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Abstract

Markov Switching models are a way to consider discrete changes in the economic en-

vironment, such as policy changes, and allow agents in the economy to form expectations

over these changes. This paper develops a methodology for constructing approximations

to the solution of Markov Switching dynamic stochastic general equilibrium (MS-DSGE)

models. The method allows for changes in parameters that both do and do not affect the

economy’s steady state, and enables linear or higher-order approximations. In addition,

the paper proves that first-order approximations to a wide class of MS-DSGE models are

not certainty equivalent. The numerical procedure handles potentially large systems and

considers existence and uniqueness using the concept of mean square stability. Two exam-

ples, one Real Business Cycle and one New Keynesian, illustrate the procedure and issues

of certainty equivalence and mean square stability.
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1 Introduction

Following the introduction of vector autoregressions (VARs) to macroeconomics by Sims (1980)

it was quickly realized that it is diffi cult to find macroeconomic applications for which model

parameters remain stable over long periods of time. This problem was not unique to reduced

form representations of the data, but was also an issue when more structural approaches were

considered. One way to solve the problem, pursued by Clarida et al. (2000) and followed up

by Lubik & Schorfheide (2004), breaks the sample into sub-periods and estimates the structural

models in which one or more of the model’s parameters differ across sub-samples. While this

approach addresses the parameter instability problem, it fails to consider that forward looking

agents living in a world in which parameters are known to change occasionally would be expected

to take possible parameter change into account when forming their expectations and, therefore,

will affect their optimal decisions.

An alternative approach to parameter instability, suggested by the work of Hamilton (1989)

and pursued in Sims & Zha (2006), is to estimate a backward-looking vector autoregression

(VAR) with regime dependent parameters. This approach has its limitations since it does not

allow for the presence of forward-looking components that are present in a dynamic stochastic

general equilibrium (DSGE) model.

A number of authors have recently studied forward looking Markov-switching linear rational

expectations (MSLRE) models. Work in this area includes papers by Leeper & Zha (2003),

Svensson &Williams (2007), Blake & Zampolli (2006), Davig & Leeper (2007), and Farmer et al.

(2009). MSLRE models are more complicated than linear rational expectations models since the

agents of the model must be allowed to take account of the possibility of future regime changes

when forming expectations. The MSLRE literature has made some headway in addressing

questions like setting necessary and suffi cient conditions to determine if the parameters of a

Markov-switching rational expectations model lead to a determinate equilibrium (See Farmer

et al. (2009)).

There are two main shortcomings with the MSLRE approach. First, most of the analyzed

models do not begin from first principles. In other words, researchers consider linear rational
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expectations (LRE) models where Markov-switching (MS) has been added after the model has

been linearized. Second, higher order solutions are not considered. Given that MS parameters

add a lot of uncertainty to the model, considering higher order approximations may be poten-

tially important. This paper solves these two shortcomings. In particular, it shows how to use

perturbation methods to solve Markov-switching rational expectations (MSRE) models - note

the absence of the “linear”- starting from first principles, i.e. from the set of (non-linearized)

first order conditions that define equilibrium.

Following Costa et al. (2005), Farmer et al. (2009), and Farmer et al. (2008a), this paper

uses the concept of mean square stability (MSS) to characterize stable solutions. The pertur-

bation approach uses the theory of Gröbner Bases to find solutions, and determines existence

and uniqueness of MSS solutions. It also allows for a flexible regime-switching specification,

including in parameters that affect the steady state of the economy. In particular, the first order

approximation of models where switching affects the steady state is not certainty equivalent.

After developing the methodology, the paper presents two example economies that illustrate

the methodology and highlight the issues of mean square stability and certainty equivalence.

In the first, a simple real business cycle model with stochastic drift shows how to use the

methodology and the importance of certainty equivalence. The second, a New Keynesian

model, adds sticky prices and a monetary authority with changes in the policy rule, and shows

how mean square stability determines existence and uniqueness.

The remainder of the paper is as follows: Section 2 describes a general class of MS-DSGE

models and the nature of Markov switching. Sections 3 and 4 discuss the first-order approxima-

tion, the former showing how to solve the model, and the latter highlighting the key quadratic

equations and how to use Gröbner Bases to solve them. Section 5 has an example RBC economy,

Section 6 has an example NK economy, and Section 7 concludes.
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2 The Model

Consider a dynamic general equilibrium model in which some of the parameters follow a discrete

state Markov chain indexed by st with transition matrix P = (ps,s′). The element ps,s′ represents

the probability that st+1 = s′ given st = s for s, s′ ∈ {1, . . . ns} where ns is the number of regimes

and when st = s the model is said to be in regime s at time t. The vector of changing parameters

θt has size nθ×1.1 Given any xt−1, εt, and θt, the set of equilibrium conditions of a wide variety

of this class of models can be written as

Etf (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) = 0 (1)

where Et denotes the mathematical expectations operator conditional on information available at

time t. The vector xt−1 of predetermined variables (endogenous and exogenous) is of size nx×1,

the vector yt of non-predetermined variables is of size ny × 1, the vector εt of independent

innovations to the exogenous predetermined variables with mean equal to zero is of size nε × 1,

and χ is the perturbation parameter. The function f mapsR2(ny+nx+nθ+nε) intoRny+nx . Since the

parameters, θt, in (1) depend on the state of the Markov chain, there are ns sets of equilibrium

conditions, one for each value of the Markov chain, instead of the single set of equilibrium

conditions in the constant parameter case.

The solution to the model has the form

yt ≡ g (xt−1, εt, χ, st) (2)

yt+1 ≡ g (xt, χεt+1, χ, st+1) (3)

and

xt ≡ h (xt−1, εt, χ, st) (4)

where g maps Rnx+nε+1 × {1, . . . ns} into Rny and h maps Rnx+nε+1 × {1, . . . ns} into Rnx . The

goal is to find the Taylor expansion of the functions g and h around the steady state.

The parameters θt depend on the regime in the following way

θt ≡ θ (χ, st) and θt+1 ≡ θ (χ, st+1) (5)

1There may also be a set of non-changing parameters not included in θt.
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where θ maps R× {1, . . . ns} into Rnθ . The set of parameters θt has two subsets θ1t and θ2t:

θt =
(
θ′1t θ′2t

)′
≡
(
θ1 (χ, st)

′ θ2 (χ, st)
′
)′
, (6)

where

θ1 (χ, st) = θ1 + χθ̂1 (st)

and

θ2 (χ, st) = θ̂2 (st) .

The parameters θt+1 have the same functional forms.2 Note two things about this specifica-

tion: first, θ̂1 (st) is the deviation from θ1 in regime st and, second, θ2t is not a function of the

perturbation parameter χ. Hence, perturbation just applies to a subset of the parameters, θ1t,

while θ2t is not perturbed. The choice of which parameters to perturb, θ1t, and which ones do

not perturb, θ2t, is not unique, but there is one restriction. Define steady state of the model as

vectors xss and yss such that

f

(
yss, yss, xss, xss, 0, 0,

(
θ
′
1 θ̂2 (st+1)′

)′
,
(
θ
′
1 θ̂2 (st)

′
)′)

= 0

for all st and st+1. Thus, the partition should be such that neither θ2 (0, st) = θ̂2 (st) nor

θ2 (0, st+1) = θ̂2 (st+1) enter in the calculation of the steady state since the last expression has

to hold for all st and st+1. As mentioned, in general, more than one partition of parameters, θt,

between θ1t and θ2t accomplishes this objective. In any case, included in is θ1t the minimum set

of parameters such that the steady state is defined as described above. Since the steady state

depends upon θ̄1, a natural choice for this point is the mean of the ergodic distribution across

θ1t, but again, this selection is not unique. Sections 5 and 6 provide examples of the partition

of θt and the choice of θ̄1.

Given the definition of the steady state, it is the case that

yss = g (xss, 0, 0, st) and xss = h (xss, 0, 0, st)

2These functional forms are not necessary but just convenient for the derivations; any other functional form

such that θ1 (0, st) = θ1 for all st holds would also work.
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for all st and

yss = g (xss, 0, 0, st+1) and xss = h (xss, 0, 0, st+1)

for all st+1.

Using (2), (4), and (5) re-write the function f as

F (xt−1, εt, εt+1, st+1, χ, st) =

f

 g (h (xt−1, εt, χ, st) , χεt+1, χ, st+1) , g (xt−1, εt, χ, st) ,

h (xt−1, εt, χ, st) , xt−1, χεt+1, εt, θ (χ, st+1) , θ (χ, st)


for all xt−1, εt, εt+1, st+1, and st. The function F maps Rnx+2nε+1 × {1, . . . ns} × {1, . . . ns} into

Rny+nx .

Assuming that innovations to the exogenous predetermined variables, εt, are independent of

the Markov chain, st, re-write (1) as

G (xt−1, εt, χ, st) =
ns∑
s′=1

pst,s′

∫
F (xt−1, ε

′, εt, s
′, χ, st)µ (ε′) dε′ = 0 (7)

for all xt−1, εt, and st where µ is the density of the innovations. The function G maps Rnx+nε+1×

{1, . . . ns} into Rny+nx .

The remainder of the paper will use the following notation

DG (xt−1, εt, χ, st) =
[
DjGi (xt−1, εt, χ, st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

to refer the (ny + nx)×(nx + nε + 1)matrix of partial derivatives ofG with respect to (xt−1, εt, χ)

evaluated at (xt−1, εt, χ, st). Note the absence of derivatives with respect to st, since it is a

discrete variable. Equivalently,

DG (xss, 0, 0, st) =
[
DjGi (xss, 0, 0, st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

refers to the (ny + nx)×(nx + nε + 1)matrix of partial derivatives ofG with respect to (xt−1, εt, χ)

evaluated at (xss, 0, 0, st). To simplify notation define

DGss (st) ≡ DG (xss, 0, 0, st) and DjGi
ss (st) ≡ DjGi (xss, 0, 0, st)
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for all i, j, and st. Thus,

DGss (st) =
[
DjGi

ss (st)
]

1≤i≤ny+nx,1≤j≤nx+nε+1

for all st. In the same way,

Dfss (st+1, st) =[
Djf i

(
yss, yss, xss, xss, 0, 0,

(
θ
′
1 θ̂2 (st+1)′

)′
,
(
θ
′
1 θ̂2 (st)

′
)′)]

1≤i≤ny+nx,1≤j≤2(ny+nx+nθ+nε)

is the (ny + nx)× (2 (ny + nx + nθ + nε)) matrix of partial derivatives of f with respect to all its

components evaluated at
(
yss, yss, xss, xss, 0, 0,

(
θ
′
1 θ̂2 (st+1)′

)′
,
(
θ
′
1 θ̂2 (st)

′
)′)

for all st+1

and st,

Dg (xss, 0, 0, st) =
[
Djgi (xss, 0, 0, st)

]
1≤i≤ny ,1≤j≤nx+nε+1

is the ny × (nx + nε + 1) matrix of partial derivatives of g with respect to (xt−1, εt, χ) evaluated

at (xss, 0, 0, st) for all st, and

Dh (xss, 0, 0, st) =
[
Djhi (xss, 0, 0, st)

]
1≤i≤nx,1≤j≤nx+nε+1

is the nx× (nx + nε + 1) matrix of partial derivatives of h with respect to (xt−1, εt, χ) evaluated

at (xss, 0, 0, st) for all st. To simplify notation, define

Dgss (st) ≡ Dg (xss, 0, 0, st) and Djgiss (st) ≡ Djgi (xss, 0, 0, st) ,

for all i, j, and st and

Dhss (st) ≡ Dh (xss, 0, 0, st) and Djhiss (st) ≡ Djhi (xss, 0, 0, st)

for all i, j, and st. Thus,

Dgss (st) =
[
Djgiss (st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

and

Dhss (st) =
[
Djhiss (st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

for all st.

7



3 First Order Approximation

This section shows how to find the first order Taylor expansions to g and h around the point

(xss, 0, 0, st) of the form

g (xt−1, εt, χ, st)− yss ' [D1gss (st) , . . . ,Dnxgss (st)] (xt−1 − xss)

+ [Dnx+1gss (st) , . . . ,Dnx+nεgss (st)] εt +Dnx+nε+1gss (st)χ

and

h (xt−1, εt, χ, st)− xss ' [D1hss (st) , . . . ,Dnxhss (st)] (xt−1 − xss)

+ [Dnx+1hss (st) , . . . ,Dnx+nεhss (st)] εt +Dnx+nε+1hss (st)χ

for all st where Djgss (st) is the jth column vector of Dgss (st) and Djhss (st) is the jth column

vector of Dhss (st). To simply notation, define

Dn,mgss (st) ≡ [Dngss (st) , . . . ,Dmgss (st)]

Dn,mhss (st) ≡ [Dnhss (st) , . . . ,Dmhss (st)]

for all n and m and all st.

Hence, the above approximations are equivalent to

g (xt−1, εt, χ, st)− yss ' D1,nxgss (st) (xt−1 − xss) +Dnx+1,nx+nεgss (st) εt +Dnx+nε+1gss (st)χ

and

h (xt−1, εt, χ, st)− xss ' D1,nxhss (st) (xt−1 − xss) +Dnx+1,nx+nεhss (st) εt +Dnx+nε+1hss (st)χ

The objective is now to find the coeffi cients

{D1,nxgss (s) ,D1,nxhss (s)}nss=1 , {Dnx+1,nx+nεgss (s) ,Dnx+1,nx+nεhss (s)}nss=1 ,

and {Dnx+nε+1gss (s) ,Dnx+nε+1hss (s)}nss=1

of the above describe expansions. The current setup requires finding a set of ns policy functions,

one for each possible value of the Markov chain, instead of the single set of policy functions in

the constant parameter case.
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The coeffi cients of these policy functions are going to be obtained by using the fact that

G (xt−1, εt, χ, st) = 0

for all xt−1, εt, χ, and st and, therefore, it must be the case that

DG (xt−1, εt, χ, st) = 0

for all xt−1, εt, χ, and st and, in particular,

DGss (st) = 0

for all st. Thus,

[D1Gss (st) , . . . ,DnxGss (st)] = 0, (8)

[Dnx+1Gss (st) , . . . ,Dnx+nεGss (st)] = 0,

Dnx+nε+1Gss (st) = 0,

for all st where DjGss (st) is the jth column vector of DGss (st). Again, note that there are a

set of ns derivatives of G, one for each possible value of st, instead of the single derivative in

the constant parameter case. To simply notation, again, define

Dn,mGss (st) ≡ [DnGss (st) , . . . ,DmGss (st)]

therefore, expression (8) can be written as

D1,nxGss (st) = 0, Dnx+1,nx+nεGss (st) = 0, and Dnx+nε+1Gss (st) = 0.

3.1 Solving for the Derivatives of x

Using (7), taking derivatives with respect to xt−1 produces the following expression, where

D1,nxGss (st) = 0 for all st :

D1,nxGss (st) =

ns∑
s′=1

pst,s′

∫

D1,nyfss (s′, st)D1,nxgss (s′)D1,nxhss (st)

+Dny+1,2nyfss (s′, st)D1,nxgss (st)

+D2ny+1,2ny+nxfss (s′, st)D1,nxhss (st)

+D2ny+nx+1,2(ny+nx)fss (s′, st)

µ (ε′) dε′
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for all st. Next, taking into account that
∫
µ (ε′) dε′ = 1, this expression simplifies to

D1,nxGss (st) =

ns∑
s′=1

pst,s′


D1,nyfss (s′, st)D1,nxgss (s′)D1,nxhss (st)

+Dny+1,2nyfss (s′, st)D1,nxgss (st)

+D2ny+1,2ny+nxfss (s′, st)D1,nxhss (st)

+D2ny+nx+1,2(ny+nx)fss (s′, st)


for all st. Now, rearranging, for each st:

D1,nxGss (st) = (9)

ns∑
s′=1

pst,s′

 (
D1,nyfss (s′, st)D1,nxgss (s′) +D2ny+1,2ny+nxfss (s′, st)

)
D1,nxhss (st)

+Dny+1,2nyfss (s′, st)D1,nxgss (st) +D2ny+nx+1,2(ny+nx)fss (s′, st)

 .
Putting together the ns versions of (9), one for each value of st, yields a system of (nx + ny)nxns

quadratic equations in the same number of unknowns {D1,nxgss (s) ,D1,nxhss (s)}nss=1. Section 4

describes how to solve this system.

3.2 Solving for the Derivatives of ε and χ

After finding {D1,nxgss (s) ,D1,nxhss (s)}nss=1, obtaining {Dnx+1,nx+nεgss (s) ,Dnx+1,nx+nεhss (s)}nss=1

and {Dnx+nε+1gss (s) ,Dnx+nε+1hss (s)}nss=1 is simply solving a system of linear equations. Let us

first solve for {Dnx+1,nx+nεgss (s) ,Dnx+1,nx+nεhss (s)}nss=1, then {Dnx+nε+1gss (s) ,Dnx+nε+1hss (s)}nss=1.

In order to solve for {Dnx+1,nx+nεgss (s) ,Dnx+1,nx+nεhss (s)}nss=1, obtain the expressions for

Dnx+1,nx+nεGss (st)

Dnx+1,nx+nεGss (st) =

ns∑
s′=1

pst,s′

∫

D1,nyfss (s′, st)D1,nxgss (s′)Dnx+1,nx+nεhss (st) +

Dny+1,2nyfss (s′, st)Dnx+1,nx+nεgss (st) +

D2ny+1,2ny+nxfss (s′, st)Dnx+1,nx+nεhss (st) +

D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, st)

µ (ε′) dε′ = 0
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for all st. Taking into account that
∫
µ (ε′) dε′ = 1, this expression simplifies to

Dnx+1,nx+nεGss (st) =

ns∑
s′=1

pst,s′


(
D1,nyfss (s′, st)D1,nxgss (s′) +D2ny+1,2ny+nxfss (s′, st)

)
Dnx+1,nx+nεhss (st)

Dny+1,2nyfss (s′, st)Dnx+1,nx+nεgss (st)

D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, st)

 (10)

for all st.

To solve this system, stack (10) for st = 1, ..., ns, which produces the matrix equation

[
Θε Φε

]


Dnx+1,nx+nεgss (1)
...

Dnx+1,nx+nεgss (ns)

Dnx+1,nx+nεhss (1)
...

Dnx+1,nx+nεhss (ns)


= Ψε (11)

where

Θε =
ns∑
s′=1


p1,s′Dny+1,2nyfss (s′, 1) · · · 0

...
. . .

...

0 · · · pns,s′Dny+1,2nyfss (s′, ns)

 ,

Φε =
ns∑
s′=1


p1,s′D1,nyfss (s′, 1)D1,nxgss (s′) · · · 0

...
. . .

...

0 · · · pns,s′D1,nyfss (s′, ns)D1,nxgss (s′)



+
ns∑
s′=1


p1,s′D2ny+1,2ny+nxfss (s′, 1) · · · 0

...
. . .

...

0 · · · pns,s′D2ny+1,2ny+nxfss (s′, ns)

 ,
and

Ψε = −
ns∑
s′=1


p1,s′D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, 1)

...

pns,s′D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, ns)

 .
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Thus, given the solution for {D1,nxgss (s) ,D1,nxhss (s)}nss=1, the above is a system of (nx + ny)nεns

linear equations in the same number of unknowns given by {Dnx+1,nx+negss (s) ,Dnx+1,nx+nehss (s)}nss=1

that can be solved by inverting
[

Θε Φε

]
.

Now to find {Dnx+nε+1gss (s) ,Dnx+nε+1hss (s)}nss=1, use the derivative of (7) with respect to

χ:

Dnx+nε+1Gss (st) =

ns∑
s′=1

pst,s′

∫



D1,nyfss (s′, st)

 D1,nxgss (s′)Dnx+nε+1hss (st)

+Dnx+1,nx+nεgss (s′) ε′ +Dnx+nε+1gss (s′)

+

Dny+1,2nyfss (s′, st)Dnx+nε+1gss (st) +

D2ny+1,2ny+nxfss (s′, st)Dnx+nε+1hss (st) +

D2ny+nx+1,2ny+nx+nεfss (s′, st) ε
′+

D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, st)Dθ (0, s′) +

D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)fss (s′, st)Dθ (0, st)


µ (ε′) dε′ = 0

for all st, where Dθ (0, st+1) is the derivative of θ (χ, st+1) with respect to χ

Dθ (χ, st) =
[
Dijθ (χ, st)

]
1≤i≤nθ,j=1

for all st, evaluated at χ = 0.

Taking into account that
∫
µ (ε′) dε′ = 1 and

∫
ε′µ (ε′) dε′ = 0, the above simplifies to

Dnx+nε+1Gss (st) = (12)

ns∑
s′=1

pst,s′


D1,nyfss (s′, st) {D1,nxgss (s′)Dnx+nε+1hss (st) +Dnx+nε+1gss (s′)}+

Dny+1,2nyfss (s′, st)Dnx+nε+1gss (st) +D2ny+1,2ny+nxfss (s′, st)Dnx+nε+1hss (st)

+D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, st)Dθ (0, s′) +

D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)fss (s′, st)Dθ (0, st)

 = 0

for all st.
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In matrix notation expression (12) can be written as

[
Θχ Φχ

]


Dnx+nε+1gss (1)
...

Dnx+nε+1gss (ns)

Dnx+nε+1hss (1)
...

Dnx+nε+1hss (ns)


= Ψχ, (13)

where

Θχ =


p1,1D1,nyfss (1, 1) +Dny+1,2nyfss (1, 1) · · · p1,nsD1,nyfss (ns, 1)

...
. . .

...

pns,1D1,nyfss (1, ns) · · · pns,nsD1,nyfss (ns, ns) +Dny+1,2nyfss (ns, ns)

 ,

Φχ =
ns∑
s′=1


p1,s′D1,nyfss (s′, 1)D1,nxgss (s′) · · · 0

...
. . .

...

0 · · · pns,s′D1,nyfss (s′, ns)D1,nxgss (s′)



+
ns∑
s′=1


p1,s′D2ny+1,2ny+nxfss (s′, 1) · · · 0

...
. . .

...

0 · · · pns,s′D2ny+1,2ny+nxfss (s′, ns)

 ,
and

Ψχ = −
ns∑
s′=1



p1,s′D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, 1)Dθ (0, s′) + . . .

D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)fss (s′, 1)Dθ (0, 1)
...

pns,s′D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, ns)Dθ (0, s′) + . . .

D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)fss (s′, ns)Dθ (0, ns)


.

Thus, given the solution for {D1,nxgss (s) ,D1,nxhss (s)}nss=1, this is a system of (nx + ny)ns

linear equations in the same number of unknowns given by the elements of

{Dnx+nε+1gss (s) ,Dnx+nε+1hss (s)}nss=1 that can be solved by inverting
[

Θχ Φχ

]
.
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3.3 Non-Certainty Equivalence of First-Order Approximation

As pointed out by Schmitt-Grohe & Uribe (2004), one important feature of models without

Markov switching is certainty equivalence of the first-order approximation. This feature of

models implies that first-order approximations are inadequate for analyzing interesting behavior

such as response to risk because the approximated decision rules are invariant to changes in

volatility. For example, van Binsbergen et al. (2008) and Rudebusch & Swanson (2008) note

that at least second-order approximations are needed to analyze certain asset pricing implica-

tions, such as the yield curve, since second-order approximations are not certainty equivalent,

and hence react to changes in volatility. The second-order approximations also imply a degree

of diffi culty in performing likelihood based estimation, such as Fernández-Villaverde & Rubio-

Ramirez (2007) who use the particle filter for estimation. These factors mean that addressing

interesting questions with second-order approximations may be necessary but diffi cult in models

without Markov Switching. As shown below, first order approximations to Markov Switching

models are not (in general) certainty equivalent. This nice feature opens the door to analyze

risk related behaviors using linearly approximated models.

To see the certainty equivalence of the model without Markov switching, consider equation

(13) with only one regime, so ns = 1. In this case,

[
Θχ Φχ

] Dnx+nε+1gss (1)

Dnx+nε+1hss (1)

 = Ψχ (14)

where [
Θχ Φχ

]
=[

D1,nyfss (1, 1)D1,nxgss (1) +D2ny+1,2ny+nxfss (1, 1) D1,nyfss (1, 1) +Dny+1,2nyfss (1, 1)
]

and

Ψχ = −
[
D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (1, 1)Dθ (0, 1)

]
.

Clearly, in the fixed regime case θ (χ, 1) = θ̄. Therefore, it is the case that Dθ (0, 1) = 0,

which implies Ψχ = 0. Consequently the system (14) is homogenous. If a unique system exists,
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then it is given by

Dnx+nε+1gss (1) = Dnx+nε+1hss (1) = 0. (15)

Since in the fixed-regime case the only source of uncertainty is εt+1, solution (15) implies

that the linear approximation is certainty equivalent, i.e.

D1,nxgss (1) (xss − xss) +Dnx+1,nx+nεgss (1) 0 +Dnx+nε+1gss (1) = 0

and

D1,nxhss (1) (xss − xss) +Dnx+1,nx+nεhss (1) 0 +Dnx+nε+1hss (1) = 0.

Now, turning to the case of Markov switching, note that if equation (13) is a non-homogenous

system, i.e. if Ψχ 6= 0, then it will be the case that Dnx+nε+1gss (s) 6= 0 and Dnx+nε+1hss (1) 6= 0

if an unique solution exists.

So, consider when Ψχ 6= 0. In the expression for Ψχ

Ψχ = −
ns∑
s′=1



p1,s′D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, 1)Dθ (0, s′) + . . .

D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)fss (s′, 1)Dθ (0, 1)
...

pns,s′D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, ns)Dθ (0, s′) + . . .

D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)fss (s′, ns)Dθ (0, ns)


,

clearly, if Dθ (0, s) = 0 for all s, then Ψχ = 0. So a necessary condition for non-certainty

equivalence is that Dθ (0, s) 6= 0 for some s. Recalling the form of θt :

θ1 (χ, s) = θ1 + χθ̂1 (s)

θ2 (χ, s) = θ̂2 (s)

then

Dθ (0, s) =
[
θ̂1 (s)′ 0′

]′
.

Then Dθ (0, s) 6= 0 for some s if and only if θ̂1 (s) 6= 0. This condition implies that all regimes

cannot have identical steady states if they were to occur permanently.
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However, the condition that Dθ (0, s) 6= 0 for some s is not suffi cient for Ψχ 6= 0. In addition,

it must be the case that either

D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, s) 6= 0, or D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)fss (s′, s) 6= 0

which will be true when the switching parameters do not enter the equilibrium conditions mul-

tiplicatively with a variable which expected value equals zero in steady state.

In summary, the necessary and suffi cient conditions for no certainty equivalence are (i) that

Dθ (0, s) 6= 0 for some s and (ii)

D2(nx+ny+nε)+1,2(nx+ny+nε)+nθfss (s′, s) 6= 0.

4 The Solution to the Quadratic System

As mentioned above, the ns versions of (9) form a system of (nx + ny)nsnx quadratic equations

in the elements of {D1,nxgss (s) ,D1,nxhss (s)}nss=1. This section describes how to find the solution

to this system. Putting (9) into matrix form produces[ ∑ns
s′=1 pst,s′D2ny+1,2ny+nxfss (s′, st) pst,1D1,nyfss (1, st) · · · pst,nsD1,nyfss (ns, st)

]
×

I

D1,nxgss (1)
...

D1,nxgss (ns)

D1,nxhss (st) = (16)

−
ns∑
s′=1

pst,s′
[
D2ny+nx+1,2(ny+nx)fss (s′, st) Dny+1,2nyfss (s′, st)

] I

D1,nxgss (st)


for all st. Hence, there are ns equations of this form.

The quadratic system just described is nothing else than an algebraic system of equations.

In a constant regime framework, ns = 1, mapping this system into a generalized eigenvalue

problem allows solving it by a singular value decomposition (SVD) type of algorithm. In the

case of Markov switching, the fact that {D1,nxgss (s)}nss=1 appear in every of the ns equations
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described above makes it impossible to map the algebraic systems of equations into a generalized

eigenvalue problem. Instead solutions are found using Gröbner Bases.

4.1 Gröbner Basis

What is a Gröbner basis? A Gröbner basis for a system of polynomials is a set of multivariate

polynomials that possesses desirable algorithmic properties. The most important of these fea-

tures for the current problem is that the system of polynomials in a Gröbner basis have the same

collection of roots as the original polynomials. Every set of polynomials can be transformed into

a Gröbner basis, although this transformation may not be unique. The transformation process

generalizes the familiar techniques of Gaussian elimination for solving linear systems of equa-

tions. In general, solving the problem in the system of polynomials in a Gröbner basis is much

simpler that in the original system. Also, a fundamental insight and contribution of Gröbner

bases theory is that every polynomial system, no matter how complicated, can be transformed

into Gröbner basis form (see Buchberger’s algorithm). As an example, consider the following

system of polynomials of four quadratic equations in four unknowns

xy + zw + 2 = 0,

xy + yz + 3 = 0,

xz + wx+ wy + 6 = 0, and

xz + 2xy + 3 = 0.

A Gröbner basis, with respect to the lexicographic ordering {x, y, z, w}, is

−49− 19w2 + 9w4 + 3w6,

2w + 9w3 + 3w5 + 14z,

−99w + 6w3 + 9w5 + 28y, and

15w − 6w3 − 9w5 + 28x.

Note that the first element of the basis is a polynomial in w only. Given a root w of the first

polynomial, the second polynomial is linear in z, the third is linear in y, and the last is linear
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in x. Solving the first element of the basis produces the following six solutions

{w = −1.55461, w = −1.39592i, w = 1.39592i, w = 0.− 1.86232i, w = 1.86232i, w = 1.55461}

Solving the other three basis, conditional on these solutions, gives the following roots

{z = 4.58328, z = −0.41342i, z = 0.41342i, z = 0.914097i, z = 0.914097i, z = −4.58328} ,

{y = −1.7728, y = −3.81477i, y = 3.81477i, y = −0.768342i, y = 0.768342i, y = 1.7728}

and

{x = −2.89104, x = −0.372997i, x = 0.372997i, x = −4.81861i, x = 4.81861i, x = 2.89104} .

These roots solve the original system of four quadratic equations in four unknowns.

4.2 Mean Square Stability

Now, having discussed Gröbner bases, the objective is to use them to solve the ns systems of

equations in (16). Defining

A (st) =
[ ∑ns

s′=1 pst,s′D2ny+1,2ny+nxfss (s′, st) pst,1D1,nyfss (1, st) · · · pst,nsD1,nyfss (ns, st)
]

and

B (st) = −
ns∑
s′=1

pst,s′
[
D2ny+nx+1,2(ny+nx)fss (s′, st) Dny+1,2nyfss (s′, st)

]
there are ns versions of

A (st)


I

D1,nxgss (1)
...

D1,nxgss (ns)

D1,nxhss (st) = B (st)

 I

D1,nxgss (st)

 . (17)

where the unknowns are {D1,nxhss (s) ,D1,nxgss (s)}nss=1.

To solve these unknowns, stack the systems (17), which gives a set of n ∗ ns quadratic

equations and unknowns. Then, using the ordering on{
vec (D1,nxhss (1))′ , ..., vec (D1,nxhss (ns))

′ , vec (D1,nxgss (1)) , ..., vec (D1,nxgss (ns))
}
.
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to construct the Gröbner basis, and solving the resulting quadratic system produces a set of

solutions for {D1,nxhss (s) ,D1,nxgss (s)}nss=1.

In a typical model without Markov switching, determinacy is easily verified by checking

whether the number of eigenvalues of the system (17) inside the unit circle equals to the number

of state variables. In a model with Markov switching, as the one described here, the problem

is more subtle. As shown in Farmer et al. (2009), it is possible that the number of stable

eigenvalues associated with each of the regimes is equal to the number of states but the system,

as a whole, does not have a stable solution under several concepts of stability. The good news

is that the Markov switching model can be checked for mean-square stability (MSS), as defined

in Costa et al. (2005). In particular, MSS requires checking if the following matrix has its

eigenvalues inside the unit circle

T =
(
P ′ ⊗ In2

x

)
diag [D1,nxhss ⊗D1,nxhss] (18)

where

diag [D1,nxhss ⊗D1,nxhss] =


D1,nxhss (1)⊗D1,nxhss (1) 0 0

0
. . . 0

0 0 D1,nxhss (ns)⊗D1,nxhss (ns)

 .
Thus, with Markov switching, the policy functions {D1,nxhss (i)}nsi=1 for all possible solutions

must be checked for stability under (18). If only one policy function is stable then the model only

has one stable solution. If more than one are stable, the model has multiple stable solutions. If

none are stable, the model has no stable solutions.

As mentioned, all possible solutions must be constructed and checked for stability. For each

regime, the problem of constructing solutions depends upon the selection of eigenvalues for

construction of the matrices {D1,nxhss (s)}nss=1. Each regime has n eigenvalues, and nx must be

used for the matrix D1,nxhss (s). Some eigenvalues are required to be selected: those associated

with the exogenous variables must be in D1,nxhss (s) by definition. So if nexog is the number

of exogenous variables, then nendo = n − nexog is the number of endogenous variables, and n′x
is the number of non-exogenous predetermined variables, then constructing solutions amounts
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to choosing nx−n′x eigenvalues (those associated with the endogenous predetermined variables)

from nendo possible selections. And this must be chosen for each regime, meaning a total of nendo

n′x

ns

=

(
nendo!

n′x! (nendo − n′x)!

)ns
possible solutions.

5 Example 1: RBC Model

This section presents a simple exercise to illustrate the theoretical framework at hand. The per-

fect vehicle for such pedagogical effort is the real business cycle model. There are two reasons.

First, the stochastic neoclassical growth model is the foundation of modern macroeconomics.

Even the more complicated New Keynesian models, such as those in Woodford (2003) or Chris-

tiano et al. (2005), are built around the core of the neoclassical growth model augmented with

nominal and real rigidities. Thus, after understanding how to deal with Markov switching in this

prototype economy, it will be rather straightforward to extend it to richer environments such

as the ones commonly used for policy analysis. Second, the model is so well known, its working

so well understood, and its computation so thoroughly explored that the role of time-varying

volatility in it will be staggeringly transparent.

5.1 The RBC Model

Consider a real business cycle model where growth in total factor productivity follows a Markov

process with only two regimes. In particular, the TFP process will follow a random walk in

logs with drift that takes one of two levels, high and low, so the economy experiences high or

low growth. The random walk specification helps simplify the number of variables considered

in a stationary equilibrium, and is hence the most parsimonious illustrative example. The spec-

ification of two regimes will allow a succinct discussion of the methodology, but, as mentioned

above, more regimes can be handled easily within the framework.
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To get into the substantive questions as soon as possible, the description of the standard

features of the prototype economy will be limited to fix notation. There is a representative

household in the economy, whose preferences over stochastic sequences of consumption, ct, are

represented by a utility function:

maxE0

∞∑
t=0

βt log ct

where β ∈ (0, 1). The resource constraint is

ct + kt = ztk
α
t−1 + (1− δ) kt−1

where kt is capital and the technological change, zt, proceeds according to a random walk in

logs with drift where the Markov switching is in the drift, i.e.

log zt = µt + log zt−1 + σεt

where the drift takes two values

µt = µ (st) , st ∈ {1, 2}

and the transition matrix is P = [pi,j] where pi,j = Pr (st = j|st−1 = i) .

For this model it is natural to work with the solution to the social planner’s problem. The

optimality conditions are standard:

1

ct
= βEt

1

ct+1

(
αzt+1k

α−1
t + 1− δ

)
and

ct + kt = ztk
α
t−1 + (1− δ) kt−1.

Due to the unit root the economy is non-stationary. Thus, define ωt = z
1

1−a
t−1 , and let c̃t = ct

ωt
,

k̃t−1 = kt−1

ωt
, z̃t = zt

zt−1
. Then the re-scaled equilibrium conditions are

1

c̃t
= βEt

z̃
1

α−1

t

c̃t+1

(
αz̃t+1k̃

α−1
t + 1− δ

)
,

c̃t + k̃tz̃
1

1−a
t = z̃tk̃

α
t−1 + (1− δ) k̃t−1,
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and,

log z̃t = µt + σεt.

Substituting the expression for z̃t, the conditions are then

1

c̃t
= βEt

1

c̃t+1

e
µt+σεt
α−1

(
αeµt+1+σεt+1 k̃α−1

t + 1− δ
)

and

c̃t + k̃te
µt+σεt

1−α = eµt+σεt k̃αt−1 + (1− δ) k̃t−1.

Using the notation in Section 2, xt−1 = k̃t−1, yt = c̃t, and θt = θ1t = µt, so

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) = 1
c̃t
− β 1

c̃t+1
e
µt+σεt
α−1

(
αeµt+1+χσεt+1 k̃α−1

t + 1− δ
)

c̃t + k̃te
µt+εt
1−α − eµt+σtεt k̃αt−1 − (1− δ) k̃t−1

 .
Clearly,

c̃t = g
(
k̃t−1, εt, χ, st

)
,

c̃t+1 = g
(
k̃t, χεt+1, χ, st+1

)
,

k̃t = h
(
k̃t−1, εt, χ, st

)
,

and the Markov Switching parameter is

µt+1 = µ (χ, st+1) = µ+ χµ̂ (st+1) .

5.2 Solving the RBC Model

This subsection shows how to solve the model using a first order approximation. The first

step is to find the steady state, and the second is to define the matrices in expression (16) that

are necessary to solve for the policy functions. Finally, after solving the model, simulations

demonstrate the decision rules.
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5.2.1 Steady State

In order to calculate steady state, set χ = 0. Therefore, c̃t = c̃t+1 = c̃ss, k̃t−1 = k̃t = k̃ss, and

µt+1 = µt = µ̄. So the equilibrium conditions in steady state are 1
css
− β 1

css
e

µ̄
α−1

(
αeµ̄k̃α−1

ss + 1− δ
)

c̃ss + k̃sse
µ̄

1−α − eµ̄k̃αss − (1− δ) k̃ss

 = 0

and solve these produces the steady state values

k̃ss =

(
1

αeµ̄

(
1

βe
µ̄
α−1

− 1 + δ

)) 1
α−1

c̃ss = eµ̄k̃αss + (1− δ) k̃ss − k̃sse
µ̄

1−α .

5.2.2 The Matrices

The next step is to define the matrices in expression (16), which depend on the derivatives of

the function f evaluated at the steady state. Recall in this example that ny = 1, nx = 1, nε = 1,

and nθ = 2. The necessary matrices are

D1fss (s′, s) =

 1
c2ss

0

 ,D2fss (s′, s) =

 − 1
c2ss

1

 ,D3fss (s′, s) =

 (1− α)αβe
αµ̄
α−1 k

α−2
ss

css

e
µ̄

1−α



D4fss (s′, s) =

 0

− e
µ̄

1−α
β

 ,D5fss (s′, s) =

 −αβe αµ̄
α−1 k

α−1
ss

css
σ

0

 ,
D6fss (s′, s) =

 σ
(1−α)css(

e
µ̄

1−α kss
1−α − eµ̄kαss

)
σ

 ,
D7,8fss (s′, s) =

 −αβe µ̄α
α−1 k

α−1
ss

css
0

0 0

 ,D9,10fss (s′, s) =

 1
css

0

−eµ̄kαss + 1
1−αe

µ̄
1−αkss 0


Given these derivatives, constructing the necessary matrices for the solution is straightfor-

ward. The first sets of matrices are for the quadratic system, they are

A (1) =
[ ∑2

s′=1 p1,s′D3fss (s′, 1) p1,1D1fss (1, 1) p1,2D1fss (2, 1)
]
,
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A (2) =
[ ∑2

s′=1 p2,s′D3fss (s′, 2) p2,1D1fss (1, 2) p2,2D1fss (2, 2)
]
,

and

B (1) = −
2∑

s′=1

p1,s′

[
D4fss (s′, 1) D2fss (s′, 1)

]
,

B (2) = −
2∑

s′=1

p2,s′

[
D4fss (s′, 2) D2fss (s′, 2)

]
The second set of matrices are used for the derivative with respect to εt, and they are

Θε =
2∑

s′=1

 p1,s′D2fss (s′, 1) 0

0 p2,s′D2fss (s′, 2)

 ,
Φε =

2∑
s′=1

 p1,s′D1fss (s′, 1)D1gss (s′) +D3fss (s′, 1) 0

0 p2,s′D1fss (s′, 2)D1gss (s′) +D3fss (s′, 2)


and

Ψε = −
2∑

s′=1

 p1,s′D6fss (s′, 1)

p2,s′D6fss (s′, 2)

 .
The third set of matrices are used for the derivative with respect to χ, and they are

Θχ =

 p1,1D1fss (1, 1) +D2fss (1, 1) p1,2D1fss (2, 1)

p2,1D1fss (1, 2) p2,2D1fss (2, 2) +D2fss (2, 2)

 ,
Φχ =

2∑
s′=1

 p1,s′D1fss (s′, 1)D1gss (s′) + p1,s′D3fss (s′, 1) 0

0 p2,s′D1fss (s′, 2)D1gss (s′) + p2,s′D3fss (s′, 2)

 ,
and

Ψχ = −
2∑

s′=1

 p1,s′D7,8fss (s′, 1)Dθ (0, s′)

p2,s′D7,8fss (s′, 2)Dθ (0, s′)

 .
5.3 RBC Solution

Now, to describe the solution, first consider the following parameters.

α β δ σ µ (1) µ (2) p1,1 p2,2

0.33 0.99 0.025 0.001 0.03 0.01 0.90 0.90
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The transition matrix implies that regimes 1 and 2 occur with equal frequency in the ergodic

distribution, so the steady state depends upon µ̄ = 0.02. The steady state values of capital and

consumption are kss = 11.4572 and css = 1.64771. Consequently the numerical values of the

derivatives are

D1fss (s′, s) =

 0.3683

0

 , D2fss (s′, s) =

 −0.3683

1

 , D3fss (s′, s) =

 0.0022

1.0303


D4fss (s′, s) =

 0

−1.04071

 , D5fss (s′, s) =

 0

0

 , D6fss (s′, s) =

 0.000905828

0.0153372


D7fss (s′, s) =

 −0.0383185

0

 , and D8fss (s′, s) =

 0.905828

15.3372

 .
Using the Gröbner basis with respect to the ordering {D1,nxhss (1) ,D1,nxhss (2) ,D1,nxgss (1) ,D1,nxgss (2)}

produces the following solutions

D1,nxhss (1) D1,nxgss (1) D1,nxhss (2) D1,nxgss (2)

1) 1.08526 −0.0774371 1.08526 −0.0774371

2) 0.930745 0.0817605 0.930745 0.0817605

3) 1.12− 0.091i −0.113 + 0.093i 1.12− 0.091i −0.113 + 0.093i

4) 1.12 + 0.091i −0.113− 0.093i 1.12 + 0.091i −0.113− 0.093i

Now, checking these solutions for MSS, the only stable solution is (2). The full solution is then

st = 1 : ĉt = 0.0818k̂t−1 + 0.0021εt + 0.0375, k̂t = 0.9307k̂t−1 − 0.0318εt − 0.0182

st = 2 : ĉt = 0.0818k̂t−1 + 0.0021εt − 0.0375, kt = 0.9307k̂t−1 − 0.0318εt + 0.0182

As an alternative parameterization, consider the same parameters above, but with p1,1 = 0.5.

In the ergodic distribution across regimes for this case, regime 1 occurs with probability 1
6
and

regime 2 occurs with probability 5
6
. Then the steady state has µ̄ = 0.0133, css = 1.7967, and

kss = 14.6326, and the first order solution is

st = 1 : ĉt = 0.0705k̂t−1 + 0.0023εt + 0.0294, k̂t = 0.9410k̂t−1 − 0.0411εt − 0.3526

st = 2 : ĉt = 0.0705k̂t−1 + 0.0023εt − 0.0059, k̂t = 0.9410k̂t−1 − 0.0411εt + 0.0705
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There are two important properties of these first order solutions. First, for both the first

case with a symmetric transition matrix and the second case with a non-symmetric transition

matrix, the slope coeffi cients of the solutions are identical across regimes. Second, the additional

constant term at the end of the solution is non-zero, which shows the non-certainty equivalence

of the first-order solution, and its magnitude depends upon the ergodic probabilities. Since the

only regime-switching parameter is the level of growth, the only change in the decision rules

is through the constant term, which represent deviations from the steady state due to Markov

switching. In the symmetric parameterization, each regime occurs with equal probability in the

ergodic distribution, so the steady state is exactly between each regime, and hence the deviations

are equally above and below. In the non-symmetric transition matrix parameterization, since

regime 2 occurs with a higher probability in the ergodic distribution, the additional constants

are much smaller for regime 2, demonstrating that the steady state is closer to regime 2.

Figure 1 shows the policy functions for each regime when the transition matrix is symmetric

if εt = 0, alongside the fixed regime case, which is no Markov switching but with TFP growth

always at µ̄. The plot shows how the policy functions with Markov switching have identical

slopes to those without switching, but the constant term associated with Markov switching

scales the functions up and down. In the case with a symmetric transition matrix and hence

equal ergodic probabilities, the fixed regime case lies exactly between the two lines when there

is switching.

Figure 2 shows the policy functions for the non-symmetric transition matrix case. Again,

this figure shows that the slopes are the same, but the Markov switching rules are scaled up and

down by a constant. Since regime 2 occurs with higher probability in the ergodic distribution,

the fixed regime policy function is very close to that for regime 2, while regime 1 is farther away.

5.4 RBC Simulations

To illustrate how Markov switching can play a role in growth dynamics, especially through the

non-certainty equivalence of the first-order approximation, Figures 3 and 4 show simulation

results of the models discussed above and their ergodic distributions. For both the symmetric
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and non-symmetric transition matrices, there are 1000 simulations of the economy for a length

of 10000 periods, excluding the first 1000 to eliminate the effects of initial conditions.

Figure 3 shows the simulated distributions of output and consumption growth for the sym-

metric transition matrix economy. Recall that in this specification, both regimes are equally

highly persistent, so in the ergodic distribution, both occur with equal probability. While

the fixed regime case has a single-peaked distribution, thereby exhibiting growth at close to a

constant rate, the switching case has a twin-peaked distribution for both variables, one peak

associated with each regime. The parameterization for the fixed regime case suggests that its

growth rate peak should be halfway between the growth rates of the two regimes, but simula-

tions show that growth is higher on average in the switching case than the fixed regime case.

This result follows from the non-certainty equivalence of the solution; when there is switching

between high and low growth regimes, agents understand that they will experience both regimes,

and, on average, this decision leads to higher consumption and output growth than if there was

only a single regime.

Figure 4 shows the simulated distributions of output and consumption growth for the case

of the non-symmetric transition matrix. In this case, regime 2 occurs much more often and

is more persistent than regime 1, so the ergodic distribution has higher probability on regime

2. Again, the fixed regime case exhibits almost constant growth: the distribution is single-

peaked. The Markov switching case, on the other hand, is no longer twin-peaked. In this case,

there is one dominant peak of the distribution, which is associated with regime 2, but there are

also several other smaller peaks to the distribution that correspond to different histories of the

regimes. For example, the large peak is a result of regime 2 occurring approximately 5/6 of

the time, but there will be long periods where only regime 2 occurs, and the small left-most

peak is associated with these stretches. The other smaller peaks correspond to various lengths

of regime 1 occurring, which happens with lower probability. As in the symmetric case, the

ergodic mean of growth in the fixed case is lower than when there is switching, again this is

because of the lack of certainty equivalence in the two regimes.
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6 Example 2: NK Model

This section presents a second example: a simple New Keynesian model to highlight the issue

of determinacy and mean square stability.

6.1 The NK Model

The model is a model with quadratic price adjustment costs where the monetary authority

follows a Taylor Rule that changes according to a Markov Process. The reaction coeffi cient of

monetary policy switches with the regime, which Davig & Leeper (2007), Farmer et al. (2008b),

and Bianchi (2009), among others, have argued captures the changing stance of policy in the

United States.

A representative consumer maximizes expected lifetime utility over consumption Ct and

hours worked Ht

E0

∞∑
t=0

βt (logCt −Ht)

subject to the budget constraint

Ct +
Bt

Pt
= WtHt +Rt−1

Bt−1

Pt
+ Tt +Dt

where Bt is next period’s nominal bonds, Wt is the real wage, Rt−1 is the nominal return on

bonds, Tt is lump-sum transfers, and Dt is profits from firms.

A competitive final goods producer combines a continuum of intermediate goods Yj,t into a

final good Yt by a CES aggregator

Yt =

(∫ 1

0

Y
η−1
η

j,t dj

) η
η−1

Intermediate goods firms take the wage and their demand function

Yj,t =

(
Pj,t
Pt

)−η
Yt

as given and set their price Pj,t demand hours Hj,t to produce according to

Yj,t = AtHj,t
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where total factor productivity follows

logAt = µt + logAt−1

where, similar to the RBC model in Section 5, the drift can take two values

µt = µ (st) , st ∈ {1, 2} .

These firms face quadratic price adjustment costs according to

ACj,t =
κ

2

(
Pj,t
Pj,t−1

− 1

)2

.

The monetary authority sets prices by a Taylor rule where the coeffi cient varies over time

Rt

Rss

=

(
Rt−1

Rss

)ρr
Π

(1−ρr)ψt
t exp (σrεr,t)

In a symmetric equilibrium Pj,t = Pt, Yj,t = Yt, and Hj,t = Ht for all j, and market clearing

implies

Yt = Ct +
κ

2
(Πt − 1)2 Yt.

Using the notation in Section 2, yt = [Πt, Yt]
′, xt−1 = Rt−1, θ1t = µt, and θ2t = ψt. Then

the stationary equilibrium is expressed as

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) =
1− β (1−κ

2
(Πt−1)2)Ỹt

(1−κ
2

(Πt+1−1)2)Ỹt+1

1

exp(µt+1)
Rt

Πt+1

(1− η) + η
(
1− κ

2
(Πt − 1)2) Ỹt + βκ

(1−κ
2

(Πt−1)2)
(1−κ

2
(Πt+1−1)2)

(Πt+1 − 1) Πt+1 − κ (Πt − 1) Πt(
Rt−1

Rss

)ρ
Π

(1−ρ)ψt
t exp (σεt)− Rt

Rss


6.2 NK Solution

The calibration used is as follows

β κ η ρ σ p1,1 p2,2 µ̄ µ (1) µ (2) ψ (1) ψ (2)

0.99 161 10 0.8 0.0025 0.90 0.90 0.02 0.03 0.01 3.1 0.9
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Using (16) and the described calibration produces a quadratic system to be solved to find

{D1,nxgss (s) ,D1,nxhss (s)}nss=1. Using the Gröbner basis with respect to the ordering{
D1,nxhss (1) ,D1,nxhss (2) ,D1,nxgss (1)′ ,D1,nxgss (2)′

}
the solutions are

D1,nxhss (1) D1,nxgss (1)′ D1,nxhss (2) D1,nxgss (2)′

1) 0.596 -1.892 -0.318 0.700 -2.892 -0.537

2) 0.777 -3.575 -0.035 1.308 -7.266 2.743

3) 0.799 -1.757 -0.002 1.055 1.332 1.375

4) 1.096-0.438i -0.791+4.136i 0.463-0.685i 1.337+0.0569i -9.738-1.895i 2.897+0.307i

5) 1.096+0.438i -0.791-4.136i 0.463+0.685i 1.337-0.0569i -9.738+1.895i 2.897-0.307i

6) 1.098-0.208i -0.963+1.862i 0.467-0.325i 1.026-0.019i 0.962+0.738i 1.217-0.104i

7) 1.098+0.208i -0.963-1.862i 0.467+0.325i 1.026+0.019i 0.962-0.738i 1.217+0.104i

8) 1.240-0.250i 0.756+2.978i 0.688-0.392i 0.752+0.005i -2.212+0.615i -0.261+0.025i

9) 1.240+0.250i 0.756-2.978i 0.688+0.392i 0.752-0.005i -2.212-0.615i -0.261-0.025i

Checking these solutions for MSS, the first solution is the only stable one. Constructing the

full solution produces:

st = 1 :


R̂t̂̃Y t

Π̂t

 =


0.5965

−1.8919

−0.3184

 R̂t−1 +


0.0019

−0.0062

−0.0010

 εr,t +


−0.0014

0.0250

−0.0022



st = 2 :


R̂t̂̃Y t

Π̂t

 =


0.7004

−2.8919

−0.5366

 R̂t−1 +


0.0022

−0.0095

−0.0018

 εr,t +


−0.0043

−0.0724

−0.0230


where v̂art = var − varss where varss is the steady state of var for var ∈

{
Rt, Ỹt,Πt

}
.

As an alternative, suppose now that ψ (2) = 0.7. There are still nine total solutions, but
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now there are two stable solutions:

D1,nxhss (1) D1,nxgss (1)′ D1,nxhss (2) D1,nxgss (2)′

1) 0.592109 -1.90874 -0.325381 0.713454 -3.14857 -0.599885

2) 0.858767 -1.70451 0.0919787 1.01631 2.13138 1.49934

which shows that this parameterization does not produce a unique MSS solution.

These two parameterizations demonstrate how MSS as a stability concept determines exis-

tence and uniqueness of the solution. In the parameterization with ψ (2) = 0.9, solving the

system produces 9 total solutions, and only satisfies mean square stability. In the case of

ψ (2) = 0.7, having two MSS solutions implies non-uniqueness of a stable solution. If, on the

other hand, there were no MSS solutions, then a stable solution does not exist.

7 Conclusion

This paper developed a perturbation method for constructing approximations to the solutions

to Markov switching DSGE models. The framework allows introducing switching from first

principles, including when switching affects the steady state of the economy. While not pursued

here, second- or higher-order approximations are straightforward, and follow the single-regime

case studied by Schmitt-Grohe & Uribe (2004). Using Gröbner bases to solve the system and

mean square stability to check for existence and uniqueness of stable solutions, the method

handles a wide variety of models, and shows that switching in parameters that affect the steady

state implies that first order approximations are not certainty equivalent.
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Figure 1: Decision Rules: Symmetric Transition Matrix
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Figure 3: Simulations: Symmetric Transition Matrix
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Figure 4: Simulations: Non-Symmetric Transition Matrix
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