derivatives of a and b

calculated from eqs. (11a) and (11b), the first-derivatives of the Hamiltonian set to zero;

Gersovitz and Hammer (2004, p.10) give these expressions for the case b = 1 -s and all four

values of   a.   The denominator of eq. (12b) involves some algebraic manipulation using the

expressions for the aj and does not derive immediately from the differentiation of eq. (11c).

If a = s or s(1-s), then both isoclines have positive slopes about the steady state so long

as r  and if the s-isocline is steeper than the  -isocline then the steady state is stable as can be



     2An important property of the linearized equations is that the sum of the coefficient on s in the
linearized version of eq. (4) and of the coefficient on s  in the linearized version of eq. (11c) is
positive so long as r .  If, in addition, the slopes of the isoclines are positive and the slope of
the s-isocline is steeper than the slope of the -isocline, then the dynamic system must have one
negative and one positive root and so is saddlepoint stable.  If both slopes are positive but the
relative steepness of the slopes are reversed, the system has two positive roots and is unstable.

     3 Gersovitz and Hammer (2004, p. 13) incorrectly state that there can be a stable case with
both isoclines negatively sloped and the s-isocline more negatively sloped; although both isoclines
can be negatively sloped, the s-isocline cannot be the more negatively sloped and so such an
intersection cannot be stable.  From eqs. (12a) and (12b), for both isoclines to be negatively
sloped requires , but for the s-isocline to be more steeply negatively sloped also
requires   This latter condition cannot hold if a = (1 - s) or a =  1 as can be
proved by fully expanding all the expressions including those for the aj and bj for j = s and ,
however, and these two cases are the only ones that allow negatively sloped isoclines.  In other
words, the configuration of Figure 1c in Gersovitz and Hammer (2004) cannot exist.
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proved by linearizing the dynamic eqs. (4) and (11c) about the steady state.2  If a = (1 - s) or a =

 1,  then both isoclines can have positive slopes about the steady state with the s-isocline  steeper

than the  -isocline so that the steady state is stable, just as when a = s or s(1-s). These isoclines

may have other combinations of slopes but none is stable.3  For notational simplicity, define the

difference between the slope of the s-isocline and the slope of the -isocline as :

which is positive in the stable case when both isoclines are upward sloping and the s-isocline is

steeper.

The exponential form of eqs. (6a) and (6b) and their associated properties makes it

possible to derive explicit algebraic expressions for the two isoclines by using these special forms



     4For the functional forms of eqs (6a) and (6b), the expression (+'sas) is always positive
regardless of which of the four functional forms for prevention targeting, a, is under
consideration. In the more general expressions of eqs. (5a) and  (5b) and for values of a = 1 or 
(1-s), (+'sas) could be either positive or negative and therefore leads to other possible
configurations of the isoclines.
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in eqs. (12a) and (12b):

and

Both these isoclines are upward sloping regardless of the form of a, something that is not true in

the more general case of eqs. (4) and (11c).4  These expressions prove useful in deriving further

results.

1.3 Technological Change in Prevention and Therapy

I  now turn to the effects of changes in the technological parameters, the j’s, on the

infection rate, i, and on social welfare, W,  (and the utility of a representative member of society),

under both the general and the special functional forms.  These effects are, of course, highly

dependent on the configuration of the isoclines.  It makes little sense to investigate the effect of
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changes in parameters from an unstable steady state, so the discussion proceeds under the

assumption of a unique stable steady state.

 The effects of changes in parameters on welfare, W, are simple and independent of the

effects of changes in these parameters on the optimal steady-state rate of infection.  For any

parameter x the effect on W is given by the dynamic envelope theorem (Caputo, 2005, chs. 9 and

14):

in which H is given by eq. (10).  Consequently, an increase in j, j =   or  raises W.  These

effects are qualitatively the same regardless of the values of the targeting functions, a and b, and

accord with the intuitive notion of an improvement in the technology of prevention or therapy.

 Next, I turn to the effect of changes in the technological parameters on the (assumed

unique and stable) optimal steady-state rate of infection. In the social planner’s problem, these

changes are of secondary importance to the effects on welfare, but they are still important.  First,

knowledge of whether implementation of the social planner’s program is inconsistent with

movement either up or down in the infection rate after an improvement could provide a weak but

observable check on whether society is acting optimally.  Second, it provides a contrast with the

unintervened response of the private society.  Information on the signs and relative magnitudes of

the slopes of the isoclines helps to determine the effects of parameter changes on the steady state

rate of infection, whereas the effects of parameter changes on welfare did not depend on such

information beyond the assumption that the steady state is unique and stable.  To conserve space,
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this section assumes that the effects of the inputs, a and b, and the effects of exogenous technical

change,  and , are independent so that ; the discussion of private decisions

without optimal interventions relaxes this assumption.

An increase in :  The effect on the steady-state  proportion of susceptibles, s, is given

by:

with the 0 superscript indicating that this expression only applies if   The first term in

the brackets results from the unambiguous shift downward in the s-isocline in s- space (e. g. in

Figure1) consequent on an increase in . This effect follows from the decrease in the ease of

transmission of infection via eq. (4) everything else equal, and corresponds qualitatively to the

only effect on welfare of an increase in  as given by eq. (15).

But there are secondary effects on the equilibrium level of infection via the effect of  on

the shadow valuation of an additional susceptible person, s. In the case of the social planner, this

secondary effect may be opposite in sign to the impact effect, in the only possible stable case

when the isoclines are sloping upward and the term  is positive. There are two components to

the effect of an increase in  operating through the shadow price (and the resultant shift in the

-isocline) and they are summarized in the term (1-2s)s which is the coefficient on  in the
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equation for this isocline.  The term (1-2s) has its origin in the effect of a change of s on s, the

coefficient on  in the co-state eq. (11c):

On the one hand, the left hand term in the central piece of eq. (17) is positive. This effect arises

because an increase in  induces an increase in the steady-state shadow value of being

susceptible (given s).  The risk of infection is lower given a meeting with an infected person and

so it is worth more to be susceptible because one can expect to stay in this desirable state longer.

An increase in  therefore shifts the -isocline up and increases the steady-state value of s.  On

the other hand,  if s is higher, i and  must be lower, and therefore there is less benefit to

undertaking prevention because the chance of meeting an infected person and becoming infected

is lower and hence the right hand term in the central piece of eq. (17) is positive.  This part of eq.

(17) means that an increase in  shifts the -isocline down and decreases the steady-state value

of s.  Thus to this point, it would seem possible that this last effect could not only offset the shift

up in the -isocline coming from the first term in eq. (17) but also the shift down in the s-isocline

associated with the term s in eq. (16).  Based on these arguments, the net shift in the -isocline

seems ambiguous, and the balance would be determined by the value of (1-2s) so that a value of s

 0.5 is a sufficient condition for the proportion of susceptibles to rise with an increase in .

The stability of the steady state, however, allows further inferences.  The expression for

the effect of a change in  is closely related to the relative slopes of the isoclines.  In particular,
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from eqs. (13) and (16):

The right-hand side of eq. (18) is positive in the case of stable, upward-sloping isoclines because

 the last inequality can be proved by substituting for the

targeting functions.  So despite the seemingly ambiguous shifts in the isoclines, the net effect on s

of an increase in the technology of prevention is always positive.

An increase in : If both isoclines are upward sloping, as in Figure 1, an increase in 

results in an unambiguous lowering of the s-isocline via eq. (4).  All other things equal, it makes it

easier to recover and lowers the infection rate.  But all other things are not equal, and an increase

in  also unambiguously lowers the -isocline for a given value of s.  Intuitively, for a given

value of s, a higher value of  makes it easier to recover and less valuable to be susceptible (or,

equivalently, less expensive to be infected).  On balance, however, the effect of an increase in 

on the steady-state rate of susceptibility, s, is:

in which  except, possibly but not

necessarily,  if targeting is a = 1 and s >0.5.  Except possibly in this one sub-case, therefore, an
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improvement in the technology of therapy increases the proportion of susceptibles in the case of

the social planner.  Furthermore,  in the exponential case, an increase in  increases the steady-

state rate of susceptibility, s,  even in this one special sub case of a = 1 and s > 0.5 as can be

shown by using the expressions for the exponential case, eqs. (6a), (6b) and (14a) in eq. (19).

2. Private Choice, Disinhibition and Immiserization

2.1 The Formulation of Private Choice:

The social planner directly controls the values of a and b in a model without people who

make decisions that affect their own health.  The next step is to consider private decisions and

their implications for public health and government policy.  In their decisions about prevention

and therapy, people generate a negative externality if they fail to take into account the effect of

their becoming and staying infected on the risk of infection to others.  After identifying the

externality, one can examine how government interventions with subsidies or taxes can

decentralize the social planner’s first-best solution, something done in Gersovitz and Hammer

(2004).  This paper examines the effect of changes in the technological parameters on people’s

decisions and welfare when the social planner is not intervening to correct the externality and

compares the outcomes to the social planner’s.

The simplest way to illustrate the infection externality and its implications for policy is to

assume that private decisions are made by a group of people termed the household; see Gersovitz

and Hammer (2004) on this  representative agent.  The only distinction between the social planner

and the representative agent is that the household is assumed to be small relative to the population
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as a whole, in this case so that the infected proportion of the household does not affect the

infected proportion of the population as a whole.  The household takes as exogenous to its

decisions the proportion of the population that is infected, which equals the probability, , that

any random contact is with an infected person.  The household is assumed to be sufficiently large

that it can fulfill the role of a representative agent and therefore that the infected proportion of the

household is identical to the corresponding  population proportion.  Finally, it is this household

that takes decisions about the interventions,  a and b.  Because the instantaneous utility function is

linear, there is no sense in which the household is performing any implicit insurance function for

its members. The equations for the model of private decision making are therefore the same as in

section 1.1, except that the household takes the probability of infection,  = i,  to be exogenous.

2.2 Private Choice, Disinhibition and Immiserization:

The Hamiltonian for the household’s problem is the same as the social planner’s, eq. (10),

except that   is exogenous.  All functions of variables (, , and ) are evaluated at the

household values of their arguments and  is a constant common to both the social planner’s and

the household’s problems.

The first derivatives of H with respect to the controls, a and b, set equal to zero imply eqs.

(11a) and (11b) and the condition for the change in the multiplier on population, eq. (11d),

remains the same, although as before it is not relevant to the solution for the variables of interest.

What is different is the dynamic equation for the multiplier on the proportion of the population

that is susceptible, s, which yields:
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Because the household is representative of society,  must equal (1-s).  Once this substitution is

made, the only difference between eqs. (11a-c), the planner's problem, and eqs. (11a), (11b) and

(20), the private problem, is the (1-s) term at the end of eq. (20) rather than the (1-2s) term at the

end of equation (11c).  This latter difference arises because the household takes the society-wide

infection rate as exogenous in its decisions.  The social planner’s first best can be decentralized by

subsidies at equal rates to preventive and therapeutic activities; see Gersovitz and Hammer (2004)

for proof and intuition.

In the absence of subsidies, however, the first-best is not realized.  The isocline for s is

identical to that of the social planner’s and therefore traces out the same curve, for example as in

Figure 1 if the s-isocline slopes upward.   The -isocline for the general case is given by setting

the right hand side of eq. (20) to zero.   The -isocline has slope given by:

in which the   jk, j =  and k =  s,  denote the corresponding numerator and denominator that

precede their introduction.  The slope of the -isocline is more difficult to characterize in the case

of private decision making than in the case of the social planner, eq. (12b), and there are more

sub-cases, only one of which is considered in this paper:

First, the term need no longer be negative as had to be in eq (12b).  In fact,

however, this term can be positive only in the case a = 1, and even then a sufficient (but not

necessary) condition for it to be negative is s  0.5 as can be proved by substitution using eqs.



     5Assumption P.2 rules out the case in which the s-isocline is upward sloped and the -isocline
is downward sloped.  This configuration produces a stable steady state in which the real parts of
the roots of the characteristic equation are both negative.  It seems possible for these roots to be
either real or imaginary, and so the steady state is either a star or the focus of stable cycles.  But
this information is not adequate to characterize the optimal path; see the references in Gersovitz
(2012).
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(11a) and (11b).  Assumption P.1 states that: the numerator of eq. (21) is positive as it is in eq.

(12b).

Second, the term  need not be positive about the steady state even if 

(+'sas) > 0 and  r  as the corresponding term, , is in the social planner’s problem, eq.

(12b).  In the characterization of the social planner’s problem, this property is important in

reducing the number of cases because (+'sas)> 0 also ensures that the s-isocline is upward

sloped and furthermore, this property must obtain for a = s or s(1-s).  But in the private problem,

the term  appears in the denominator of eq. (21) and can be negative or positive for a

= 1, (1-s) or s(1-s) regardless of the sign of (+'sas). If  a = s and if r , however, the

denominator of eq. (21) must be positive as can be shown by expanding all the terms. Assumption

P.2 states that: the denominator of eq. (21) is positive if the numerator of eq. (12a) is.5

Define the difference between the slope of the s-isocline and the slope of the -isocline as

:

The following analysis only applies if Assumptions P1 and P2 hold.  Under P1 and P2, qualitative
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properties of the isoclines discussed in section 1.2 carry over from the social planner’s problem to

the private problem. In particular, the only saddlepoint stable configuration of the isoclines is that

both are upward sloping and the s-isocline is steeper than the -isocline. Furthermore, if the

slopes of the two isoclines are positive and produce a stable configuration, the private -isocline

is positioned below the social planner’s -isocline so that the steady-state value of s is lower in

the unintervened private case than in the social planner’s case.  This result accords with the

intuition that the externality leads to private individuals doing too little to avoid being infected,

either through prevention or therapy.

For the exponential, the -isocline is given by:

which differs from eq. (14b) of the social planner’s problem to reflect the appearance of (1-s)

rather than (1-2s) as appropriate.  Eq. (23) always slopes upward in s-s space, but is positioned

lower than eq. (14b) and eq. (14a) slopes upward.  The exponential case therefore satisfies

Assumptions P1 and P2.  Thus, whether decisions are taken by the social planner or by private

households without government intervention, both isoclines slope up in the exponential case.

2.3 Technological Change in Prevention and Therapy

Starting from a steady state, the effect of a change in a parameter, x, on welfare, W, is
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more complicated when decisions are made by private individuals without the social planner

intervening with optimal first-best subsidies.  The equation determining the outcome is:

This result is an extension of the dynamic envelope theorem to account for the fact that the

household ignores its effect on s through its effect on  (the derivation is the same as Caputo,

2005, chs. 9 and 14).  The term  H/x has the same sign regardless of whether it derives from the

social planner’s or the household’s problem, although  the values at which it is evaluated differ

between the two situations. Because the model has only one state variable, the state moves

monotonically from one steady state to another so the sign of ds/dx is the same along the path as

the sign of the difference between steady states. A sufficient condition for an improvement in

welfare caused by a change that is a technological improvement (one that increases welfare in the

social planner’s problem) is therefore that the rate of infection fall in the long-run steady state so

that ds/dx is always positive.  Eq. (24) shows that there is no other potential source for

immiserization. It does not seem possible to use H/x > 0 to strengthen this sufficient condition.

Immiserization arises if the expression involving ds/dx in eq. (24) is of the opposite sign

and dominates in magnitude H/x in the private problem.  In this situation a change in a

parameter that increases welfare when the social planner controls health inputs (or equivalently

decentralizes the social planning problem through first-best interventions) decreases welfare when

the household makes decisions in the absence of any interventions by the social planner.  In the

case of immiserization, the change in the parameter which would otherwise be advantageous is
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exacerbating the externality to such a degree that this latter, seemingly secondary, effect

dominates.  For instance, a bio-medical innovation that makes either prevention or therapy more

likely to succeed, other things equal, and thereby must improve welfare under the social planner,

may encourage so much private behavior that increases the size of the infection pool (and the

externality) that on net society is worse off.  Eq. (24) makes this notion precise.  The next step is

to understand how changes in the technological parameters affect the (unique, stable) steady-state

rate of infection.

An increase in : The effect on the proportion of susceptibles of an improvement in

prevention technology if the effects of the prevention input and the improvement in prevention

technology are separable ( ) is:

This expression is strictly positive if the isoclines are positively sloped with the s-isocline steeper

(the case of the saddlepath stable steady state) and so the improvement in the technology of

prevention unambiguously improves welfare with private decision making. The first term in the

brackets results from the unambiguous shift downward in the s-isocline (Figure 1) consequent on

an increase in and has the same rationale as in the case of the social planner. In  contrast to the

situation of the social planner, however, there is only one secondary effect on the equilibrium level

of infection via the effect of on the shadow valuation of an additional susceptible person, s.

The fact that the private decision makers ignore the external effects of their actions is
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paradoxically what makes it easier to demonstrate that an improvement in prevention technology 

rules out an increase in the infection rate in the case of private decision makers and therefore the

possibility of immiserization. Because  the isocline slopes upward (the term  is positive), the

right hand piece in brackets in eq. (25) involving (1-s)s is positive. Consequently, an increase in

  increases the shadow value of being susceptible for a given value of s, and shifts the -

isocline upward.  The risk of infection is lower given a meeting with an infected person and so it is

worth more to be susceptible because one can expect to stay in this desirable state longer.  Thus

an increase in  shifts the s-isocline downward and the -isocline upward so that the steady state

values of both s and s rise.

Although the effect on the infection rate and welfare is therefore unambiguous in the

saddlepoint stable configuration of the isoclines, how this change comes about can be quite

varied.  In particular, the inputs controlled by private decision makers, a and b, can respond in

different ways to the increase in .  The only constraint is that the steady state value of the

proportion of susceptibles, s = [(b) + ]/(a), increases so the changes in a and b taken together

with the increase in  must produce this result. Under the assumption of the independence of 

and a, a change in  does not affect directly either of the first-order conditions, eqs. (11a) and

(11b).  The adjustment of the inputs to a change in  therefore operates via these equations only

through the effects of  on s and  s:
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and

From eqs. (11a) and (11b),  and  > 0.  Two unambiguous cases of what can happen are: if a

= (1-s) so that as > 0 or  a = s(1-s) so that as = 0, and if b = (1-s) so that bs = 0 then both a and b

increase when increases with a technological innovation that makes the disease less infectious.

In these cases, there is the opposite of any kind of disinhibition as the use of both health inputs

increases, not just an absence of the kind of disinhibition that is so extreme that the infection rate

rises. If b = (1-s), the use of therapy increases in response to the increase in  regardless of

what happens to the use of prevention and (its targeting).

The effect on the proportion of susceptibles of an improvement in prevention technology if

the effects of the prevention input and the improvement in prevention technology are not

separable ( ) is:

in which  is given by eq. (25). This expression is strictly positive if , implying

from differentiation of eq. (11a), because the expression in parentheses on the
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last line of eq. (27) is always positive regardless of the targeting functions.  If  so that an

improvement lowers the marginal product of the preventive health input, however, it is possible

that s decreases and immiserization cannot be ruled out.

 An increase in : If the effects of the therapeutic input and the improvement in

therapeutic technology are separable ( ), then the effect of an increase in on the

steady state proportion of people who are susceptible is:

in which .  In the case of upward sloping stable isoclines

( ), a sufficient condition for an increase in  to increase s is that  is

negative, which is the case regardless of  b when: a = 1 and s < 0.5,  a = (1-s) or  a = s(1-s). 

In the other cases, a = 1 and s > 0.5 or a = s, an increase in  may still  increase s but  > 0

so that it depends on the relative magnitudes of both terms inside the brackets in eq. (28).  These

ambiguous cases have in common that they are the only ones in which as < 0, so that an increase

in s lowers preventive effort all other things equal.

In the ambiguous case when  a = s, further re-arrangement of the terms  in eq. (28) 

shows that:
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The higher is the difference between r and ,  the lower the absolute value of the elasticity of 

with respect to a ( ) and the higher the absolute value of the elasticity of ’ with

respect to a ( ), the more likely is an increase in   to increase s.  If b =  (1-s), the

lower is the absolute value of the elasticity of  with respect to b ( ) and the higher is

the absolute value of the elasticity of ’ with respect to b ( ), the more likely is an

increase in  to increase s; if b =  1, however, these two elasticities are irrelevant to the

outcome. An increase in  is more likely to increase s when the initial value of s is low.  As with

all elasticity conditions, the results in this paragraph all presuppose other things equal in what is

actually an endogenous system, so these inferences need to be interpreted cautiously.  For

instance, an increase in r - may simultaneously affect the elasticities. That eq. (29) seems to

allow for the possibility that the infection rate may actually rise with an improvement in therapy

means that there is a risk of immiserization and that the need to investigate the question is

justified; the answer is not obvious even under the assumption of independence of b and .

For the exponential of eqs. (6a) and (6b), however, the infection rate decreases with an

improvement in the technology of therapy, , regardless of targeting.  The middle

expression in brackets in eq. (28) is always positive regardless of targeting as can be proved by
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substituting the expressions for the exponential under the different targeting cases and collecting

terms.  Even if > 0 in the general case as must always be true for a = s, the exponential makes

clear there is no presumption that < 0 let alone that this term could be sufficiently

negative to be the dominant effect in the expression for the change in welfare as given in eq. (24).

If the effects of the therapeutic input and the improvement in therapeutic technology are

not separable ( ), then the effect of an increase in  on the steady state proportion of

people who are susceptible is:

If   so that from differentiation of eq. (11b) and if in addition

 as given in eq. (28), then an improvement in therapeutic technology increases the

proportion of susceptibles because the term in the right hand brackets in eq. (30) is either positive

or zero. If, however,  so that  and to such a degree that     and if

, the effect of an improvement in therapeutic technology could be to decrease the

proportion of susceptibles and immiserization cannot be ruled out.

Recall that if there is no private choice with regard to the input for which there is

technological improvement, then the condition for separability between the private input and the

innovation is met automatically.  This observation has an important practical implication because
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the case in which technological improvement is to the therapy and the individual’s choice is about

prevention is likely to be a common one.

3. Conclusions

In the case of an SIS disease, this paper provides guidance on when technological

improvements in prevention or therapy can lead to an increase in infection rates and even a

decrease in welfare (immiserization) when decisions are taken privately without optimal

government interventions that internalize externalities.  The results are sensitive to assumptions

about how prevention and therapies are targeted.  In many cases, the condition for disinhibition

sufficient to raise the infection rate and therefore the necessary condition for immiserization is not

met.  If health inputs and the innovation are separable, immiserization is impossble in the case of

preventive innovation and only possible in the case of therapeutic innovation for a minority of

preventive targeting possibilities.  If the relations between preventive and therapeutic inputs and

the corresponding outputs take the special form of the exponential which includes the assumption

that health inputs and the innovation are separable, immiserization is impossible regardless of

targeting.

A welfare-improving outcome is more likely when the improvement is to prevention rather

than to therapy.  On first consideration, this result seems counter-intuitive.  A lower value of the

infection-generating  parameter, , consequent on an improvement to prevention and a higher

value of the recovery-generating parameter, , consequent on an improvement to therapy both

tend to lower the infection rate for an SIS disease.  In the former case, an improvement keeps

people from becoming infected while in the latter case, an improvement gets people out of the



     6See Lakdawalla et al (2006) for an analysis that relates to this question.
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infected pool.  This latter effect immediately suggests that the results of the SIS model may not

generalize to a disease such as HIV in which an improvement in therapy keeps people in the

infected pool raising the infection rate other things equal.6  But it is not these impact effects that

differ between prevention and therapy in an SIS model.  Rather the asymmetry arises because an

improvement in prevention tends to make being uninfected more valuable, thereby promoting 

additional effort to stay uninfected, whereas an improvement in therapy tends to make being

uninfected less valuable. What the corresponding results are for other, non-SIS diseases remains

to be investigated, building on the models of  Gersovitz and Hammer (2004).

Of course, it is always best if the internalizing interventions are implemented.  Not only is

immiserization from innovation impossible, but the full benefits of the innovation are certain to be

realized. Sometimes, however, it may not be possible to implement the internalizing interventions,

especially when the activities that spread infection may be expensive to monitor or even

effectively impossible to monitor as when these activities are intimate and private.  In these

circumstances, if disinhibition is so extreme as to produce immiserization, the only option may be

to suppress innovations that would otherwise raise welfare.  It is the prospect of the need for such

a dire second-best response that motivates investigation of the conditions under which

immiserization could occur.
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