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Many decision-makers in the public and private sectors routinely consult the im-

plications of formal economic and statistical models in their work. Especially in

large organizations and for important decisions, there are often competing models.

Of course no model under consideration is a literal representation of reality for the

purposes at hand �more succinctly, no model is �true��and di¤erent models focus

on di¤erent aspects of the relevant environment. This fact can often be supported by

formal econometric tests concluding that the models at hand are, indeed, misspeci�ed

in various dimensions.

There are well-developed practical Bayesian procedures, with solid theoretical

foundations, for combining competing models in decision-making (Geweke, 2005, Sec-

tion 1.5). But these procedures all condition on one of the models under consideration

being true. Non-Bayesian model selection procedures may be less formal but proceed

under the same maintained hypothesis. This leads to the common situation in which

decision-makers are left to balance informally the various predictions and decisions

that are formal consequences of competing economic and statistical models. In this

circumstance serious attention is typically granted to the implications of models to

which formal econometric procedures assign very little credence.

The approach taken here draws on a literature long established in statistics and

recently emerging in econometrics that dispenses with the condition that one of the
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models under consideration is true. In its place it substitutes a log scoring rule for

predictive distributions, described in Section I. A linear prediction pool, described in

Section II, enlarges the set of model predictive densities to include weighted means

of these densities. The weights can be �xed, or they can be chosen using the history

of model predictions together with the log scoring rule. Both theory and implemen-

tation show that these weights are quite di¤erent from the weights that emerge from

Bayesian model averaging. Section III applies these procedures to models represent-

ing three di¤erent classes of macroeconometric models used by many central banks.

Linear prediction pools of these models substantially outperform each of the three

constituent models as well as Bayesian model averaging.

I. Models and prediction

Attention focuses on predicting a vector of economic time series over a sequence

of periods t = 1; 2; : : :. Prior to time t this is a random vector Yt, and after time t is

is a vector of observed values yt. Let Yt1:t2 denote the set fYt1 ; : : : ; Yt2g and yt1:t2 the

realization of these random vectors. Each of a set of models fA1; : : : ; Ang provides

predictive densities p (Yt; y1:t�1; Ai). These models could use more or less formal pro-

cedures for inference; they could involve undocumented and unreproducable personal

judgment; they could use covariates not in Yt; or observations yt (t � 0). All that

matters is that each model provide one-step-ahead predictive densities in real time.
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The log score for model Ai at time t is

LS (y1:t; Ai) =

tX
s=1

log ps (ys; ys�1; Ai) . (1)

This is a measure of forecast accuracy. There are many measures of forecast ac-

curacy, of which mean square error is perhaps the best known, but there are some

compelling reasons to use log score. (1) Because the scoring rule at time t depends

on p (Yt; y1:t�1;Ai) only through p (yt; y1:t�1;Ai) it is said to be local (Bernardo, 1979).

A scoring rule is said to be proper if a forecaster maximizing expected score is led to

report her true subjective distribution (Winkler and Murphy, 1968). The log scoring

rule is the only proper local scoring rule (Shuford et al., 1966; Bernardo, 1979). (2)

Log score is monotonically related to the probability (density) assigned to events that

actually occurred: exp [t�1LS (y1:t;Ai)] is the geometric mean of these probabilities for

model Ai. (3) If Ai is formally subjective Bayesian then LS (y1:t;Ai) is its log marginal

likelihood in the sample y1:t.

If models Ai and Aj are both formally subjective Bayesian then LS (y1:t;Ai) �

LS
�
y1:t;Aj

�
is the logarithm of the Bayes factor in favor of model Ai over model

Aj. Under standard asymptotic conditions (e.g., Geweke, 2005, Theorem 3.4.2)�
LS (y1:t;Ai)� LS

�
y1:t;Aj

��
=t converges to a �nite constant as t ! 1 and so the

posterior odds ratio either converges to zero or diverges to +1 as t!1. This leads

to a phenomenon well known to Bayesian econometricians: as sample size increases

Bayesian model averaging places weight entirely on a single model and consequently
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only one model remains relevant for prediction and decision-making. However in

these same circumstances decision-makers do not con�ne their attention to this one

model �Section III provides an example. As will be seen in the next section, this

disjuncture may be attributed to the fact that Bayesian procedures condition on one

of models A1; : : : ; An being true while actual decision-makers do not do this.

II. Prediction pooling

A linear pool of the predictive densities p (Yt; y1:t�1; Aj) (j = 1; : : : ; n) is

p (Yt; y1:t�1; wt�1) =
nX
i=1

wt�1;ip (Yt; y1:t�1; Ai) (2)

where the weight vector wt�1 has all elements nonnegative and summing to one, so

that a linear pool of predictive densities is itself a predictive density. The idea dates

at least to Stone (1961). The subscript t� 1 for w emphasizes the requirement that

the weight vector must be computed in real time if a linear pool is actually to be

used. Geweke and Amisano (2011) show that �nding the vector wt�1 that maximizes

the historical log score
Pt�1

s=1 log [
Pn

i=1wt�1;ip (ys; y1:s�1; Ai)], henceforth the real-time

optimal weight vector, is a trivial computational task. The weights could also be �xed

at some reasonable value (e.g., wt�1;i = 1=n for all t and i), and Section III utilizes

both schemes.

Geweke and Amisano (2011) shows that under standard conditions wt ! w�. In

the empirically irrelevant but theoretically illuminating case that one of the models
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(Aj, say) is true w�j = 1. In the more general and relevant case that all models are

false, several (and potentially all) elements w�i > 0. In these same circumstances

Bayesian model averaging will assign a limiting weight of one to one model and zero

to the others.

To provide some intuition for these facts, consider the very simple case of predict-

ing a single scalar time series yt that is in fact independent and identically distributed.

Each of two models A1 and A2 makes this i.i.d. speci�cation, and each has a �xed

predictive density �neither learns from the past, making it possible to abstract from

predictive densities that change over time. The history of prediction and realization

leads to real-time optimal weights updated each period.
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CAPTION: Figure 1. The heavy solid line is the predictive density of the data

generating process. The light solid and dashed lines are the predictive densities of

models A1 and A2, respectively. The heavy dashed line is the predictive density of

the optimal pool.

Figure 1 provides an example, in which the thick solid line is the true popu-
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lation density and the thin lines provide the predictive densities of the two mod-

els. The model A1 (solid thin line) predicts well most of the time, but it assigns

P (y � 3) < 0:001 whereas in fact P (y � 3) u 0:05. Model A2 (dashed thin line)

would be regarded as inferior to A1, assigning probability 0.25 to events whose actual

probability is less than 0.001. The optimal pool incorporates A2 because that model

assigns substantial positive probability to the event (�4; 4) that is assigned almost

no probability by A1 and because actual events assigned very low probabilities are

heavily penalized in the log score function.

Formal analysis supports these observations. The expected log score of A1 in a

sample of size 100 is -269.1 whereas that of A2 is -307.5. The corresponding weight

for A2 in Bayesian model averaging with sample size T = 100 is 1:92� 10�17, so that

essentially all of the weight is assigned to A1. The limiting value w� of the real-time

optimal weight vector wt�1 is w� = (0:908; 0:092)
0. In a sample of size T = 100 the

expected log score in the optimal linear pool is -230.3. This log score is much closer

to the expected log score from the data generating process in a sample of size 100,

which is -225.3, than it is to the expected log score of the better model A1.

The formal Bayesian calculus conditions on one of A1 and A2 being true. The

Bayes factor is the ratio of their predictive scores. Since log predictive scores (1) are

proportional to sample size, model probabilities move in a regular and often rapid

fashion toward their limiting probabilities of 0 for one model and 1 for all others.

This is a consequence of the maintained condition one of the models must be true.
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Model pooling weakens this assumption by introducing the continuum of prediction

models de�ned by the set of weights wt�1 in the unit simplex in (2). When none of

the constituent models are true, the consequence is that positive weights are usually

assigned to several models. As illustrated in Figure 1, models that are clearly inferior

to others in isolation typically have a role to play in these pools.

III. An application: Macroeconomic forecasting

This section illustrates these points using a 7�1 vector of US economic time series

and three macroeconometric forecasting models. The time series is the same as that in

Smets and Wouters (2007): growth rates in per capita real consumption, investment,

and output; growth rate in the real wage; log per capita weekly hours worked; the

in�ation rate; and the Federal funds rate. The three models are the dynamic stochas-

tic general equilibrium (DSGE) model of Smets and Wouters (2007); a conventional

vector autoregression (VAR) with a Minnesota prior using four lags of each variable;

and a dynamic factor model (DFM) following the speci�cation of Stock and Watson

(2005) with three common factors. The DFM includes �ve additional macroeconomic

time series: growth rate in the S&P 500 index, the unemployment rate, the spread

between 3-month and 10-year Treasury rates, the BAA - AAA corporate bond rate

spread, and growth rate in the M2 money supply. The predictive densities for the

DFM are the marginal densities in the same seven time series common to all three

models. Inference and prediction are fully Bayesian, using conventional proper prior

distributions and Markov chain Monte Carlo algorithms.
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The analysis covers the quarters 1966:1 (t = 1) through 2010:3 (t = 179) and all

prediction is fully out-of-sample. The �rst predictive distribution, for 1966:1, follows

from the posterior distribution for 1951:1 - 1965:4 and the last, for 2010:3, follows

from the posterior distribution for 1951:1 - 2010:2,. Log scores and optimal prediction

pool weights are updated each quarter. Within the analysis period we focus on three

subperiods: pre-moderation, 1966:1 - 1984:4; the great moderation, 1985:1 - 2007:4;

and post global �nancial crisis, 2008:1 - 2010:3.
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CAPTION: Figure 2. Log scores of model pools as a function of model weights:

horizontal axis is wDSGE, vertical axis is wDFM , and the balance is wV AR = 1 �

wDSGE � wDFM .

Figure 2 conveys the mean log score of linear pools as functions of their weight

vectors w, LS (w) = (t2 � t1 + 1)�1
Pt2

s=t1
log
�P3

i=1wip (ys; y1:s�1; Ai)
�
, where t1 and

t2 are the start and end of the analysis period or subperiod. In each panel the

separation between contours is 0.025. The lower left corner is the VAR model alone,

the upper left is the DFM model alone, and the lower right is the DSGE model alone.
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The �rst three rows of Table 1 provide the values at these points. The di¤erences

in these log scores are consistent with dominance of one model in Bayesian model

averaging. Treating the pre-1966 period as part of the prior distribution and assigning

equal prior probabilities to the three models, the log-odds ratio in favor of DFM over

DSGE for the entire period 1966:1 - 2010:3 is 179�(�6:10650� (�6:1866)) = 14:3379,

which assigns all but about 6�10�7 of the weight to DFM. Bayesian model averaging

yields similarly one-sided results for most of the subperiods as well.

Table 1: Mean log predictive scores

Period 1966:1- 1966:1- 1985:1- 2008:1-

2010:3 1984:4 2007:4 2010:3

DSGE -6.1866 -7.3596 -4.7604 -8.9153

VAR -6.2945 -8.0163 -4.4767 -8.9459

DFM -6.1065 -7.1169 -4.8089 -9.0647

Optimal -5.8008 -6.8178 -4.3879 -8.6498

Equal -5.8028 -6.8530 -4.4933 -8.6604

The asterisk in each panel of Figure 2 indicates the weight vector w that maxi-

mizes log score, and Table 1, row 4, presents the average log predictive score for this

combination. In all four panels the maximum is very shallow, consistent with the

intuition of Figure 1: the marginal contribution of a model to a pool is greatest at its

introduction (weight zero) where it can assign some probability to historical events

otherwise very improbable in the pool. As a corollary substantial departure in pool
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weights from the optimal value has only modest impact on log score of prediction so

long as they remain well within the unit simplex. The last row of Table 1 indicates

the average log predictive score of a pool with equal model weights. It is very close

to that with the optimal weight vector in each case.

Pooling improves substantially on the predictive performance of the best model.

For the entire period the average per period improvement in log score over the DFM

is 0.3057. By implication, the geometric mean of the ratio of the probability density

assigned by the DFM to actual events one-quarter-ahead to that assigned by the pool

(either optimal or equally weighted) is less than 0.74.
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CAPTION: Figure 3. Real-time pool and Bayesian model averaging weights for

t = 1 corresponding to 1966:1 through t = 179 corresponding to 2010:3: DSGE solid

line, VAR dotted line, DFM dashed line.

Figure 3 tracks model weights through the entire analysis period from 1966:1

through 2010:3, with optimal pool weights in the left panel and Bayesian model

averaging weights in the right panel. In both cases the weights for the �rst period

predictive density, 1966:1, are equal, and for roughly the �rst dozen quarters they

�uctuate rapidly. But the pattern soon settles down. In the case of the optimal pool
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weights (left panel) the VAR steadily gains through the great moderation, where its

log score dominates that of the other two models (Table 1). The weights at the right

of this graph are the same as those indicated by the asterisk in the upper left panel

of Figure 2. In contrast Bayesian model averaging (right panel) assigns essentially

all weight to DFM from the early 1970�s onward. This is consistent with the logic

of Bayesian model averaging: given the maintained hypothesis that one of the three

models is true, the evidence that this one model must be the DFM is overwhelming

ten years into the sample and beyond.

IV. Conclusion

The assumption that one of a set of prediction models is a literal description

of reality formally underlies many formal econometric methods, including Bayesian

model averaging and most approaches to model selection. Prediction pooling does

not invoke this assumption and leads to predictions that improve on those based on

Bayesian model averaging. In many cases, including the prediction of macroeconomic

aggregates using leading macroeconometric models examined here, the improvement

is substantial.
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