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Abstract

A principal delegates multiple decisions to an agent, who has private
information relevant to each decision. The principal is uncertain about
the agent’s preferences. I solve for max-min optimal mechanisms – those
which maximize the principal’s payoff against the worst agent preference
type. These mechanisms are characterized by a property I call “aligned
delegation.” In an aligned delegation mechanism all agent types play
identically, as if they shared the principal’s preferences.

Max-min optimal mechanisms may take the simple forms of simul-
taneous ranking mechanisms, sequential quotas, or budgets. This work
motivates the use of these contracts.

1 Introduction

Consider a problem in which a principal (he) delegates a number of decisions

to an agent (she). A school requires a teacher to assign grades to all of her

students; a firm appoints a manager to determine investment levels in different

projects; an organization asks a supervisor to evaluate her employees and make

promotion and firing decisions, or give out bonuses. In each of these cases,
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the principal relies on the agent because she observes “states of the world”

relevant to the principal’s preferences. The teacher knows how well students

have done in the class; the manager sees the quality of potential investments;

the supervisor has observed the performance of her employees. How should

the principal choose a delegation rule that specifies which actions the agent

may take?

If the principal and agent had identical preferences, there would be no rea-

son to restrict the agent’s choices. However, preferences may only be partially

aligned. For instance, a teacher and school agree that better students should

receive higher grades. But the teacher may be biased towards low grades rel-

ative to the school’s wishes, or high grades, or something more complicated

– failing too many students while giving out too many A’s, say. Giving the

agent more freedom lets her make better use of her private information, but

it also gives leeway for a biased agent to take advantage of the principal.

I assume that the principal has beliefs about the distribution of states

(student performance levels), but has limited information about the agent’s

bias – her utility function or “type” mapping states and actions into payoffs.

He may only know that her utility satisfies a certain property, or is in some set.

The principal seeks a robust mechanism which will work well for any agent

type.

Formally, I model this robustness by searching for a max-min optimal mech-

anism. For any set of agent types and for any mechanism the principal sug-

gests, we can find the principal’s minimum expected payoff over all agent types.

A max-min optimal mechanism maximizes this worst-type payoff.1

A “simultaneous” problem is one in which the agent observes all of the

underlying states before any actions are taken: a teacher sees all of her stu-

dents’ test scores before assigning grades. In a simultaneous problem, suppose

1It might be difficult for the principal to express a prior belief over the distribution of
agent types if types come from a highly dimensional set. Even given a well-specified prior,
the standard tools of dynamic Bayesian optimal mechanism design – see for example Pavan,
Segal, and Toikka (2010) – assume that the agent has one-dimensional private information
at every period and that transfer payments may be used. Neither holds in this model. The
agent may have many-dimensional private information on her utility function and on the
observed states of the world.
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that the principal and agent both prefer higher actions in higher states (higher

grades for better students), formalized as an increasing difference condition on

utility functions. If the principal believes that the agent might have any in-

creasing difference utility, then a ranking mechanism is max-min optimal. The

agent is only asked to rank states from lowest to highest. The decision with

the lowest state is assigned to some predetermined low action, the next higher

state is assigned to a higher action, etc. This corresponds to a “strict grading

curve” where the top 10% of students get an A and the next 15% get an A-, or

a bonus rule which gives $50,000 to the best-performing employee in a group

and $40,000 to the next one.

In a “sequential” problem, each action is chosen before the next state is

observed: the supervisor evaluates one employee and gives her a bonus before

evaluating the next employee. Under a stronger assumption than increasing

differences, that the principal and agent utilities share a quadratic loss func-

tional form, the max-min optimal mechanism is a sequential quota. The agent

is given a list of actions to assign to the decisions. Each period she observes

the state then chooses an action from the list, without replacement.

Ranking mechanisms and quotas are both special cases of probability as-

signment mechanisms, which I introduce in Section 3. These contracts let the

agent take any actions she wants so long as each action is ultimately played

an appropriate number of times. The agent is allowed to assign a probabil-

ity distribution over actions to a decision; the “number of times” corrects for

stochastic actions. Theorem 1 establishes that probability assignment mecha-

nisms are max-min optimal if two conditions hold. First, the agent has a rich

set of possible utilities which contains certain extreme preferences. Second,

preferences are PA-aligned – i.e., probability assignment mechanisms satisfy

the property of aligned delegation. A mechanism is aligned delegation if every

agent type plays as though she were maximizing the principal’s payoff. Think

of the ranking mechanism – any increasing-difference agent type submits hon-

est rankings, just as the principal wants her to do.

Section 4 applies this theorem to show that ranking is max-min optimal in

simultaneous problems with increasing difference preferences. Section 5 applies
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it to show that quotas are optimal in sequential problems with quadratic loss

preferences.

Section 6 shows that in the absence of richness, we may be able to do better

than probability assignment by giving the agent more flexibility. Suppose the

agent has an unknown constant bias relative to the principal, modeled with a

quadratic loss functional form. Then for a simultaneous or sequential problem,

a budget mechanism is max-min optimal. The agent is allowed to choose any

actions which sum to some specified level. This corresponds to a grading curve

in which a teacher can give out any grades so long as the class GPA is 3.0,

or a bonus pool where a supervisor can divide $150,000 among her employees

as she sees fit. This budget mechanism would do poorly if the agent were

inclined towards moderate actions (give every student a B), or towards extreme

actions (a lot of A’s, a lot of D’s). But with a constant bias, it satisfies aligned

delegation. The principal and agent may disagree about their desired average

action, but for any fixed average they agree about what actions to take.

If the agent may have extreme or moderate preferences, modeled as quadratic

loss preferences with an unknown linear bias, then the principal should use a

two-moment mechanism. The agent chooses actions to fit a predetermined

sum and sum-squared – i.e., a fixed mean and variance.

Extensions are considered in Section 7, and Section 8 concludes. All proofs

omitted from the body of the paper are found in Appendix B.

Literature Review

A max-min optimality criterion, as opposed to a Bayesian one, is rare in the

theory of contracting and mechanism design. One notable early exception is

Hurwicz and Shapiro (1978), which shows that a 50% tax may be a max-min

optimal sharecropping contract. More recently, Satterthwaite and Williams

(2002) justifies double-auctions as worst-case asymptotic optimal in terms of

efficiency loss. Other applications of max-min in economics include behav-

ioral analyses of ambiguity aversion (see Gilboa and Schmeidler (1989) for an

axiomatization) and macroeconomic work on robust control (see Sargent and
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Hansen (2007)). In computer science, algorithms are commonly evaluated by

their max-min or worst-case performance; this approach has been applied to

auction theory in work reviewed by Hartline and Karlin (2007).

I borrow the basic set-up of my stage game from the literature on the

delegation problem, introduced by Holmström (1977). An agent is privately

informed about a state of the world which affects both her own preferences over

actions and a principal’s. The principal “delegates” the decision by specifying

a set of actions from which the agent may choose. Actions and states are

elements of the real line and contracting is done through restrictions on actions,

without transfer payments conditional on actions or on outcomes.

I diverge from the delegation literature by considering multiple decisions

and uncertainty over the agent’s utility function, while most previous work

looks at a single decision and a commonly known agent utility function. See for

example Holmström (1977, 1984), Melumad and Shibano (1991), Martimort

and Semenov (2006), Alonso and Matouschek (2008), Kovac and Mylovanov

(2009), and Amador and Bagwell (2010). These papers develop methods for

deriving an optimal one-dimensional delegation set under various assumptions

on utility functions and state distributions. A common goal is to find condi-

tions under which interval delegation is optimal.

One paper which looks at uncertain agent preferences in the context of a

single decision is Armstrong (1995). Armstrong restricts attention to interval

delegation sets which do not vary with the agent’s type, and does comparative

statics on the endpoints of the interval. Athey et al. (2005) and Amador et al.

(2006) consider what are effectively sequential delegation problems over multi-

ple decisions in which the principal and agent share a commonly known stage

utility, but the agent has time-inconsistent preferences. They find conditions

under which interval delegation is optimal in each period – the agent is allowed

to choose any actions below a cutoff level. In sequential problems where the

agent has state-independent preferences – she only cares about the actions

which are taken – Frankel (2010a) and Malenko (2011) derive forms of quotas

and budgets, respectively, as optimal contracts. Frankel (2010a) assumes that

the principal does not know agent preferences precisely, and as in the current
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paper this prevents the principal from using more flexible contracts.

The issue of eliciting information over time from an agent with a hidden

bias has also been addressed in the study of cheap talk, wherein the principal

cannot commit to a mechanism. In Sobel (1985), Benabou and Laroque (1992),

and Morris (2001) the agent is altruistic with some probability, and otherwise

has some specified bias. In equilibrium, agents may shade their reports in

early periods in order to earn the principal’s trust later.

Finally, this paper is related to a body of literature which shows how to put

together multiple independent decisions to improve on the outcome of a single

decision. See Jackson and Sonnenschein (2007), Escobar and Toikka (2009),

and Cohn (2010) for analyses of allocation problems where each player has

private information on her own values, or Chakraborty and Harbaugh (2007),

Chakraborty and Harbaugh (2010), and Frankel (2010a) for settings where

an informed agent has information on a principal’s preferences. These papers

construct mechanisms or equilibria which yield high payoffs but (except for

Frankel (2010a)) are not necessarily optimal. For instance, Jackson and Son-

nenschein (2007) and Chakraborty and Harbaugh (2007) show that quotas and

ranking mechanisms may achieve approximately efficient or first-best payoffs

when there are many independent and ex ante identical decisions. While the

focus of the current paper is on max-min optimality, I extend the results of

approximately first-best payoffs to my environment in Appendix A.2.

2 Benchmark Model: Simultaneous Decisions

2.1 Players and Payoffs

A decision problem is comprised of N <∞ decisions, indexed by i = 1, 2, ..., N .

For decision i, a state of the world θi ∈ Θ ⊆ R is realized and then an action

ai ∈ A ⊆ R is taken. In the benchmark model, I consider a simultaneous

environment in which all states are realized and then all actions are taken.

Later sections allow for sequential decisions, where one action is taken before

the next state is realized.
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There are two players, a principal and an agent. Each player’s payoff

depends jointly on actions and states, but only the agent observes the states

of the world. After state θi is realized and action ai is taken, the principal gets

a stage utility for decision i of UP (ai|θi) and the agent gets UA(ai|θi). The

lifetime payoff of each player is the sum of the stage utilities:

Principal:
N∑
i=1

UP (ai|θi) Agent:
N∑
i=1

UA(ai|θi)

The sets A and Θ of actions and states are taken to be compact, i.e.,

closed and bounded subsets of the real line. The utility functions UA and UP

are continuous maps from A×Θ into R; I call the set of such functions U .

The principal has a prior belief over the joint distribution of states (θ1, ..., θN),

and he knows his own utility function UP ∈ U . He is uncertain about the

agent’s utility function. He only knows a set UA ⊆ U from which her utility

is drawn. In my analysis the principal need not have a prior belief about the

distribution of UA over UA.

It will be useful to define a notion of equivalence for utility functions:

Definition (Equivalent Utilities). Two stage utility functions U and Ũ in

U are equivalent if there exist a positive constant ζ ∈ R++ and a function

b : Θ→ R such that U(a|θ) = ζŨ(a|θ) + b(θ) for all a and θ.

Equivalent utility functions imply identical preferences over actions.2 In

later sections when I discuss functional forms of principal or agent utilities, the

conclusions should be understood to generalize to the full equivalence classes.

2.2 Timing of the Game

As mentioned above, only the agent observes the states of the world which

affect both his and the principal’s preferences over actions. The principal’s

role is to write a mechanism, i.e., a set of rules for the agent. He wants these

rules to induce the agent to choose actions which are good for the principal.

2The additive term b(θ) is exogenous to the chosen actions, while the constant ζ uniformly
rescales the action-dependent component of utility.
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After the principal decides on a mechanism, the agent observes the states

of the world and sends messages according to the given rules. These messages

determine the subsequent actions or, for stochastic mechanisms, the distribu-

tions over actions. In this benchmark simultaneous environment, the agent

observes and sends messages about all states before any actions are taken.

I assume that the agent must participate in any mechanism which the

principal designs – there are no “individual rationality” constraints.

The only output of the mechanism is the determination of the actions

taken. In particular, there are no transfer payments.3

The only inputs are the agent’s reports. Any outside information regard-

ing the values of states – e.g., the principal’s utility realizations – is noncon-

tractible. This can be thought of as a restriction on the information available

to the principal, or as a restriction on the set of mechanisms considered.

Formally, a mechanism D = (M0,M,M) is

• an initial message space M0 and an interim message space M; and

• a map M from pairs of messages (in M0 ×M) into joint distributions

over actions
(
in ∆(AN), where ∆ (·) represents the set of Borel measur-

able distributions
)
. For simplicity I will describe these maps only by

their marginal distributions over actions; by additive separability, the

marginals entirely determine payoffs.

The mechanism induces the following (single-player) game for the agent:

1. The agent observes UA ∈ UA.

2. The agent sends initial report m0 ∈M0.

3. The agent observes states θ = (θ1, ..., θN).

4. The agent sends interim report m ∈M.

3See Krishna and Morgan (2008) for a delegation model with limited-liability monetary
payments, or Ambrus and Egorov (2009) and Amador and Bagwell (2010) for models with
nonmonetary punishments conditional on actions taken. Frankel (2010a) shows how un-
certainty over payoffs in a model with state-independent preferences can make monetary
incentives infeasible.
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5. Actions a = (a1, ..., aN) are drawn from the distribution M(m0,m).4

A direct mechanism, for instance, would have M0 = UA and M = ΘN .

An agent’s pure reporting strategy σ is an initial message m0 and a function

mapping state vectors into interim messages m. After observing UA, the agent

chooses an optimal (sequentially rational) reporting strategy σ to maximize

her expected lifetime utility going forward from each information node. Let

ΣD be the set of all possible reporting strategies, and let Σ∗D(UA) ⊆ ΣD be

the set of optimal strategies for an agent with utility UA ∈ U .5

If a principal proposes mechanism D and strategy σ is chosen by the agent,

then a player with stage utility U ∈ U gets a lifetime expected payoff of

Ea,θ

[∑
i

U(ai|θi)
∣∣ D, σ]

The notation Ea,θ signifies that expectation is taken with respect to the ex-

ogenous states θ as well as the actions a, which – depending on D, θ, and σ

– may be stochastic.

The mechanisms as described above do not include all possible indirect

mechanisms. However, a revelation principle applies (see, e.g., Myerson (1986)).

Any equilibrium of any indirect mechanism without additional informational

inputs could be replicated by the truthful equilibrium of an incentive com-

patible direct mechanism of the form above. The mechanisms I consider are

without loss of generality in the sense that they include direct mechanisms.

2.3 Max-Min Optimality

This paper will be primarily concerned with solving for max-min optimal mech-

anisms – those which maximize the principal’s payoff against the worst possible

4None of the results of the paper would change if the agent observed information about
θ prior to any reports. See Section 5 for a discussion of the sequential timing, in which θi
is observed, interim message i is sent, action ai is taken; and only then is θi+1 observed.

5As a matter of notation, I say that UA is observed and then a reporting strategy is cho-
sen; the reporting strategy does not itself take UA as an argument. This terminology allows
me to talk about different types’ playing the same strategy. In more standard notation, a
“strategy” would be a map from UA into ΣD.
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agent type.

Definition (Max-min Optimality). Say that a mechanism is max-min optimal

over a set of agent utilities UA ⊆ U if it is an arg max of the following problem:

max
Mechanisms D

[
inf

UA∈UA

[
max

σ∈Σ∗D(UA)
Eθ,a

[∑
i

γiUP (ai|θi)
∣∣ σ,D]]]

The worst case is taken over utility realizations, not state realizations. In

the case of multiple optimal strategies for an agent, I look at the one preferred

by the principal – this is the second “max” in the definition.

The max-min problem can be thought of one in which the principal first

picks a mechanism D. Given this mechanism, an adversary or “devil” chooses

an agent utility type UA ∈ UA so as to minimize the principal’s expected payoff.

Then states are realized, and the agent plays a strategy σ which is optimal for

her type UA.

I have exogenously assumed that money is not used, but in a max-min

sense money would not help the principal. Even if the principal knew UA

precisely, he would not be able to use monetary bonuses effectively without

knowing the tradeoff of money against action utility. In the extreme cases a

righteous teacher would ignore monetary incentives in order to do right by her

students; an apathetic teacher would first maximize her bonus, and only then

consider student performances.

3 Probability Assignment Mechanisms

In this section I define a class of “probability assignment” (PA) mechanisms

and show that they are max-min optimal under two assumptions on the agent’s

utility set: UA satisfies richness and PA-alignment. Later sections apply these

results to derive simple implementations of PA mechanisms as max-min opti-

mal in economically relevant environments.
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3.1 Measure and Probability Assignment

Given a mechanism D, a strategy σ, and a state realization θ, the induced

measure µDσ,θ is a measure on the set of actions defined by

µDσ,θ (B) =
N∑
i=1

Prob[ai ∈ B|σ,θ] for each measurable B ⊆ A.

where, as a matter of notation, µ(B) denotes the measure placed by µ on the

set B ⊆ A.)

IfD is a deterministic mechanism, then the induced measure can be thought

of as a list telling us the number of times that each action will be played over

the course of the game. For stochastic mechanisms, it tells us how many times

an action or set of actions will be played in expectation.

Say that a measure on A is proper if it places a mass of N on the full set.

In total N actions are taken, so any induced measure µDσ,θ is proper.

A probability assignment (PA) mechanism specifies some proper measure

µ, then asks the agent to declare probability distributions from which each

action is to be drawn. Any action distributions are allowed so long as the

induced measure over all actions – the sum of the distributions – is µ. PA

mechanisms can be thought of as stochastic generalizations of quotas. The

agent can choose actions as she pleases, as long as each action is played the

correct number of times by the end of the game.

Definition (Probability Assignment). A probability assignment mechanism

PA(µ) is a mechanism characterized by a proper measure µ on the set of

actions.

There is no time 0 message. The interim message spaceM is the set of n-

tuples of distributions over actions (m1, ...,mn) ∈ ∆(A)N for which
∑

imi = µ.

Given message (m1, ...,mn), action ai is drawn according to distribution mi.

The notation
∑

imi refers to the measure defined by (
∑

imi) (B) =
∑

imi(B)

for any set B.

By a standard compactness argument, an agent always has some optimal
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strategy in a probability assignment mechanism.6

3.2 Richness

Richnes is a way of formalizing the notion that the agent may have certain

kinds of extreme preferences.

Definition (Richness). Say that a set of agent utilities UA ⊆ U is rich if

there exists an infinite subset of the natural numbers N ⊆ N; a function

ψ : A×Θ×R+×N → R, written as ψ(a|θ;λ, n); and a pair of sign constants

s, t ∈ {−1, 1}, such that for all n ∈ N :

• For each λ′ > 0, there exists a function UA in UA with UA(a|θ) equivalent

to ψ(a|θ;λ, n) + s · (a+ t · λ)2n for some λ > λ′.

• ψ is of order λn: there exists C > 0 such that |ψ(a|θ;λ, n)| ≤ Cλn for

each a and θ, for λ large enough.

Fixing n, as λ goes to infinity the agent with utility UA(a|θ) = ψ(a|θ;λ, n)+

s · (a+ tλ)2n cares only about taking low average actions (if s · t = 1) or high

ones (s · t = −1). Then increasing n makes the preferences more concave

(s = −1) or convex (s = 1) in actions, implying extreme preferences over ever

higher moments of the induced measure (mean, variance, etc).

If the agent has rich preferences, then for any mechanism the principal pro-

poses there will be extreme agent types which, in the limit, will not condition

the number of times an action is played on the state realization: the induced

measure will be constant across states.

Lemma 1. Take any mechanism D and any rich set of agent utilities UA.

There exists some proper measure µD∞ and some sequence of types
〈
U j
A

〉∞
j=1

in UA such that for all θ ∈ ΘN and for all corresponding optimal strategies

6Formally, this follows because the set of possible assignments satisfying
∑

i µi is compact
with respect to the component-by-component weak convergence of measures, and payoffs
are continuous with respect to the same. See footnote 7 for a definition of weak convergence.
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〈σj〉∞j=1 with σj ∈ Σ∗D(U j
A), it holds that µDσj ,θ weakly converges7 to µD∞ as

j →∞.

Applied to a probability assignment mechanism, Lemma 1 is trivially true;

any reports by an agent result in the same induced measure over actions. But

in a mechanism which gives more flexibility, Lemma 1 implies that there is an

agent type which (for instance) sends messages so as to maximize the average

action; conditional on maximizing the average, minimizes the variance; etc.

This limiting agent type agent would only use states of the world to decide

between different messages which induce the same measure.

Proof Outline of Lemma 1. For formalization, see Appendix B.

Rich utility sets include utility functions with a term ψ of order λn which

may depend on θ, plus a polynomial s ·(a+ t ·λ)2n. Expanding out the polyno-

mial gives a constant sλ2n; constants times aλ2n−1, a2λ2n−2, ..., and an−1λn+1;

and terms of order λn or lower. For λ large, the agent approximately maximizes

lexicographically, looking first at terms in her utility function with a higher

order in λ. The highest order terms are state-independent: she maximizes st

times the first moment
∑

i ai, then st2 times the second moment
∑

i(ai)
2, and

so forth through the n − 1st moment. Only then does the agent consider the

states θ. As we take n and λ to infinity, the agent plays a strategy in which all

moments of the induced measure are independent of the realized states. Any

measures with identical moments are equal. �

The definition of richness above provides a sufficient condition on utility

sets to imply Lemma 1. But it is by no means a necessary condition. One

could find alternate definitions of “richness” which could take the place of this

in Lemma 1 (and therefore in Theorem 1, below), and which neither imply

nor are implied by this definition. Indeed, I have not defined richness in this

manner out of any consideration that the required subsets are economically

7 The cumulative mass function of µ at action a, written µ((−∞, a]), is the measure
placed by µ on the set of actions less than or equal to a. A sequence of measures

〈
µj
〉∞
j=1

is

said to weakly converge to a limiting measure µ if, at all continuity points a of the cumulative

mass function of µ, it holds that µj((−∞, a])
j→∞−→ µ((−∞, a]).
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meaningful. Rather, these subsets are contained in sets which I do consider

economically meaningful, discussed in later sections.

3.3 Aligned Delegation

I say that a mechanism is aligned delegation if it leads all agent types in UA
to act exactly in the principal’s best interest.

Definition (Aligned Delegation). Fix a principal’s utility UP . A mechanism

D is aligned delegation over UA if there exists some “aligned strategy” σ∗ which

is optimal (i.e., sequentially rational) for every type UA ∈ UA and (if UP is not

already contained in UA) would also be optimal for an agent of type UA = UP :

∃σ∗ s.t. σ∗ ∈ Σ∗D(UA) for all UA ∈ UA ∪ {UP}.

Any time I talk about “the payoff” to the principal of an aligned delegation

mechanism, it should be understood to mean the payoff under an aligned

strategy: Eθ,a [
∑

i UP (ai|θi)|σ∗]. If there are multiple aligned strategies, they

will all be payoff equivalent.

Observation (Aligned Delegation for Direct Mechanisms). In a direct mech-

anism, the agent reports her utility function and then reports the states that

she observes. Loosely speaking, an incentive compatible direct mechanism is

aligned delegation if and only if the actions taken are independent of the re-

ported utility function. This is precise when UP ∈ UA; otherwise, it holds for

an augmented direct mechanism which would also be incentive compatible for

an agent of type UA = UP .

Definition (PA-alignment). Preferences are said to be PA-aligned if for all

proper measures µ, the probability assignment mechanism PA(µ) is aligned

delegation.

In this paper I treat PA-alignment as a property of preferences, or as a

property of the agent’s utility set UA, given UP . I seek conditions on preferences

which guarantee the property independently of the other parameters of the
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problem. It is trivially the case that the agent’s utility is PA-aligned if UA =

{UP}. In later sections I give more interesting families of UP and UA which

imply PA-alignment.

In an aligned delegation mechanism, all agent types in UA give the same

expected payoff to the principal. So we can talk about the payoff to the

principal under a given measure without assuming a prior over UA.

Lemma 2. When utilities are PA-aligned, there is some optimal measure

µ∗ which maximizes the principal’s expected payoff from PA(µ) over proper

measures µ.

Call the probability assignment mechanism characterized by the optimal

measure the optimal probability assignment mechanism. The optimal measure

depends on the principal’s utility function UP and on the distribution of states,

but not on the agent’s utility set UA (so long as utility is PA-aligned).

3.4 The Main Result

I can now state and prove the main theorem of the paper.

Theorem 1. Suppose the set of agent utilities is rich and PA-aligned. Then

the optimal probability assignment mechanism is max-min optimal.

Proof. Fix an arbitrary mechanism D. I seek to show that the optimal prob-

ability assignment mechanism is weakly preferred to D under the max-min

criterion.

By Lemma 1, there is some sequence of types
〈
U j
A

〉
and some measure µD∞

such that, under every corresponding sequence of optimal strategies 〈σj〉 and

every vector of states θ, it holds that µDσj ,θ weakly converges to µD∞.

For any θ, the agent of type U j
A can replicate the outcome from D under

strategy σj in a probability assignment mechanism PA(µDσj ,θ). So the agent’s

payoff is weakly higher under PA(µDσj ,θ) than under D, conditional on realized

states θ. The principal’s payoff is also higher for this agent type; by PA-

alignment, the agent’s choices in PA(µDσj ,θ) maximize the principal’s payoff.
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By continuity of probability assignment payoffs with respect to the measure

(see Claim 2 in the proof of Lemma 2, Appendix B), the payoff to the principal

from PA(µDσj ,θ) approaches that from PA(µD∞) for each θ, and therefore in

expectation over θ. So as j goes to infinity, the principal’s expected payoff

from D given type U j
A converges to a value bounded above by the principal’s

type-independent payoff from PA(µD∞). In other words, PA(µD∞) weakly max-

min dominates D. And the principal’s expected payoff from PA(µD∞) is weakly

below that of the optimal probability assignment mechanism, completing the

proof. �

3.5 Discussion

In this section I introduced the concepts of richness and PA-alignment. Rich

agent utility sets are “large enough” to include certain extreme functions, while

PA-aligned sets are “small enough” that there are no agent types whose play

would differ from that of the principal in a probability assignment mechanism.

For a proposed utility set UA, the richness condition can be checked directly

by confirming that UA contains an appropriate subset. The assumption of PA-

alignment cannot be verified mechanically, however. It needs to hold for all

possible proper measures.

In Section 4, Section 5 (for a sequential problem), and Section 7.1, I provide

conditions on utility functions which imply PA-alignment. Furthermore, I

show that the max-min optimal probability assignment mechanisms can often

be implemented through simple deterministic mechanisms. I discuss relevant

examples of rich utility sets as I proceed.

In Section 6 I show that the conclusion of Theorem 1 may fail to hold when

the agent’s utility set is not rich – probability assignment mechanisms may no

longer be max-min optimal. Other aligned delegation mechanisms which give

the agent more freedom may do better.
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4 Increasing Differences and Ranking

4.1 PA-Alignment Under Increasing Differences

Definition (Increasing Differences). Say that a utility function U ∈ U satisfies

increasing differences if for all a2 > a1 in A and all θ2 > θ1 in Θ,

U(a2|θ2)− U(a1|θ2) ≥ U(a2|θ1)− U(a1|θ1)

This is a standard condition which implies that a player’s preferred action

is increasing in the state of the world – see Topkis (1998), for instance, for

applications of increasing differences and similar supermodularity or comple-

mentarity conditions to economics. Chakraborty and Harbaugh (2007) con-

sider preferences of this form in a simultaneous cheap talk game over many

decisions.

Increasing differences is easy to check when the function U is twice dif-

ferentiable. In that case, U has increasing differences if and only if it has a

nonnegative cross partial derivative: ∂2U
∂a∂θ
≥ 0.

Under increasing differences, I will show that the optimal strategy in a

probability assignment mechanism is to assign actions “assortatively” – lower

actions get assigned to lower states.

Definition (Assortative Assignments). Given a probability assignment mech-

anism PA(µ) and a state realization θ, say that an assignment (m1, ...,mN)

is assortative if θi < θj implies that max[Supp mi] ≤ min[Supp mj] – their

supports are fully ordered.

If all θ’s are distinct, then there is a unique assortative assignment. Oth-

erwise there may be multiple assortative assignments, all of which are payoff

equivalent to both players.

Lemma 3.1 establishes that assortative assignments are optimal in a prob-

ability assignment mechanism. Suppose we have a nonassortative assignment.

Then there is (some probability mass of) a low action a1 played in a high

state θ2 and a high action a2 played in a low state θ1. He can weakly improve
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this by switching the two actions, increasing payoffs by U(a1|θ1) +U(a2|θ2)−
U(a1|θ2)− U(a2|θ1) – greater than or equal to 0 by increasing differences.

If both the principal and agent (i.e., every agent type) have increasing

difference utility, then they agree on this optimal strategy: Lemma 3.2 points

out that preferences are PA-aligned.

Lemma 3.

1. Fix a probability assignment mechanism and a vector of states. If the

agent has increasing difference utility, any assortative assignment is op-

timal.

2. If the principal and agent have increasing-difference utility, then prefer-

ences are PA-aligned.

Lemma 4 (Sufficient conditions for richness). The agent has rich preferences

if UA is the set of all increasing-difference functions in U ; or if UA contains

the increasing-difference functions which are concave in a for any θ, or those

which are convex in a.

Suppose the principal has increasing difference utility, and the agent has

a rich set of increasing difference utilities. Then Theorem 1 combined with

Lemma 3 imply that the optimal probability assignment mechanism is max-

min optimal.

4.2 Implementation via Ranking Mechanisms

In Lemma 3 I found that assortative probability assignments were optimal,

under increasing difference utility. So the agent doesn’t need to report full

action distributions m1, ...mN . She can just report the relative rankings of the

N states, and the mechanism can assign the probability mass assortatively on

its own. (See Figure 1.)

If the measure defining a probability assignment mechanism is a sum of

N unit atoms, then an assortative assignment yields deterministic actions.

The lowest state is assigned with probability one to some low action, the next
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lowest state is assigned with probability one to some weakly higher action, etc.

In other words, we have a ranking mechanism.

Definition (Ranking Mechanism). A ranking mechanism is characterized by

a list of actions b(1) ≤ b(2) ≤ · · · ≤ b(N) in A.

There is no time 0 message. The interim message space M is the set

of permutations on {1, ..., N} – bijections from the set into itself. For some

reported permutation π, π(i) < π(j) is interpreted as a report that θi ≤ θj.

Given report π, action ai at decision i is chosen as b(π(i)).

For any increasing difference utility type, it is optimal to report hon-

est rankings – ranking mechanisms are aligned delegation. Under the same

increasing-difference assumption, Chakraborty and Harbaugh (2007) investi-

gated ranking as a cheap talk protocol rather than a delegation mechanism. If

there are many states drawn iid from a known distribution, then knowing the

ranking of a state almost reveals its value. So if there are many iid decisions

then the principal can take an approximately first-best action at each one.

Proposition 1 gives an argument for using ranking mechanisms even when

we may not have many iid decisions. Ranking mechanisms are max-min opti-

mal, for any number of decisions and any joint distribution over states, under

appropriate assumptions on players’ utility. This follows because the optimal

probability assignment mechanism has a measure which is a sum of N unit

atoms, so this max-min optimal mechanism can be implemented by ranking.

(See Figure 2.)8

Proposition 1. If the principal and agent have increasing-difference utility,

then the optimal probability assignment mechanism can be implemented by a

8Another instance of ranking in economics is in tournament incentive structures. The
literature on tournaments (see e.g. Lazear and Rosen (1981)) focuses on the incentives
provided to those being evaluated – motivating employees to work hard. I take the qualities
of the evaluated to be exogenous, and look at the incentives of the evaluator – the supervisor
who observes her employees and pays out bonuses. Malcomson (1984) and Fuchs (2007) have
previously pointed out that tournaments may have good incentive properties for firms which
prefer ex post to pay employees low bonuses. A firm which gives out bonuses based only
employees’ rankings pays the same in aggregate for any report, so can plausibly commit to
rank honestly. If an employee’s bonus were instead based on the firm’s nonverifiable report
of her individual output, the firm could save money by falsely reporting low outputs.
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Figure 1: To implement a PA mechanism under increasing difference prefer-
ences, the agent need only report the rankings of states.

Example: Implementing PA(µ) for µ uniform on [0,1], with N = 2.

0
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1
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1

2

Μ

a1 a2

0
1

2
1

a0

1

2

Μ

a1a2

If θ1 ≤ θ2 reported:{
a1 uniform over

[
0, 1

2

]
a2 uniform over

[
1
2 , 1
]

If θ2 ≤ θ1 reported:{
a1 uniform over

[
1
2 , 1
]

a2 uniform over
[
0, 1

2

]

ranking mechanism. This is max-min optimal if the agent’s utility set is rich.

The PA mechanism can be implemented by ranking in the sense that there

is a ranking mechanism in which each action ai is drawn from an identical dis-

tribution in the two mechanisms, given optimal play (assortative assignments,

honest ranking) by the agent.

Example 1. Let the principal have the increasing-difference utility function

UP (a|θ) = −(a − θ)2 and let the action set A contain Θ. So the principal’s

preferred action given state θ is a = θ.

Let the agent’s utility be taken from a rich subset of the increasing differ-

ence functions. So a ranking mechanism assigning the jth lowest reported state

to some action b(j) is a max-min optimal mechanism. For this UP function,

the optimal choice of b(j) is the ex ante expected value of the jth lowest state.

If each θi is iid uniform over Θ = [0, 1], the optimal ranking mechanism

assigns the jth lowest action to b(j) = j
N+1

. This mechanism gives the principal
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Figure 2: Ranking implements the optimal PA mechanism. (N = 2 case).
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Take a PA mechanism with any mea-
sure µ. Here we have µ uniform on
[0,1]. The low state is assigned an ac-
tion drawn from

[
0, 1

2

]
and the high

state action is drawn from
[

1
2 , 1
]
.

→

The principal prefers to “consolidate”
the leftmost unit of mass into some
single point in

[
0, 1

2

]
, and the right-

most unit of mass into a point in[
1
2 , 1
]
. This induces a (deterministic)

ranking mechanism.

a payoff of − 1
6(N+1)

per period, compared to − 1
12

from no delegation (taking

an uninformed principal’s preferred action of ai = 1
2

each period) and 0 from

first-best (ai = θi each period).9 Interpreting these numbers, the ranking

mechanism gives the principal N−1
N+1

of the possible surplus from delegation –

his payoff is that proportion of the way from no delegation to first-best.

Confirming the Chakraborty and Harbaugh (2007) result, the principal’s

surplus goes to 100% as N gets large.

9The jth order statistic (ie, jth lowest number) of N uniformly distributed variables is
distributed according to a Beta(j,N + 1− j) distribution. This has mean j

N+1 and variance
j(N+1−j)

(N+1)2(N+2) . The principal’s expected lifetime payoff is minus sum of the variances, which

can be calculated to be − N
6(N+1) .
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5 Sequential Decisions

In this section, I change the timing of the game so that the agent observes

states one at a time. The agent sees state θi+1 and takes action ai+1 only after

action ai has been taken. A manager chooses today’s investment level before

learning the profitability of future projects, say. In this sequential environment

(as opposed to the earlier simultaneous one) ranking mechanisms are no longer

feasible. Final rankings are not known until all but the last action have already

been played.

I assume that the principal and agent share a common prior over the dis-

tribution of θ in the sequential environment.10

In a sequential mechanism the agent sends a time-0 message m0 before the

agent observing any states, and in periods i = 1, ..., N sends a message mi after

the agent observing θi. The agent also knows the period-i history (reports and

actions from periods 1 through i− 1) as well as past states when she reports

mi. After the message mi is sent, action ai is drawn from a distribution which

depends on the message and the history.

This mechanism form is without loss of generality so long as the principal

gets no information about the realizations of past states, or the distributions

of future states, over the course of the game. For instance, this rules out a

principal’s observing his utility realization from decision i and using this to

alter the terms offered to the agent at decision i+ 1.

Probability assignment mechanisms extend straightforwardly to the se-

quential environment, with the agent choosing action distributions one at a

time instead of all at once. The principal specifies a proper measure µ, and

the agent’s period i message is a distribution mi ∈ ∆(A) from which action ai

is drawn. By the end of the game, the distributions must sum to the measure:∑N
i=1mi = µ. This gives a constraint that mi is less than or equal to the

“remaining measure” µ −
∑i−1

j=1mj.
11 At the last period, the agent has no

10What is important is that the agent is at least as well informed as the principal: if
they were to share information, the parties would converge on the agent’s beliefs. So if the
principal and agent had the same utility function, the principal would defer to the agent’s
choices.

11Under the partial order on measures over A, measure µ′ is said to be greater than or
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choice over the action; aN must be drawn according to mN = µ−
∑N−1

j=1 mj.

With these definitions, Lemma 1 and Theorem 1 go through unchanged

in the sequential environment: if the agent has a rich and PA-aligned set

of utilities, then the optimal probability assignment mechanism is max-min

optimal.12

The richness of a utility set isn’t affected by the timing of the game. But the

PA-aligned sets are different. In the example below, I show that two increasing-

difference utility types which play identically in a simultaneous probability

alignment mechanism may play differently in a sequential one. Increasing

differences no longer implies aligned delegation. In general, it is harder to

satisfy PA-alignment in the sequential environment.13

Example 2. Let Θ = {0, 1
2
, 1}, with θi drawn uniformly from Θ in each

period. Let A = {0, 1}. Say that the principal and agent are known to have

the following utility functions:

θ

UP 0 1
2

1

a
0 10 9 0

1 0 0 10

θ

UA 0 1
2

1

a
0 10 0 0

1 0 9 10

Both functions satisfy increasing differences. So in a simultaneous problem,

the players agree on an assortative assignment in any probability assignment

mechanism. Preferences are PA-aligned.

In a sequential problem, the players no longer agree on a strategy. Let there

equal to measure µ′′ if µ′(B) ≥ µ′′(B) for every measurable B ⊆ A. If µ′ ≥ µ′′, then we can
subtract µ′′ from µ′: µ′ − µ′′ is defined by

(
µ1 − µ2

)
(B) = µ1(B)− µ2(B).

12As in a simultaneous problem, the agent has an optimal strategy under any PA mech-
anism. And if utilities are PA-aligned, then there is an optimal measure for the principal.
In otherwise identical simultaneous and sequential problems, the optimal measures will not
necessarily be the same.

13That is, suppose we are looking for a condition on utilities which guarantees PA-
alignment for any number of decisions and any joint distribution over states. Any such con-
dition guaranteeing sequential PA-alignment also guarantees simultaneous PA-alignment.
(Beliefs in a sequential problem can replicate any realized states in a simultaneous problem).
The reverse is not true: as the example shows, increasing differences ensures PA-alignment
in simultaneous but not sequential problems.
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be two periods, and take the probability assignment mechanism specifying that

actions a = 0 and a = 1 must each be played once. If θ1 = 0, both types would

prefer a1 = 0 at period 1 (and a2 = 1). If θ1 = 1, both types would prefer

a1 = 1. But if θ1 = 1
2
, type UP would prefer a1 = 0 while type UA prefers

a1 = 1. We no longer have aligned delegation.

Intuitively, the disagreement is due to the fact that the principal treats the

random draw of θ2 as greater than an observed state θ1 = 1
2
, while the agent

treats it as less than 1
2
.

To guarantee PA-alignment in a sequential problem, we need a stronger

condition than increasing differences. Players must agree on how to rank not

just states, but distributions of states. With quadratic loss preferences, players

rank distributions of states by their expectations.

Definition (Quadratic Loss Preferences). Say that a utility function U ∈ U is

quadratic loss if there exists a weakly increasing continuous function c : A → R
such that U(a|θ) is equivalent to − (c(a)− θ)2.

Under quadratic loss preferences, in state θ a player wants an action a

which takes c(a)− θ as close as possible to 0.14 The optimal action is weakly

increasing in the state. And by choosing c(·) appropriately, we can model

preferences with any increasing optimal action function.15 There is enough

flexibility in this utility class that the set of all quadratic loss functions is rich.

Lemma 5. The set of quadratic loss functions is a rich subset of the increasing

difference functions.

The quadratic loss functions include the most common functional forms

in the delegation and cheap talk literature, quadratic loss preferences with a

14Notice that the “quadratic losses” are with respect to perturbations of the state, not
of the action. So for any distribution of beliefs over the current state, a decisionmaker’s
preferences over actions depend only on the expected state. This property makes these
utilities natural for problems in which a principal elicits information on the state of the
world from better informed agents.

15The optimal action is strictly increasing as a function of the state anywhere that it maps
to the interior of A, and weakly increasing otherwise. Any such function can be the optimal
action function for some quadratic loss utility.
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constant or a linear bias. The constant bias preferences have c(a) = a − λ,

corresponding to a utility of U(a|θ) = −(a−θ−λ)2 and ideal action a = θ+λ.

The linear bias preferences have c(a) = a
λ(1) − λ(0)

λ(1) , giving a utility equivalent

to U(a|θ) = −
(
a− λ(1)θ − λ(0)

)2
and ideal action of a = λ(1)θ+λ(0). I discuss

these two functional forms in greater detail in Section 6.

In a sequential probability assignment mechanism, an agent with quadratic

loss preferences will play what I call a “sequential-assortative” strategy. Given

a current state θi, she will assign ai to some action, or set of actions, from the

remaining measure. Remaining actions below the ones chosen are expected to

be played in future periods with states less than θi, and actions above those

chosen are expected to be played in periods with states higher than θi.
16 A

principal with quadratic loss preferences agrees that this play is optimal, and

hence the mechanisms satisfy aligned delegation.

Lemma 6. Let the principal and agent have quadratic loss preferences in a

sequential problem. Then preferences are PA-aligned.

Combining Lemma 6 and Theorem 1, suppose that the principal and agent

have quadratic loss utilities, and the agent’s utility set is rich. Then the

optimal probability assignment mechanism is max-min optimal.

As in the simultaneous problem, it can be shown that the optimal prob-

ability assignment has a measure composed of N atoms, and that when the

agent plays a sequential-assortative strategy (defined formally in the proof

of Lemma 6) actions will be deterministic. This optimal PA mechanism is

therefore equivalent to a simpler quota mechanism in which the agent chooses

actions directly rather than reporting distributions.

Definition (Sequential Quota). A sequential quota mechanism is character-

ized by a list of actions b(1) ≤ b(2) ≤ · · · ≤ b(N) in A.

There is no time 0 message. In each period i ≥ 1, the agent chooses an

action b(j) from the list, without replacement. Then the action ai = b(j) is

16More precisely, take any action in the support of the remaining measure at i+ 1. Given
the agent’s strategy and the beliefs over future state realizations, we can find the distribution
over states in which this action is played. I say that the action is expected to be played in
a higher state if the expectation of this distribution is greater than the current state θi.

25



taken.

Proposition 2. If the principal and agent have quadratic loss preferences in

a sequential problem, then the optimal probability assignment mechanism can

be implemented as a sequential quota. This is max-min optimal if the agent’s

utility set is rich.

Example 3. Let the principal have the quadratic loss utility function UP (a|θ) =

−(a−θ)2 and let the agent’s utility be taken from a rich subset of the quadratic

loss functions. As in Example 1, let states in each period be uniform over

Θ = [0, 1], and let the action set A contain [0, 1]. The principal’s preferred

action in state θ is a = θ.

A sequential quota with some action list b(1) ≤ b(2) ≤ · · · ≤ b(N) is a max-

min optimal mechanism. For this UP function, the optimal choice of b(j) is

the expected value of the state in which the jth lowest action will be played,

given a sequential-assortative strategy. We can solve for this optimal b(j) by

backwards induction.

If N = 1, the optimal action is b(1) = 1
2
, the expected state.

If N = 2, the action which is not played in period 1 will be played in

period 2 at an expected state of 1
2
. So if θ1 <

1
2
, the agent chooses a1 as the

low action b(1); if θ1 >
1
2
, the agent chooses b(2). This means that the low

action is played with probability one half at the first period, at an average

state of 1
4
; and probability one half at the second period, at an average state

of 1
2
. The average state at which b(1) is played is therefore 3

8
, and likewise the

average state at which b(2) is played is 5
8
. So the optimal action list is b(1) = 3

8
,

b(2) = 5
8
. The principal gets a surplus of 18.75% of the first-best payoff from

this quota. In the corresponding simultaneous problem we had action list 1
3

and 2
3
, with surplus of 33%.

If N = 3, the low action b(1) will be played in the first period if θ1 <
3
8
; the

medium action b(2) will be played if 3
8
< θ1 <

5
8
; and the high action b(3) will

be played if θ1 >
5
8
. In period 2, the lower remaining action is played if θ2 <

1
2

and the higher one if θ2 >
1
2
. In the final period, the last remaining action is

played. This gives us optimal actions (equal to the expected state at which the
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action is played) of b(1) = 39
128
' .305, b(2) = 1

2
, and b(3) = 89

128
' .695, implying

surplus of 30.5%. In the corresponding simultaneous problem we had action

list 1
4
, 1

2
, and 3

4
, with surplus of 50%.

In Appendix A.2 I extend a similar result of Jackson and Sonnenschein

(2007) to show that the surplus from the optimal sequential quota goes to

100% as N gets large, if states are iid from a known distribution.

6 Preferences without Richness

When the agent has a rich set of preferences in a PA-aligned class, the princi-

pal can do no better (in a max-min sense) than to use a probability assignment

mechanism – for example, ranking and quota mechanisms. These PA mecha-

nisms let the agent choose actions as she pleases, subject to fixing the number

of times that actions are taken.

With less uncertainty about the agent’s preferences, the principal may

be able to improve on probability assignment. He can give the agent more

flexibility if he knows that the agent will not use her discretion to harm him.

(Rich preferences guarantee that some agent type will adversely exploit such

flexibility). Indeed, I show that under quadratic loss constant bias preferences

it is max-min optimal to use aligned delegation budget mechanisms. Budgets

fix only the mean of actions rather than the entire distribution. With linear

rather than constant biases, two moment mechanisms which fix the mean and

variance are aligned delegation and max-min optimal.

Throughout this section, I assume that the action space is an interval:

A = [a, a]. This assumption does not affect the qualitative results, but it

simplifies the definitions of budget and two-moment mechanisms. For instance,

it ensures that there will be no need for randomization in a budget mechanism.

6.1 Quadratic Loss Constant Bias preferences

Suppose the principal and the agent each have quadratic loss constant bias

(QLCB) preferences. Normalize the principal’s utility to UP (a|θ) = −(a− θ)2,

27



and let the agent have utility in a set UA ⊆ {−(a − θ − λ)2|λ ∈ R}. The

principal wants to match the action a to the state θ, while the agent prefers

a = θ + λ for some λ unknown to the principal.

Expanding out the agent’s utility function, UA(a|θ) = −(a − θ − λ)2 =

−(a− θ)2 + 2λa− 2θλ− λ2. So UA(a|θ) is equivalent to UP (a|θ) + 2λa. The

agent’s problem, given a mechanism, is to choose a strategy which maximizes

E

[∑
i

UP (ai|θi)

]
+ 2λE

[∑
i

ai

]
(1)

Conditional on any sum of actions, the principal and agent preferences agree.

But the agent prefers a higher sum if λ is positive, and a lower sum if λ is

negative. As λ→ ±∞, the agent cares only about the sum of actions.

Definition (Unboundedness). I say that the quadratic loss constant bias util-

ity set UA is unbounded if there exist types in UA with |λ| arbitrarily large.

Unboundedness is to QLCB preferences as richness is to more general pref-

erences. Under rich preferences, there exists a type (in the limit) which will

choose the same measure of actions for any realized states: for all n, the nth

moment of actions
∑

i E(ai)
n does not vary over θ. Under unbounded QLCB

preferences, there is a limiting type for which the sum of actions – the first

moment – does not vary. Other moments might still be conditioned on the

states.

Lemma 7. In either a simultaneous or sequential problem, let the agent have

unbounded quadratic loss constant bias utilities. Fix any mechanism D. There

exists a value K and a sequence of types
〈
U j
A

〉∞
j=1

in UA such that for all states

θ and all corresponding sequences of optimal agent strategies 〈σj〉, it holds

that E

[∑
i

γiai

∣∣∣∣∣σj,θ
]
→ K as j →∞.

A budget mechanism gives the agent complete freedom, subject to fixing

the sum of actions at some level:
∑

i ai = K.17 Say that K is a proper budget

17With an unconnected action space, the mechanism would have to allow for some ran-
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if K ∈ [Na,Na], i.e., the level is neither so high nor so low that it is impossible

to hit the constraint.

Definition (Budget Mechanism). A budget mechanism is a mechanism char-

acterized by a proper budget K ∈ R. There is no time-0 message. The agent’s

interim messages are the actions to be taken.

In a simultaneous environment, the agent chooses (a1, ..., aN) ∈ AN such

that
∑

i ai = K.

In a sequential environment, in period i the agent chooses ai such that it

is feasible for
∑N

j=1 aj to equal K:

ai ∈

[
K −

(∑
j<i

aj

)
− (N − i)a,K −

(∑
j<i

aj

)
− (N − i)a

]

I call K −
∑

j<i aj the “remaining budget.”

By equation (1), if the sum of actions is fixed by the mechanism, the

agent plays as if she has no bias and is maximizing the principal’s payoffs. So

under quadratic loss constant bias preferences, budget mechanisms are aligned

delegation.

Lemma 8. Let the principal and agent have quadratic loss constant bias

preferences. Then in either a simultaneous or sequential problem:

1. Any budget mechanism satisfies aligned delegation.

2. There exists an optimal budget mechanism maximizing the principal’s

expected payoff over choice of budget level K.

Proposition 3. Let the principal and agent have quadratic loss constant

bias preferences, and let the agent’s utility be unbounded. Then in either a

simultaneous or sequential problem, the optimal budget mechanism is max-

min optimal.

domized actions. For instance, the agent might want action ai to contribute x to the
expected sum, but x 6∈ A. So to get E[ai] = x, the mechanism would randomize between
choosing ai as some action higher than x, and some action lower than x. With interval
action spaces, even if the agent were free to choose distributions over actions, she would
play deterministically.
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Given that these mechanisms satisfy aligned delegation, the proof of Propo-

sition 3 is essentially identical to that of Theorem 1. We just replace Lemma

1 (under richness, some extreme type chooses a predetermined measure of ac-

tions) with Lemma 7 (under unboundedness, some extreme type chooses a

predetermined sum of actions).

Example 4. Let UP (a|θ) = −(a−θ)2 and let the agent’s utility be taken from

an unbounded subset of the quadratic loss constant bias utilities. Let each θi

be iid uniformly distributed over Θ = [0, 1], and let A be a “big enough”

interval containing [0, 1].18 The optimal budget mechanism in a simultaneous

or sequential problem sets K = N
2

– the average action should be 1
2

– and this

mechanism is max-min optimal.

Simultaneous Case: After observing states the agent chooses actions so that

ai − θi is constant over i: ai = 1
2

+ θi − 1
N

∑N
j=1 θj. The principal’s

expected per-period payoff is − 1
12N

, which corresponds to N−1
N

of the

possible surplus. If the principal used the optimal ranking mechanism,

he would get only N−1
N+1

of the surplus (Example 1).

Sequential Case: At period i with remaining budget Ki = N
2
−
∑

j<i aj, after

the agent observes θi she chooses action ai = θi + Ki−θi−(N−i)/2
N−i+1

. This

action choice sets the difference ai − θi equal to the expected difference

aj − θj for j > i.

If N = 1, this replicates the no-delegation outcome of a1 = 1/2.

If N = 2, the agent chooses action a1 = 1
4

+ θ1
2

, then action a2 = 1− a1.

This gives the principal an expected payoff of − 1
16

per period, 25% of

18The players may want to choose actions outside of [0, 1] if given the chance. For instance,
say there is a simultaneous problem with 4 decisions, and states are drawn from [0, 1]. The
mechanism requires

∑
i ai = 2. If it so happens that θ1 = 1 and θ2 = θ3 = θ4 = 0, then

given any possible actions in R, the principal and agent prefer a1 = 5
4 and a2 = a3 = a4 = 1

4 .
When I assume that the action set is “big enough,” I mean that the agents’ preferred choices
from R are always available; the boundaries of A do not bind.

For Θ = [0, 1] and K = N
2 , the action set is “big enough” in a simultaneous problem if A

contains [− 1
2 + 1

N ,
3
2 −

1
N ], or approximately [− 1

2 ,
3
2 ] for N large. In a sequential problem,

A must contain [ 12 −
∑N

j=2
1
j ,

1
2 +

∑N
j=2

1
j ]. See Frankel (2010b) for the derivation of these

intervals, as well as details on solving for strategies, optimal budget levels, and payoffs.
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the possible surplus. The optimal sequential quota mechanism gives only

18.75% (Example 3).

If N = 3, the principal gets an expected payoff of about −.051 per period

from the optimal budget mechanism, 38.9% of the possible surplus. The

optimal sequential quota gives 30.5%.

6.2 Quadratic Loss Linear Bias preferences

In this subsection I consider quadratic loss linear bias (QLLB) preferences.

The principal’s utility is taken to be UP (a|θ) = −(a − θ)2, and the agent

has utility in the set UA ⊆ {−(a − λ(1)θ − λ(0))2|λ(0) ∈ R, λ(1) ∈ R++}. The

principal wants to match the action a to the state θ, while the agent prefers a =

λ(1)θ+λ(0). The principal is uncertain over the two λ parameters. λ(0) shifts the

agent’s ideal point uniformly up or down, while λ(1) is a “sensitivity” parameter

which determines how much the ideal point moves when the state goes up by

one unit. Melumad and Shibano (1991) provides an early characterization

of optimal delegation sets when utilities are of this form, assuming a single

decision (N = 1) with common knowledge of the agent’s utility.

Expanding the linear bias utility, the agent maximizes∑
i

UA(ai|θi) = 2λ(1)
∑
i

aiθi + 2λ(0)
∑
i

ai −
∑
i

(ai)
2 −

∑
i

(
λ(1)θi + λ(0)

)2

(2)

The last sum is independent of the agent’s choices, in any mechanism. If

it so happened that a mechanism fixed
∑

i ai = K(1) and
∑

i(ai)
2 = K(2),

then the agent would also have no control over the second and third sums.

No matter what utility parameters λ(0) and λ(1) she had, her problem would

be to maximize
∑

i aiθi. The agent would play exactly as if she shared the

principal’s utility function, with λ(0) = 0 and λ(1) = 1. I will call such a

mechanism which fixes these sums – equivalently, the mean and variance of

actions – a “two-moment mechanism.”19

19Veszteg (2005) proposes a multiplayer social choice mechanism in which each agent
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If the utility set is unbounded in an appropriate sense, then the principal

does not benefit by giving the agent flexibility over the sums
∑

i ai and
∑

i(ai)
2.

Some extreme type will push one of the sums as high or low as possible before

considering the states of the world. The principal does best to choose the sums

in advance.

Definition (Unboundedness). Suppose that the agent has quadratic loss linear

bias utilities, so her utility is of the form UA(a|θ) = −(a − λ(1)θ − λ(0))2 for

some λ(0) ∈ R and λ(1) ∈ R++. I say that the agent’s utility set is unbounded

if there is a sequence of types in UA with |λ(0)| → ∞ while λ(1) → 0.20

As with QLCB preferences, I say that first and second moments (K(1), K(2))

are proper if there exist distributions m1, ...,mN such that K(1) =
∑

i Eai∼miai
and K(2) =

∑
i Eai∼mi(ai)2. With A = [a, a], this corresponds to K(1) ∈

[Na,Na] and

K(2) ∈

[(
K(1)

)2
,
(
K(1)

)2
+

(
Na−K(1)

) (
K(1) −Na

)
N

]

For a sequential problem, I say that moments are proper at period j if, given

m1 through mj−1, there exist distributions mj through mN which bring the

sums to the appropriate levels; replace N by N − j + 1 in the expressions

above. At period N + 1, the only proper moments are (0,0).

Definition (Two-Moment Mechanism). A two-moment mechanism is a mech-

anism characterized by proper moments
(
K(1), K(2)

)
∈ R2. There is no time-0

reports her values for each decision, with a similar restriction on the first two moments of
the reports. It replicates the asymptotic efficiency properties of the mechanism in Jackson
and Sonnenschein (2007), but can be implemented with less information about the ex ante
distribution of values.

20The unboundedness condition for the quadratic loss constant bias case was essentially
“tight” – we needed the magnitude of the bias to go to infinity to get the max-min result.
On the other hand, the richness condition for the general case was merely sufficient – other
similar conditions could have guaranteed the same results. This unboundedness condition
is in the latter category rather than the former. It will give a single sequence of types for
which the agent lexicographically cares about the first moment and then the second, in the
limit. Another condition could give a sequence for which the agent cared about the second
and then the first, for instance.
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message. The agent’s interim messages are the distributions over actions to

be taken; action ai is drawn from a reported distribution mi.

In a simultaneous environment, the agent reports (m1, ...,mN) ∈ ∆(A)N

subject to
N∑
j=i

Eaj∼mjaj = K(1) and
N∑
j=i

Eaj∼mja2
j = K(2).

In a sequential environment, in period i the agent reports distribution mi

such that the pair of moments

(
K(1) −

∑
j≤i

Eaj∼mjaj, K(2) −
∑
j≤i

Eaj∼mja2
j

)
is

proper at period i+ 1.

The agent may choose not to play deterministically. But the agent “tries”

to play deterministically, if such play is possible and if the action set is “big

enough”.21

Lemma 9. Let the principal and agent have quadratic loss constant bias

preferences. Then in either a simultaneous or sequential problem:

1. Any two-moment mechanism satisfies aligned delegation.

2. There exists an optimal two-moment mechanism maximizing the princi-

pal’s expected payoff over choice of proper moments
(
K(1), K(2)

)
.

Proposition 4. Let the principal and agent have quadratic loss linear bias

preferences, and let the agent’s utility be unbounded. Then in either a simulta-

neous or sequential problem, the optimal two-moment mechanism is max-min

optimal.

21For any proper moments and for any distribution of states, we could suppose that the
action set were equal to R and solve for the optimal strategy. Actions would be deterministic
so long as N ≥ 2. The convex hull of the union of all chosen actions across all state
realizations would define some compact interval of R. If the true action set A is “big enough”
that it contains this compact interval, then the agent will choose these same deterministic
actions.

If the action set is an interval but it is “too small,” then examples can be found where
the agent chooses stochastic actions even though it is possible to satisfy the constraints with
deterministic actions.
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7 Discussion and Extensions

7.1 Altruism with Private Costs

All utility functions considered so far have satisfied increasing differences. But

Theorem 1 can be applied to other classes of utilities, so long some other

condition on preferences guarantees PA-alignment. For instance, utilities are

PA-aligned if the agent has what I call “altruistic preferences with private

costs”: she maximizes a weighted average of the principal’s payoff (altruism)

and some function of actions which do not depend on the states of the world

(private costs). This includes the case where the agent’s payoffs are state-

independent, and only depend on actions.

Given UP ∈ U , the agent has altruistic preferences with private costs if

UA ⊆ {UA|UA(a|θ) equivalent to ζUP (a|θ) + c(a) for some ζ ∈ {0, 1}, c : A →
R}. An agent with ζ = 1 places a positive weight on the principal’s utility,

while ζ = 0 corresponds to state-independent payoffs. The quadratic loss

constant bias preferences are of this form with UP (a|θ) = −(a − θ)2, ζ = 1,

and c(a) = 2λa for some λ ∈ R.

This class of preferences guarantees PA-alignment in a simultaneous or a

sequential problem – the agent maximizes ζ
∑

i UP (ai|θi) +
∑

i c(ai), and PA

mechanisms fix the latter sum in advance. So the agent’s maximization prob-

lem is the same as the principal’s. And for a large enough set of possible cost

functions c(·), UA is rich. We get richness if c may be any continuous function;

any increasing (decreasing) one, corresponding to a positively (negatively) bi-

ased agent; any convex (concave) increasing function; etc.

If the agent has a rich set of altruistic with private costs utilities, a prob-

ability assignment mechanism will be max-min optimal. But it might not be

implementable as a deterministic ranking or quota mechanism if UP is not of

the increasing-difference or quadratic-loss forms.
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7.2 General Moment Conditions

Above, I give environments where max-min optimal mechanisms fix the ex-

pected sum of actions (budgets); the sum of actions and actions-squared (two-

moment mechanisms); and the entire distribution of actions, i.e., the sum of

every function of actions (probability assignment). In fact, for any desired

“moment conditions” – sums of specified functions of actions – we can reverse-

engineer an environment in which the max-min optimal mechanism fixes the

set of such moments. See Appendix A.1 for details.

7.3 Discounting

Suppose the principal and agent discount certain decisions. For instance, de-

cisions may be less important if they occur later, affect fewer people, or if they

determine investments in exogenously smaller projects. We can model this by

calling γi > 0 the significance of decision i, and modifying the principal and

agent objectives to be

Principal :
∑
i

γiUP (ai|θi) Agent :
∑
i

γiUA(ai|θi)

This framework is covered extensively in the extended working paper, Frankel

(2010b).

For the quadratic loss with constant or linear biases, almost nothing changes.

Budget and two-moment mechanisms are still max-min optimal. The mech-

anisms just have to be modified so as to fix the weighted sums
∑

i γiai and∑
i γi · (ai)2 rather than the unweighted sums.

Looking at general utility functions, Theorem 1 continues to go through:

appropriately modified probability assignment mechanisms are still max-min

optimal under richness and PA-alignment. The modified mechanisms constrain

action distributions mi to satisfy
∑

i γimi = µ, for µ a measure of size
∑

i γi

– they are analogous to the discounted quotas studied in Frankel (2010a).

Moreover, the PA-aligned sets are unchanged. Increasing difference utilities are

PA-aligned in a simultaneous problem, quadratic loss utilities in a sequential
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problem, and altruistic with private cost utilities are PA-aligned in either case.

(Richness is not affected by the change in objectives).

But there is one big difference when we add discounting to probability

assignment mechanisms: we can no longer implement the max-min optimal

mechanisms as deterministic ranking or quotas. Indeed, nontrivial probability

assignment mechanisms now necessarily require randomized actions.22

For instance, suppose we have two simultaneous decisions under increasing

difference preferences and decision 1 is twice as significant: γ1 = 2γ2. The max-

min optimal PA mechanism can be implemented by a “ranking” mechanism

which specifies three actions – call them low, medium, and high – and asks

the agent to rank the two states. If she reports that θ1 ≤ θ2, then action a1 is

randomized 50/50 between low and medium, while a2 is taken deterministically

at high. If θ1 ≥ θ2, action a1 is randomized 50/50 between medium and high

while a2 is deterministically low. In essence, we align the agent’s incentives by

asking her to trade off action 2 against half of the twice-as-important action

1. For N decisions, we generically randomize over 2N − 1 actions.

7.4 Asymptotically First-Best Payoffs

All of the max-min optimal mechanisms in this paper give high payoffs when

the number of decisions increases. That is, suppose utilities are in a PA-aligned

class and states are drawn iid from a known distribution. Consider a sequence

of problems in which all other parameters are fixed, but the number of deci-

sions goes to infinity. Then under an appropriate sequence of probability as-

signment mechanisms, the principal’s expected payoff per decision approaches

that from her full information first-best actions. (If we can do better with

alternate mechanisms such as budgets, then those also yield asymptotically

first-best payoffs). This extends similar results from Chakraborty and Har-

baugh (2007) and Jackson and Sonnenschein (2007); see Appendix A.2 for a

formalization. In the working paper Frankel (2010b), I also show that we get

asymptotically first-best payoffs even with discounting, so long as no single

22A trivial PA mechanism would require that all actions be taken at a single predetermined
point.
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decision is important in the limit.

8 Conclusion

This paper looks at delegation contracts which restrict the actions that an

agent may choose. In principle, a contract can be any menu of subsets of

the N -dimensional action space. Because of the highly dimensional private

information and the absence of transfers, solving for Bayesian optimal mecha-

nisms would be infeasible. But by looking for max-min optimal mechanisms,

we derive simple and intuitive contracts such as ranking mechanisms, quotas,

and budgets. The structure of the contracts depends on the preferences of the

principal and the agent.

On the technical side, I solve for these max-min optimal contracts by in-

troducing the concept of aligned delegation. This is form of incentive compat-

ibility for indirect contracts which states that all agent types play exactly as if

they are maximizing the principal’s payoff. It sounds like an excessively strong

condition: in a one decision problem, the only aligned delegation mechanism

would give the agent no input at all. But with many decisions, it allows for

mechanisms like those above which do make effective use of much the agent’s

private information.

I believe that the study of aligned delegation mechanisms might have fur-

ther applications. For instance, consider an environment in which a principal

wants to elicit information from many experts. The cheap talk and mechanism

design literature focuses on the strategic interactions of experts, trying to find

ways to “play experts against each other” to induce full revelation of infor-

mation. See for example Krishna and Morgan (2001), Battaglini (2002), Am-

brus and Takahashi (2008), Mylovanov and Zapechelnyuk (2008), or Ambrus

and Lu (2010). These constructions tend to be sensitive to the assumptions

that collusion or communication is impossible and that each expert’s bias is

known in advance, and often also require specific informational structures –

e.g., each expert is perfectly informed. But suppose that individual experts are

poorly informed, and we want to find a way to pool their information without
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necessarily achieving full revelation. Aligned delegation mechanisms sidestep

strategic issues entirely. Agents will share information fully and honestly, and

reach a consensus. In a ranking mechanism, say, everyone wants to get the

final ranking right. The principal can use these mechanisms to pool together

the agents’ information in a robust way.
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Appendix

A Elaborations on Extensions

A.1 General Moment Conditions

Take some set of functions
〈
s(j) : A → R

〉J
j=1

. I seek assumptions on UA
such that the max-min optimal mechanism specifies a sequence of real values〈
K(j)

〉J
j=1

and then gives the agent freedom to take any action distributions

subject to the constraints that E
∑

i s
(j)(ai) = K(j) for each j. One way to

construct such an environment is to let UA(a|θ) = UP (a|θ) +λ(1)s(1)(a) + · · ·+
λ(J)s(J)(a) for unknown and unbounded constants

〈
λ(j)
〉J
j=1

in R.23

For instance, suppose that UA is the set of functions of the form UA(a|θ) =

UP (a|θ) + c(a), with c(·) any polynomial of degree J . Then the max-min

optimal mechanism (in a simultaneous or sequential problem) fixes
∑

i(ai)
j

for each j = 1, ..., J .

A.2 Asymptotically First-Best Payoffs

Here, I show that optimal probability assignment mechanisms provide the prin-

cipal with “high” payoffs (close to the full information first-best) when there

are many iid decisions from a known distribution. This holds in a simultaneous

or sequential problem, as long as preferences are PA-aligned.

The optimal measure may be difficult to solve for, especially without the

utility assumptions which ensure that the measure will be a set of N unit

atoms. But we can approximate first-best payoffs with a “naive” measure.

The naive measure places a mass on an action proportional to the ex ante

probability that the action will be optimal for the principal. If the probability

assignment mechanism with the naive measure approximates first-best payoffs,

then so too does the one with the optimal measure.

23This construction generalizes that of the quadratic loss constant bias case; the quadratic
loss linear bias case is actually not of this form. These preferences are all in the PA-aligned
class of altruistic preferences with private costs.
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Let a∗P (θ) be some function mapping θ into a principal-optimal action, i.e.,

a∗P (θ) ∈ argmaxa UP (a|θ). Let the naive measure µnaive be a proper measure

defined by

µnaive(B) =
∑
i

Prob [a∗P (θi) ∈ B] for B ⊆ A

I refer to the (simultaneous or sequential) probability assignment mecha-

nism characterized by the naive measure as the naive probability assignment

mechanism.

Take a sequence of decision problems indexed by n = 1, 2, ..., with N = n

decisions in problem n. Say that this is an iid sequence of decision problems

if each problem has the same timing (simultaneous or sequential); is over the

same A and Θ; has the same utilities, UP and UA; and there is a distribution F

over Θ such that for each decision problem, all states are drawn iid according

to F .

Definition. Fix a sequence of iid decision problems. A sequence of mech-

anisms D(n) gives uniformly asymptotically first-best payoffs if there exists a

corresponding sequence of optimal strategies σ(n)(UA) such that for all ε > 0

there exists n̄ so that if n > n̄, then in the nth decision problem (with N = n),

Eθ,a
∑N

i=1

[
UP (a∗P (θi)|θi)− UP (ai|θi)

∣∣ D(n), σ(n)(UA)
]

N
< ε for all UA ∈ UA.

This is uniform with respect to agent types – for a large enough number

of decisions, the payoff is within ε of first-best for every possible agent utility

UA.

Proposition 5. In either a simultaneous or sequential environment, take any

iid sequence of decision problems. If preferences are PA-aligned,24 then the

naive probability assignment mechanisms give the principal uniformly asymp-

totically first-best payoffs.

24That is, preferences are PA-aligned in each separate decision problem with different
numbers of decisions. For the PA-aligned utility classes considered in the paper, preferences
are PA-aligned for any distribution over states and any number of decisions.
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The proof, in Appendix B, follows similar constructions to Jackson and

Sonnenschein (2007). I construct a strategy under the naive probability as-

signment mechanism which gives the principal nearly first-best payoffs when

the empirical distribution is close to the theoretical one. As the number of iid

decisions increases, a law of large numbers guarantees that these distributions

are in fact close. By aligned delegation, the agent’s actual strategy gives the

principal at least as high a payoff as does the one I construct.

In the working paper Frankel (2010b), I show that we can extend these

asymptotically first-best payoff results to the general discounted environment

in which decision i has significance γi > 0. This holds if, as the number

of decisions grows, each individual decision becomes vanishingly important.

Writing the significance of decision i in the nth problem in the sequence as

γ
(n)
i , the sufficient condition is that

lim
n→∞

maxi≤n γ
(n)
i∑

i γ
(n)
i

= 0

B Omitted Proofs

Proof of Lemma 1. Here I prove Lemma 1 for either a simultaneous or a se-

quential problem (see Section 5).

For a measure µ over the set of actions A, for k = 0, 1, 2, ..., define the kth

moment of µ as

Momk(µ) ≡
∫
A
akdµ(a)

In order to show that two measures are identical, it suffices to show that all

of their moments are equal. This follows from the compactness of A and

Θ; see, e.g., Billingsley (1995) Theorem 30.1. And to show that a sequence of

measures approaches some limiting measure (in the sense of weak convergence),

it suffices to show that each fixed moment converges to the limiting moment;

see Billingsley (1995) Theorem 30.2.25

25The cited results are stated for distributions rather than general measures, using the
first moment and above; rescaling measures by a factor of 1

N , this becomes identical.
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Consider a public history – a list of all past messages and actions – at

some decision node for the agent. At the initial message stage, call this

history h0 = (∅). For the simultaneous problem there are two more sub-

sequent histories, h1 = (m0) and hN+1 = (m0,m,a). For the sequential

problem there are N + 1 further histories h1 = (m0), h2 = (m0,m1, a1), ...,

hN+1 = (m0,m1, a1, ...,mN , aN). There are no additional reports or actions at

history hN+1 – at this history, the game is over.

Let µDσ,θ(hi) be the measure of remaining actions from period i onward,

given public history hi, if past and future states are given by θ.26 For instance,

the measure µDσ,θ(h0) is equal to µDσ,θ and the measure µDσ,θ(hN+1) places a mass

of 0 on any set. Let Ni be the remaining mass; N0 = N1 = N , Ni = N − i+ 1

for i ≤ N + 1.

For each of the (s, t) cases, starting from any history hi, I will define the

infinite sequence of moments (α0(hi), α
1(hi), ...) that are “most desirable” for

the agent as we take n and then |λ| to infinity.

Let α0(hi) = Ni in all cases, for any history hi.

To define αk(hi) for k ≥ 1, first let Z(k, ε, hi) be the set of kth moments

for which all lower moments l < k are within ε of αl(hi).

Z(k, ε, hi) =

{
Momk

(
µDσ,θ(hi)

)
s.t. σ ∈ ΣD,θ ∈ ΘN consistent with hi,

&
∣∣Moml

(
µDσ,θ(hi)

)
− αl(hi)

∣∣ < ε for each l < k

}

Now define αk(hi) inductively, given α0(hi), ..., αk−1(hi).
27

26The notation is slightly redundant – past θ’s are included in both the history and the
vector θ.

27I do not include current and past states in the construction of αk(hi) even though
they may affect an agent’s strategy, because they do not affect the set of possible action
distributions going forward. The agent can always play as if the states had been something
else.
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If (s, t) = (−1, 1) : αk(hi) = lim
ε→0+

inf Z(k, ε, hi)

(−1,−1) : αk(hi) =


lim
ε→0+

supZ(k, ε, hi) if k is odd

lim
ε→0+

inf Z(k, ε, hi) if k is even

(1, 1) : αk(hi) = lim
ε→0+

supZ(k, ε, hi)

(1,−1) : αk(hi) =


lim
ε→0+

inf Z(k, ε, hi) if k is odd

lim
ε→0+

supZ(k, ε, hi) if k is even

For each of these richness cases, the list of moments (α0(hi), α
1(hi), α

2(hi), ...)

uniquely defines a measure over A. (The moments define some measure be-

cause they were found as a limiting sequence of the moments of other mea-

sures). Let the measure µD∞ be the one implied by history h0.

Claim 1. For any public history hi, any k ≥ 0, and any ε > 0, fix an exponent

n > k and a vector of states θ. For each of the four (s, t) cases with UA =

ψ(a|θ;λ, n) + s · (a+ tλ)2n, if |λ| is large enough then

∣∣Momk
(
µDσ,θ(hi)

)
− αk(hi)

∣∣ < ε

for any σ ∈ Σ∗D(UA).

This holds for a simultaneous or sequential problem.

This claim implies the result. For each of the richness cases, taking n to

infinity and then |λ| to infinity, we can find a sequence of utility functions〈
U j
A

〉
for which each fixed kth moment converges to αk for every state vector

and every optimal strategy at the null history h0. Therefore the sequence of

agent strategies 〈σj〉 takes µDσj ,θ to µD∞.

Proof of Claim 1. I prove this by backwards induction on the period i.

The claim holds for any history hi with i = N + 1 because µDσ,θ(hN+1) is

always the 0-measure, for which every moment is 0.
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Inductive hypothesis: Suppose the claim holds for all histories hi with

i > i′. I seek to show that under the inductive hypothesis the claim also holds

for any history hi′ as well.

At history hi′ , after observing any states revealed in that period, the agent’s

expected future payoff given strategy σ can be written as

E
N∑
l=i′

[
ψ(al|θl;λ, n) + s

(
2n

0

)
a2n
l + s

(
2n

1

)
tλa2n−1

l − · · ·+ s

(
2n

n

)
tnλnanl

]

+ sE
n−1∑
k=0

(
2n

2n− k

)
t2n−kλ2n−kMomk

(
µDσ,θ(hi′)

)
(3)

where the expectations are over future states as well as current and future

actions.

Now, take a sequence of utility functions, indexed by j, which each have

the same fixed n but for which λ → ∞, and a respective sequence of opti-

mal strategies σj. Suppose there is some k < n such that the kth moment

E
[
Momk

(
µDσj ,θ(hi′)

)]
does not approach αk(hi′); without loss of general-

ity, assume it is bounded away from this value. Well, by construction of

αk(hi′) we can construct an alternate strategy σ′ for which all of the moments

E
[
Moml

(
µDσ′,θ(hi′)

)]
are arbitrarily close to αl(hi′) for each l < n. (This

strategy σ′ may be taken to be state-independent, so that the expectation

over future states is irrelevant.)

As λ goes to ∞, we can find such a σ′ which must eventually be strictly

preferred to the proposed optimal strategy σj. That’s because the first sum

in (3) is bounded by a constant expression times λn, so the difference between

σ′ and σj is as well. But the difference in the second sums goes as at least

|λ|2n−k>n times the difference in kth moments, which is positive. (Each term

in this difference of moments is nonnegative, so the difference in kth moments

is a lower bound for the total difference). � �

Proof of Lemma 2. The payoff from any mechanism is bounded above by N ·
maxa,θ UP (a|θ), and so we can find a sequence of proper measures 〈µn〉∞n=1 for
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which the payoffs of PA(µn) approach the supremum over measures of prob-

ability assignment payoffs. There is a measure achieving this limiting payoff

by the compactness of the set of measures with respect to weak convergence

combined with the continuity of payoffs as guaranteed by Claim 2.

Claim 2. Suppose that utilities are PA-aligned. Take a sequence of proper

measures 〈µn〉∞n=1 converging weakly to µ. Any player’s expected payoff from

PA(µn) approaches that from PA(µ).

Proof of Claim 2. As n goes to infinity, the agent can choose distributions

under PA(µn) which weakly approach those from optimal play under PA(µ)

for each action ai. So payoffs of PA(µn) are eventually bounded below by

any payoff arbitrarily smaller than that from PA(µ) (for the agent and, by

aligned delegation, for the principal). By a symmetric argument, the payoff

from PA(µ) is bounded below by any payoff arbitrarily smaller than that from

PA(µn), for large enough n. So the PA(µn) payoffs approach those of PA(µ).

� �

Proof of Lemma 3. 1. Fix states (θ1, ..., θN) and consider some non-assortative

assignmentm = (m1, ...,mN). Find some θi < θj for which max Supp mi >

min Supp mj. Then we can find measures νi ≤ mi and νj ≤ mj, each

placing a mass δ > 0 on A, such that the support of νi is strictly above

the support of νj. Consider swapping these measures, replacing the as-

signment mi with m′i = mi − νi + νj and mj with m′j = mj − νj + νi and

holding all other assignments fixed. The payoff change to the agent is∫
A

(
U(a|θi)− U(a|θj)

)
dνj(a)−

∫
A

(
U(a|θi)− U(a|θj)

)
dνi(a)

Let Hν : [0, δ]→ A be the inverse cumulative mass function of ν = νi, νj,

defined (for concreteness) by Hν(x) = min{a ∈ A|ν ([a, a] ∩ A) = x}.28

It holds that Hνi(x) > Hνj(x) for all x ∈ (0, δ). We can now rewrite the

28The inverse function is in general uniquely defined everywhere but a measure 0 of points;
this construction chooses the lowest possible points whenever there is freedom.
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payoff change as∫ δ

0

[(
U(Hνj(x)|θi)− U(Hνi(x)|θi)

)
−
(
U(Hνj(x)|θj)− U(Hνi(x)|θj)

)]
dx

And this is nonnegative if U satisfies increasing differences, because it is

nonnegative for each x.

Now, starting from any non-assortative assignment, we can perform a

sequence of such swaps to get to an assortative assignment. Each such

swap weakly increases payoffs, so the payoff from this resulting assortative

assignment is at least as high as the payoff from the nonassortative one.

And all assortative assignments are payoff equivalent, so they must give

the agent an optimal payoff.

2. By part 1, both player’s payoffs are maximized by an assortative strategy.

�

Proof of Lemma 4. Fix some function U : A × Θ → R. If UA contains all

functions of the form U(a|θ) − (a − λ)2n, for n → ∞ and for λ going to plus

or minus infinity, then richness is satisfied with ψ = U , independent of λ, n.

If U satisfies strict increasing differences, or concavity, then the function

U(a|θ)− (a− λ)2n does as well (s = −1, t = −1). For convexity, we can look

at a convex U with s = 1, t = −1. �

Proof of Proposition 1. Given PA(µ), an assortative strategy assigns the jth

through j + 1st quantiles of measure to the jth lowest realized state. Let F µ
j

be the distribution over which the action for this decision will be drawn:

F µ
j (a) =

u

v 1

γi

µ ((−∞, a])−
∑

j s.t. π(j)<π(i)

γj

}

~

where JyK is defined as 0 if y < 0; y if y ∈ [0, 1]; and 1 if y > 1.

Let Gj be the ex ante distribution of the jth lowest state, taking expectation

over realizations over θ.
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The principal’s expected payoff from an assortative strategy in PA(µ) can

now be written as ∑
j

∫
Θ

∫
A
UP (a|θ)dF µ

j (a)dGj(θ)

This is maximized over all possible F µ
j if F µ

j is a degenerate distribution placing

all probability on some single action in argmaxa
∫

Θ
UP (a|θ)dGj(θ). We can

induce this F µ
j by choosing µ to be a sum of these N degenerate distributions.

�

Proof of Lemma 5. Write UA as UA(a|θ) = 2c(a)θ − θ2 − (c(a))2.

Consider increasing functions of the form c(a) = (a−λ)n, for n odd. Then

ψ(a|θ;λ, n) = 2c(a)θ − θ2 is an nth degree polynomial in λ, and UA(a|θ) =

ψ(a|θ;λ, n)− (a− λ)2n. (This has s = −1, t = −1). �

Proof of Lemma 6. I first establish a simple equality showing that preferences

over actions depend only on expected states:

Claim 3. Take U a quadratic loss utility function, and let a and θ be inde-

pendent random variables. Then E[U(a|θ)] = E [U(a|E[θ])]− Var[θ].

Proof of Claim 4.

E[−(c(a)− θ)2] = E
[(
−c(a)2 + E[θ]c(a)− E[θ]2

)
+ E[θ]2 − E[θ2]

]
= E

[
−(c(a)− E[θ])2

]
− Var[θ]. �

For a finite list of real numbers L (possibly with duplicates), let R(i)(L) be

the ith lowest element of L. So R(1)(L) is the minimum of L, R(2)(L) is the

value of the second lowest element, et cetera.

Define θ̃i : {1, ..., N − i + 1} × Θi−1 → R by backwards induction. For

i = N , let θ̃N(1; θ1, ..., θN−1) = EθN [θN |θ1, ..., θN−1]. For i < N , given the

function θ̃i+1, let θ̃i(j; θ1, ..., θN−1) = Eθi
[
R(j)(

〈
θi, θ̃i+1(1), ..., θ̃i+1(N − i)

〉
)
]
.

I write θ̃i(j; θ1, ..., θN−1) as θ̃i(j) if the past states are otherwise implied.

We interpret θ̃i(j) as the expected value of the state in which the jth lowest

remaining action will be played, prior to the realization of θi. By the quadratic

loss utility function, where preferred actions depend only on expected states,
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the agent will want to assign action ai assortatively as if true future states

were known to be θ̃i+1(1), ..., θ̃i+1(N − i). This gives a sequential-assortative

strategy: action ai is assigned to quantiles of remaining measure k−1 through

k, for k such that θi is the kth lowest state of itself and the expected future

states: θi = R(k)
(〈
θi, θ̃i+1(1), ..., θ̃i+1(N − i)

〉)
.29

The following claim shows that a sequential-assortative strategy is optimal

for any quadratic loss utility, and hence that the mechanism satisfies aligned

delegation.

Claim 4. Let F µ
j be the distribution over actions corresponding to quantiles

j− 1 through j of measure µ, as in the proof of Proposition 1. Let U be some

quadratic loss utility function.

Given a sequential decision problem, there exists C such that for all proper

measures µ, a sequential-assortative strategy in PA(µ) gives a player with

utility U a payoff of
∑N

j=1

∫
A U(a|θ̃1(j))dF µ

j (a)− C. Any alternative strategy

gives a weakly lower payoff.

The C term corresponds to the quadratic payoff loss due to the variance of

states away from their expectations. It depends on the distribution of states,

but not on the chosen measure.

Proof of Claim 4. I will prove this by backwards induction on the number

of periods remaining. Consider period i, prior to the realization of θi, with

remaining measure µi. I seek to show that a sequential-assortative strategy

gives
∑N−i+1

j=1

∫
A U(a|θ̃i(j))dF µi

j (a) − Ci, for Ci independent of µi, and other

strategies give weakly less.

For i = N , this holds by Claim 3: all strategies give a payoff of
∫
A U(a|θ̃i(1))dF µi

j (a)−
Var[θN ], where θ̃i(1) is the expected value of θN .

Suppose the claim holds for i+ 1; I want to show that it holds for i as well.

29Analogously to the simultaneous definition of assortativity, the minimum of the support
of mi (the distribution assigned to action ai) is weakly above the jth quantile of remaining
measure if θi > θ̃i+1(j); the maximum of the support of mi is weakly below the jth quantile
of remaining measure if θi < θ̃i+1(j).
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Given some θi ranked kth lowest of the expected future states, the payoff

of a sequential-assortative strategy is (by the inductive hypothesis)

N−i+1∑
j=1

∫
A



U(a|θ̃i+1(j)) if j < k

U(a|θi) if j = k

U(a|θ̃i+1(j − 1)) if j > k

 dF µi
j (a)− Ci+1 (4)

The sum of integrals is exactly just the payoff of a simultaneous probability

assignment mechanism of an assortative assignment over N−i+1 states, given

measure µi and states θi, θ̃i+1(1), ..., θ̃i+1(N − i). Then the Ci+1 term lowers

payoffs due to uncertainty over future states. Taking expectation over θi, the

expected value of the state which is integrated over F µi
j in (4) is θ̃i(j). So

applying Claim 3, we get

N−i+1∑
j=1

∫
A
U(a|θ̃i(j))dF µi

j (a)− Ci

for Ci equal to E[Ci+1] minus the sum of the variance constants.30

Finally, I seek to show that the payoff of a sequential-nonassortative strat-

egy is weakly less than this. By the inductive hypothesis, given any state θi

and any assignment mi in period i, it is optimal to revert to a sequential-

assortative strategy at i + 1. This gives a payoff from current and future

periods equal to that from simultaneous probability assignment with measure

µi and states (θi, θ̃i+1(1), ..., θ̃i+1(N − i)), if the agent assigns mi to state θi

and assigns the rest of the probability mass assortatively; minus the constant

Ci+1. By Lemma 3, the simultaneous payoff would be maximized by assorta-

tive mi. This corresponds to maximizing the sequential payoff by choosing mi

sequential-assortatively. � �

Proof of Proposition 2. Given that the agent will play a sequential-assortative

strategy, it suffices to show that the optimal measure in a probability assign-

30Ci+1 may depend on the θi to the extent that the joint distribution of future states
depends on this realization.
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ment will be a sum of N unit atoms. From Claim 4 in the proof of Lemma

6, a sequential-assortative strategy in PA(µ) gives the principal a payoff of∑N
j=1

∫
A UP (a|θ̃1(j))dF µ

j (a) − C for some C independent of µ. So the princi-

pal’s payoff is maximized over measures by having F µ
j choose a single action

in argmaxa UP (a|θ̃1(j)) with certainty, i.e., choosing µ to be a sum of N unit

atoms. �

Proof of Lemma 7. We can rewrite the agent’s utility as

−(a− θ − λ)2 =
(
−θ2 + 2θ(a− λ)

)
− (a− λ)2

= ψ(a|θ;λ)− (a− λ)2n for n = 1, ψ(a|θ;λ) =
(
−θ2 + 2θ(a− λ)

)
The proof now follows that of Lemma 1, considering only the first moment

E[
∑

i γiai|σ∗,θ] of the induced measure µDσ∗,θ. �

Proof of Lemma 8.

1. From equation (1), the principal and agent have an identical maximiza-

tion problem conditional on fixing
∑

i ai.

2. Follows from continuity of the principal’s payoffs with respect to the bud-

get (because, by aligned delegation, the agent maximizes the principal’s

payoff) and compactness of the set of proper budgets. �

Proof of Proposition 3. If the agent could choose arbitrary action distributions

subject to the constraint that E
∑

i ai = K, then the proof would follow that of

Theorem 1 almost identically, observing that the budget mechanism is aligned

delegation with QLCB preferences and replacing Lemma 1 with Lemma 7.

It only remains to show that, given the freedom to choose arbitrary distri-

butions, the agent would choose deterministic actions. This is because prefer-

ences are concave in actions. Given any state and any proposed nondegenerate

distribution mi at period i, an agent with quadratic loss constant bias util-

ity would prefer choosing action ai deterministically at the expectation of mi.

Such an action is feasible because the action space is assumed to be a convex

interval. If the action space had holes, randomization might be required. �
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Proof of Lemma 9.

1. From equation (2), the principal and agent have an identical maximiza-

tion problem conditional on fixing
∑

i ai and
∑

i(ai)
2.

2. Follows from continuity of the principal’s payoffs with respect to the

moment levels K(1) and K(2) (because, by aligned delegation, the agent

maximizes the principal’s payoff) and compactness of the set of proper

moments. �

Proof of Proposition 4. Follows the proof of Theorem 1, observing that two

moment mechanisms are aligned delegation with QLLB preferences and re-

placing Lemma 1 with an analog of Lemma 7:

Claim 5. In either a simultaneous or sequential problem, let the agent have

unbounded quadratic loss constant bias utilities. Fix any mechanism D. There

exist values K(1) and K(2) and a sequence of types
〈
U j
A

〉∞
j=1

in UA such that for

all states θ and all corresponding sequences of optimal agent strategies 〈σj〉,
it holds that

E

[∑
i

γiai

∣∣∣∣∣σj,θ
]
→ K(1) as j →∞

E

[∑
i

γi(ai)
2

∣∣∣∣∣σj,θ
]
→ K(2) as j →∞

Proof of Claim 5. The agent’s utility −(a − λ(1)θ − λ(0))2 is equivalent to

2λ(1)θa−a2 + 2λ(0)a. As |λ(0)| → ∞ and λ(1) → 0, this goes to a2 + 2λ(0)a; the

agent lexicographically maximizes (if λ(0) →∞) or minimizes (if λ(0) → −∞)

the first moment of the measure E [
∑

i ai]; then minimizes the second moment

of the measure E [
∑

i(ai)
2]; and only after these are fixed looks at the term

E [
∑

i aiθi] which is multiplied by λ(1) ' 0 and depends on the states. From

here, the argument follows the proof of Lemma 1. � �

Proof of Proposition 5. By aligned delegation, it suffices to show that there

exists some strategy of the agent for which the principal’s weighted expected

per-period payoff loss UP (a∗P (θi)|θi)− UP (a(θi)|θ) is arbitrarily close to 0. An
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aligned strategy, which will be optimal for the agent, gives the principal a

weakly smaller payoff loss. And under strict aligned delegation, every optimal

strategy for an agent is aligned. I propose a strategy which can be played in

a sequential problem, and so can be replicated for a simultaneous problem.

For any positive integer L, divide the state space Θ into L “bins” in the

following manner: For 1 ≤ l < L, bin l is the set Θl,L = Θ∩
[
a+(a−a) l−1

L
, a+

(a − a) l
L

)
. Bin L is the set ΘL,L = Θ ∩

[
a + (a − a)L−1

L
, a
]

– closed on the

right.

For any l with Θl,L nonempty, let Al,L = {a∗P (θ)|θ ∈ Θl,L}.
Given a remaining measure µi = µ −

∑
j<imj with µi(Al,L) ≥ 1, say

that the agent “places ai in bin l (of L)” if she plays actions proportionally

from the remaining measure of µi on the support Al,L. Formally, she chooses

distribution mi as the measure defined by

mi(B) =
µi
(
Al,L ∩B

)
µi(Al,L)

for B ⊆ A

Tweaking the terminology of Jackson and Sonnenschein (2007), fix L and

say that a strategy in the probability assignment mechanism is approximately

truthful with respect to these bins if, whenever θi ∈ Θl,L and µi(Θ
l,L) ≥ 1, the

agent places action ai in the “appropriate” bin, bin l. When µi(Θ
l,L) < 1 the

action cannot be placed in the appropriate bin and so the agent’s choice mi

may be arbitrary, subject to the feasibility constraints.

Given decision problem n, states θ, a number of bins L, and the naive

initial measure, let z(n)(θ) be the last period for which every action from

1 through z has been placed in its appropriate bin under an approximately

truthful strategy. By continuity of UP and compactness of A and Θ, the result

follows from showing that for any fixed L, as n→∞, Eθ z
(n)(θ)
n
→ 1.31

Suppose not. Suppose instead that Eθ z(θ)
n

has lim inf strictly less than 1.

31For any ε > 0, we can find L large enough such that for any l with Θl,L nonempty, for
any θl ∈ Θl,L, and for any al ∈ Al,L, it holds that UP (al|θl) ≥ UP (a∗P (θl)|θl)− ε. Moreover,
the principal’s worst possible stage utility level min{UP (a|θ)|a ∈ A, θ ∈ Θ} is a finite value.
So if a weighted proportion of actions approaching 1 are placed in their appropriate bins,
then the principal’s payoff is close to his optimal payoff.
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Since the expression is bounded between 0 and 1, and since there are finitely

many bins, this implies that there is some l such that Θl,L is realized by F (·)
with probability pl,L > 0; there is some infinite subsequence of n values; and

some sequence z(n)(θ) for which

• Eθ z
(n)(θ)
n

is bounded away from 1 – say, is at most 1− ξ

• the probability over realizations of θ that
∑z(n)(θ)
i=1 χ{θi∈Θl,L}

n
> pl,L is bounded

away from 0

But the weak law of large numbers says that
∑z(n)(θ)
i=1 χ{θi∈Θl,L}

Γ(n) approaches its ex-

pectation – something at most (1− ξ)pl,L < pl,L – in probability, contradicting

the second bullet.

�
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