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Abstract

We provide an axiomatic foundation for a personality trait which has important implications

for economic behavior, Conscientiousness, and two aspects of that factor, the inhibitive and the

proactive. We refer to these two aspects here with the names, probably more intuitive for

economists, of control and motivation. The first aspect is commonly associated in analysis of

individual behavior with the ability to override impulses and distractions when pursuing a goal.

The second is usually associated with the inclination to set ambitious goals.

Our setup and analysis closely follow those of standard decision theoretic analysis. In our

model an individual is characterized by a preference order over acts, which are maps from states

to lotteries over prizes. In the framework of Drèze, we allow the possibility that the individual

can affect the probability of the state which is realized, at some cost. The differences in this cost

of control make formal the differences in conscientiousness among individuals: a higher cost of

control over the probability corresponds to a lower degree of inhibitive side of conscientiousness.

The utility in each state deriving from the realization of an outcome is state dependent. An

important part of the research reported here is an axiomatic foundation of preferences with

moral hazard and state dependent preferences, first treated in Drèze. This utility evaluated

by the individual in reference to a subjective benchmark, or aspiration level. An extreme and

simple example is given by an individual who sets an aspiration level, which is a point in a

partially ordered space, and derives a positive utility when his outcome is larger than the set

level, and does not when the outcome is lower. The level of the aspiration set by the individual

corresponds to his motivation, which corresponds to the proactive side of Conscientiousness.

Very preliminary version !
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1 Introduction

Personality theory and decision theory Personality theory and decision theory are two distinct

theories of human behavior. Although very different in historical origin and conceptual structure,

both try to identify stable characteristics of individuals, able to predict patterns of behavior of that

individual in different environments and circumstances. Personality theory wants to identify traits

of an individual, defined as relatively stable patterns of affect, behavior and cognition in a wide

variety of circumstances. Factors are, as in the statistical process of determining them, a limited

number of latent variables are able to explain a large number of possible patterns. If one accepts

this definition, then decision theory can be considered a theory of personality with a restricted

domain, because it also tried to identify and provide the conceptual structure for stable patterns

of behavior in choices involving dated stream of rewards under uncertainty. If one takes it as a

search for factors, one may define Decision Theory as the hypothesis that a large set of possible

different patterns of choice on the domain of such rewards can be explained by two simple factors,

the attitude to risk and that to delay.

So far these two theories have been largely independent. An integration of the two theories

seems necessary because several findings in the past years have shown that the predictive power of

classical decision theory is significantly increased once we introduce some measurement of personalty

traits of individuals, for example the Big Five factors. A first step in this integration is setting the

analysis of personality traits on the same formal level of analysis as classical decision theory, and

the axiomatic method seems the natural approach. The purpose of this paper is to provide such a

foundation for one of the factors, Conscientiousness, and its two aspects, motivation and control.

Why Conscientiousness? There are several reasons to out this trait at the forefront of the

analysis. First, Conscientiousness has been found to be important in explaining successful outcomes

for several economic variables. In the influential meta-analysis papers of Barrick and Mount ([2])

and Barrick et. al ([3]), Conscientiousness was found to be a good predictor of job performance. In

the survey paper of Roberts et al. ([24]), several longitudinal studies are examined, reporting the

comparative effect of IQ, Socioeconomic Status (SES) and personality traits at a later time. The

dependent variables considered are mortality, divorce, educational and occupational attainment.

For each, Conscientiousness has important and significant effects, comparable to those of IQ and

SES. The effects on Mortality are larger than those of other traits. For career success Judge et

al. ([16]) find that Conscientiousness has the largest standardized coefficient among the Big Five

factors. In the study [25], Personality traits and economic preferences compared side by side, and

the correlation with economic and social outcomes are are estimated for each. A higher score in

Conscientiousness is correlated in larger ability to hold a job, to reduce number of accidents in

drivers, and with Credit Score.

Second, Conscientiousness is a very specific human trait, in that it is based on the prominence

of long-term goals in directing purposeful behavior which is typically absent in other species. For
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example in a review of 19 studies on 12 different mammalian and non-mammalian species Gosling

and John ([14]) reported factors similar to Extraversion, Agreeableness and Neuroticism in most

species, with Openness less represented than these are other three. A factor similar to Conscien-

tiousness has been reported only in chimpanzees, in the study by King and Figueredo [19]. They

asked 53 raters to rate 100 chimpanzees at 12 zoological parks. Raters had to choose a score on a 7

points scale for 43 adjectives, which were first briefly described. For example the definition of cau-

tious stated that Subject often seems attentive to possible harm or danger from its actions. Subject

avoids risky behaviors. Factor analysis of the ratings show the existence of six latent factors, five

of them close to the Big Five factors in human personality literature, including Conscientiousness.

The sixth factor was related to Dominance.

Third, Conscientiousness is among the Big Five personality traits the one that is more remote

form the conceptual structure of economic analysis, in spite of its importance for the analysis of

economic behavior. It is harder to model within standard economic and decision theoretic tra-

dition. This is not the case for the other four traits. For example the two traits of Neuroticism

and Extraversion may be mapped into the different attitudes to gains and losses as conceptual-

ized in Prospect Theory ([17]. Similarly, Intelligence can be modeled as a productive skill, and

Openness/Intellect can be modeled in a dynamic model under uncertainty as the ability to process

information. And Agreeableness as the inclination of an individual to consider into his utility the

material payoff of others.

Conscientiousness and its facets Conscientiousness “appears to reflect the tendency to

maintain motivational stability within the individual, to make plans and carry them out in an

organized and industrious manner” ([11]. In their systematization of the NEO Personality Inventory

(NEO-PI) Costa McCrae and Dye ([8]) conceptualize Conscientiousness as “having both proactive

and inhibitive aspects.” Since a good understanding of these two sides is crucial for the rest of

our model, and the conclusions, we will elaborate. Each of the Big Five factors is characterized by

six facets. In the case Conscientiousness, the six facets proposed in [8] are Order, Dutifulness, Self

Discipline, Achievement Striving, Competence, Deliberation. The first three pertain to the aspect

that Costa et alii call the inhibitive side of Conscientiousness, seen “in moral scrupulousness and

cautiousness” . The other three pertain to the proactive side, “seen most clearly in the need for

achievement and commitment to work.”

The two aspects have been proposed several times in further analysis of the Conscientiousness

factor. Hough ([18] and Mount and Barrick ([22] propose achievement and dependability as sub-

domains. Similarly, Roberts et al. [23] and (with slightly different terms) De Young et al. ([10])

suggest industriousness and orderliness. These two sides, that we are going to call here with the

terms of motivation and control, are the focus of our analysis.

Conscientiousness and Moral Hazard We approach the modeling of Conscientiousness from

a very familiar direction in economic analysis: moral hazard. The amount of care taken in avoiding

accidents is a simple and effective index of conscientiousness. So a model where individuals can
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affect the probability of outcomes is a very natural choice. The setup we adopt is a classical decision

theoretic setup, that of Anscombe-Aumann ([1]): Individuals have preferences over acts, which are

maps from states to probability distributions over prizes. As in Drèze ([13]) the probability overs

states is at least partially under control of the individual, who can affect it at some utility cost. More

formally, let S be a finite state space, and Z a finite set of sure outcomes. Denote by X = ∆ (Z)

the set of all probability measures on Z, called random outcomes. The set F = XS of all maps

from S to X, is the set of acts; the lottery at state s induced by a generic act is denoted by f(·, s).
A binary relation % on F representing the agent’s choices, called preference.

The general representation we want to characterize is:

V (f) = max
p∈∆(S)

∑
S,Z

p(s)U(z − φ(s))f(z, s)− c(p)

 (1)

where we interpret φ as the function setting the aspiration level at state s and c is the cost to

control the occurrence of a state. In the representation (1) the utility of the outcome z in state s

is measured with reference to a state dependent benchmark represented by φ(s).

We will be in particular interested in the case in which the benchmark is an aspiration level,

so that a positive utility is reached when and only when the aspiration level is reached, and the

level of utility is otherwise independent of the outcome. For each f ∈ F and each s ∈ S, the image

f (·, s) of s under f is a probability measure on denoted by

f (A |s) ∀A ⊆ Z.

Let for every state s the aspiration level be denoted by As. The evaluation of an act in this case is:

V (f) = max
p∈∆(S)

[∑
s∈S

p(s)f (As |s)− c(p)

]
(2)

Outline In the rest of the paper, we will first define precisely in section 2 the environment we

consider. The form of our general representation 1 clearly suggests that an important intermediate

step in the process is the model of moral hazard with state dependent utilities and moral hazard.

This is the the main technical task of the paper, which we develop in section 3. Proofs are gathered

in section 5.

2 Setup and Basic definitions

The setup we have described earlier is called a genuine Anscombe-Aumann framework. It is often

convenient to consider the generalization of this framework obtained by replacing ∆ (Z) with an

arbitrary convex set X of some arbitrary vector space, we refer to the obtained framework as a (gen-

eralized) Anscombe-Aumann framework. The latter more general framework is used in most formal

statements and proofs, while we will focus our attention on the former in terms of interpretation.
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As usual the symbols � and ∼ denote respectively the asymmetric and symmetric parts of %.

If f, g ∈ F and s ∈ S, then fsg ∈ F is the act yielding f (s) in state s and g (s′) for all s′ 6= s.

Note that clearly gsg = g. If f, g ∈ F and α ∈ [0, 1], fαg is a shorthand for αf + (1− α) g. The

constant act xS ∈ F yielding x ∈ X in every state is simply denoted by x.

For each s ∈ S, %s is the binary relation defined on F by

f %s g ⇐⇒ fsh % gsh ∀h ∈ F (3)

it is called conditional preference;

2.1 Moral hazard

The variational state dependent preferences we are after are characterized by a functional V of the

form

V (f) = max
p∈∆(S)

[∑
S

p(s)U(f(·, s), s)− c(p)

]
(4)

Let us consider the two elements separately. The utility function U : Z×S → R is a real valued

function, extended to X × S by linearity, that is

u (x, s) =
∑
z∈Z

x (z)u (z, s) ∀ (x, s) ∈ X × S (5)

The cost function c : ∆ (S) → [0,∞] is a lower semi continuous, convex, and grounded

(minp∈∆(S) c (p) = 0) function.

This representation can be considered as the extension of the moral hazard model of Drèze [13]

to the case of a general cost function instead of the cost function which is the indicator of a closed

and convex set of probabilities. In fact, for c (p) = δC (p), (4) takes the form:

V (f) = max
p∈C

∑
S

p(s)U(f(·, s), s) (6)

where C is a closed and convex subset of ∆(S).

2.2 Aspiration

For the model of aspiration, we assume in what follows that Z is a subset of a partially ordered

linear space W . An important special case is the one in which Z is a Riesz space and

u (z, s) = v (z − φ (s))

where v : Z → R is an increasing function and φ : S → Z represents the the agent’s (state

dependent) goal. Actually, we aim at the very special case

v = 1W+
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where Z+ is the positive cone of Z. In this case,

u (z, s) = 1Z+ (z − φ (s)) =

{
1 z ≥ φ (s)

0 otherwise
= 1φ(s)+W+ (z) (7)

if f (s) is a degenerate lottery then

u (f (s) , s) =

{
1 f (s) ≥ φ (s)

0 otherwise

else

u (f (s) , s) =
∑
z∈Z

f (z |s)u (z, s) =
∑

z∈Z:z≥φ(s)

f (z |s)

= f ({z ∈ Z : z ≥ φ (s)} |s) = f
(
φ (s) + Z+ |s

)
= Pr {surpassing the goal in state s induced by the choice of f} .

If p ∈ ∆ (S) is the model that generates the occurrence of states,∫
S
u(f(s), s)dp(s) =

∑
s∈S

f
(
φ (s) +W+ |s

)
p (s)

= Pr {surpassing the goal by the choice of f under p} .

A natural extension of (7) that does not require a Riesz space structure, but just a lattice

structure, is

u (z, s) = 1As (z) =

{
1 z ∈ As
0 otherwise

where As is the aspiration level (set) in state S, that is any proper subset of Z, that is any set A

such that

a ∈ A, z ∈ A, and z ≥ a implies z ∈ A.

Since f (s) is, in general a lottery then

u (f (s) , s) =
∑
z∈Z

f (z |s)u (z, s) =
∑
z∈As

f (z |s) = f (As |s)

= Pr {achieving aspirations in state s induced by the choice of f} .

If p ∈ ∆ (S) is the model that generates the occurrence of states,∫
S
u(f(s), s)dp(s) =

∑
s∈S

f (As |s) p (s)

= Pr {achieving aspirations by the choice of f under p} .

Several different representations are possible. For example:
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1. The agent has no control over the probability: this s the expected utility model, where p = p0

is given

V (f) =

∫
S
f (As |s) dp0(s)

= Pr {achieving aspirations by the choice of f}

2. The agent has partial (resp. full) control over the probability: he can chose p, but he is con-

strained to the elements of C ⊂ ∆ (S) (resp. C = ∆ (S))

V (f) = max
p∈C

∫
S
f (As |s) dp(s)

= max
p∈C

Pr {achieving aspirations by the choice of f under p}

3. The agent has costly control over the probability: he can chose p at a cost c (p)

V (f) = max
p∈∆(S)

[∫
S
f (As |s) dp(s)− c(p)

]
. (8)

2.3 Strategy of proof

Let V be defined for all as in (4) for all f ∈ F . For each s ∈ S denote by us the s-section of u and

by Us the s-section of the extension of u defined in (5), that is

Us : X → R
x 7→ u (x, s) =

∑
z∈Z

x (z)u (z, s) =
∑
z∈Z

x (z)us (z)

for all x ∈ X. All functions Us : X → R, for s ∈ S, are affine, and so is their cartesian product

U : XS → RS defined by

U : XS → RS

f = [fs]s∈S 7→ U (f) = [Us (fs)]s∈S

for all f ∈ XS = F , that associates to every f = (fs)s∈S ∈ XS the vector fu = (us (f (s)))s∈S ∈ RS .

It is easy to show that (·)u is affine and takes values in Πs∈Sus (X) = Φ.

Notice that Φ is a convex subset of RS and the map I : Φ→ R defined by

I(ϕ) = max
p∈∆(S)

(〈ϕ, p〉 − c(p))

is a convex niveloid (see the section 7 below), and we can then set the cost function to be:

c (p) = sup
ϕ∈Φ

(〈ϕ, p〉 − I (ϕ)) = I∗ (p) ∀p ∈ ∆ (S) .
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3 Moral Hazard and State Dependent Utility

3.1 Axioms

In the sequel, we make use of the following properties of %.

Axiom A. 1 (Weak Order) The binary relation % is complete and transitive.

Axiom A. 2 (Continuity) For each f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1− α) g % h} and

{α ∈ [0, 1] : h % αf + (1− α) g} are closed.

Axiom A. 3 (Conditional Preference) For each s ∈ S, if f, g, h ∈ F , then

fsg % g =⇒ fsh % gsh.

Axiom A. 4 (Conditional Independence) For each s ∈ S, if f, g, h ∈ F , then

f ∼s g =⇒ 1

2
f +

1

2
h ∼s

1

2
g +

1

2
h.

Axiom A. 5 (Conditional Nontriviality) For each s ∈ S, %s is nontrivial.

Axiom A. 6 (Value of Information) If f, g ∈ F and α ∈ [0, 1], then

f ∼ g =⇒ f % αf + (1− α) g.

Axiom A. 7 (Best-worst Independence) If f, g, b, w ∈ F , α ∈ [0, 1], and

αf + (1− α) (bλw) % αg + (1− α) (bλw)

holds for some λ ∈ [0, 1], then it holds for all λ ∈ [0, 1], provided b %s h %s w for all s ∈ S and all

h ∈ F .

3.2 Representation Theorems

Let K be any non-empty subset of RS . A function I : K → R is:

1. normalized if I (t1S) = t for all t ∈ R such that t1S ∈ X;

2. strictly increasing if I (ϕ) > I (ψ) for all ϕ,ψ ∈ K such that ϕ ≥ ψ and ϕ 6= ψ;

3. a niveloid if I (ϕ)− I (ψ) ≤ maxs∈S (ϕ (s)− ψ (s)) for all ϕ,ψ ∈ K.1

1See Dolecki and Greco [11] and our [20].
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Theorem 1 In a genuine Anscombe-Aumann framework, a binary relation % on F satisfies A.1-

A.5 if and only if there exist U : X×S → [0, 1], affine and onto with respect to the first component,

and a normalized, strictly increasing, and continuous function I : [0, 1]S → [0, 1] such that

V (f) = I (U (f (·) , ·)) ∀f ∈ F

represents %.

Moreover, in this case,

1. f ∼ bV (f)w for all f ∈ F , provided b %s h %s w for all s ∈ S and h ∈ F .

2. % satisfies A.6 if and only if I is quasiconvex.

3. % satisfies A.7 if and only if I is a niveloid.

Both U and I are unique.

Using the general results on Niveloids presented in the section 7 below, we can now conclude

the general representation theorem for variational preferences with state dependent utility. This

theorem is an extension of the characterization given by Drèze of state dependent preferences with

moral hazard, where the moral hazard had the form of the choice out of an element of a convex set

admissible probabilities.

Theorem 2 In a genuine Anscombe-Aumann framework, a binary relation % on F satisfies A.1-

A.7 if and only if there exist U : X×S → [0, 1], affine and onto with respect to the first component,

and a cost function c such that

V (f) = max
p∈∆(S)

[
∑
s

p(s)U (f(·, s), s)− c(p)]

represents %. Moreover, in this case, the U function is unique and there is a unique maximal cost

function c.

4 Aspiration and Control

We now introduce the axiom that gives to the state dependent preferences the

Axiom A. 8 (Aspiration Sets) For each s ∈ S there is a set As ⊆ Z such that, for every pair

z, z
′ ∈ Z:

1. z � z′ if z ∈ As, z
′
/∈ As,

2. z ∼ z′ if z, z
′ ∈ As, or z, z

′
/∈ As

The next theorem summarizes the results we have and provides the final representation including

both aspiration and control:
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Theorem 3 A binary relation % on F satisfies A.1- A.8 and if and only if there exists a cost

function c such that

V (f) = max
p∈∆(S)

[
∑

s∈S,z∈Z
p(s)1As(z)f(z, s)− c(p)] (9)

represents %.

5 Proofs

Denote by f, g, h generic elements of F , by x, y generic elements of X, by α, λ, µ generic elements

of [0, 1], by ϕ,ψ generic elements of [0, 1]S .

The constant element xS ∈ XS yielding x ∈ X in every state is simply denoted by x. Anal-

ogously, 1S and 0S in RS are sometimes denoted by 1 and 0, respectively. While 1s ∈ RS is the

indicator of state s, for each s ∈ S.

Lemma 1 If % satisfies A.1-A.3, then, for each s ∈ S, the binary relation %s satisfies A.1-A.2,

and

f %s g ⇐⇒ fsg % g ⇐⇒ ∃h ∈ F : fsh % gsh

f %s g ⇐⇒ f (s) %s g (s)

f �s g ⇐⇒ fsg � g ⇐⇒ ∃h ∈ F : fsh � gsh⇐⇒ fsh � gsh ∀h ∈ F

f �s g ⇐⇒ f (s) �s g (s) .

Moreover, if f, g ∈ F and f %s g for all s ∈ S then f % g, and f � g if additionally f �s̄ g for

some s̄ ∈ S.

Proof. Arbitrarily choose s ∈ S.

If f %s g, then, by definition (3), fsg % gsg = g, and so fsh % gsh for some h ∈ F . Conversely,

if

fsh̄ % gsh̄ for some h̄ ∈ F (10)

set ḡ = gsh̄; then fsh̄ = fsḡ, and (10) amounts to fsḡ % ḡ, by A.3 this means fsh % ḡsh = gsh for

all h ∈ F . This proves the chain of characterizations of %s.

Notice that

fsh = f (s)s h and gsh = g (s)s h

for all f, g, h ∈ F . Then, if f, g ∈ F ,

f %s g ⇐⇒ fsh % gsh ∀h ∈ F ⇐⇒ f (s)s h % g (s)s h ∀h ∈ F ⇐⇒ f (s) %s g (s) .

For each f, g ∈ F , choose h̄ ∈ F , by completeness of %, either fsh̄ % gsh̄ or gsh̄ % fsh̄, that is,

either f %s g or g %s f , and %s is complete. Transitivity of %s immediately follows by definition

(3) and transitivity of %. That is, %s satisfies A.1.
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As a consequence of completeness of %s,

f �s g ⇐⇒ g 6%s f

⇐⇒ q (gsh % fsh ∀h ∈ F)

⇐⇒ ∃h ∈ F : gsh 6% fsh

⇐⇒ ∃h ∈ F : fsh � gsh

moreover, using the equivalent definitions of %s,

g 6%s f ⇐⇒ q (∃h ∈ F : gsh % fsh)

⇐⇒ gsh 6% fsh ∀h ∈ F

⇐⇒ fsh � gsh ∀h ∈ F .

Summing up,

f �s g ⇐⇒ ∃h ∈ F : fsh � gsh⇐⇒ fsh � gsh ∀h ∈ F

and so fsg � g is also equivalent to f �s g. This proves the chain of characterizations of �s (which,

by definition, is the asymmetric part of %s).

The final equivalence for �s follows from

f �s g ⇐⇒ g 6%s f ⇐⇒ g (s) 6%s f (s)⇐⇒ f (s) �s g (s) .

For each f, g, h ∈ F , choose h̄ ∈ F , the set

{α ∈ [0, 1] : αf + (1− α) g %s h} =
{
α ∈ [0, 1] : (αf + (1− α) g)s h̄ % hsh̄

}
=

{
α ∈ [0, 1] : αfsh̄+ (1− α) gsh̄ % hsh̄

}
is closed and so is {α ∈ [0, 1] : h %s αf + (1− α) g}, that is, %s satisfies A.2.

Finally, assume f, g ∈ F and f %s g for all s ∈ S. Set S = {s1, s2, ..., sn} and recall that

fsih % gsih for all h ∈ F and i = 1, 2, ..., n, that is,

h (s1)
...

h (si−1)

f (si)

h (si+1)
...

h (sn)


%



h (s1)
...

h (si−1)

g (si)

h (si+1)
...

h (sn)


.
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Moreover, if f �sj g for some j = 1, 2, ..., n, then fsjh � gsjh for all h ∈ F . Therefore

f (s1)

f (s2)

f (s3)
...

f (sn−1)

f (sn)


%



g (s1)

f (s2)

f (s3)
...

f (sn−1)

f (sn)


%



g (s1)

g (s2)

f (s3)
...

f (sn−1)

f (sn)


% . . . %



g (s1)

g (s2)

g (s3)
...

g (sn−1)

f (sn)


%



g (s1)

g (s2)

g (s3)
...

g (sn−1)

g (sn)


and transitivity delivers f % g. Moreover, if f �sj g for some j = 1, 2, ..., n, then

g (s1)
...

g (sj−1)

f (sj)

f (sj+1)
...

f (sn)


�



g (s1)
...

g (sj−1)

g (sj)

f (sj+1)
...

f (sn)


and f � g. �

Lemma 2 If % satisfies A.1-A.4, then for each s ∈ S, there exists an affine function Us : X → R
such that

f %s g ⇐⇒ Us (f (s)) ≥ Us (g (s)) .

Moreover,

1. if X = ∆ (Z) for some finite set Z, then % satisfies A.9;

2. if A.9 is satisfied, then Us (X) is a compact interval for all s ∈ S.

Proof. The result follows from Hernstein and Milnor [15] and Lemma 1. �

Lemma 3 If Us : X → R is affine for all s ∈ S, then the function

v : F → RS

defined for each s ∈ S by

vs (f) = Us (f (s))

is affine.

Proof. Trivial. �
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Axiom A. 9 (Conditional Boundedness) For each s ∈ S, %s admits a maximum and a mini-

mum element.

Proposition 1 A binary relation % on F satisfies A.1-A.5 and A.9 if and only if there exist

U : X × S → [0, 1], affine and onto with respect to the first component, and a normalized, strictly

increasing, and continuous function I : [0, 1]S → [0, 1] such that

V (f) = I (U (f (·) , ·)) ∀f ∈ F (11)

represents %.

Moreover, in this case,

1. f ∼ bV (f)w for all f ∈ F , provided b, w ∈ F are such that b %s h %s w for all s ∈ S and

h ∈ F .

2. % satisfies A.6 if and only if I is quasiconvex.

3. % satisfies A.7 if and only if I is a niveloid.

4. Us : X → [0, 1] represents %s on X for all s ∈ S.

Both U and I are unique.

Proof of Proposition 1 and Theorem 1. We first assume % on F satisfies A.1-A.5 and either

X = ∆ (Z) for some finite set Z or A.9 is satisfied.

By Lemma 2, for each s ∈ S, there exists an affine function Us : X → R such that

f %s g ⇐⇒ Us (f (s)) ≥ Us (g (s)) . (12)

For each s ∈ S, Us (X) is a compact interval [rs, ts] ⊆ R and A.5 implies that rs < ts. The

assumption rs = 0 and ts = 1 causes no loss in generality and makes Us the only affine function for

which (12) holds.

In particular, the function v : F → [0, 1]S defined in Lemma 3 is affine and such that

f %s g ⇐⇒ vs (f) ≥ vs (g) . (13)

The proof now proceeds through several steps.

Step 1. v is onto and b, w ∈ F are such that

b %s h %s w ∀s ∈ S, h ∈ F

if and only if v (b) = 1S and v (w) = 0S .

Proof of the Step. Let ϕ ∈ [0, 1]S , for each s ∈ S, there exists xs ∈ X such that Us (xs) = ϕs

because Us : X → [0, 1] is onto. Set

f (s) = xs ∀s ∈ S

13



to obtain vs (f) = Us (f (s)) = ϕs for all s ∈ S, that is v (f) = ϕ. Therefore v is onto.

In particular, there exist b, w ∈ F such that

v (b) = 1S and v (w) = 0S . (14)

If b, w ∈ F satisfy (14), for each s ∈ S and each h ∈ F ,

vs (b) = 1 ≥ vs (h) ≥ 0 = vs (w)

therefore, by (13)

b %s h %s w. (15)

Conversely, if b̄, w̄ ∈ F satisfy b̄ %s h %s w̄ for all s ∈ S and h ∈ F , choose b, w ∈ F that satisfy

(14). It follows that b̄ %s b, w %s w̄ and, by (15), b %s b̄, w̄ %s w, so that b̄ ∼s b and w̄ ∼s w for all

s ∈ S. By (13)

vs
(
b̄
)

= vs (b) = 1 and vs (w̄) = vs (w) = 0 ∀s ∈ S

that is, v
(
b̄
)

= 1S and v (w̄) = 0S . �

In the next five steps denote by b and w any two elements of F such that b %s h %s w for all

s ∈ S and h ∈ F .2 Affinity of v delivers

v (bλw) = λv (b) + (1− λ) v (w) = λ1S ∀λ ∈ [0, 1] . (16)

Step 2. For each f ∈ F there exists a unique V (f) ∈ [0, 1] such that f ∼ bV (f)w and it does not

depend on the choice of b and w.3

Proof of the Step. Lemma 1 implies that b % f % w for each f ∈ F . A.1 and A.2 imply the

existence of λ such that f ∼ bλw. If f ∼ bµw for some µ > λ, by (16) and (13),

bµw �s bλw ∀s ∈ S,

a contradiction, since Lemma 1 would then imply bµw � bλw. �

Step 3. V : F → [0, 1] represents % and is mixture continuous.

Proof of the Step. By (16) and (13), bλw % aµw if and only if λ ≥ µ.4 This implies that

f % g ⇐⇒ bV (f)w % bV (g)w ⇐⇒ V (f) ≥ V (g) ,

2Such elements exist since v is onto.
3In particular, V (bλw) = λ for all λ ∈ [0, 1].
4If λ ≥ µ, then vs (bλw) = λ ≥ µ = vs (bµw) for all s ∈ S, whence bλw %s bµw for all s ∈ S, and Lemma 1

delivers bλw % bµw. The converse is shown at the end of the previous step, that is, λ 6≥ µ implies bλw 6% bµw.

14



that is, V represents %. As for mixture continuity, it is sufficient to observe that for each τ ∈ R
and f, g ∈ F , the set

{α ∈ [0, 1] : V (αf + (1− α) g) ≤ τ} =


[0, 1] τ > 1

{α ∈ [0, 1] : bτw % αf + (1− α) g} 0 ≤ τ ≤ 1

∅ τ < 0

is closed, and so is {α ∈ [0, 1] : V (αf + (1− α) g) ≥ τ}. �

Step 4. If v (f) ≥ v (g) (resp. v (f) > v (g)), then f % g (resp. f � g).

Proof of the Step. Finally, v (f) ≥ v (g), by definition means

vs (f) ≥ vs (g) ∀s ∈ S

by (13),

f %s g ∀s ∈ S

which implies f % g by Lemma 1. �

Step 5. The correspondence I from [0, 1]S to [0, 1], defined for each ϕ ∈ [0, 1]S by

I : ϕ 7→ V (f) if f ∈ F and v (f) = ϕ

is a normalized and strictly increasing function I : [0, 1]S → [0, 1] such that

I (v (f)) = V (f) ∀f ∈ F .

Proof of the Step. Since v is onto, for each ϕ ∈ [0, 1]S , there exists f ∈ F such that v (f) = ϕ (the

correspondence has nonempty values in [0, 1]). Moreover, if f, g ∈ F are such that v (f) = ϕ = v (g),

then f ∼ g by Step 4, and V (f) = V (g). Therefore, the correspondence I is a function since it

has singleton values in [0, 1].

In general, for each ϕ ∈ [0, 1]S , set

bϕw (s) = ϕ (s) b (s) + (1− ϕ (s))w (s)

then

vs (bϕw) = Us (ϕ (s) b (s) + (1− ϕ (s))w (s)) = ϕ (s)Us (b (s)) + (1− ϕ (s))Us (w (s))

= ϕ (s) vs (b) + (1− ϕ (s)) vs (w (s)) = ϕ (s)

that is

ϕ = v (bϕw)

and hence

I (ϕ) = V (bϕw) .

15



In particular, for all λ ∈ [0, 1], I (λ1S) = V (bλw) = λ and I is normalized. Finally, ϕ > ψ

imply v (f) > v (g) if f, g ∈ F are such that v (f) = ϕ and v (g) = ψ, by Step 4, f � g; therefore

V (f) > V (g) and I (ϕ) > I (ψ). �

Step 6. I is continuous.

Proof of the Step. Consider ϕ,ψ ∈ [0, 1]S and τ ∈ R. Let f, g ∈ F be such that v (f) = ϕ and

v (g) = ψ. Then,

{α ∈ [0, 1] : I (αϕ+ (1− α)ψ) ≤ τ} = {α ∈ [0, 1] : I (αv (f) + (1− α) v (g)) ≤ τ}

= {α ∈ [0, 1] : I (v (αf + (1− α) g)) ≤ τ}

= {α ∈ [0, 1] : V (αf + (1− α) g) ≤ τ} .

is closed since V is mixture continuous, and so is {α ∈ [0, 1] : I (αϕ+ (1− α)ψ) ≥ τ}. Since I is

increasing, by Proposition 43 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [6], it

follows that I is continuous. �

Steps 1-6 show that the axioms are sufficient for the representation, with U (x, s) = Us (x) for

all (x, s) ∈ X × S, and the representation satisfies Point 1 of the statement.

Conversely, assume that % is represented as in (11). For each s ∈ S, set Us (x) = U (x, s) for all

x ∈ X×S. Since Us is affine for all s ∈ S, so is v defined as in Lemma 3, moreover, V (f) = I (v (f))

for all f ∈ F .

Step 7. % satisfies A.1 and A.2.

Proof of the Step. A.1 follows from existence of the representation V . Moreover, if f, g, h ∈ F then

{α ∈ [0, 1] : αf + (1− α) g % h} = {α ∈ [0, 1] : I (v (αf + (1− α) g)) ≥ I (v (h))}

= {α ∈ [0, 1] : I (αv (f) + (1− α) v (g)) ≥ I (v (h))} .

Since I is continuous, it follows that {α ∈ [0, 1] : αf + (1− α) g % h} is closed (see, e.g., [6, Propo-

sition 43, page 1306]), and so is {α ∈ [0, 1] : h % αf + (1− α) g}, that is, % satisfies A.2. �

Step 8. v is onto and such that

f %s g ⇐⇒ vs (f) ≥ vs (g) . (17)

In particular, b, w ∈ F are such that

b %s h %s w ∀s ∈ S, h ∈ F (18)

if and only if v (b) = 1S and v (w) = 0S .

Proof of the Step. See Step 1 for the proof of the fact that v is onto. In particular, there exist

b, w ∈ F such that

v (b) = 1S and v (w) = 0S . (19)
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Let s ∈ S. If f %s g, then fsw % gsw then, by (11), I (vs (f) 1s) = I (v (fsw)) ≥ I (v (gsw)) =

I (vs (g) 1s). Since I is strictly increasing vs (f) < vs (g) would imply I (vs (f) 1s) < I (vs (g) 1s),

therefore vs (f) ≥ vs (g). Conversely, vs (f) ≥ vs (g) implies v (fsh) = vs (f) 1s + v (h)− vs (h) 1s ≥
vs (g) 1s + v (h) − vs (h) 1s = v (gsh) and monotonicity of I implies I (v (fsh)) ≥ I (v (gsh)) for all

h ∈ F , and f %s g. This proves (17).

If b, w ∈ F satisfy (19), for each s ∈ S and each h ∈ F ,

vs (b) = 1 ≥ vs (h) ≥ 0 = vs (w)

therefore, by (17)

b %s h %s w. (20)

Conversely, if b̄, w̄ ∈ F satisfy b̄ %s h %s w̄ for all s ∈ S and h ∈ F , choose b, w ∈ F that satisfy

(19). It follows that b̄ %s b, w %s w̄ and, by (15), b %s b̄, w̄ %s w, so that b̄ ∼s b and w̄ ∼s w for all

s ∈ S. By (17)

vs
(
b̄
)

= vs (b) = 1 and vs (w̄) = vs (w) = 0 ∀s ∈ S

that is, v
(
b̄
)

= 1S and v (w̄) = 0S . �

Denote by b and w any two elements of F v (b) = 1S and v (w) = 0S . Such elements exist since

v is onto and (18) guarantees that % satisfies A.9. On the other hand (17) delivers b �s w for all

s ∈ S, and % satisfies A.5 Affinity of v delivers

v (bλw) = λv (b) + (1− λ) v (w) = λ1S ∀λ ∈ [0, 1] . (21)

Also notice that, for each s ∈ S,

x %s y ⇐⇒ vs (x) ≥ vs (y)⇐⇒ Us (x) ≥ Us (y) .

Therefore Us : X → [0, 1] represents %s on X, which together with maxx∈X Us (x) = 1 = 1 +

minx∈X Us (x) makes Us unique.

Step 9. % satisfies A.4.

Proof of the Step. Since v is affine and so is the projection on the s-th component,

f ∼s g ⇒ vs (f) = vs (g)⇒ 1

2
vs (f) +

1

2
vs (h) =

1

2
vs (g) +

1

2
vs (h)

⇒ vs

(
1

2
f +

1

2
h

)
= vs

(
1

2
g +

1

2
h

)
⇒ 1

2
f +

1

2
h ∼s

1

2
g +

1

2
h.

The arbitrary chioce of s ∈ S and f, g, h ∈ F allows to deduce that % satisfies A.4. �

Step 10. % satisfies A.3.

Proof of the Step. Consider s ∈ S and f, g, h ∈ F , and assume fsg % g. Then v (fsg) = vs (f) 1s +

v (g)− vs (g) 1s = v (g) + (vs (f)− vs (g)) 1s. By strict monotonicity vs (f)− vs (g) ≥ 0 (otherwise

I (v (fsg)) < I (v (g)) contradicting fsg % g). Therefore, v (fsh) = vs (f) 1s + v (h) − vs (h) 1s ≥
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vs (g) 1s + v (h) − vs (h) 1s = v (gsh) and monotonicity of I implies I (v (fsh)) ≥ I (v (gsh)) for all

h ∈ F , that is fsh % gsh. �

Steps 8-10 show that the axioms are necessary for the representation. Normalization of I and

(21) deliver

V (bV (f)w) = I (v (bV (f)w)) = I (V (f) 1S) = V (f) .

Therefore, the representation satisfies Point 1 of the statement.

Let W : X×S → [0, 1] be another function – affine and onto with respect to the first component

– and J : [0, 1]S → [0, 1] be another function – normalized, strictly increasing, and continuous –

such that the value function defined by

V ′ (f) = J (W (f (·) , ·)) ∀f ∈ F

represents %.

The arguments used in the proof of necessity of the axioms for the representation show that

Ws : X → [0, 1] represents %s on X for each s ∈ S, which together with maxx∈XWs (x) = 1 =

1 + minx∈XWs (x) makes Ws unique. Thus W = U .

Moreover, for each ϕ ∈ [0, 1]S , let f ∈ F be such that ϕ = v (f) = U (f (·) , ·) = W (f (·) , ·). By

Point 1 of the statement, and taking b, w ∈ F such that b %s h %s w for all s ∈ S,

f ∼ bV ′ (f)w

then, by normalization of I and (21),

I (ϕ) = I (v (f)) = I
(
v
(
bV ′ (f)w

))
= V ′ (f) = J (W (f (·) , ·)) = J (ϕ) .

That is J = I.

Uniqueness is established.

Finally, assume representation (11) holds and let v be defined as in Lemma 3.

Proof of Point 2. Assume % satisfies A.6. Consider ϕ,ψ ∈ [0, 1]|S| such that I (ϕ) = I (ψ) and

α ∈ [0, 1]. Let f, g ∈ F be such that ϕ = v (f) and ψ = v (g) (which exist by Step 8). Then

I (v (f)) = I (v (g)), f ∼ g, and f % αf + (1− α) g by A.6. Therefore,

I (ϕ) = V (f) ≥ V (αf + (1− α) g) = I (v (αf + (1− α) g)) = I (αϕ+ (1− α)ψ) .

Since ϕ,ψ and α were arbitrarily chosen,

I (ϕ) ≥ I (αϕ+ (1− α)ψ) ∀α ∈ [0, 1] and ∀ϕ,ψ ∈ [0, 1]|S| : I (ϕ) = I (ψ) .

Since I is continuous, it follows that I is quasiconvex.
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Conversely, assume I is quasiconvex. Consider f, g ∈ F such that f ∼ g and α ∈ [0, 1]. Then

I (v (f)) = I (v (g)) and

V (αf + (1− α) g) = I (v (αf + (1− α) g)) = I (αv (f) + (1− α) v (g)) ≤ I (v (f)) = V (f)

where the inequality is a consequence of quasiconvexity and implies f % αf + (1− α) g. Since f, g

and α were arbitrarily chosen, it follows that % satisfies A.6 �

Proof of Point 3. Assume % satisfies A.7. Since I is monotonic and normalized, the characterization

results of [20], guarantee that, in order to show that I is a niveloid, it sufficies to prove that

I(αϕ+ (1− α)µ) = I(αϕ+ (1− α)
1

2
) + (1− α)

(
µ− 1

2

)
(22)

for each ϕ ∈ [0, 1]|S| and α, µ ∈ [0, 1]. Consider f ∈ F such that v (f) = ϕ and recall v (bµw) = µ,

by (21).

Notice that

α1S + (1− α)
1

2
≥ αϕ+ (1− α)

1

2
≥ α0S + (1− α)

1

2

then, by continuity of t 7→ I
(
αt1S + (1− α) 1

2

)
from [0, 1] → R and monotonicity of I, there is

λ ∈ [0, 1] such that

I

(
αλ1S + (1− α)

1

2

)
= I

(
αϕ+ (1− α)

1

2

)
. (23)

Normalization of I delivers

I

(
αϕ+ (1− α)

1

2

)
= αλ+ (1− α)

1

2
. (24)

By (23) and since v
(
αf + (1− α) b1

2w
)

= αϕ+ (1− α) 1
2 , it follows that

αf + (1− α) b
1

2
w ∼ b

(
αλ+ (1− α)

1

2

)
w = αbλw + (1− α) b

1

2
w

By A.7, this implies that

αf + (1− α) bµw ∼ α (bλw) + (1− α) bµw = b (αλ+ (1− α)µ)w

for all µ ∈ [0, 1], that is

I (αϕ+ (1− α)µ) = αλ+ (1− α)µ. (25)

Subtracting (24) from (25) delivers (22).

Conversely, assume I is a niveloid. If f, g ∈ F , α ∈ [0, 1], and

αf + (1− α) (bλw) % αg + (1− α) (bλw)

holds for some λ ∈ [0, 1]. Then,

I (αv (f) + (1− α)λ) ≥ I (αv (g) + (1− α)λ)

19



since I is a niveloid this amounts to I (αv (f)) + (1− α)λ ≥ I (αv (g)) + (1− α)λ that is

I (αv (f)) ≥ I (αv (g))

which in turn delivers I (αv (f)) + (1− α)µ ≥ I (αv (g)) + (1− α)µ for all µ ∈ [0, 1], and the

properties of niveloids deliver

I (αv (f) + (1− α)µ) ≥ I (αv (g) + (1− α)µ)

or

αf + (1− α) (bµw) % αg + (1− α) (bµw)

for all µ ∈ [0, 1]. That is % satisfies A.7. �

6 Conclusions

We have provided an axiomatic foundation of the Big Five factor Conscientiousness. The theory

provides condition under which two characteristics, the aspiration level and the cost of control,

can be uniquely identified from the choice behavior of the individual. These two characteristic

are reasonably accurate correspondent of the two aspects of Conscientiousness that have been

repeatedly identified in the literature, and labeled in the NEO-PI inventory proactive and inhibitive

side of the factor ([8]).

We consider as main contribution of the paper the successful extension of the axiomatic method

to Personality Theory. The model we have given here of the two aspects of conscientiousness is

very stylized, but it has the advantage of giving a clean correspondence between two parameters

that are in principle identifiable from behavior with general description of individual attitude that

have been so far based on factor analysis of survey questions.

This step is important in two respects. First, the analysis of the consequences of individual per-

sonality traits on behavior and performance is fast developing, and just as a sound axiomatization

of concepts such as risk aversion was needed to put the analysis of choice under uncertainty on a

sound quantitative basis, so we hope models like ours will provide a similar basis for the empiri-

cal and experimental analysis of individual behavior. Second, genetic and neuroeconomic analysis

of individuals differences is also progressing, and needs a precise definition of the phenotype (in

genetic analysis) and of the characteristics of the decision process that may be summarized by a

simple and operational measurement. Our model may provide the conceptual structure for such

measurement.
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7 Niveloids

Let (S,Σ) be a measurable space. Denote by B0 (Σ) the set of all real-valued Σ-measurable simple

functions and by B (Σ) its supnorm closure (in the space of all real-valued bounded functions on

S). B0(Σ,K) (resp. B (Σ,K)) is the set of all functions in B0 (Σ) (resp. B (Σ)) taking values in

the interval K ⊆ R.
When endowed with the supnorm, B0 (Σ) is a normed vector space and B (Σ) is a Banach space.

The norm dual of B0 (Σ) (resp. B (Σ)) is the space ba (Σ) of all bounded and finitely additive set

functions µ : Σ→ R endowed with the total variation norm, the duality being

〈ϕ, µ〉 =

∫
ϕdµ

for all ϕ ∈ B0 (Σ) (resp. B (Σ)) and all µ ∈ ba (Σ) (see, e.g., [?, p. 258]). As it is well known,

on ∆ (Σ) the σ (ba (Σ) , B0 (Σ))-topology coincides with the σ (ba (Σ) , B (Σ))-topology, and they go

under the name of weak* topology ; moreover a subset of ∆σ (Σ) is weakly* compact iff it is weakly

compact (i.e. compact in the weak topology of the Banach space ba (Σ)).

For ϕ,ψ ∈ B (Σ) we write ϕ ≥ ψ (resp. ϕ > ψ) if ϕ (s) ≥ ψ (s) (resp. ϕ (s) > ψ (s)) for all

s ∈ S.

Let Φ be any nonempty collection of elements of B (Σ), and Φc the constant functions in Φ.5

We call Φ a tube if Φ = Φ + R.6

Given a functional I : Φ→ R, we say that I is:

(i) normalized if I (k) = k for all k ∈ Φc;

(ii) monotonic if ϕ ≥ ψ implies I(ϕ) ≥ I(ψ) for all ϕ,ψ ∈ Φ;

(iii) vertically invariant if I(ϕ+ c) = I(ϕ) + c for all ϕ ∈ Φ and c ∈ R such that ϕ+ c ∈ Φ;

(iv) a niveloid if I (ϕ)− I (ψ) ≤ sup (ϕ− ψ) for all ϕ,ψ ∈ Φ.7

Remark 1 Notice that I is a niveloid iff I (ψ) − I (ϕ) ≥ − sup (ϕ− ψ) = inf (ψ − ϕ) for all

ϕ,ψ ∈ Φ iff inf (ψ − ϕ) ≤ I (ψ) − I (ϕ) ≤ sup (ψ − ϕ) for all ψ,ϕ ∈ Φ. Clearly a niveloid is

Lipschitz continuous of rank 1 in the supnorm (sup (ϕ− ψ) ≤ ‖ϕ− ψ‖).

Remark 2 For all I : Φ → R, define Ī : −Φ → R by Ī (ϕ) = −I (−ϕ). It is easy to check that:(
Ī
)

= I; I is normalized iff Ī is normalized; I is monotonic iff Ī is monotonic; I is vertically

invariant iff Ī is vertically invariant; I is a niveloid iff Ī is a niveloid.

5As usual, we write k both for the real number k and for the constant function k1S ∈ B0 (Σ).
6Clearly, if Φ is not a tube, then Φ + R is the smallest tube containing Φ.
7Dolecki and Greco [?] call niveloid a monotonic and vertically invariant functional T : [−∞,∞]S → [−∞,∞].

Their Corollary 1.3 and our Lemma 7 explain why we chose to abuse this term.
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7.1 Vertically invariant functionals

Next Lemma provides a useful condition for vertical invariance.

Lemma 4 Let Φ be a convex subset of B0 (Σ) (or B (Σ)) with 0 ∈ Φ and I : Φ→ R be a functional

that satisfies

I(αϕ+ (1− α) k) = I(αϕ) + (1− α) k (26)

for all ϕ ∈ Φ, k ∈ Φc, and α ∈ (0, 1). Then I is vertically invariant provided one of the following

conditions holds:

• Φ is open,

• I is continuous and 0 ∈ int (Φ),

• Φ = B0 (Σ,K) for some interval K ⊆ R such that 0 ∈ int (K).

Proof. If c = 0 then I(ϕ + c) = I(ϕ) + c for all ϕ ∈ Φ. It is sufficient to prove that I (ϕ+ c) =

I (ϕ) + c for all ϕ ∈ Φ and c > 0 such that ϕ+ c ∈ Φ.8

Let ϕ,ϕ+ c ∈ Φ and c > 0.

Step 1. If ϕ,ϕ+ c ∈ int (Φ), then I(ϕ+ c) = I(ϕ) + c.

There exists α ∈ (0, 1) such that ϕ/α, (ϕ+ c) /α ∈ int (Φ). Hence (ϕ+ t) /α ∈ int (Φ) for each

t ∈ [0, c]. In fact, there exists γ ∈ [0, 1] such that t = γc and

ϕ+ t

α
=
ϕ+ γc

α
= γ

ϕ+ c

α
+ (1− γ)

ϕ

α
∈ int (Φ) .

8If c < 0, set ψ = ϕ + c, and d = −c. This yields ψ,ψ + d ∈ Φ and d > 0, then I (ψ + d) = I (ψ) + d, that is

I (ϕ) = I (ϕ+ c)− c.
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Choose n ≥ 2 such that c/n
1−α ∈ Φc.

9 Then

I (ϕ+ c) = I
(
ϕ+

c

n
+ ...+

c

n

)
= I

(
ϕ+

c (n− 1)

n
+
c

n

)

= I

α

(
ϕ+ c(n−1)

n

)
α

+ (1− α)
c/n

1− α


= I

α

(
ϕ+ c(n−1)

n

)
α

+ (1− α)
c/n

1− α

= I

(
ϕ+

c (n− 1)

n

)
+
c

n

= · · ·

= I
(
ϕ+

c

n

)
+
c (n− 1)

n

= I (ϕ) +
c

n
+
c (n− 1)

n

= I (ϕ) + c,

as wanted. �

Step 1 proves the lemma if Φ is open. If I is continuous and 0 ∈ int (Φ), since ϕ,ϕ + c ∈ Φ, then(
1− 1

n

)
ϕ and

(
1− 1

n

)
(ϕ+ c) ∈ int (Φ) for all n ≥ 1. But, by Step 1, I is vertically invariant on

int (Φ) and hence

I (ϕ+ c) = lim
n→∞

I

((
1− 1

n

)
(ϕ+ c)

)
= lim

n→∞
I

((
1− 1

n

)
ϕ+

(
1− 1

n

)
c

)
= lim

n→∞
I

((
1− 1

n

)
ϕ

)
+

(
1− 1

n

)
c = I (ϕ) + c.

It remains to prove the last case when K = [a, b) or (a, b] or [a, b] with −∞ ≤ a < 0 < b ≤ ∞.10

Step 2. Assume K contains b (and hence b <∞) and a < ϕ < ϕ+ c ≤ b, then I(ϕ+ c) = I(ϕ) + c.

Choose n ≥ 2 such that b− c
n > 0 and ϕ/

(
b− c

n
b

)
> a. Set α =

b− c
n
b ∈ (0, 1). Notice that for all

t ∈
[
c
n ,

c(n−1)
n

]
ϕ < ϕ+

c

n
≤ ϕ+ t ≤ ϕ+

c (n− 1)

n
= ϕ+ c− c

n
≤ b− c

n
< b.

Divide all the terms by α to obtain

a < ϕ/α <
(
ϕ+

c

n

)
/α ≤ (ϕ+ t) /α ≤

(
ϕ+

c (n− 1)

n

)
/α ≤ b

9This is possible since in any case 0 ∈ int (Φ).
10If K = (a, b), then B0 (Σ,K) is open in B0 (Σ).
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and hence (ϕ+ t) /α ∈ B0 (Σ,K) for each t ∈
[
c
n ,

c(n−1)
n

]
. Moreover c/n

1−α = b ∈ K, and

I (ϕ+ c) = I

(
ϕ+

c (n− 1)

n
+
c

n

)

= I

α

(
ϕ+ c(n−1)

n

)
α

+ (1− α)
c/n

1− α


= I

α

(
ϕ+ c(n−1)

n

)
α

+ (1− α)
c/n

1− α

= I

(
ϕ+

c (n− 1)

n

)
+
c

n
.

But a < ϕ < ϕ+ c(n−1)
n < b implies ϕ,ϕ+ c(n−1)

n ∈ int (Φ), and Step 1 guarantees I
(
ϕ+ c(n−1)

n

)
=

I (ϕ) + c(n−1)
n whence I (ϕ+ c) = I (ϕ) + c. �

Step 2 concludes the proof if K = (a, b].

Step 3. Assume K contains a (and hence a > −∞) and a ≤ ϕ < ϕ+c < b, then I(ϕ+c) = I(ϕ)+c.

Consider −K and notice that −b < −ϕ− c < −ϕ ≤ −a, then ψ = −ϕ− c ∈ B0 (Σ,−K), c > 0

and ψ + c = −ϕ ∈ B0 (Σ,−K). Moreover, it is immediate to show that Ī satisfies (26), by Step 2

I (ϕ+ c) = −Ī (−ϕ− c) = −Ī (ψ)

= −
(
Ī (ψ + c)− c

)
= −Ī (−ϕ) + c

= I (ϕ) + c,

as wanted. �

Step 3 concludes the proof if K = [a, b).

If K = [a, b], then −∞ < a < b < ∞. If ϕ,ϕ + c ∈ B0 (Σ,K), then a ≤ ϕ < ϕ + c
2 < b and

a < ϕ+ c
2 < ϕ+ c ≤ b, thus applying Step 2 and Step 3 we obtain

I (ϕ+ c) = I
(
ϕ+

c

2

)
+
c

2
= I (ϕ) + c.

�

Lemma 5 Let Φ be a convex subset of B0 (Σ) (or B (Σ)) and I : Φ → R a vertically invariant

functional that satisfies

I (αψ + (1− α)ϕ) ≥ I (ϕ) (27)

for all ϕ,ψ ∈ Φ such that I (ψ) = I (ϕ) and α ∈ (0, 1). Then Φ is concave provided one of the

following conditions holds:

• I is continuous and int (Φ) is not empty,
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• Φ is a tube.

Proof. Assume I is continuous and int (Φ) is not empty. Let ϕ0 ∈ int (Φ), there exist ε > 0 such

that

N (ϕ0, ε) = {ψ ∈ B0 (Σ) : ‖ϕ0 − ψ‖ ≤ ε}

= {ψ ∈ B0 (Σ) : ϕ0 − ε ≤ ψ ≤ ϕ0 + ε}

is contained in int (Φ). Moreover - by continuity - there exists ρ ∈
(
0, 1

3

)
such that ‖ϕ− ϕ0‖ ≤ ρε

implies |I (ϕ)− I (ϕ0)| ≤ ε
3 . Then if ϕ,ψ ∈ N (ϕ0, ρε), we have

|I (ϕ)− I (ψ)| ≤ |I (ϕ)− I (ϕ0)|+ |I (ϕ0)− I (ψ)| ≤ 2

3
ε

and −2
3ε ≤ I (ϕ) − I (ψ) ≤ 2

3ε. Setting t = I (ϕ) − I (ψ), we get −2
3ε ≤ t ≤ 2

3ε. Notice that

−1
3ε ≤ −ρε ≤ ψ − ϕ0 ≤ ρε ≤ 1

3ε and ϕ0 − 1
3ε ≤ ψ ≤ ϕ0 + 1

3ε. Summing up,

ϕ0 − ε ≤ ψ + t ≤ ϕ0 + ε

and ψ + t ∈ int (Φ). Since ψ ∈ int (Φ) too, then I (ψ + t) = I (ψ) + t = I (ϕ), so that

I (α (ψ + t) + (1− α)ϕ) ≥ I (ϕ) . (28)

Hence,

I (ϕ) ≤ I (α (ψ + t) + (1− α)ϕ) = I (αψ + (1− α)ϕ+ αt)

= I (αψ + (1− α)ϕ) + αt

= I (αψ + (1− α)ϕ) + α (I (ϕ)− I (ψ))

and

I (αψ + (1− α)ϕ) ≥ αI (ψ) + (1− α) I (ϕ) . (29)

We conclude that I is concave in N (ϕ0, ρε). As the choice of N (ϕ0, ε) was arbitrary, we conclude

that I is locally concave on int (Φ). A standard result from convex analysis yields concavity on

int (Φ). Finally, the continuity of I implies its concavity on the whole Φ. This proves the first

case. To prove the second, for all ϕ,ψ ∈ Φ and α ∈ (0, 1), set t = I (ϕ)− I (ψ). Since Φ is a tube,

ψ + t ∈ Φ, and I (ψ + t) = I (ψ) + t = I (ϕ). Repeat the argument leading from (28) to (29). �

Lemma 6 Let Φ be a nonempty subset of B (Σ) and I : Φ→ R be a vertically invariant functional.

Then there exists a unique vertically invariant functional Ĩ : Φ + R → R extending I to the tube

Φ + R generated by Φ. Moreover, if Φ is convex and I is concave, then (Φ + R is convex and) Ĩ is

concave.
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Proof. If there exists a vertically invariant functional Ĩ : Φ + R→ R extending I on Φ + R, then

for all ϕ+ d ∈ Φ + R with ϕ ∈ Φ and d ∈ R, it satisfies

Ĩ (ϕ+ d) = Ĩ (ϕ) + d = I (ϕ) + d. (30)

In particular it is unique. Next we show that Eq. (30) defines a vertically invariant functional (that

obviously extends I). If ϕ,ψ ∈ Φ, d, c ∈ R, and ϕ+ d = ψ + c, then ϕ = ψ + c− d. In particular,

ψ ∈ Φ and c− d ∈ R are such that ψ + (c− d) ∈ Φ, and

I (ϕ) + d = I (ψ + c− d) + d

= I (ψ) + c− d+ d = I (ψ) + c.

This proves that Ĩ is well defined. If ϕ+ d ∈ Φ + R (with ϕ ∈ Φ and d ∈ R) and c ∈ R, then

Ĩ ((ϕ+ d) + c) = Ĩ (ϕ+ d+ c) = I (ϕ) + d+ c = Ĩ (ϕ+ d) + c,

that is, Ĩ is vertically invariant.

Assume I is concave. Let ϕ + d, ψ + t ∈ Φ + R with ϕ,ψ ∈ Φ and d, t ∈ R and α ∈ (0, 1). If

Ĩ (ϕ+ d) = Ĩ (ψ + t) = c, then I (ϕ) = c − d and I (ψ) = c − t. Therefore I (αϕ+ (1− α)ψ) ≥
αI (ϕ) + (1− α) I (ψ) = α (c− d) + (1− α) (c− t), that is

Ĩ (α (ϕ+ d) + (1− α) (ψ + t)) = Ĩ ((αϕ+ (1− α)ψ) + αd+ (1− α) t)

= I (αϕ+ (1− α)ψ) + αd+ (1− α) t ≥ c.

By Lemma 5, since Φ + R is a tube, this means that Ĩ is concave. �

7.2 Extensions of niveloids

In this section we obtain some novel results on the extension of niveloids (the first results on this

subject appear in [?]).

Lemma 7 Let Φ be a nonempty subset of B (Σ) and I : Φ → R. The following statements are

equivalent:

(i) I is vertically invariant and its unique vertically invariant extension Ĩ to Φ+R is monotonic.

(ii) I is a niveloid.

In particular, if Φ is a tube, then I : Φ → R is a niveloid iff it is vertically invariant and

monotonic (see [?, Cor 1.3]).

Proof. Let I be vertically invariant and Ĩ be monotonic. For all ϕ,ψ ∈ Φ, ϕ ≤ ψ + sup (ϕ− ψ),

but ϕ,ψ + sup (ϕ− ψ) ∈ Φ + R, then Ĩ (ϕ) ≤ Ĩ (ψ + sup (ϕ− ψ)) that is

I (ϕ) ≤ I (ψ) + sup (ϕ− ψ) .
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Conversely, if I is a niveloid, for all ϕ ∈ Φ and c ∈ R such that ϕ+ c ∈ Φ

c = inf ((ϕ+ c)− ϕ) ≤ I (ϕ+ c)− I (ϕ) ≤ sup ((ϕ+ c)− ϕ) = c

that is I (ϕ+ c) = I (ϕ) + c, and I is vertically invariant. Moreover, if ϕ,ψ ∈ Φ and d, t ∈ R are

such that ψ + t ≥ ϕ+ d, then I (ψ)− I (ϕ) ≥ inf (ψ − ϕ) implies

Ĩ (ψ + t)− Ĩ (ϕ+ d) = I (ψ)− I (ϕ) + t− d

≥ inf (ψ − ϕ) + t− d

= inf ((ψ + t)− (ϕ+ d))

≥ 0,

that is Ĩ is monotonic. �

Lemma 8 A vertically invariant and monotonic functional I : B0 (Σ,K)→ R is a niveloid.

Proof. In view of Lemma 7, we just have to show that Ĩ is monotonic. Let ϕ,ψ ∈ B0 (Σ,K)

and d, t, c ∈ R be such that ψ + t ≥ ϕ + d. We want to show that I (ψ) + t ≥ I (ϕ) + d, i.e., that

ψ + c ≥ ϕ implies I (ψ) + c ≥ I (ϕ).

Assume supK = b <∞ is not attained. If c < b− supψ, then ϕ ≤ ψ + c ≤ supψ + c < b, then

ψ + c ∈ B0 (Σ,K) and I (ϕ) ≤ I (ψ + c) = I (ψ) + c. Else c ≥ b− supψ ≥ 0 and there exists ε > 0

such that ϕ < b− ε < b. A fortiori c > (b− ε)− supψ. There are two subcases:

• c > (b− ε)− inf ψ, then I (ψ) + c ≥ I (inf ψ) + c = Ĩ (0) + inf ψ+ c > Ĩ (0) + inf ψ+ (b− ε)−
inf ψ ≥ Ĩ (0) + b− ε = I (b− ε) ≥ I (ϕ) .

• c ≤ (b− ε) − inf ψ (that is inf ψ ≤ (b− ε) − c < supψ), then ψ + c ≥ ϕ implies (ψ + c) ∧
(b− ε) ≥ ϕ, but (ψ + c)∧ (b− ε) ∈ B0 (Σ,K) and (ψ + c)∧ (b− ε) = min {ψ + c, b− ε}− c+

c = min {ψ, b− ε− c}+c = (ψ ∧ (b− ε− c))+c. Notice that also ψ∧ (b− ε− c) ∈ B0 (Σ,K)

since (b− ε− c) ∈ [inf ψ, supψ) ⊆ K. Therefore

I (ψ) + c ≥ I (ψ ∧ (b− ε− c)) + c

= I ((ψ ∧ (b− ε− c)) + c)

= I ((ψ + c) ∧ (b− ε))

≥ I (ϕ) ,

as desired.

Assume that supK = b <∞ is attained. If c ≤ b− supψ, then ϕ ≤ ψ+ c ≤ supψ+ c ≤ b, then

ψ+ c ∈ B0 (Σ,K) and I (ϕ) ≤ I (ψ + c) = I (ψ) + c. Else c > b− supψ ≥ 0 while ϕ ≤ b. There are

two subcases:
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• c ≥ b − inf ψ, then I (ψ) + c ≥ I (inf ψ) + c = Ĩ (0) + inf ψ + c ≥ Ĩ (0) + inf ψ + b − inf ψ =

I (b) ≥ I (ϕ) .

• c < b − inf ψ (that is inf ψ < b − c < supψ), then ψ + c ≥ ϕ implies (ψ + c) ∧ b ≥ ϕ,

but (ψ + c) ∧ b ∈ B0 (Σ,K) and (ψ + c) ∧ b = min {ψ + c, b} − c + c = min {ψ, b− c} + c =

(ψ ∧ (b− c)) + c. Notice that also ψ ∧ (b− c) ∈ B0 (Σ,K) since (b− c) ∈ (inf ψ, supψ) ⊆ K.

Therefore

I (ψ) + c ≥ I (ψ ∧ (b− c)) + c

= I ((ψ ∧ (b− c)) + c)

= I ((ψ + c) ∧ b)

≥ I (ϕ) ,

as desired.

Finally, if supK =∞, and ϕ ≤ ψ+ c, then ψ+ c ∈ B0 (Σ,K) and I (ϕ) ≤ I (ψ + c) = I (ψ) + c.

�

Lemma 9 Let I : Φ→ R be a niveloid on a nonempty subset Φ of B (Σ), and set

L =
{
ϕ ∈ Φ + R : Ĩ (ϕ) ≥ 0

}
+B

(
Σ,R+

)
.

The functional defined on B (Σ) by

Î (ϕ) = sup {c ∈ R : ϕ− c ∈ L} ∀ϕ ∈ B (Σ)

is the minimum niveloid on B (Σ) that extends I. Moreover, if Φ is convex and I is concave, then

Î is concave.

Before entering the proof’s details, notice that if I is a niveloid on a tube Φ, then for all ϕ ∈ Φ,

I (ϕ) = sup {c ∈ R : c ≤ I (ϕ)} = sup {c ∈ R : ϕ− c ∈ {I ≥ 0}}, where {I ≥ 0} = {ϕ ∈ Φ : I (ϕ) ≥ 0}
(see also [?, p.160]).

Proof. If ϕ ∈ Φ + R, and ϕ ∈ L, then ϕ ≥ ψ for some ψ ∈
{
Ĩ ≥ 0

}
, whence Ĩ (ϕ) ≥ Ĩ (ψ) ≥ 0,

that is ϕ ∈
{
Ĩ ≥ 0

}
. This proves that ϕ ∈ Φ + R belongs to L iff it belongs to

{
Ĩ ≥ 0

}
. As a

consequence, for all ϕ ∈ Φ + R, we have

Ĩ (ϕ) = sup
{
c ∈ R : ϕ− c ∈

{
Ĩ ≥ 0

}}
= sup {c ∈ R : ϕ− c ∈ L}

= Î (ϕ) .

Then Î : B (Σ)→ [−∞,∞] extends Ĩ, a fortiori I.

Notice that:
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• If ϕ ∈ L and ψ ≥ ϕ, then ψ ∈ L+B (Σ,R+) = L.

• If ϕ /∈ L and ψ ≤ ϕ, then ψ /∈ L.

• If ψ0 ∈ Φ, then ψ0 + d ∈ L iff Ĩ (ψ0 + d) ≥ 0 iff d ≥ −I (ψ0). In particular, ψ0 − I (ψ0) ∈ L
and ψ0 − I (ψ0)− 1 /∈ L.

Let ψ0 ∈ Φ. For all ϕ ∈ B (Σ), ϕ − (inf ϕ− supψ0 + I (ψ0)) ≥ ψ0 − I (ψ0) ∈ L, hence

{c ∈ R : ϕ− c ∈ L} 6= ∅; therefore Î (ϕ) > −∞. For all ϕ ∈ B (Σ) and all c ≥ supϕ − inf ψ0 +

I (ψ0) + 1, ϕ− c ≤ ϕ− (supϕ− inf ψ0 + I (ψ0) + 1) ≤ ψ0 − I (ψ0)− 1 /∈ L implies ϕ− c /∈ L, and

{c ∈ R : ϕ− c ∈ L} is bounded above; therefore Î (ϕ) <∞. We conclude that Î : B (Σ)→ R.

If ψ ≥ ϕ and ϕ−c ∈ L, then ψ−c ≥ ϕ−c implies ψ−c ∈ L. It follows that {c ∈ R : ϕ− c ∈ L} ⊆
{c ∈ R : ψ − c ∈ L} and Î (ψ) ≥ Î (ϕ), i.e., Î is monotonic.

Let d ∈ R and ϕ ∈ B (Σ), ϕ− c ∈ L iff (ϕ+ d)− (c+ d) ∈ L, that is

{c ∈ R : ϕ− c ∈ L}+ d = {t ∈ R : (ϕ+ d)− t ∈ L}

and

Î (ϕ+ d) = sup {t ∈ R : (ϕ+ d)− t ∈ L}

= sup ({c ∈ R : ϕ− c ∈ L}+ d)

= Î (ϕ) + d.

That is Î is a niveloid.

Notice that
{
Î ≥ 0

}
= L. In fact, if Î (ϕ) ≥ 0, then for all ε > 0 we have Î (ϕ+ ε) > 0, i.e.

sup {c ∈ R : ϕ+ ε− c ∈ L} > 0,

therefore there exists c > 0 such that ϕ+ε−c ∈ L. This implies ϕ+ε ∈ L (since ϕ+ε ≥ ϕ+ε−c ∈ L).

Since this is true for all ε, it follows ϕ = limn

(
ϕ+ 1

n

)
∈ L, and we conclude

{
Î ≥ 0

}
⊆ L.

Conversely, for all ϕ ∈ L, ϕ− 0 ∈ L guarantees Î (ϕ) ≥ 0; the continuity of Î implies L ⊆
{
Î ≥ 0

}
.

Let Ĵ be a niveloid on B (Σ) that extends I, then Ĵ coincides with Ĩ on Φ + R. For all

ψ ∈ L there exists ϕ ∈
{
Ĩ ≥ 0

}
such that ψ ≥ ϕ, therefore Ĵ (ψ) ≥ Ĵ (ϕ) = Ĩ (ϕ) ≥ 0. Then{

Î ≥ 0
}

= L ⊆
{
Ĵ ≥ 0

}
, and this implies that for all ϕ ∈ B (Σ)

Î (ϕ) = sup
{
c ∈ R : ϕ− c ∈

{
Î ≥ 0

}}
≤ sup

{
c ∈ R : ϕ− c ∈

{
Ĵ ≥ 0

}}
= Ĵ (ϕ) .

This shows that Î is the minimum niveloid on B (Σ) that extends I.

Assume Φ is convex and I is concave, then Ĩ is concave and
{
Ĩ ≥ 0

}
is convex. So L ={

Ĩ ≥ 0
}

+B (Σ,R+) and
{
Î ≥ 0

}
= L are convex. This implies that Î is concave. In fact, for all
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ϕ,ψ ∈ B (Σ) such that Î (ϕ) = Î (ψ) = c, and α ∈ (0, 1), since ϕ− c, ψ − c ∈
{
Î ≥ 0

}
, then

Î (αϕ+ (1− α)ψ)− Î (ϕ) = Î (αϕ+ (1− α)ψ − c)

= Î (α (ϕ− c) + (1− α) (ψ − c)) ≥ 0,

and Lemma 5 guarantees concavity. �

Inspection of the proof shows that for a non-empty subset Φ of B0 (Σ) setting

L0 =
{
ϕ ∈ Φ : Ĩ (ϕ) ≥ 0

}
+B0

(
Σ,R+

)
we could obtain the minimum niveloid extending I to B0 (Σ) .

7.3 Fenchel conjugates of concave niveloids

Remark 3 If I : B (Σ) → R is a concave niveloid, direct application of the Fenchel Moreau

Theorem (see, e.g., [?, p. 42]) guarantees

I (ϕ) = min
µ∈ba(Σ)

(〈ϕ, µ〉 − I∗ (µ))

where I∗ (µ) = infψ∈B(Σ) (〈ψ, µ〉 − I (ψ)) is the Fenchel conjugate of I. If µ is not positive, there

exists ϕ ≥ 0 such that 〈ϕ, µ〉 < 0, then 〈αϕ, µ〉 − I (αϕ) ≤ α 〈ϕ, µ〉 − I (0) for all α ≥ 0, whence

I∗ (µ) = −∞. If µ (S) 6= 1, choose ψ ∈ B (Σ), then 〈ψ + c, µ〉 − I (ψ + c) = 〈ψ, µ〉 − I (ψ) +

c (µ (S)− 1) for all c ∈ R, and so I∗ (µ) = −∞. That is,

I (ϕ) = min
µ∈∆(Σ)

(〈ϕ, µ〉 − I∗ (µ)) .

In this section Φ is a (non-empty) convex subset of B (Σ) and I : Φ→ R is a concave niveloid.

We set

∂πI (ϕ) = {p ∈ ∆ (Σ) : I (ψ)− I (ϕ) ≤ 〈ψ − ϕ, p〉 for each ψ ∈ Φ} .

Notice that

∂πI (ϕ) =
{
p ∈ ∆ (Σ) : Ĩ (ψ)− Ĩ (ϕ) ≤ 〈ψ − ϕ, p〉 for each ψ ∈ Φ + R

}
.

Lemma 10 Let I : Φ→ R be a concave niveloid. Then, ∂πI (ϕ) 6= ∅ for all ϕ ∈ Φ.

Proof. By Lemma 9, there exists a concave niveloid Î on B (Σ) such that Î|Φ = I. Let ϕ ∈ Φ.

Being a niveloid, Î is Lipschitz continuous, then, its standard superdifferential at ϕ

∂Î (ϕ) =
{
µ ∈ ba (Σ) : Î (ψ)− Î (ϕ) ≤ 〈ψ − ϕ, µ〉 for each ψ ∈ B (Σ)

}
is nonempty (see, e.g., [?, p. 6-7]).

For all c ∈ R and µ ∈ ∂Î (ϕ) we have

Î (ϕ) + c = Î (ϕ+ c) ≤ Î (ϕ) + 〈ϕ+ c− ϕ, µ〉 = Î (ϕ) + cµ (S) ,
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and so c ≤ cµ (S). This implies µ (S) = 1.

For all ψ ≥ 0 and µ ∈ ∂Î (ϕ) we have

〈ψ, µ〉 = 〈ϕ+ ψ, µ〉 − 〈ϕ, µ〉 ≥ Î (ϕ+ ψ)− Î (ϕ) ≥ 0,

this implies µ ∈ ba+ (Σ).

Therefore, ∂Î (ϕ) ⊆ ∂πI (ϕ) and we conclude that ∂πI (ϕ) 6= ∅. �

Lemma 11 Let Φ be a convex subset of B (Σ) such that Φc 6= ∅, and I : Φ→ R be a concave and

normalized niveloid. Then:

(i) For each ϕ ∈ Φ,

I (ϕ) = min
p∈∆(Σ)

(〈ϕ, p〉 − I? (p)) = min
p∈

⋃
ψ∈Φ ∂πI(ψ)

(〈ϕ, p〉 − I? (p)) (31)

where I? : ∆ (Σ)→ [−∞, 0] is given by

I? (p) = inf
ψ∈Φ

(〈ψ, p〉 − I (ψ)) ∀p ∈ ∆ (Σ) .

(ii) I? is the maximal functional R : ∆ (Σ)→ [−∞, 0] such that

I (ϕ) = inf
p∈∆(Σ)

(〈ϕ, p〉 −R (p)) ∀ϕ ∈ Φ. (32)

(iii) I? coincides with the Fenchel conjugate Î∗ of Î on ∆ (Σ) and

Î (ϕ) = min
p∈∆(Σ)

(〈ϕ, p〉 − I? (p)) ∀ϕ ∈ B (Σ) . (33)

(iv) If (32) holds, and Ψ ⊆ Φ is such that sups∈S ψ (s)− infs∈S ψ (s) < c for all ψ ∈ Ψ, then

I (ψ) = inf
{p∈∆(Σ):R(p)≥−c}

(〈ϕ, p〉 −R (p)) ∀ψ ∈ Ψ. (34)

Proof. Notice that I? (p) ≤ 0 for all p ∈ ∆ (Σ). For, if we take a constant k ∈ Φc we have

〈k, p〉 = I (k) = k.

By definition of I?, for all ϕ ∈ Φ and p ∈ ∆ (Σ)

I (ϕ) ≤ 〈ϕ, p〉 − I? (p) ; (35)

moreover,

p ∈ ∂πI (ϕ) ⇔ I (ϕ) ≥ I (ψ)− 〈ψ, p〉+ 〈ϕ, p〉 ∀ψ ∈ Φ

⇔ I (ϕ) ≥ sup
ψ∈Φ

(I (ψ)− 〈ψ, p〉) + 〈ϕ, p〉

⇔ I (ϕ) ≥ 〈ϕ, p〉 − inf
ψ∈Φ

(〈ψ, p〉 − I (ψ))

⇔ I (ϕ) ≥ 〈ϕ, p〉 − I? (p)

⇔ I (ϕ) = 〈ϕ, p〉 − I? (p) .
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Therefore, for all ϕ ∈ Φ

I (ϕ) = min
p∈∂πI(ϕ)

(〈ϕ, p〉 − I? (p)) ≥ inf
p∈

⋃
ψ∈Φ ∂πI(ψ)

(〈ϕ, p〉 − I? (p))

≥ inf
p∈∆(Σ)

(〈ϕ, p〉 − I? (p)) ≥ I (ϕ) ,

which implies (31). This proves (i). For later use, notice that if P is a subset of ∆ (Σ) such that

∂πI (ϕ) ∩ P 6= ∅ for all ϕ ∈ Φ, then the above argument yields

I (ϕ) = min
p∈P

(〈ϕ, p〉 − I? (p)) . (36)

Let R : ∆ (Σ)→ [−∞, 0] be such that I (ϕ) = infp∈∆(Σ) (〈ϕ, p〉 −R (p)) for all ϕ ∈ Φ. Then,

R (p) ≤ 〈ϕ, p〉 − I (ϕ) ∀p ∈ ∆ (Σ) , ϕ ∈ Φ,

and hence

R (p) ≤ inf
ϕ∈Φ

(〈ϕ, p〉 − I (ϕ)) = I? (p) ∀p ∈ ∆ (Σ) .

This proves (ii).

For all ϕ ∈ B (Σ), set Ĵ (ϕ) = infp∈∆(Σ) (〈ϕ, p〉 − I? (p)), Ĵ is a normalized and concave niveloid

on B (Σ) that extends I. By (ii) applied to Ĵ , we obtain

Ĵ∗ (p) = Ĵ? (p) ≥ I? (p) = inf
ϕ∈Φ

(〈ϕ, p〉 − I (ϕ))

≥ inf
ϕ∈B(Σ)

(
〈ϕ, p〉 − Î (ϕ)

)
(this is Î∗ (p) )

(since Î ≤ Ĵ) ≥ inf
ϕ∈B(Σ)

(
〈ϕ, p〉 − Ĵ (ϕ)

)
= Ĵ∗ (p)

that is Ĵ∗ (p) = I? (p) = Î∗ (p) for all p ∈ ∆ (Σ). Apply (i) (or Remark 3) to Î to obtain

Î (ϕ) = min
p∈∆(Σ)

(
〈ϕ, p〉 − Î∗ (p)

)
= min

p∈∆(Σ)
(〈ϕ, p〉 − I? (p)) ∀ϕ ∈ B (Σ) .

This completes the proof of (iii).

Finally, as to (iv), the monotonicity of Î implies that infs∈S ψ (s) = Î (infs∈S ψ (s)) ≤ I (ψ) , 〈ψ, p〉 ≤
sups∈S ψ (s) = Î (sups∈S ψ (s)) for all p ∈ ∆ (Σ) and all ψ ∈ Ψ. For each ψ ∈ Ψ, there exists ε > 0

such that sups∈S ψ (s)− infs∈S ψ (s) + ε < c. For all p ∈ ∆ (Σ) such that R (p) < −c, we have

R (p) < − sup
s∈S

ψ (s) + inf
s∈S

ψ (s)− ε, and

sup
s∈S

ψ (s) + ε < inf
s∈S

ψ (s)−R (p) , i.e.

I (ψ) + ε ≤ sup
s∈S

ψ (s) + ε < inf
s∈S

ψ (s)−R (p) ≤ 〈ϕ, p〉 −R (p) .

On the other hand,

I (ψ) = inf
p∈∆(Σ)

(〈ψ, p〉 −R (p))

= min

(
inf

p∈{R<−c}
(〈ψ, p〉 −R (p)) , inf

p∈{R≥−c}
(〈ψ, p〉 −R (p))

)
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which concludes the proof, since infp∈{R<−c} (〈ϕ, p〉 −R (p)) ≥ I (ψ) + ε. �

Remark 4 Inspection of the proof shows that: (i) ∂πI (ϕ) = arg minp∈∆(Σ) (〈ϕ, p〉 − I? (p)). (ii)

If k ∈ Φc, then ∂πI (k) = {I? = 0} = arg maxp∈∆(Σ) I
? (p). (iii) I? is concave and weakly* upper

semicontinuous.

Corollary 1 Let Φ be a convex subset of B0 (Σ) (resp. B (Σ)) such that Φc 6= ∅ and Φ+R = B0 (Σ)

(resp. Φ + R = B (Σ)),11 and I : Φ → R be a concave and normalized niveloid. Then, I? is the

Fenchel conjugate of the unique niveloid Ĩ extending I to B0 (Σ) (resp. B (Σ)). In this case I? is

the unique concave and weakly* upper semicontinuous function R : ∆ (Σ)→ [−∞, 0] such that

I (ϕ) = inf
p∈∆(Σ)

(〈ϕ, p〉 −R (p)) ∀ϕ ∈ Φ.

Proof. The equality

I? (p) = inf
ψ∈Φ

(〈ψ, p〉 − I (ψ)) = inf
ψ∈Φ
c∈R

(〈ψ, p〉+ c− I (ψ)− c)

= inf
ψ∈Φ
c∈R

(
〈ψ + c, p〉 − Ĩ (ψ + c)

)
= inf

ψ∈B0(Σ)

(
〈ψ, p〉 − Ĩ (ψ)

)
yields the first part of the statement. Let R : ∆ (Σ) → [−∞, 0] be a concave and weakly* upper

semicontinuous functional such that I (ϕ) = infp∈∆(Σ) (〈ϕ, p〉 −R (p)) for all ϕ ∈ Φ. Then, Ĩ (ϕ) =

infp∈∆(Σ) (〈ϕ, p〉 −R (p)) for all ϕ ∈ B0 (Σ). By the Fenchel-Moreau Theorem

R (p) = R∗∗ (p) = inf
ϕ∈B0(Σ)

(〈ϕ, p〉 −R∗ (ϕ))

= inf
ϕ∈B0(Σ)

(
〈ϕ, p〉 −

(
inf

p∈∆(Σ)
(〈ϕ, p〉 −R (p))

))
= inf

ϕ∈B0(Σ)

(
〈ϕ, p〉 − Ĩ (ϕ)

)
= Ĩ∗ (p) = I? (p) ,

as desired. �

11E.g. Φ = B0 (Σ,K) with K an unbounded interval.
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