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Abstract

We study Rational Expectations equilibria in dynamic models with dispersed information and signal extrac-

tion from endogenous variables. Existence and uniqueness conditions for a new class of rational expectations

equilibria in economies with dispersed information are established. The novelty of this class lies in the presence

of confounding dynamics in the equilibrium process that can permanently sustain the information dispersion

across agents, even when the equilibrium process is perfectly observed. A feature of the equilibria belonging to

this class is a dynamic response of endogenous variables to economic shocks that display waves of optimism and

pessimism that are not present in the full information counterpart. We derive an analytical characterization of

the equilibria that generalizes the celebrated Hansen-Sargent optimal prediction formula, and also allows us to

study higher-order beliefs representations. We show that the higher-order belief dynamics, contrary to what

is normally believed, can generate a positive effect on information diffusion: if dispersedly informed agents

were not engaging in formulating expectations about expectations about expectations and so on, information

transmission through equilibrium prices would be reduced.
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1 Introduction

Dynamic models with dispersed information are becoming increasingly prominent in several literatures such as

asset pricing, optimal policy communication, international finance, and business cycles.1 The role of incomplete

information in many of these settings was acknowledged very early on; Keynes (1936) argued that higher-order

expectations played a fundamental role in asset markets, while Pigou (1929) advanced the idea that business

cycles may be the consequence of “waves of optimism and pessimism” that originate in markets where agents,

by observing common signals, generate correlated forecast errors. The idea that incomplete information could

induce a propagation mechanism and contribute substantially to business cycle fluctuations was first formalized

in a rational expectations setting by Lucas (1975), Townsend (1983) and King (1982).

From this early literature it was immediately clear that solving for equilibria in dynamic models with incom-

plete information would be challenging. Sargent (1991) and Bacchetta and van Wincoop (2006) attribute the

lack of research following the early work of Lucas (1972), Lucas (1975), King (1982) and Townsend (1983) to the

technical challenges associated with solving for equilibrium, even though these models harbored much potential.

The primary difficulty is that when endogenous variables transmit information, the equilibrium fixed point prob-

lem typical of the rational expectations paradigm involves a mapping from endogenous variables to the agents’

information sets: given the equilibrium obtained under the expectations specified for a given information set, the

information revealed in equilibrium should be consistent with the information used to solve for the equilibrium.

In dynamic settings with incomplete information, this fixed point condition is nontrivial and a crucial aspect of

the equilibrium.

We develop an equilibrium concept, which we refer to as an “Information Equilibria” (IE), that explicitly

accounts for this fixed point condition, and yields existence and uniqueness conditions for rational expectations

models with dispersed information. In particular, we focus on a new class of rational expectations equilibria in

economies with dispersed information. The novelty of this class lies in the presence of confounding dynamics

in the equilibrium process that can permanently sustain the information dispersion across agents, even when

the equilibrium process is perfectly observed. We derive an analytical characterization of the equilibria that

generalizes the celebrated Hansen-Sargent optimal prediction formula, and also allows us to study higher-order

beliefs representations.

We develop our key existence, uniqueness and characterization results for models with dispersed information

in several steps. We do this for two reasons: first, each step has value on its own in terms of possible applications,

and second, decomposing the key result into steps allows us to obtain some crucial insights on the workings

of information interactions when information is dispersed. The key steps are as follows. First, we begin by

1The literature is too voluminous to cite every worthy paper. Recent examples include: Morris and Shin (2002), Woodford (2003),
Pearlman and Sargent (2005), Allen, Morris, and Shin (2006), Bacchetta and van Wincoop (2006), Hassan and Mertens (2011),
Hellwig (2006), Gregoir and Weill (2007) Angeletos and Pavan (2007), Kasa, Walker, and Whiteman (2008), Lorenzoni (2009),
Rondina (2009), Angeletos and La’O (2009b), Hellwig and Venkateswaran (2009).
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deriving the existence and characterization conditions for the dispersed informational setup (Theorem 1). Next,

we introduce an arbitrary fraction of agents that are perfectly informed about the current and past state of the

fundamentals. We then show that the information equilibrium characterized under the assumption of some agents

being perfectly informed is equivalent to the aggregate representation of the “dispersed information” case in which

every agent receives a privately observed noisy signal about the state of the market fundamentals, together with

the equilibrium price (Theorem 2). The equivalence holds once the parameter measuring the proportion of agents

perfectly informed in Theorem 2 is reinterpreted as the signal-to-noise ratio of the privately observed signal of

Theorem 1. This equivalence result stems from the optimal signal extraction of dispersedly informed agents that

consists of a mixing strategy in interpreting the information available to them. With some probability agents will

act as if their signal is exactly correct, mimicking thus the behavior of the perfectly informed agents. With the

complementary probability they will act as if their signal contains no information about the state and so they will

take into account only the information from the equilibrium price, thus mimicking the other fraction of agents.

Equipped with the analytical characterization of the market equilibria under dispersed information, we are able

to characterize the higher-order belief (HOB) representation of such equilibria and study the role of higher order

thinking in shaping the market price dynamics. Recent papers have emphasized the role of HOB dynamics and

the subsequent breakdown in the law of iterated expectations with respect to the average expectations operator

in models with asymmetric information [e.g., Allen, Morris, and Shin (2006), Bacchetta and van Wincoop (2006),

Nimark (2008), Pearlman and Sargent (2005), Angeletos and La’O (2009a)]. Many resort to numerical analysis

or truncation of the state space in demonstrating the dynamic case, making it difficult to isolate the specific role

played by HOBs. With an analytical solution in hand, we are able to characterize these objects in closed form

and show precisely why HOBs exist, and why and when HOBs imply a failure of the law of iterated expectations.

In addition, it is possible to relate the formation of HOBs to the transmission of information in equilibrium by

showing that the formation of HOBs increases the information impounded into endogenous variables. This, in

turn, leads to a decrease in the variance of prediction errors. In other words, forming HOBs gives rise to a positive

effect on information diffusion. This conclusion goes against the existing conjecture that HOBs are responsible

for the slow reaction of endogenous variables to structural shocks. This idea stems from the observation that

agents forming HOBs forecast the forecast errors of uninformed agents, thereby injecting additional persistence

through the higher-order expectations. However, we find that this observation is incomplete as it does not take

into account the effect of higher order thinking upon informational transmission. Once the both effects are

considered, the latter one always dominates in our setting, and thus HOB formation always improves information

in equilibrium, which in turn actually reduces the persistence in equilibrium.

A remarkable feature of the equilibria belonging to this class of models is that the market price can display

continuously oscillating overpricing and underpricing compared to the market price that would emerge under

complete information. This property pertains to a rational expectations equilibrium and is not the result of

2
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bounded rationality or ad-hoc learning. We show that this propagation stems from the dynamic signal extraction

undertaken by market participants. To the best of our knowledge, this result is new to the rational expectations

literature. We argue that this feature of the equilibrium makes models with incomplete information empirically

more relevant than their complete information counterpart.

In order to make the derivation of our results as transparent as possible, we focus our attention on a simple

forward-looking asset pricing framework. Such a framework is, nonetheless, flexible enough to encompass the key

dynamic equations of many standard macroeconomic settings. Our results are therefore generally applicable to

any dynamic model of higher economic complexity.2

2 Information Equilibrium: Preliminaries

This section establishes notation and lays important groundwork for interpreting the equilibrium characterizations

that follow.

2.1 Equilibrium Model To fix notation and ideas, we define an information equilibrium within a generic

linear rational expectations framework. The forward-looking nature of the key equilibrium relationship is quite

flexible in that it allows for a broad range of interpretation, so that our results apply to any setting where current

variables depend on the expectations of future variables.

2.1.1 Market In order to keep things grounded in a specific economic example, we interpret our equations as

arising from the perfectly competitive equilibrium of an asset market in which investors take positions on a risky

asset to maximize the expected utility of next period wealth.3 The asset market works as follows: investors submit

their demand schedules—a mapping that associates the asset price to net demand—to a Walrasian auctioneer.

The auctioneer collects the demand schedules and then calls the price that equates demand to supply. To allow

for trading in equilibrium, the net supply of the asset in a given period t, st, is assumed to be exogenous.4 The

net demand in the asset market is provided by a continuum of potentially diversely informed agents indexed by

i. The market clearing price chosen by the Walrasian auctioneer is given by

pt = β

∫ 1

0

E
i
tpt+1φ(i)di + st (2.1)

2For example, see Rondina and Walker (2011) for an application of our methods to a standard real business cycle model.
3In Appendix B we present a simple asset demand model that delivers the equilibrium equation that we use throughout the paper.
4In what follows we will let the supply of the asset be measured by −st. Therefore, an increase (decrease) in st will correspond

to a decrease (increase) in the exogenous supply of the asset.
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where β ∈ (0, 1), Ei
t is the conditional expectation of agent i, φ(·) is the density of agents and the exogenous

process (st) is driven by a Gaussian shock

st = A(L)εt, εt
iid∼ N(0, σ2

ε) (2.2)

and where A(L) is assumed to be a square-summable polynomial in non-negative powers of the lag operator L.

2.1.2 Information Information is assumed to originate from two sources–exogenous and endogenous. Exoge-

nous information, denoted by U i
t , is that which is not affected by market forces and is endowed by the modeler

to the agents. Thus, the exogenous information profile {U i
t , i ∈ [0, 1]} is a primitive of the model. Endogenous

information is generated through market interactions. When agents are diversely informed, endogenous variables

may convey additional information not already contained in the exogenous information set. We separate endoge-

nous information into two components–Vt(p) and Mt(p). The notation Vt(p) denotes the smallest linear closed

subspace that is spanned by current and past pt, we refer to it as “time-series information” of pt. Mt(p), on the

other hand, results from the assumption that agents know the equilibrium process pt evolves according to (2.1);

we refer to it as “information from the model.”

To clarify what information is captured in Mt(p), it is useful to think about how the the knowledge of the

model (2.1) affects the Walrasian market structure described above. When rational investors formulate the

demand schedule to submit to the Walrasian auctioneer, they know that the auctioneer will pick a price that

clears the market, i.e. that satisfies (2.1). Investors can use this information to reduce their forecast errors. To

see this, suppose that all the investors have the same information and thus the individual demand schedule is

given by βEtpt+1 − pt, for some arbitrary information set. Given a candidate price pt chosen by the auctioneer,

investors know that at that price the market will clear, which means βEtpt+1 − pt + st = 0. If this is the case,

then investors will treat st as part of the information that they should use to derive Etpt+1 for any arbitrary pt.

As investors submit their demand schedules they do not know what is the true value of st but they can formulate

expectations that are consistent with the true value that will be revealed once the Walrasian auctioneer picks the

market clearing price. If investors ignored this information, they would incur consistently higher forecast errors,

which would violate rational expectations and imply their submitted demand schedules were not optimal. That

subjective beliefs must be model consistent is a standard definition of a rational expectations equilibrium.5 In

rational expectations models with complete information and representative agents, information from the model is

a trivial equilibrium condition. We show below that in models with incomplete information and heterogeneously

informed agents, information from the model plays a crucial role in determining equilibrium.

5From a mere statistical point of view, the knowledge of the model is equivalent to the knowledge of the covariance generating
function between the process st and the equilibrium price pt. In other words, in equilibrium there is a true relationship between

prices and supply that is summarized by the variance-covariance generating matrix

(

gpp(z) gps(z)
gps(z) gss(z)

)

. Knowledge of the model

corresponds to knowing gps(z) and using it to obtain st from pt.

4
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The time t information of trader i is then Ωi
t = U i

t ∨ Vt(p) ∨Mt(p), where the operator ∨ denotes the span

(i.e., the smallest closed subspace which contains the subspaces) of the U i
t , Vt(p) and Mt(p) spaces.

6 Uncertainty

is assumed to be driven entirely by the Gaussian stochastic process εt, which implies that optimal projection

formulas are equivalent to conditional expectations,

E
i
t(pt+1) = Π[pt+1|Ωi

t] = Π[pt+1|U i
t ∨ Vt(p) ∨Mt(p)]. (2.3)

where Π denotes linear projection. The normality assumption also rules out sunspots and implies the equilibrium

lies in a well-known Hilbert space, the space spanned by square-summable linear combinations of εt.

2.1.3 Equilibrium Definition We now define an information equilibrium.

Definition IE. An Information Equilibrium (IE) is a stochastic process for {pt} and a stochastic process for the

information sets
{
Ωi

t, i ∈ [0, 1]
}

such that: (i) each agent i, given the price and the information set, optimally

forms expectations according to (2.3); (ii) pt satisfies the equilibrium condition (2.1).

An IE consists of two objects, a price and a distribution of information, and can be summarized by two statements:

(a) given a distribution of information sets, there exists a market clearing price determined by each agent i’s

optimal prediction conditional on the information sets; (b) given a price process, there exists a distribution of

information sets generated by the price process that provides the basis for optimal prediction. Both statements

(a) and (b) must be satisfied by the same price and the same distribution of information simultaneously in order

to satisfy the requirements of an IE.

2.2 Confounding Dynamics and Signal Extraction Central to the existence of the class of rational

expectations equilibria examined in this paper is the idea that dynamics can conceal information. In this section

we lay some groundwork on the relationship between the dynamics of a stochastic process and the information

conveyed by that process. We isolate a signal extraction mechanism that operates at the heart of the new class

of equilibria established in Section 3; this will allow us to gain insights in the interpretation of the equilibrium

dynamics.

In dynamic settings, the information set of agents is continuously expanding as they collect new observations

with each period t. A crucial question in such settings is whether an expanding information set over time

corresponds to an ever increasing precision of information about the current and past structural innovations,

{εt−j}∞j=0.

The answer to this question depends upon the characteristics of the dynamics of the observed variables. Using

the terminology of Rozanov (1967), if the structural innovations are fundamental for the observable variables,

6If the exogenous and endogenous information are disjoint, then the linear span becomes a direct sum. We use similar notation
as Futia (1981) in that Vt(x) = Vt(y) means the space spanned by {xt−j}∞j=0 is equivalent, in mean square, to the space spanned by

{yt−j}∞j=0.

5
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then agents would eventually learn the true underlying dynamics. Intuitively, if a dynamic stochastic process is

invertible in current and past observables, then it is fundamental and the observed history would allow one to

back out the exact history of the underlying fundamental innovations. On the other hand, if the process is non-

fundamental, then the observed history will contain only imperfect information about the fundamentals. In this

case we say that the observed variable displays confounding dynamics. In linear dynamic settings, confounding

dynamics can be formalized by non-fundamental moving averages (MA) representations.

As an example, consider the problem of extracting information about εt from

xt = −λεt + εt−1. (2.4)

If |λ| ≥ 1, the stochastic process xt is invertible in current and past xt, which means that there exists a linear

combination of current and past xt’s that allows the exact recovery of εt; formally

E
(
εt|xt

)
= −1/λ

(
xt + λ−1xt−1 + λ−2xt−2 + λ−3xt−3 + ...

)
= εt. (2.5)

Note that the infinite sum converges as λ−j goes to zero for j “big enough”.

When |λ| < 1 the process is no longer invertible in current and past xt. Equation (2.5) is no longer well

defined as the coefficients for the past realizations of xt grow without bound. Nevertheless, there is still a linear

combination of xt that minimizes the forecast error for εt; this is given by

E
(
εt|xt

)
= − λ

|λ|
(
xt + λxt−1 + λ2xt−2 + λ3xt−3 + ...

)
= ε̃t. (2.6)

Non-invertibility implies that ε̃t contains strictly less information than εt, in the sense that the mean squared

forecast error conditional on ε̃t is bigger than εt (which is identically zero). More specifically, the mean square

forecast error is

E

[

(εt − ε̃t)
2
]

=
(
1− λ2

)
σ2
ε > 0.

The mean squared forecast error approaches zero as the dynamics goes from non-invertible to invertible, i.e. as

|λ| → 1 from below.

The imperfect information described by (2.4) when |λ| < 1 corresponds to an ignorance about the initial state

of the world at time t = 0 that never unravels because of the confounding dynamics of xt. To see this, imagine

that agents initially observe x1 = −λε1+ ε0 and thus cannot distinguish between ε1 and ε0. If they knew ε0 they

could easily back out ε1 from x1 and then, as information about xt accumulates, all the values of εt for t > 1

would be known. However, if all agents observe is x0, then the best they can do is to get as close as possible to

εt using (2.6). Whereas in standard signal extraction problems the informational friction is assumed in the form

6
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Figure 1: Impulse response of the optimal prediction formula for fundamentals εt in presence of confounding
dynamics (Equation (2.7)) to a one time innovation ε0 = 1. The dotted line is the process for fundamentals; the
solid line is the response under “weak” confounding dynamics (|λ| = 1/

√
2); the dashed line is the response under

“strong” confounding dynamics (|λ| = 1/
√
11).

of a superimposed signal-to-noise ratio, in (2.4) the noise is a result of the dynamic unfolding parameterized by

λ that keeps the ignorance about the initial state ε0 informationally relevant at any point in time.7

An additional important implication of confounding dynamics is that the optimal learning effort of the agents

creates a persistent effect of past innovations. To see this let λ < 0 and rewrite (2.6) as

ε̃t = −λεt
︸ ︷︷ ︸

+ (1− λ2)[εt−1 + λεt−2 + λ2εt−3 + · · · ]
︸ ︷︷ ︸

. (2.7)

= information + noise from confounding dynamics

This equation clarifies how λ controls the information that the history of xt contains about εt through two

channels: an informative signal with weight λ (the first term on the RHS), and a noise component with weight

(1−λ2). Notice that the noise term is a linear combination of past innovations, which is the source of the persistent

effect of past innovations. As the confounding dynamics become more pronounced, i.e. when λ decreases, there

are three effects. First, the weight on the informative signal decreases as xt contains less information about εt.

Second, the weight (1 − λ2) on the noise increases; however, this increase is in part offset by the third effect,

which is a reduction in the persistence of innovations dated t− 2 and earlier.

To visualize these effects, we report the impulse response function for the prediction equation (2.7) to a one

time, one unit increase in εt in Figure 1 for both a low and a high value of λ with λ < 0.8 First notice that for

7As long as |λ| < 1, whether λ is positive or negative does not matter for the informational content. In Appendix B we show that
the signal extraction problem under confounding dynamics is equivalent, in forecast mean square error terms, to a standard signal
extraction problem when λ2 = τ , where τ is the signal-to-noise ratio of a standard signal extraction problem. The interested reader
is directed to Appendix B for details.

8We chose the case of λ < 0 because the resulting exogenous process lends itself to a meaningful economic interpretation. In fact,
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the high-λ case, the value of E (εt|xt) is very close to the true innovation value of 1 on impact, whereas for the

low-λ case, the underestimation is quite large. Second, in both cases the current innovation will persistently affect

the prediction function several periods beyond impact. This is in contrast to the full information case where the

impulse response is zero after impact (fundamentals). However for the weak confounding dynamics, the effect

will be initially weaker and then it will only slowly decay. For strong confounding dynamics, the opposite is true:

the effect is initially stronger and the decay is subsequently faster.

3 Information Equilibria: Main Theorem

This section establishes the main result of the paper: the existence of a new class of rational expectations equilibria

for dynamic economies with dispersed information. We begin by presenting the full information solution to the

equilibrium model (2.1) and then we state the main theorem of the paper.

3.1 Full Information Benchmark We define Full Information as the case when every buyer is endowed

with perfect knowledge of the innovations history up to time t. Formally

U i
t = Vt(ε), ∀i ∈ [0, 1] . (3.1)

Here, and in the following analysis, we assume that agents always observe the endogenous information Vt(p) ∨

Mt(p). Under full information all the buyers will have the same information in equilibrium and so (2.1) can be

written as the contemporaneous expectation of the discounted sum of future st’s,

pt =

∞∑

j=0

βj
Et(st+j). (3.2)

The solution of this model is well known and the equilibrium takes the form

pt =

[
LA(L)− βA(β)

L− β

]

εt (3.3)

which is the celebrated Hansen-Sargent formula [Hansen and Sargent (1991)]. Provided |β| < 1, equation (3.3) is

the unique Information Equilibrium solution to (2.1) when information is specified as (3.1).

3.2 Dispersed Information Equilibrium The principal case of interest is one in which agents are endowed

with dispersed information about the economic fundamentals, while they still observe the current and past history

later we will use a process similar to (2.4) to model a canonical S-shaped diffusion process. The prediction formula with λ > 0 would
display the same response at impact but it would not exhibit the oscillatory pattern of Figure 1. Instead, the impulse response would
turn negative at period 2 and gradually approaching zero from below from then onward. The three effects described above will all
still be present, nonetheless.

8
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of equilibrium prices. This case captures the informational setup of most of the recent literature on equilibrium

models with dispersed information.9 Our theorem therefore presents a class of rational expectations equilibria

that can emerge in such models, but that have not been characterized so far.

In line with the dispersed information literature, we assume that all agents are identical in terms of the

imperfect quality of information they possess. In particular, we assume each agent observes their own particular

“window” of the world, as in Phelps (1969). Information is dispersed in the sense that, although complete

knowledge of the fundamentals is not given to any one agent, by pooling the noisy signals across all agents it

is possible to recover the full information about the state of the economy. The information set is formalized as

follows. Consider a set of i.i.d. noisy signals specified as

εit = εt + vit with vit
iid∼ N

(
0, σ2

v

)
for i ∈ [0, 1] . (3.4)

We assume that agents, in addition to observing the current and past realization of equilibrium prices, are endowed

with the exogenous information

U i
t = Vt (εi) for i ∈ [0, 1] . (3.5)

The information set of an individual agent i can thus be written as

Ωi
t = Vt(εi) ∨ Vt(p) ∨Mt(p) (3.6)

The following Theorem characterizes the equilibrium under dispersed information.

Theorem 1. Let τ ≡ σ2
ε/(σ

2
v + σ2

ε) be the signal-to-noise ratio associated with the signal εit in (3.4). Under

the information assumption (3.6), a unique Information Equilibrium for (2.1) with |β| < 1 always exists and is

determined as follows. Suppose that exactly one real scalar |λ| < 1 can be found such that

A(λ)− τβA(β)(1 − λβ)

λ− (1 − τ(1 − λ2))β
= 0 (3.7)

then the information equilibrium price is given by

pt =
1

L− β

[

LA(L)− βA(β)
h(L)

h(β)

]

εt (3.8)

9The informational setup of this section is especially common in the recent and fast growing literature on dispersed information and
the business cycle; see, for example, Angeletos and La’O (2009b), Hellwig and Venkateswaran (2009), Lorenzoni (2009), Maćkowiak
and Wiederholt (2007) and Rondina and Walker (2011).

9
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with

h(L) ≡ τλ+ (1 − τ)

(
λ− L

1− λL

)

. (3.9)

If such a scalar |λ| < 1 cannot be found, then the information equilibrium price is given by (3.3).

Proof. See Appendix A.

The theorem contains two fixed point conditions, which coincides with our definition of an Information Equilibrium

(Definition IE): one that characterizes the information set, (3.7), and one that characterizes the equilibrium price,

(3.8). Providing economic intuition and developing a deep understanding of these two equations is the sole purpose

of the rest of the paper. Foreshadowing results, we show how (3.7) relates to the agents’ information sets and

in particular to knowledge of the model. We also derive a one-to-one mapping between this economy and one in

which information is hierarchical. This mapping delivers an aggregation result that further enhances economic

intuition. Notice also that the equilibrium price takes the form of a generalized Hansen-Sargent formula, with the

term h(L)
h(β) representing the departure from the standard formula of equation (3.3). In Section 4 we show that the

term h(L) emerges from the consideration that agents use the knowledge of the model, together with the history

of the equilibrium price, to infer what is the market forecast of future prices.

Before proceeding to this analysis, we first want to argue that these information equilibria are empirically

interesting objects by asking the question: How different is the equilibrium price of equation (3.8) from the full

information price? Figure 2 reports the impulse response to a one time innovation in the fundamental process εt

of the equilibrium price characterized in Theorem 1 when primitives of the model are such that a |λ| < 1 satisfying

(3.7) can be found compared to the full information benchmark. The process for the economic fundamental is

specified as A(L) = 1+θL
1−ρL

, with θ =
√
11 and ρ = 0.9, so that the effect of an innovation peaks after one period.

The rest of the parameter values are set to β = 0.9 and τ = 0.02. The full information equilibrium is given by

plugging these numbers into equation (3.3).

As shown in figure 2, the full information price strongly reacts at impact by taking into account that the shock

is persistent and will therefore affect the equilibrium price over the next several periods through its effect on the

predictability of future price realizations. The effect will peak after one period and then decay monotonically.

The behavior of the full information price essentially amplifies the behavior of the economic fundamentals through

the forward looking nature of the equilibrium price equation.

The blue line represents the information equilibrium price of equation (3.8), with equation (3.7) providing the

endogenous value for λ of −0.47. The information equilibrium price displays the confounding dynamics of section

2.2; in addition agents have noisy signals about the innovation and so they are not able to infer the value of the

economic fundamentals. As a consequence they will under-react, roughly by 50% compared to the full information

10
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Figure 2: Impulse response of the full information price, the information equilibrium price of Theorem 1, and the
process for economic fundamentals st = 0.9st−1 + εt +

√
11εt−1. The parameter values are β = 0.9 and τ = 0.02.

case. In the following period, as new information becomes available through the equilibrium price, agents realize

that an innovation occurred, but because they initially under-reacted, they now infer from the equilibrium price

that the innovation is larger than the actual value. This results in a very optimistic view of the fundamentals and

an over-reaction of the equilibrium prices, of about 25% of the full information counterpart. In the subsequent

period, observing the equilibrium price agents will think that they have over-estimated the innovation and they

will correct downward their expectations, now again erring on the downside, causing the equilibrium price to

under-react by 10% with respect to full information. As the over- and under-reactions subside, the equilibrium

price response gets closer to the full information case. It is important to emphasize that this over- and under-

reaction is optimal. Agents are fully rational and yet from the perspective of the true economic fundamentals, the

market price presents what looks like waves of “optimism” and “pessimism” with respect to the full information

benchmark. Given that many empirical time series (e.g., asset prices, business cycles) follow boom-bust cycles,

we view the information equilibrium as a very interesting departure from the standard equilibrium.

4 Information Equilibria: Characterization

4.1 Equivalent Representation In order to develop intuition for Theorem 1, we begin by stating a pow-

erful “aggregation” result and deriving an equivalence to an alternative information structure where instead of

considering a continuum of agents with dispersed information, we assume that there are two types of buyers:

fully informed and uninformed. The fully informed buyers observe the entire history of economic fundamentals

ε up to time t; the uninformed buyers observe only the entire history of prices up to time t. The proportion of

the fully informed buyers is denoted by µ ∈ [0, 1], and, consequently the proportion of the uninformed buyers is

11
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1− µ. More formally, we consider a market with the following exogenous information structure:

U i
t = Vt(ε) for i ∈ µ and U i

t = {0} for i ∈ 1− µ. (4.1)

Note that under this informational assumption, the market equilibrium equation (2.1) can be written as

pt = β
[
µEI

t

(
pt+1

)
+ (1− µ)EU

t

(
pt+1

)]
+ st. (4.2)

where I is notation for the fully informed, while U is notation for the uninformed. The following theorem states

the equivalence result.

Theorem 2. Under the exogenous information assumption (4.1), a unique Information Equilibrium for (4.2)

with |β| < 1 always exists and is equivalent to the equilibrium characterized in Theorem 1 with τ ≡ µ.

Proof. See Appendix A.

The theorem states that in terms of the aggregate characterization of the equilibrium, the dispersed information

setup is identical (i.e., same existence condition (3.7) and same equilibrium pricing function (3.8)) to the hierar-

chical information setup when the signal-to-noise ratio τ ≡ σ2
ε/(σ

2
v + σ2

ε ) is equal to the proportion of informed

traders, µ. This equivalence result can be understood by thinking of the strategic behavior of the dispersedly

informed buyers of Theorem 1. Each agent i receives a privately observed signal εit and a publicly observed signal

pt about the unobserved fundamental εt. The optimal behavior—in terms of forecast error minimization—is

for the agent to act as if the signal εit contained no noise and thus was equal to the true state εt, in measure

proportional to the informativeness of the signal τ . At the same time, it is certainly possible that the signal

is pure noise and thus it would be optimal to ignore it and act just upon the public signal pt, this in measure

(1 − τ) = σ2
v/(σ

2
v + σ2

ε ). Thus, in a dispersed information setting each agent behaves optimally by employing a

“mixed” strategy approach: act as if they possess the full information of the informed buyers I of Theorem 2

with probability τ , and act as if they possess just the public information of the uninformed buyers U of Theorem

2 with probability 1 − τ . Theorem 2 shows that the equilibrium price of a market with µ fully informed and

1 − µ fully uninformed buyers displays, in the aggregate, the “mixed” strategies of the individual buyers in the

dispersed information environment. Theorem 2 is an aggregation result that allows one to study a market with

only two representative buyers, one with full information in measure τ and one with just public information in

measure 1 − τ , knowing that the aggregate behavior of that market is equivalent to the aggregate behavior of a

market with dispersedly informed (i.e. heterogeneous) buyers. We will make extensive use of this result when

studying the aggregate properties of the equilibrium.

12
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4.2 Informational Fixed Point The informational fixed point condition (3.7) lies at the heart of the

existence of an equilibrium with confounding dynamics, which is the key contribution of this paper. In this

section we explore this condition and show under which economically relevant environments it can emerge. We

argue that, even in a simple one-equation model like the one used in our analysis, condition (3.7) is easily obtained.

The following is a useful corollary to both Theorems 1 and 2 that helps in understanding the source of the

confounding dynamics.

Corollary 1. Let τ → 0 (or, equivalently, µ → 0), a unique Information Equilibrium for (2.1) with |β| < 1

always exists and is determined as follows: Suppose that exactly one real scalar |λ| < 1 can be found such that

A(λ) = 0, (4.3)

then the information equilibrium price process is

pt =
1

L− β

[

LA(L)− βA(β)
Bλ(L)

Bλ(β)

]

εt (4.4)

where Bλ(L) =
L−λ
1−λL

. If condition (4.3) does not hold for |λ| < 1, then the Information Equilibrium is given by

(3.3).

Proof. See Appendix A.

Condition (4.3) offers an important insight into the existence condition (3.7) in Theorem 1. It stipulates that,

in order for the equilibrium price to display confounding dynamics as the informativeness of the signal goes to

zero (or equivalently as the the proportioned of informed traders goes to zero), the supply process st must also

possess confounding dynamics with respect to the structural innovations, εt. To see this more clearly, note that

the supply process can be written as st = (L − λ)Â(L)εt—where Â(L) has no zeros inside the unit circle—to

satisfy (4.3). This supply process will contain the confounding dynamics described in section 2.2.

The key intuition behind this restriction and the existence condition (3.7) comes from the agents’ knowledge

of the model, Mt(p). This concept gets at the idea that in a rational expectations framework agents know that

the price that clears the market must satisfy (2.1). Investors will use this information to reduce their forecast

errors. Specifically as τ → 0, all agents will rationally believe that all market participants will have the same

expectations about next period’s price in equilibrium. Therefore whatever this expectation is, they know that it

must satisfy

pt − βEt(pt+1) = st. (4.5)

Recall that as τ → 0, only the public signal, pt, is available to traders at t. Knowledge of the model implies

that the left-hand side of (4.5) is in the information set of the traders, and therefore the entire history of st

13
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must also be contained in the information set of all the agents in equilibrium, i.e. Mt(p) = Vt(s). This suggests

that in order for confounding dynamics to exist in equilibrium, the st itself must display such dynamics, which is

exactly what condition (3.7) states.10 In a simple representative agent economy, imposing confounding dynamics

on the exogenous process is sufficient to generate endogenous confounding dynamics in equilibrium. The model’s

cross-equation restrictions ensure that endogenous variables will inherit the stochastic properties of the exogenous

variables—confounding dynamics in this case.

In dynamic models with asymmetrically informed agents, conditions that guarantee agents remain hetero-

geneously informed in equilibrium (i.e., conditions which preserve confounding dynamics) are more difficult to

derive and not easily interpretable, as evidenced by (3.7). However, the intuition behind knowledge of the model

concept provides an unified way to proceed.11

Consider the case of Theorem 2 with µ > 0. Condition (3.7) gives the condition that must hold for the

uninformed agents to remain uninformed in equilibrium. Through knowledge of the model, the uninformed

buyers will recognize that in equilibrium the following relationship must hold

pt − β(1− µ)EU

t (pt+1) = βµEI

t (pt+1) + st. (4.6)

The difference between this existence condition and that of Corollary 1 is that the uninformed buyers are not

able to back out the exact process for st given the history of prices and uninformed predictions, EU . However,

they are able to uncover the sum of the supply process st and the predictions of the fully informed buyers E
I .

The question is whether this sum displays confounding dynamics that can be inherited by the equilibrium price.

Condition (3.7) provides the answer to this question. Appendix A shows that (3.7) is equivalent to the right-hand

side of (4.6) evaluated at λ. If this term vanishes at |λ| < 1, then the sum of the informed agents’ expectation

and the supply process has a non-fundamental moving average representation and is not invertible with respect

to the information set of the uninformed agents. In other words, condition (3.7) implies the right-hand side of

(4.6) will display confounding dynamics. Consequently the uninformed agents will only be able to see the sum

but not the individual components of the sum. It is in this sense that models with disparately informed agents

lead to endogenous signal extraction. Uninformed agents want to disentangle the effects on the equilibrium price

of the informed agent’s expectations from the supply process.

The above intuition is useful in interpreting the existence condition for the dispersed information case. When

τ > 0, knowledge of the model under dispersed information results in agents being able to infer the sum of the

supply process st and the difference between the average market expectations Ē and their individual expectations,

10The reasoning behind the result presupposes that all the agents at time t have access to the entire history of their expectations.
If this was not the case, which for example could happen if one were to consider an overlapping generation structure of the market
where a generation of agents is born in each period and dies the next period, then the new generation would only be able to observe
the current realization of st and so the information equilibrium might not coincide with the one characterized by (4.4).

11Moreover, Rondina and Walker (2011) show that this concept overturns non-existence results thought to be pervasive in models
with heterogeneously informed agents.
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namely

pt − βE(pt+1|εti, pt) = β[Ē(pt+1|εti, pt)− E(pt+1|εti, pt)] + st (4.7)

The informational fixed point in Theorem 1 ensures that the process on the right hand side displays confounding

dynamics for the information set (εit, pt), so that, in equilibrium, knowledge of the model does not perfectly reveal

the fundamental innovation εt.

Since condition (3.7) lies at the core of Theorem 1 it is important to ask whether it holds in economically

relevant situations. Indeed, confounding dynamics can emerge in many interesting settings. For example, diffusion

processes, such as the adoption of a new technology, normally display confounding dynamics. The diffusion pattern

takes the typical “S” shape: an initial phase of low diffusion, a steep middle diffusion phase and final leveling-off

phase [see Rogers (2003)]. Following Canova (2003), a diffusion process where an initial shock εt diffuses with

the canonical “S” shape can be formalized by

st = st−1 + αεt + 2αεt−1 + .75αεt−2, (4.8)

with 0 < α < 1. The diffusion process (4.8) displays confounding dynamics.12 For example, with β = .5, letting

τ = 0 Corollary 1 would then ensure that an information equilibrium is given by (4.4) with λ = −2/3, whereas,

letting τ = .01, Theorem 1 would ensure that an information equilibrium is given by (3.8) with λ = −.7.

One additional concern about (3.7) is that it could hold only for a combination of parameter values with

measure zero, i.e. it could be a non-generic condition. This is clearly not the case. For simplicity consider the

limiting condition (4.3). The equilibrium of the corollary is generic because |λ| can be anywhere inside the unit

circle, and A(λ) = 0 is the only restriction placed on A(·). The same argument can be immediately extended to

(3.7) by continuity. This suggests that interesting information equilibria can easily emerge from standard rational

expectations models. For example, from the diffusion process in (4.8) one can safely change the parameters along

several dimensions without affecting the existence of a |λ| satisfying (3.7) in Theorem 1. We provide additional

examples of the non-generic behavior of the information equilibrium below.

4.3 Aggregate Characterization Equipped with the results of Theorems 1 and 2 we turn now to the

study of the properties of the price in an information equilibrium. We first notice that the price function in all

the Theorems takes the form of a modified Hansen-Sargent formula (3.3). The Hansen-Sargent formula essentially

represents an operator that “conditions down” from the full history of innovations (past, present and future) to

12Notice that we have specified a process with a unit root in (4.8), while we have previously stated that we focus on stationary
equilibria. The unit root in the exogenous process can be easily dealt with by specifying an AR coefficient, solve for the equilibrium
and then take the limit for the coefficient going to 1. The level of the price process will not have a well defined second moment, but
the dynamics can be expressed in first differences. Alternatively, one could take the first difference of the market price using equation
(2.1), which would eliminate the unit root due to st but not the confounding dynamics, and solve directly for the first difference.
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a linear combination of innovations by subtracting off what is not contained in the information set of the agents.

Corollary 2 formalizes the idea.

Corollary 2. Under the assumptions of Theorem 2, if |λ| < 1 satisfying (3.7) exists, the information equilibrium

price can be written as

pt =

(
LA(L)

L− β

)

εt −
(
βA(β)

L− β

)

εt − (1 − τ)βAU (β)

(
1− λ2

1− λL

)

εt, (4.9)

where

AU (L) =
A(L)

L− λ− τβ(1 − λ2)
. (4.10)

Proof. Follows directly from Theorem 1.

The Corollary represents the information equilibrium price as being comprised of three components. The first

component of the RHS of (4.9) is the perfect foresight equilibrium,

pft =

∞∑

j=0

βjst+j =
LA(L)

L− β
εt (4.11)

This is the IE that would emerge if agents knew current, past and future values of εt.

The second component operates a first conditioning down that takes into account the fact that future values

of εt are not known at t. This conditioning down amounts to subtracting off a particular linear combination of

future values of εt, specifically

βA(β)

∞∑

j=1

βjεt+j (4.12)

The third component is the novel part of the representation. It represents the conditioning down related to the

uninformed buyers not being able to perfectly unravel the past realizations of εt from the equilibrium price—

the confounding dynamics. The interpretation of this term offers important insights into the working of an

information equilibrium at the aggregate level. To shed light on these insights we make use of the aggregation

result of Theorem 2 and so we consider informed and uninformed buyers. Let E
I
t (st+1) = E[st+1|Vt(ε)] denote

prediction formula of a fully informed buyer, and E
U
t (st+1) = E[st+1|Vt(p) ∨Mt(p)] the prediction formula of an

uninformed buyer in the information equilibrium of Corollary 2. Let us assume for the moment that µ ≡ τ = 0.

In the equilibrium with only uninformed buyers, agents are concerned with forecasting the discounted, infinite

sum of market fundamentals, i.e., pt =
∑

∞

j=0 β
j
E
U
t (st+j). Writing out the uninformed buyers expectations of
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future supply using the analytic form of the equilibrium price yields

E
U

t (st+j) = E
I

t (st+j)−AU

j−1

(
1− λ2

1− λL

)

εt. (4.13)

The uninformed agents’ expectations of fundamentals at each future date are given by the expectation of fully

informed agents minus a term given by the linear combination of past εt’s that the agents do not observe. This

linear combination consists of the noise stemming from the confounding dynamics generated by |λ| < 1 (see

Section 2.2, Equation (2.7)) multiplied by a coefficient that corresponds to the weight on the (j − 1)th lag of

the polynomial AU (L) which represents the dynamics of the supply process st as perceived by the uninformed

buyers in equilibrium. Uninformed agents would formulate predictions that are equal to those formulated by fully

informed agents if it were not for the confounding dynamics. The information equilibrium price then contains

the accumulated noise for the expectations at all horizons, namely

∞∑

j=1

βjAU

j−1

(
1− λ2

1− λL

)

εt = βAU (β)

(
1− λ2

1− λL

)

εt. (4.14)

Notice that as |λ| gets closer to 1, the noise due to the confounding dynamics becomes smaller, disappearing in

the limit.

When fully informed buyers are introduced into the market, so that µ > 0, the noise due to confounding

dynamics is affected through two channels. First, there are fewer uninformed buyers and so only a fraction

1−µ of the cumulated noise (4.14) has to be subtracted off. Second, the presence of informed buyers changes the

perceived supply processAU (L) for the uninformed buyers as the equilibrium price now contains more information:

both the polynomial AU (L) and λ will reflect this change. As the proportion of informed buyers increases (µ → 1),

the information equilibrium approaches the full information counterpart and the third term in (4.9) vanishes.

4.4 Dispersed Characterization While Theorem 2 guarantees equivalence with the informed-uninformed

buyers setup at the aggregate level, there exist important differences between the two equilibria at the individual

agent level. First, the dispersed information equilibrium displays a well defined cross sectional distribution of

beliefs, as opposed to the degenerate distribution in the hierarchical case. Second, the cross-sectional variation is

perpetual in the sense that the unconditional cross-sectional variance is positive. In other words, agents’ beliefs

are in perpetual disagreement. These two results are stated in terms of expectations about future prices in the

following proposition.

Proposition 1. Let pt = (L−λ)Q(L)εt be the information equilibrium characterized by Theorem 1, with |λ| < 1.

17



Rondina & Walker: Information Equilibria in Dynamic Economies

The cross section of beliefs about future prices is given by

E
i
t(pt+j) = E

I

t (pt+j)− (1− τ)Qj−1

(
1− λ2

1− λL

)

εt − τQj−1

(
1− λ2

1− λL

)

vit for j = 1, 2, .... (4.15)

The implied unconditional cross-sectional variance in beliefs is given by

τ2
(
1− λ2

)
(Qj−1)

2σ2
v for j = 1, 2, .... (4.16)

Proof. See Appendix A.

If one considers the interpretation of the optimal signal extraction problem under dispersed information in

terms of mixed strategies, the beliefs in (4.15) have an intuitive interpretation. If information was complete, the

beliefs would coincide with the expectation E
I
t (pt+j). The difference of the beliefs of agent i with respect to the

full information has two components. One is common across agents, one is specific to each agent. The common

component (the second term on the RHS of (4.15)) is the result of agent i acting as if uninformed with probability

1− τ . Similar to the uninformed buyers in the informed-uninformed case, agent i formulates her beliefs based on

the common public information embedded into prices. As a result, her beliefs will differ from the full information

case according to the noise due to confounding dynamics. The idiosyncratic component (the third term on the

RHS of (4.15)) is the result of the agent acting as if they are fully informed. In acting as fully informed, the

agent will condition on their private signal εit. In so doing she will inject an idiosyncratic error into her beliefs.

As for the unconditional variance of the beliefs, Proposition 1 offers an analytical form that can be very useful in

calibrating key parameters of the market if data on cross-sectional beliefs on prices are available.

4.5 Information Equilibrium: An Example We conclude this section with a specific example which allows

us to further analyze existence conditions and provide a sharper characterization of the resulting information

equilibrium. Let the supply process st be given by

st = ρst−1 + εt + θεt−1, |ρ| ≤ 1. (4.17)

The full information solution to the equilibrium price is obtained by substituting (4.17) in (3.3), which results

in

pt − ρpt−1 =

(
1 + θβ

1− ρβ

)

εt + θεt−1. (4.18)

Suppose that the exogenous information for the buyers is specified as in (3.4) and the parameter values are

such that exactly one |λ| < 1 that satisfies (3.7) exists, then Theorem 1 provides the closed form solution for the

equilibrium price as
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p∗t − ρp∗t−1 =

(
λ− L

1− λL

)
1

λ

[
1 + θβ

1− ρβ

(

1 +
(1− τ)β(1 − λ2)

λ− (1− τ(1 − λ2))β

)

εt + λ2θεt−1

]

(4.19)

with λ being the solution to 13

1 + θλ

1− ρλ
= τβ

(
1 + βθ

1− ρβ

)
1− λβ

λ− (1− τ(1 − λ2))β
(4.20)

How do the two equilibria differ? Both equilibria share the autoregressive root ρ; however, the information

equilibrium p∗t contains an additional autoregressive root at λ. This is due to the presence of confounding

dynamics in equilibrium: the learning effort of the uninformed buyers results in an additional persistent effect of

past innovations. In addition, the process p∗t also has an MA(2) representation, compared to the MA(1) of pt.

To gain some insights on the different structure of the two equilibria at the aggregate level it is useful to look

at the case when τ → 0. According to Corollary 1 the type of IE encountered hinges upon whether st spans the

space of εt. The restriction A(λ) = 0 yields (1 + θλ)/(1 − ρλ) = 0, which gives λ = −1/θ. Therefore, if |θ| < 1,

then the st process spans εt. In this case equation (4.19) becomes

p̃t − ρp̃t−1 =

(
1 + θL

L+ θ

)[(
θ + β

1− ρβ

)

εt + εt−1

]

. (4.21)

Figure 3 plots the impulse response functions for pt and p̃t for two levels of confounding dynamics: λ =

−1/θ = −1/
√
11 in the left panel, and λ = −1/θ = −1/

√
2 in the right panel.14 The impulse responses are

normalized with respect to the impulse response at impact for the price under complete information pt. The

additional parameters values are set to: β = 0.985, σε = 1. We set ρ = 1 so that the process (4.17) can be

interpreted as a diffusion process where innovations spread gradually but have a permanent effect. In response to

an innovation, st will change permanently but such a change happens gradually over the course of two periods:

at impact there is a jump to 1, after one period there is an additional jump of 1+θ and then the process levels off

at the new higher value. The source of confounding dynamics lies in the second jump being bigger than the first.

This is common in diffusion processes where after an initial weak diffusion phase the diffusion gradient increases

and becomes maximal before decreasing and leveling off once the diffusion is completed.

The full information price pt reacts immediately to the innovation taking into account the accumulated per-

manent effect of the shock on the future values of the fundamentals st. The scale of the reaction at impact is

dictated by the discount factor β. After the initial jump the dynamics follow that of the fundamentals and so the

13Condition (3.7) by construction has always a solution at λ = β; this particular solution can be disregarded as it is independent
of the informational assumptions.

14These numbers are chosen so that the equivalent signal-to-noise ratios in a standard signal extraction problem correspond to 10
and 1, respectively.
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Figure 3a: strong confounding dynamics
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Figure 3b: weak confounding dynamics

Figure 3: Impulse response of market price to one time innovation in εt. The dotted line represent the response
of st; the dashed line is the response of the full information price pt in Equation (4.18); the solid line is the
response of the information equilibrium price p̃t in Equation (4.21). The responses are normalized so that the
full information price has a unitary reaction at period 0; other parameters values are ρ = 1 and β = .9.

price levels off to the new permanent level. The market price with confounding dynamics p̃t displays substantially

different behavior. First, because the agents cannot really be sure that a positive innovation has been realized,

the price under-reacts at impact. The under-reaction is more pronounced for the strong confounding case (35%

of the full information reaction) than for the weak one (75% of the full information reaction). At period 1, while

the full information price reaches the new permanent plateau, the price with confounding dynamics overshoots

the plateau by roughly 25% in both the strong and weak confounding case. After that, in the strong confounding

case the price keeps fluctuating, but only slightly so, while the fluctuations are more persistent for the weak con-

founding case. The intuition for this is that the price is understood to be a bad signal in the strong confounding

case, and so it gets discounted much quicker, which results in the innovation being given less relevance in the

subsequent learning effort. In the weak confounding case, the price is a good signal of the innovation and so it

remains important in the signal extraction problem, but in so doing the price remains affected by the learning

effort for several periods in the future.

It bears reminding that there is no exogenously superimposed noise in the market generating the equilibrium

price p̃t. The dynamics of st are canonical diffusion dynamics, the market price is perfectly observed and agents are

fully rational. And yet the market dynamics display waves of optimism and pessimism. This example is suggestive

of the potential of the equilibria belonging to the class that we characterized in Theorems 1-2 for offering a rational

explanation of apparently irrational market behavior, for example, market turbulence in periods of technological

innovation.

We turn next to the analysis of the existence of the information equilibrium p∗t when τ > 0 in the context
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Figure 4: Existence space of Information Equilibrium with confounding dynamics as τ , ρ and θ are varied for the
supply process st = ρst−1 + εt + θεt−1.

of the current example. This boils down to the existence of a |λ| < 1 that satisfies (4.20). The following result

summarizes how the existence condition behaves as β, ρ, θ and τ are varied. The proof is reported in Appendix

A.

Result The model described by (2.1) and (4.17) with β, ρ ∈ (0, 1) and θ > 0 defines a space of existence for

information equilibria with confounding dynamics of the form (3.8) characterized as follows:

(R.1) If θ ≤ 1 an IE with confounding dynamics does not exist.

(R.2) If θ > 1, an IE with confounding dynamics exists if and only if τ < τ∗ with

τ∗ =
(θ − 1)(1− ρβ)

β(1 + ρ)(1 + θβ)

Figure 4 displays the existence conditions for an information equilibrium with confounding dynamics in (β, θ)

space. Four points are noteworthy. First, as is evident from the figure and condition (R.2), if θ ≤ 1 an IE with

confounding dynamics does not exist regardless of the other parameters in the model. Intuitively, if we interpret

once again st as a diffusion process, when θ ≤ 1 there is no initial slow diffusion phase; the strongest diffusion

takes place immediately and subsequently levels off.

Second, from condition (R.2), for a certain region of the parameter space (to the right of the dashed lines in

figure 4) an IE with confounding dynamics exists only if the proportion of fully informed buyers is sufficiently

small. The dashed lines represent the IE that prevails as τ → 1, plotted for various values of the autoregressive

parameter ρ. To the left of the dashed line, confounding dynamics will always be preserved in equilibrium
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regardless the value of τ ; from condition (R.2) this happens when θ ≥ (1 + β)/(1 + β2 − βρ(1 − β)). From

section 2.2 we know that an increase in θ (a decrease in λ) corresponds to an increase in the noise associated

with the confounding dynamics. The informational disparity between the fully informed and uninformed may

become so large that no matter how many fully informed buyers participate in the market, the confounding

dynamics will never be unraveled. How the discount factor β alters the space of existence is similar to that of

the serial correlation parameter ρ, which is the third point to be made. As the serial correlation in the st process

increases and β increases, it is more difficult to preserve confounding dynamics (the dashed line shifts to the left

as ρ increases from 0 to 1). An increase in β and ρ leads to a longer lasting effect of current information. This

results in a higher |λ| and a decrease in the informational discrepancy between the fully informed and uninformed.

Finally, the figure demonstrates the generic nature of the information equilibrium. The space of existence that

preserves confounding dynamics is dense. Relatively small values of β and large values of θ always yield the IE

given by Theorem 1 independent of τ and ρ.

5 Higher-Order Beliefs

In Section 3 and 4 we have characterized a class of rational expectations equilibria where agents remain differen-

tially informed in equilibrium. It is well known that one way to describe the behavior of rational agents in such

settings is in terms of engaging in higher-order thinking. Yet we have not discussed the form of such strategic

thinking even though the equilibrium characterizations embed these dynamics. In fact, the rational expectations

assumption implies that the solution to the equilibrium model 2.1 must be identical to the solutions of

pt = βĒt{βĒt+1pt+2 + st+1}+ st (5.1)

= β2τ2EI

t pt+2 + β2(1− τ)2EU

t pt+2 + βτEI

t+1st+1 + β(1 − τ)EU

t st+1

+ β2τ(1 − τ)EI

t E
U

t+1pt+2 + β2τ(1− τ)EU

t E
I

t+1pt+2 + st (5.2)

where we have used the aggregation result of Theorem 2, recursive substitution and the shorthand notation for

the average expectations operator, Ēt = τEI
t (·) + (1− τ)EU

t (·). These model specifications highlight the strategic

interactions undertaken by agents. We interpret the equation from an aggregate point of view, and so we consider

the two representative agents, informed and uninformed. The first two elements on the RHS of (5.2) follow

from the law of iterated expectations, which must hold with respect to the individual agents’ information sets.

The first and second components of the second line in (5.2) encode the model’s higher-order beliefs. Informed

agents engage in forming the expectations of the uninformed agents’ t + 1 expectations of the price at t + 2,

and, similarly, uninformed agents engage in forming the expectations of the informed agents’ t + 1 expectations

of the price at t + 2. Substituting recursively for the future prices in (5.2) one obtains a representation of the
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equilibrium solution in terms of a weighted sum of higher-order beliefs (about the first moments) of the future

supply realizations st+j . The strategic interaction amongst agents and the higher-order belief (HOBs) dynamics

are usually considered mysterious objects since in many situations, especially in dynamic settings, it is hard to

write the analytic form of the HOBs of any arbitrary order. Having a closed-form solution in hand, we are in able

to study HOBs analytically. We derive the expectations found in (5.2) and show how they lead to the breakdown

in the law of iterated expectations for the average expectations operator, as emphasized in (5.1). We also analyze

the role of HOBs in information diffusion. In our analysis we focus on the higher-order beliefs in terms of future

prices. An analogue analysis can be undertaken by focusing on the higher order beliefs about the underlying

fundamental process st; we find that the resulting insights are equivalent under both approaches. In most of the

following analysis, sections 5.1 and 5.2, we focus on the aggregate representation of higher-order-beliefs and so we

focus on the informed-uninformed representation of the equilibrium. Theorem 2 ensures that this is without loss

of generality, at least with respect to the aggregate behavior. Whenever we refer to the behavior of the informed

(resp. uninformed) buyer, it is useful to think of it as the behavior of the dispersedly informed agent acting as

if an informed buyer (resp. as if an uninformed buyer). In section 5.3 we report the analytical characterization

of the higher order beliefs at the individual buyer level of the dispersed information case. We will show that

the interpretation of the higher order thinking behavior of the dispersedly informed buyer is a straightforward

application of the results of sections 5.1 and 5.2.

5.1 Higher-Order Beliefs Characterization The first step in characterizing higher-order beliefs in an

information equilibrium is to isolate the speculative component (agent I’s belief about agent U ′s belief and vice

versa) by defining a stochastic process that takes as given the other agent’s expectation. To achieve this we

define fI
t ≡ st − (1 − µ)β(pt+1 − E

U
t (pt+1)) for the informed agents and fU

t ≡ st − µβ(pt+1 − E
I
t (pt+1)) for the

uninformed. Under these definitions we can state the following result.

Corollary 3. If |λ| < 1, the IE described in Theorem 2 has the following representation,

pt =
1

L− β

(

(1− µ){LHU(L)− βHU(β)κ(L)}εt + µ{LHI(L)− βHI(β)}
)

εt, (5.3)

where HU (L)εt = fU
t , HI(L)εt = fI

t and κ(L) = Bλ(L)Bλ(β)
−1.

Proof. See Appendix B.

Representation (5.3) makes clear the distinction between representative agent economies and models with

heterogenous agents and heterogeneous beliefs. In a representative agent setting, the only rational expectations

solution to this model would be some linear combination of market fundamentals, st. Introducing heterogenous

beliefs allows for potentially substantial deviations from this traditional RE equilibrium. This representation

makes clear that agents’ beliefs about future prices are tied to the beliefs of other agents. For both agents,

23



Rondina & Walker: Information Equilibria in Dynamic Economies

“market fundamentals” are a combination of the exogenous process, st, and the endogenous forecast errors of the

other agent type.

Representation (5.3) also suggests that both informed and uninformed agents engage in some form of higher-

order thinking as their behavior can be represented in terms of fundamentals that are function of the beliefs of

the other agents. The extent to which agents are successful in learning from other agents’ forecasts depends upon

the information structure. The following proposition formalizes this concept, making clear the role of HOBs in

an IE and demonstrating why HOBs lead to the break down in the law of iterated expectations for the average

expectations operator.

Proposition 2. If the information equilibrium given by Theorem 2 holds for |λ| < 1, then

i. the informed agents form noiseless higher-order beliefs, while the uninformed form noisy higher-order beliefs;

ii. the average expectations operator does not satisfy the law of iterated expectations.

Proof. The proof of the proposition is perhaps more instructive than the proposition itself and hence selected

parts of the proof follow, while the proof in its entirety can be found in Appendix B.

The average expectation of the price at t + 1 determines equilibrium according to (4.2). In turn, the agents

recognize that the price at t + 1 will be itself a function of the average expectations of the price at t + 2. So if

an agent could observe the average forecast of the price at t+ 2, her prediction performance of the price at t+ 1

would improve. Following this reasoning, the optimal expectation of both agent types must follow

E
I

t pt+1 = E
I

t [βĒt+1pt+2 + st+1], E
U

t pt+1 = E
U

t [βĒt+1pt+2 + st+1] (5.4)

Following Theorem 2 the functional form of the equilibrium price is pt = (L − λ)Q(L)εt where |λ| < 1; the

appendix shows that the time t+1 average expectation of the price at t+2 can be written as the actual price at

t+ 2 minus the average market forecast error, namely

Ēt+1pt+2 = pt+2 + µQ0λεt+2 − (1− µ)Q0Bλ(L)εt+2 (5.5)

The average market forecast error on the RHS of (5.5) has two components: the first term represents the error

made by the informed agents, Q0λεt+2, appropriately weighted by the mass of informed agents in the market, µ;

the second term, Q0Bλ(L)εt+2, represents the forecast error of the uninformed agents, weighted by the mass of

uninformed agents in the market, 1− µ.

We know from the form of the lag polynomial Bλ(L) ≡ (L−λ)/(1−λL) that the forecast error of uninformed

agents contains a linear combination of current and past innovations (due to confounding dynamics), which makes

the uninformed agents’ error partially predictable for the informed agents. That is, the t+2 forecast error of the

uninformed is correlated with respect to the time t information set of the informed agents. Hence, the informed
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agents will always achieve smaller forecast errors if they correct their expectation of the average price according

to the forecast errors of the uninformed. More explicitly, the informed agents’ time t expectation of the t + 1

market average expectation takes the form

E
I

t E
U

t+1pt+2 = E
I

t pt+2 −Q0

(
1− λ2

1− λL

)

λεt. (5.6)

In forming their expectations for the t+2 price conditional on time t+1 information, the uninformed agents incur

the error Q0

(
1−λ2

1−λL

)
εt+1. Informed agents can predict this error at time t by conditioning down with respect to

their information set (all current and past innovations up to εt), which explains the multiplication by λεt. While

we have characterized first-order beliefs only, the autoregressive nature of the error incurred by the uniformed

suggests that higher-order beliefs follow (5.6) closely with λj replacing λ, where j is the higher-order beliefs

horizon (see Appendix B for explicit calculations).

The intuition that serially correlated forecast errors is driving the formation of higher-order beliefs seems

to suggest that uninformed agents cannot engage in higher-order thinking. That is, uninformed agents possess

strictly smaller information sets and are therefore unable to learn anything from the informed agents’ forecast

errors. This is false. The uninformed agents do engage in higher-order thinking. The uninformed agents form

“noisy” HOBs because they are not able to disentangle the forecasts of the informed agents from the exogenous

st process. The existence condition, (3.7), stipulates that the uninformed agents cannot completely separate out

the effects of the informed agents’ expectations from the exogenous process, st. These confounding dynamics

ensure that the uninformed only observe the sum and not the individual components of the sum; being able

to disentangle these two processes would imply a convergence to the full information equilibrium of (3.3). The

uninformed agents therefore are solving an endogenous signal extraction problem as part of the formation of

HOBs. However, the optimal expectation of the uninformed does not ignore the information coming from the

informed agents’ expectation. Appendix B shows that taking expectations in (5.4) delivers

E
U

t E
I

t+1pt+2 = E
Ū

t pt+2 +Q0

(
1− λ2

λ(1− λL)

)

εt (5.7)

The term E
Ū
t pt+2 represents the prediction of the uninformed agents if they were to ignore the existence of

informed agents in the market (and thus the information that is generated by the informed forecast errors). The

second term represents the higher order thinking of uninformed agents as they recognize the presence of informed

agents and benefit from the information contained in their forecast errors.15 We show below just how much

information the uninformed are learning by forming HOBs. We refer to the HOBs formed by the uninformed

15Notice that the term EŪ
t pt+2 is defined in order to isolate the higher thinking process of the uninformed, but, strictly speaking,

is an expectations that is not measurable with respect to the information set of uninformed agents in equilibrium when µ > 0. The
reason is that the information set of the uninformed agents is endogenous to the particular equilibrium we are considering. This is
not true for the information set of the informed agents, and therefore there is no need to distinguish the informed information set in
EI
t pt+2 of (5.6) from the equilibrium one as they always coincide.
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agents as noisy HOBs to contrast the HOBs formed by informed agents, who observe the forecast errors of the

informed directly.

An immediate consequence of agents forming HOBs is that the law of iterated expectations fails to hold with

respect to the average expectations operator. This can easily be seen by substituting (5.5) into (5.1) and taking

expectations, which delivers

pt = β2
Ētpt+2 + βĒtst+1 + st − βµ(1 − µ)Q0

(
1− λ2

1− λL

)

λεt + βµ(1− µ)Q0

(
1− λ2

λ(1− λL)

)

εt (5.8)

The last two components of (5.8) are due to the informed and uniformed agents’ adjusting expectations due to

HOBs, without these terms the law of iterated expectations would hold. The degree to which the law of iterated

expectations fails is determined by the relevance of HOBs and is therefore related to the proportion of informed

agents, µ, and to the extent of the confounding dynamics, measured by λ.

5.2 Higher Order Beliefs and Information Diffusion We are now in a position to study how the

formation of HOBs affects the dissemination of information in equilibrium. Our aim is to compare the information

equilibrium of Theorem 2 to an equilibrium where HOBs at all horizons are forcefully removed – we call this a

“No-HOBs Equilibrium.” Holding the same exogenous information assumption across the equilibria, a lower

mean square forecast error will correspond to greater information diffusion. To conceptualize and then solve

for the ‘No-HOBs Equilibrium” we proceed as follows: First, using Proposition 2 we derive a representation for

the information equilibrium price that isolates the noiseless HOBs of the informed agents and noisy HOBs of the

uninformed. Next, we shut down these higher-order beliefs sequentially and solve for two No-HOBs equilibria–one

that removes the informed agent’s HOBs and one that removes both informed and uninformed agents’ HOBs.

Iteratively applying Proposition 2 one can show that the equilibrium price is given by

pt =
∞
∑

j=1

(µβ)jEI
t (st+j) + st

+
∞
∑

j=1

βj(1− µ)jEU
t

(

βµEI
t+jpt+j+1 + st+j

)

+ E
I
t

∞
∑

h=1

(µβ)hEU
t+h

∞
∑

j=h

(1− µ)j−h+1βj−h+1
[

βµEI
t+j+1pt+j+2 + st+j+1

]

(5.9)

The last two terms in (5.9) capture the entire HOBs structure into the infinite future. When only fully informed

buyers are present (µ = 1), the expression coincides with the price under full information in (3.3). Likewise, when

only uninformed buyers are present (µ = 0), the expression coincides with the price under symmetric incomplete

information in (4.21).

The weights assigned to the expectations in the three terms clarify the higher-order reasoning. The uninformed

agents will form expectations of the sum of the st’s and the entire path of future expectations of the informed

agents, discounted at β(1 − µ). The informed agents will form the “standard” discounted expectation of future

st’s with weight µβ, but will also correct this forecast based upon the forecasts of the uninformed, which is the

26



Rondina & Walker: Information Equilibria in Dynamic Economies

last term in (5.9). This term shows that the informed agents will correct the entire path of the uninformed agents’

expectations, not just the time t forecast errors.

The formation of HOBs provides uninformed agents with two additional sources of information that they

would not have otherwise. The first source comes from forming noisy HOBs themselves (the penultimate term

of (5.9)) and the second source comes from the informed agents forming HOBs (the last term of (5.9)). Recall

that the informed agents’ HOBs correct for the serial correlation in the uninformed agents’ forecast error. In

equilibrium, this information gets impounded into the price and is partially revealed to the uninformed agents.

The obvious question is: How much information is revealed through the formation of HOBs?

Given that we have an analytical solution at hand, we can answer this question by forcing each agent type

to not engage in higher-order thinking. The following proposition solves for two boundedly rational equilibria to

isolate the two sources of information coming from the HOBs. The first equilibrium solves (5.9) but sets the last

term to zero, which isolates the role of HOBs formed by the informed buyers. The second equilibrium removes

both the last term and the penultimate term in (5.9), which takes all HOBs out of the model. By taking the

difference between the two equilibria, one can isolate the role of the HOBs formed by the uninformed buyers.

Proposition 3. No-Informed HOBs Equilibrium. Assume that the fully informed buyers do not form

higher order beliefs (i.e., solve (5.9) removing the last term). Under the exogenous information assumption (4.1),

i.e. U i
t = Vt(ε) for i ∈ µ and U i

t = {0} for i ∈ 1 − µ, a unique boundedly-rational equilibrium always exists and

is determined as follows. If there exists a |λ̃| < 1 such that

A(λ̃)− µβA(β)

λ̃− (1− µ)β
= 0 (5.10)

then the equilibrium price is given by

pt =
1

L− β

(

LA(L)− βA(β)
k(L)

k(β)

)

εt (5.11)

where k(L) = µλ̃

1−λ̃β
− (1−µ) L−λ̃

1−λ̃L
. If (5.12) does not hold for any |λ̃| < 1, the equilibrium is the full information

equilibrium (3.3).

No-HOBs Equilibrium. Assume that neither the informed nor uninformed buyers form higher-order beliefs

(i.e., solve (5.9) removing the last term and setting the penultimate term to
∑

∞

j=1 β
j(1 − µ)jEU

t st+j). Under

the exogenous information assumption (4.1), i.e. U i
t = Vt(ε) for i ∈ µ and U i

t = {0} for i ∈ 1 − µ, a unique

boundedly-rational equilibrium always exists and is determined as follows. If there exists a |λ∗| < 1 such that

A(λ∗)− µβA(β)

λ∗
= 0 (5.12)
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then the equilibrium price given by

pt =
1

L− β

(

LA(L)− βA(β)κ(L)

)

εt (5.13)

where κ(L) = µ+ (1− µ) L−λ∗

1−λ∗L
. If (5.13) does not hold for any |λ∗| < 1, the equilibrium is the full information

equilibrium (3.3).

Proof. See Appendix B.

Proposition 3 allows us to state the main result of this section.

Corollary 4. Assume A(L) = (1+θL)/(1−ρL) with ρ ∈ [0, 1]. If an IE exists with λ ∈ (−1, 1), then higher-order

beliefs always enhance information diffusion.

Proof. See appendix B.

The corollary essentially states that |λ∗| < |λ̃| < |λ|. Recall that as |λ| → 1, confounding dynamics diminish

and disappear altogether in the limiting case, as the discrepancy between the information set of the informed

and uninformed gets smaller. We measure information diffusion as the relative difference between the informed

and uninformed agents’ variance of forecast error. Given that for each variant of (5.9) the price process can be

written as pt = (L− λ)Q(L)εt, it is straightforward to show that for each economy described in Corollary 4 and

Theorem 2, the ratio of forecast errors is given by λ2,

E(pt+1 − E
I
t pt+1)

2

E(pt+1 − EU
t pt+1)2

= λ2 (5.14)

When the informed higher-order thinking is removed |λ| declines to |λ̃| which means that informed higher order

thinking reduces the extent of the confounding dynamics and therefore has a positive effect on information

diffusion in equilibrium. Intuitively, engaging in guessing the expectation of the average expectation of the

average expectation and so on helps information diffusion because it forces informed agents to use their private

information to guess the forecast errors of other agents. In so doing, more information is encoded into equilibrium

prices and thus the variance of the forecast errors is reduced. When the uninformed higher order thinking is

removed together with the informed higher order thinking, |λ| decreases further to |λ∗| < |λ̃|. Even though

uninformed agents form noisy HOBs, doing so increases their information and reduces their forecast errors.

To quantify the effects of higher order thinking, consider a variant of the numerical example presented in

Section (4.5). Using the process for st specified in (4.17), let ρ = 0.8, θ =
√
11 and µ = 0.06. The ratio of the

variance of the forecast errors, (5.14), is 0.84 when all HOBs are present. This value falls to 0.49 when only

uninformed agents form HOBs, (5.10), and 0.137 when neither informed nor uninformed form HOBs, (5.12). By

this measure, HOBs reduce the information discrepancy between the informed and uninformed agents by a factor
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Figure 5: Impulse response of market price to one time unitary innovation in εt. The light dashed line is the price
under full information; the solid light line is the price with all the HOBs present under confounding dynamics
measured by λ; the solid dark line is the No-Informed HOB’s equilibrium price under confounding dynamics
measured by λ̃; the dashed dark line is the No-Hob’s equilibrium price under confounding dynamics measured by
λ∗. The parameter values are st = 0.8st−1 + εt +

√
11εt−1, β = 0.985 and µ = 0.06.

of seven. As a visual confirmation, figure 5 displays the impulse response of the full information equilibrium,

the information equilibrium of Theorem 2 and the No-HOBs equilibria of Proposition 3 to a one time shock to

the fundamentals ε0. The impulse responses are normalized with respect to the response at impact of the full

information price. The dynamics of the equilibrium with HOBs deviates only modestly from the full information;

this is due to the informational effect of a small portion of agents being fully informed. How much of the

informational effect is due to the higher order thinking of fully informed agents? The impulse response for

the No-HOBs equilibria reveals that higher order thinking is remarkably important for informational diffusion.

Without any HOBs, the market price would under-react at impact by approximately 70% of the price with HOBs,

and it would over-react a period later of around 15− 20%. Higher order thinking is therefore essential in keeping

the market price from undergoing excessive fluctuations due to slow informational diffusion.

5.3 Higher Order Beliefs and Dispersed Information In this section we analytically characterize the

higher order thinking of an individual agent in the dispersedly information setup of Theorem 1. The aggregation

result of Theorem 2 will be helpful in applying the previous results at the dispersedly informed agent level.

However, as we consider the individual agent there will be some crucial differences. For example, agent i will use

her exogenous signal to forecast the forecasts of the market expectation and this forecast will be different from

the direct forecast of agent i, and, for that matter of both the informed and uninformed buyers considered above.

We summarize the description of the HOBs for the dispersed information case in the following proposition.
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Proposition 4. If the information equilibrium given by Theorem 1 holds for |λ| < 1, then:

i. all agents form noisy higher-order beliefs;

ii. the average expectations operator does not satisfy the law of iterated expectations.

Proof. See Appendix A.

The intuition developed for the equivalence result of Theorem 2 is helpful in indicating what is happening in

the dispersed case. Take any arbitrary agent i. This agent is instructed by the optimality of signal extraction

to act as informed with probability τ . She will recognize that a portion 1 − τ of agents is contemporaneously

acting as uninformed. It follows that as an informed agent, agent i should forecast the forecast error of the agents

acting as uninformed and embed it into her expectations about the future. At the same time, she is acting as

uninformed as well, i.e. she is part of the portion of 1 − τ agents of whom she is forecasting the forecast errors.

However, the relevance of her forecast error is infinitesimal and so it is irrelevant for her reasoning as informed.

To formalize this intuition one can show that

Eitpt+1 = βEit(pt+2) + τEitst+1 − τβQ0 (1− τ)Eit

(
L− λ

1− λL
εt+2

)

+ (1 − τ)Eit[Q0µβεt+2 + st+1] (5.15)

In forming their predictions at t+1 agents acting as uninformed will incur in the prediction error Q0

(
L−λ
1−λL

εt+2

)

.

At time t agent i will take this into account and use her own information to forecast the forecast error and adjust

her expectations of the average expectations accordingly, i.e. by weighting the forecast of the forecast errors by

(1− τ). Similarly the last term shows that agents acting as informed will incur prediction error τβQ0, and agent

i will take this into account in forming forecasts of future prices.

Proposition 4 together with equation (5.15) offer intuition that applies more generally to signal extraction

problems based on private and public noisy signals.16 The equilibrium price in Theorem 1 in presence of confound-

ing dynamics represents noisy public information. Such public information is common knowledge and, therefore,

it represents the information set that all the agents possess if they were to disregard their private information.

Take once again an arbitrary agent i. When agent i acts as fully informed, she engages in predicting the error of

the other agents acting as fully uninformed. How will agent i determine the information set of the agents acting as

uninformed? Common knowledge of rationality will suggest that “uninformed” acting agents just use the public

signal as they act as if their private signal was fully uninformative. This reasoning will suggest to agent i that

the forecast error to predict takes the form of the forecast error that would result by using only publicly available

information.

16For instance all the literature on global games that was sparked by Morris and Shin (1999).
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6 Concluding Comments

Models with incomplete information offer a rich set of results unobtainable in representative agent, rational

expectations economies and have implications for business cycle modeling, asset pricing and optimal policy, to

name a few applications. The results of this paper suggest that models with dynamic incomplete information show

great promise for many applications. This has been known (or at least believed) since Lucas (1972). However,

solving and characterizing equilibrium has proven to be a significant challenge, impeding the progress of these

models. In this paper, we derived existence and uniqueness conditions, along with a solution methodology that

yields analytic solutions to dynamic models with incomplete information. The analytics, in turn, permitted

insights into higher-order belief dynamics and the transmission of information in general. Given the generality

of the forward-looking equation at the heart of our model, we expect the results presented in this paper to be

relevant in the analysis of many dynamic economic applications under incomplete information.
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A Proofs

A.1 Full Information Price We want to solve for the infinite summation

pt =

∞∑

j=0

βj
Et(st+j). (A.1)

In lieu of characterizing each term in the summation, we take advantage of the Riesz-Fischer Theorem and

posit that the solution to (3.2) has the functional form pt = P (L)εt.
17 Using the Wiener-Kolmogorov optimal

prediction formula, expectations take the form E[pt+1|Vt(ε)] = L−1[P (L) − P0]εt. Substituting the expectation

into the equilibrium equation (2.1) yields a functional equation for P (z).18 As noted above, we solve for the

functional fixed point problem in the space of analytic functions. The z-transform of the pt process may be

written as

P (z) =
zA(z)− βP0

z − β
. (A.2)

17Note that there is no need to include in our guess the possibility of a zero |λ| < 1 as it would be informationally irrelevant given
the full information provided to the agents.

18In our notation we distinguish between L and z to make clear that L is an operator, while z is a complex number.
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Throughout the paper we always restrict our attention to stationary equilibria. Stationarity corresponds to the

requirement that P (z) has no unstable roots in the denominator. If |β| ≥ 1, then (A.2) is stationary and the free

parameter P0 can be set arbitrarily. Uniqueness, then, requires |β| < 1, in which case the free parameter P0 is set

to ensure that the unstable root |β| < 1 cancels. Carrying out these steps one obtains equation (3.3) in the text.

A.2 Theorem 1 We report a statement of the theorem for the more general case of n possible λ’s in the initial guess. The

proof of theorem 1 in the main text is obtained by just setting n = 1 below.

Theorem 3. Under the exogenous information assumption U i
t = {0} ∀i, a unique Information Equilibrium with |β| < 1 always

exists and is determined as follows: let {|λi| < 1}ni=1 be a collection of real numbers such that

A(λi) = 0, (A.3)

then the information equilibrium price process is

pt = Q(L)
n
∏

i=1

(L− λi)εt =
1

L− β

{

LA(L)− βA(β)

∏n
i=1 Bλi

(L)
∏n

i=1 Bλi
(β)

}

εt (A.4)

where

Bλi
(L) =

L− λi

1− λiL
.

If condition (4.3) does not hold for any |λi| < 1, then the IE is given by (3.3).

Proof. Substituting the conditional expectation (??) into the equilibrium equation 2.1 yields the z-transform in εt-space

Q(z)
n
∏

i=1

(z − λi) = βz−1[Q(z)
n
∏

i=1

(1− λiz)−Q0]
n
∏

i=1

Bλi
(z) + A(z)

= βz−1[Q(z)
n
∏

i=1

(z − λi)−Q0

n
∏

i=1

Bλi
(z)] + A(z)

Working out the algebra yields

Q(z)(z − β)
n
∏

i=1

(z − λi) = zA(z)−Q0

n
∏

i=1

Bλi
(z) (A.5)

For |β| < 1, stationarity requires the Q(·) process to be analytic inside the unit circle, which will not be the case unless the process

vanishes at the poles z = {λi, β} for every i. For simplicity, we assume λi 6= λj for any i 6= j, however this restriction can be relaxed

[see, Whiteman (1983)]. Evaluating at z = λi gives the restriction on the A(·) process, A(λi) = 0 for all i, which corresponds to (4.3).

By Proposition 10.4 of Conway (1991), this restriction guarantees that the knowledge of the model does not reveal any additional

information than the posited price sequence. Finally, evaluating at z = β gives

Q0 =
βA(β)

∏n
i=1 Bλi

(β)
(A.6)

Substituting this into (A.5) yields (A.4).

A.3 Theorem 2 Given the price process follows (??) for n = 1, the conditional expectations for the informed and uninformed are

given by

E
I
t (pt+1) = L−1[(L− λ)Q(L) + λQ0]εt

E
U
t (pt+1) = L−1[(L− λ)Q(L) −Q0Bλ(L)]εt
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Substituting the expectations into the equilibrium gives the z-transform in εt space as

(z − λ)Q(z) = βµz−1[(z − λ)Q(z) + λQ0] + β(1− µ)z−1[(z − λ)Q(z)−Q0Bλ(z)] +A(z) (A.7)

and re-arranging yields the following functional equation

(z − λ)(z − β)Q(z) = zA(z) + βQ0[µλ− (1− µ)Bλ(z)]

The Q(·) process will not be analytic unless the process vanishes at the poles z = {λ, β}. Evaluating at z = λ gives the restriction on

A(·), A(λ) = −βµQ0. Rearranging terms

(z − β)Q(z) =
1

z − λ

{

zA(z) + βQ0[µλ− (1 − µ)Bλ(z)]
}

=
1

z − λ

{

zA(z) + βQ0h(z)
}

(A.8)

where h(z) ≡ [µλ − (1 − µ)Bλ(z)]. Evaluating at z = β gives Q0 = −A(β)
h(β)

to ensure stability. This implies that the restriction on

A(·) is

A(λ) =
βµA(β)

h(β)

which is (3.7). Substituting this into (A.8) delivers (3.8).

A.4 Theorem 1 The first step in the proof is to obtain a representation for the signal vector (εit, pt) that can be used to formulate

the expectation at the agent’s level. The representation in terms of the innovation εt and the noise vit is





εit

pt



 =





σε σv

(L− λ) p (L) 0









ε̂t

v̂it



 = Γ(L)





ε̂t

v̂it



. (A.9)

where we have re-scaled the mapping so that the innovations ε̂t and the noise v̂it have unit variance and we have implicitly defined

p(L) = Q(L)σε. Let the fundamental representation be denoted by





εit

pt



 = Γ∗(L)





w1
it

w2
it



. (A.10)

The lag polynomial matrix Γ∗(L) is given by (see Rondina (2009))

Γ∗(L) = Γ(L)WλBλ(L)

where

Wλ =
1

√

σ2
ε + σ2

v





σε −σv

σv σε



 and Bλ(L) =





1 0

0 1−λL
L−λ



 .

The vector of fundamental innovations is then given by





w1
it

w2
it



 = Bλ(L
−1)WT

λ





ε̂t

v̂it



 .

The expectation term for agent i is provided by the second row of the Wiener-Kolmogorov prediction formula applied to the funda-

mental representation (A.10), which is

E(pt+1|εti, pt) = [Γ∗
21(L) − Γ∗

21(0)]L
−1w1

it + [Γ∗
22(L) − Γ∗

22(0)]L
−1w2

it. (A.11)
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It is straightforward to show that

Γ∗
21 (L) = (L− λ) p (L) σε√

σ2
ε+σ2

v

, Γ∗
21 (0) = −λp0

σε√
σ2
ε+σ2

v

Γ∗
22 (L) = − (1− λL) p (L) σv√

σ2
ε+σ2

v

, Γ∗
22 (0) = −p0

σv√
σ2
ε+σ2

v

.

Solving for the equilibrium price requires averaging across all the agents. In taking those averages, the idiosyncratic components of

the innovation (the noise) will be zero and one would just have two terms that are function only of the aggregate innovation, namely

∫ 1

0
w1

itdi = w1
t = σε√

σ2
ε+σ2

v

ε̂t and

∫ 1

0
w2

itdi = w2
t = − σv√

σ2
ε+σ2

v

L− λ

1− λL
ε̂t.

The average market expectation is then

Ē(pt+1) = [(L− λ)p(L) + λp0]L
−1 σ2

ε

σ2
ε+σ2

v

ε̂t + [(1 − λL)p(L) − p0]L
−1 σ2

v

σ2
ε+σ2

v

L− λ

1− λL
ε̂t. (A.12)

Now, if we let

µ ≡ σ2

ε

σ2
ε+σ2

v
,

and we substitute the functional form of the average expectations into the equilibrium equation for pt we would get

(L− λ)p(L) = βµL−1[(L− λ)p(L) + λp0] + β(1− µ)L−1[(L− λ)p(L) − p0
L− λ

1− λL
] +A(L)σε

which is equivalent to (A.7) since p(L) = Q(L)σε. The rest of the proof follows the same lines of Theorem 2. For the sake of

completeness, we need to show that, for the dispersed information case, the information conveyed by the knowledge of the model is

consistent with the information used in the expectational equation for agent i presented above. Such knowledge can be represented

by the variable

mit ≡ pt − βE
(

pt+1|εti, pt
)

= β
(

E (pt+1)− E
(

pt+1|εti, pt
)

)

+ st.

we then need to show that the fundamental representation of the signal vector (εit, pt,mit) is the same as the one we derived above.

Essentially, we need to show that the mapping between this enlarged vector of signal and the vector of structural innovation is still of

rank 1 at L = λ. Using the result in Corollary 3 to write down the explicit form of the difference between the individual expectations

and the average market expectations, the mapping of interest is











εit

pt

mit











=











σε σv

(L− λ) p (L) 0

A (L) σε
σεσv

σ2
ε+σ2

v

(

1−λ2

1−λz

)

βp0















ε̂t

v̂it



 . (A.13)

It is straightforward to show that 2 of the 3 minors of this matrix have rank 1 at L = λ. For the third minor the condition for rank

1 is
σεσv

σ2
ε + σ2

v

(

1− λ2

1− λL

)

σεβp0 − A (L)σεσv = 0 at L = λ.

Using the fact that p0 = Q0σε one can immediately see that this condition is equivalent to (3.7). Therefore, in a dispersed information

equilibrium, it is always true that the enlarged information matrix (A.13) carries the same information as the information matrix

(A.9). This completes the proof of Theorem 3.
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A.5 Proposition 1 Once the analytic form for Γ∗
21 (L) and Γ∗

22 (L) are known one can compute E(pt+j |εti, pt) for any j = 1, 2, ....

We show the j = 1 case here. Substitute Γ∗
21 (L) and Γ∗

22 (L) into (A.11) and collecting the terms that constitute (A.12), one gets

E(pt+1|εti, pt) = Ē(pt+1) +
σε

σ2
ε + σ2

v

L−1[(L− λ)p(L) + λp0 − (L − λ)p(L) + p0
L− λ

1− λL
]σv v̂it

= Ē(pt+1) +
σε

σ2
ε + σ2

v

L−1[λp0 + p0
L− λ

1− λL
]σv v̂it

= Ē(pt+1) + µQ0
1− λ2

1− λL
vit, (A.14)

which completes the proof for the first statement of the theorem for j = 1. The variance of the term µQ0
1−λ2

1−λL
vit can be readily

computed since the innovations vit are independently distributed with variance σ2
v .

A.6 Result in Example The proof follows immediately from restriction (3.7) in Theorem (2). Condition (R.1) is derived by taking

the limit of (3.7) as µ → 0. Substituting the parameters of the example, condition (3.7) with µ = 0 is given by (1+ θλ)/(1− ρλ) = 0.

Clearly, |λ| < 1 will not be a possibility when θ ∈ (0, 1), hence (R.1). Notice that, because θ > 0, then λ < 0 from (3.7). It follows

that λ = −1 will be the critical value to dictate whether an equilibrium with confounding dynamics exists or not. Taking (3.7) and

setting λ = −1 one obtains the expression for µ∗. For any µ ≥ µ∗ one has λ < −1, while for µ < µ∗ one has 0 > λ > −1 which is

(R.2).
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B Online Appendix (Not for Publication)

B.1 Asset Demand Derivation and Market Clearing The ubiquitous equilibrium equation (2.1) can be derived from many

micro-founded models. It falls from the Lucas (1978) asset pricing model where agents are risk neutral and the shares are traded

cum-dividend. Alternatively, Futia (1981) envisioned the equilibrium arising from land speculation. He assumed a fixed quantity

of land and two types of traders–speculative and nonspeculative. Nonspeculative demand is assumed to arise from noise traders;

that is, traders whose demand is independent of current and past prices. This demand never exceeds total supply, and therefore the

difference between total supply and the nonspeculative demand is the market fundamental, st.

The demand for the speculative trader can be derived from a myopic investor who may choose to hold wealth in either a riskless

asset which earns the return r or a risky asset. The wealth of agent i evolves according to

wi,t+1 = zi,t(pt+1) + (wi,t − zi,tpt)(1 + r)

where pt is the price of the risky asset at time t and zi,t is the number of units of the risky asset held at time t.

The speculative agents seeks to maximize, by choice of zit, the expected value of a constant absolute risk aversion (CARA) utility

function

−Ei
t exp(−γwi,t+1), (B.1)

where γ is the risk aversion parameter, and Ei
t denotes the time t conditional expectation of agent i. All random variables in the

model are assumed to be distributed normally, so that (B.1) can be calculated from the (conditional) moment generating function

for the normal random variable −γwi,t+1. That is,

−Ei
t exp(−γwi,t+1) = − exp{−γEi

t(wi,t+1) + (1/2)γ2vt(wi,t+1)}

where vt denotes conditional variance. Note that vt(wt+1) = z2i,tvt(pt+1). Stationarity implies the conditional variance term will

be a constant; thus write vt(wi,t+1) ≡ z2i,tδ. The agent’s demand function for the risky asset follows from the first-order necessary

conditions for maximization and is given by

zi,t =
1

γδ
[Ei

tpt+1 − αpt] (B.2)

where α ≡ 1 + r > 1.

Market clearing equates supply and demand, which yields

pt = α−1
∫ 1

0
Ei

tpt+1di− α−1γδst (B.3)

This relates to (2.1) by α−1 = β and one can think of st in (2.1) as being scaled by the risk aversion coefficient, γ, the opportunity

cost associated with investing in the risky asset α, and the conditional variance term, δ. Clearly, δ is an endogenous object, but we

abstract from this complication to make the analysis as transparent as possible.

B.2 Equivalence between Confounding Dynamics and Standard Signal Extraction It is helpful to establish a connection

between the information contained in ε̃t when |λ| < 1 and a signal extraction problem cast in a more familiar setting. Suppose that

agents observe an infinite history of the signal

zt = εt + ηt, (B.4)

39



Rondina & Walker: Information Equilibria in Dynamic Economies

where ηt
iid∼ N

(

0, σ2
η

)

. The optimal prediction is well known and given by E(εt|zt) = τzt, where τ is the relative weight given to the

signal, τ = σ2
ε/(σ

2
ε + σ2

η). Let

xt = εt + θεt−1, (B.5)

Proposition 5. The information content of (B.5) is equivalent to (B.4), where equivalence is defined as equality of variance of the

forecast error conditioned on the infinite history of the observed signal, i.e.

E

[

(

εt − E|θ|>1

(

εt|xt
))2

]

= E

[

(

εt − E
(

εt|zt
))2

]

,

when

θ2 =
1

τ
(B.6)

and where τ = σ2
ε/(σ

2
ε + σ2

η).

Proof. We need to show that the representations (B.5) and (B.4) are equivalent in terms of unconditional forecast error variance

E

[

(

εt − E
(

εt|xt
))2

]

= E

[

(

εt − E
(

εt|zt
))2

]

(B.7)

when θ2 = 1 + σ2
η/σ

2
ε .

The optimal forecast E[εt|zt] is given by weighting zt according to the relative variance of ε, E(εt|zt) =
( σ2

ε

σ2
ε+σ2

η

)

zt and therefore,

E

[

(

εt − E
(

εt|zt
))2

]

=
σ2
εσ

2
η

σ2
ε + σ2

η

(B.8)

Calculating the optimal expectation for εt conditional on xt requires more careful treatment. While there are many moving average

representations for xt that deliver the same observed autocorrelation structure (which is essentially all the information contained

in xt), there exists only one that minimizes the variance of the forecast error in the LHS of (B.7). We first need to take the

conditional expectation E[εt|xt]. This expectation is found by deriving the fundamental moving-average representation and using the

Wiener-Kolmogorov optimal prediction formula. The fundamental representation is derived through the use of Blaschke factors

xt = (1 + θL)

(

L+ θ

1 + θL

)(

1 + θL

L+ θ

)

εt = (L+ θ)ε̃t (B.9)

where ε̃t is defined as in (2.7). Given that (B.9) is an invertible representation then the Hilbert space spanned by current and past

xt is equivalent to the space spanned by current and past ε̃t. This implies

E(εt|ε̃t) = E(εt|xt) (B.10)

To show (B.10) notice that (B.9) can be written as

εt = C(L)ε̃t =

[

(θ−1 + L−1)

1− (−θL)−1

]

ε̃t (B.11)

Thus, while (B.9) does not have an invertible representation in current and past ε̃ it does have a valid expansion in current and future

ε̃. Notice that

εt = (θ−1 + L−1)
∞
∑

j=0

(−θ)−j ε̃t+j = (θ−1 + L−1)[ε̃t + (−θ)−1ε̃t+1 + · · · ]

The optimal prediction formula yields

E(εt|ε̃t) =
[

C(L)
]

+
ε̃t = θ−1ε̃t =

[

1

θ2(1 + θ−1L)

]

xt (B.12)
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We must now calculate

E

[

(

εt − E
(

εt|xt
))2

]

=E
(

ε2t
)

+ E
(

εt|xt
)2 − 2E

(

εtE
(

εt|xt
))

(B.13)

=σ2
ε +

1

θ2
E(ε̃2t ) −

2

θ
E(εt ε̃t) (B.14)

Notice that the squared modulo of the Blaschke factor is equal to 1,
(

1+θz
z+θ

)(

1+θz−1

z−1+θ

)

= 1, and therefore E(ε̃2) = σ2
ε .

To calculate E(εtε̃t) we use complex integration and the theory of the residue calculus,

E(εtε̃t) =
σ2
ε

2πi

∮

1 + θz

z + θ

dz

z
= σ2

ε

[

lim
z→0

1 + θz

z + θ

]

=
σ2
ε

θ
. (B.15)

Equations (B.14) and (B.15) give the desired result

E

[

(

εt −E
(

εt|xt
))2

]

=

(

1− 1

θ2

)

σ2
ε

To substantiate the claim in the main text one needs just to recognize that by setting λ = 1/θ the result stated follows immediately.

B.3 Full Information Price and Theorem 1 In this section we show that the full information price (3.3) is not an Information

Equilibrium under the assumption of Theorem 1. We do this for the case of st = εt + θεt−1, with |θ| > 1, in order to keep notation

at a minimum. The exogenous information is specified as in Theorem 1, namely U i
t = {0} ∀i. Plugging the functional form for the

exogenous supply in (3.3) we have pt = (1 + θβ) εt + θεt−1 (C.1). We show that this price cannot possibly be consistent with our

definition of an Information Equilibrium. The argument is by contradiction. Suppose that (C.1) is indeed an Information Equilibrium

as defined in 2.1.3 under the assumption that U i
t = {0} ∀i. First, because expectations are symmetric across agents, information from

the model will always reveal the st process. The information set in equilibrium is therefore given by the bivariate process for (pt, st).

For the endogenous information to be consistent with the equilibrium equation we need to show that there exists a square-summable

linear combination of the observable variables that corresponds to the expectations of future price in equilibrium as implied by the

closed form solution of the model. The latter is E[pt+1|Mt(p) ∨ Vt(p)] = E
(

θεt|st, pt
)

= θεt, since no information about the future

εt+1 is available in the information set, other than the unconditional distribution. The linear combination of observable variables

that deliver the above expectation is E
(

θεt|st, pt
)

= θst − θ 1
β
(pt−1 − st−1). This relationship has to hold in equilibrium and when

substituted into the equilibrium equation results in pt = −θpt−1 + (1 + θβ) st + θst−1 (C.2). If pt defined by (C.1) above is to

be an Information Equilibrium, then it must satisfy the dynamic equation (C.2). Notice that this equation contains the explosive

autoregressive root |θ| > 1. Remember that 2.1.3 requires the price process to be stationary: how can (C.2) be reconciled with

(C.1)? This is possible if the explosive root happens to exactly cancel with the moving average root of st. In order for this to be

the case, U i
t = {0} ∀i must be violated, which results in the contradiction that we were looking for. To see why the exogenous

information assumption must be violated, suppose that the asset market takes place at time 0. The equilibrium price for the asset

market a period earlier, p−1, is not defined. What would then (p−1 − s−1) be? To ensure that the unstable root exactly cancels

with the moving average root it must be that (p−1 − s−1) = βε0 (C.3). Any other assumption will result in an explosive path

for the price process. However, because p−1 is not well defined, assuming (C.3) is essentially equivalent to exogenously providing

the agents with the knowledge of the initial state ε0, which violates the assumption that U i
t = {0} ∀i. Therefore, the equilibrium

(C.1) is not an information equilibrium under the assumptions of Theorem 1. Given the above argument one might think that

the same contradiction applies to the IE characterized in Theorem 1. This is not the case. One can in fact show that, under the

supply process assumed above, the dynamic equation of the IE price characterized by Theorem 1 in terms of observables is now

pt = −(1/θ)pt−1 + (θ + β)/(θ)st + (1/θ)st−1. Notice that the autoregressive root in this equation implies stationarity, and so there

is no need for it to cancel with the moving average root of st. The implication is that there is no need for a precise initial condition
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on p−1 to ensure stationarity, which means that U i
t = {0} ∀i does not need to be violated and the contradiction argument does not

go through.

B.4 Proofs of Propositions for Section 5

B.4.1 Corollary 3 If we redefine the fundamentals process for the informed as

fI
t = st − (1 − µ)β[pt+1 −EU

t pt+1] = A(L)εt − (1− µ)β[(L− λ)Q(L)L−1 − L−1[(L− λ)Q(L) −Q0Bλ(L)]

= A(L)εt − (1 − µ)βL−1Q0Bλ(L) (B.16)

and solve the model

pt = βEI
t pt+1 + fI

t (B.17)

using the z-transform methodology described in the paper, then by guessing that pt = π(L)εt, we have

π(z) = βz−1[π(z)− π0] + A(z)− z−1Bλ(z)(1 − µ)βQ0

(z − β)π(z) = zA(z)−Bλ(z)(1 − µ)βQ0 − βπ0 (B.18)

Evaluating the RHS at β, A(β) −Bλ(β)(1 − µ)Q0 = π0.

The equilibrium is

pt =
1

L− β

(

LMI(L) − βMI(β)

)

=
1

L− β

(

LA(L)− (1− µ)βQ0Bλ(L)− βA(β) + (1− µ)βQ0Bλ(β)

)

=
1

L− β

(

LA(L)− βA(β)− (1− µ)βQ0(Bλ(L) −Bλ(β))

)

(B.19)

Recall that Q0 = −A(β)/h(β), substituting this in to (B.19) and a bit of algebra delivers the equilibrium (3.8).

For the uninformed, we have a guess of pt = π̃(L)ε̃t, therefore the model is solved in ε̃ space

pt − βE[pt+1|pt, EI
t ] = fU

t

π(L) = βL−1[π(L)− π0] + (1− λL)

(

A(L) + L−1µβλQ0

L− λ

)

(B.20)

The equilibrium is

π(L) =
1

L− β

(

(1− λL)(LA(L) + µβλQ0)

L− λ
− (1− λβ)(βA(β) + µβλQ0)

β − λ

)

Bλ(L)εt (B.21)

Recall that Q0 = −A(β)/h(β), substituting this in to (B.21) and a bit of algebra delivers the equilibrium (3.8).

B.4.2 Proposition 2 Write the equilibrium price as pt = (L − λ)Q(L)εt where |λ| < 1 and Q(L) satisfies (3.8). For j = 1, the

time t+ 1 average expectation of the price at t+ 2 is given by

Et+1pt+2 = µEI
t+1pt+2 + (1− µ)EU

t+1pt+2

= L−1(L− λ)Q(L)εt+1 + L−1Q0[µλ− (1− µ)Bλ(L)]εt+1

= pt+2 + L−1Q0[µλ− (1 − µ)Bλ(L)]εt+1 (B.22)
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The informed agent’s time t expectation of the average expectation at t+ 1 is

E
I
t Et+1pt+2 = E

I
t pt+2 + µλQ0E

I
t εt+2 −Q0(1− µ)EI

t Bλ(L)εt+2. (B.23)

Clearly E
I
t εt+2 = 0, whereas the expectation in the last term of (B.23) is given by

E
I
t Bλ(L)εt+2 = L−2{Bλ(L)− Bλ(0) −Bλ(1)L}εt (B.24)

where the notation Bλ(j) stands for “the sum of the coefficients of Lj ”. If we write

Bλ(L) = (L − λ)(1 + λL+ λ2L2 + λ3L3 + · · · ).

it is straightforward to show that Bλ(0) = −λ and Bλ(1) = (1 − λ)(1 + λ) = (1− λ2), from which follows

Bλ(L)− Bλ(0) −Bλ(1)L =
L− λ

1− λL
+ λ− (1− λ2)L =

λ(1− λ2)L2

1− λL
.

Putting things together, the informed agent’s expectation of the average expectation is

E
I
tEt+1pt+2 = E

I
t pt+2 − (1 − µ)Q0λ

(

1− λ2

1− λL

)

εt (B.25)

For the uninformed, we need to evaluate the following expectation

E
U
t pt+1 = (1− µ)βEU

t pt+2 + E
U
t [µβEI

t+1pt+2 + st+1] (B.26)

Writing out the term in brackets gives

µβEI
t+1pt+2 + st+1 = µβL−1[(L− λ)Q(L) + λQ0]εt+1 +A(L)εt+1

= µβ(L − λ)Q(L)εt+2 +G(L)εt+2

= µβpt+2 +G(L)εt+2

where G(L)εt+2 = [µβλQ0 + LA(L)]εt+2. Note that the existence condition implies that G(L) must vanish at L = λ. Therefore,

we may rewrite G(L)εt+2 as (L − λ)Ĝ(L)εt+2, where Ĝ(L) has no zeros inside the unit circle. This implies that G0 = −Ĝ0λ,

Gi = Ĝi−1 − λĜi, for i = 1, ... and therefore Ĝ0 = −µβQ0, Ĝ1 = (Ĝ0 −G1)/λ = −(µβQ0 +A0)/λ

Evaluating (B.26) yields

E
U
t pt+1 = βEU

t pt+2 + E
U
t (L− λ)Ĝ(L)εt+2

= βEU
t pt+2 + L−2[(L− λ)Ĝ(L) − {Ĝ0 + (Ĝ1 − λĜ0)L}Bλ(L)]εt

= βEU
t pt+2 + st+1 +

A0

λ
Bλ(L)εt+1 +

(

µβQ0(1 − λ2)

λ(1 − λL)

)

εt (B.27)

Now we define EŪ
t pt+1 as (B.27) without the last term, so that

E
Ū
t pt+1 = βEU

t pt+2 + st+1 − A0

λ
Bλ(L)εt+1 (B.28)

(B.28) would hold if the uninformed agents ignored the information coming from the informed agent’s forecast errors. Therefore the

difference between (B.27) and (B.28) must be due to HOBs. This difference is given by the last term in (B.27). Using the above

definitions in conjunction with (B.26) equation (5.7) follows.
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B.4.3 Proposition 3, No HOBs Equilibrium If we were to assume that informed agents acted irrationally and ignored information

coming from the model, then the informed would not form HOBs and their expectations would satisfy the law of iterated expectations,

EI
t (pt+1) = βEI

t (pt+2) + EI
t st+1 (B.29)

That is, the higher-order beliefs component (1− µ)(1 − λ2)

(

Q0λ
1−λL

)

εt (which was derived in the proof of Proposition 2) is removed

from the informed agents’ expectation.

Assuming |λ| < 1 and pt = (L− λ)Q(L)εt, then

EI
t (pt+1) = βL−2[(L− λ)Q(L) + λQ0 − LQ0 + LλQ1]εt + L−1[A(L)−A0]εt

and equilibrium in z-transforms can be written as

(z − λ)(z − β)(z + µβ)Q(z) = z(z + µβ)A(z) − zµβA0 + βG(z)Q0 + µβ2λzQ1 (B.30)

where G(z) = µβ(λ− z)− (1 − µ)zBλ(z). To remove the pole at z = −µβ, Q1 must satisfy

(µβ)2A0 + βG(−µβ)Q0 − µ2β3λQ1 = 0

substituting this into (B.30) gives

(z − λ)(z − β)Q(z) =

{

zA(z) +
β

1 + µλβ
Q0g(z)

}

where g(z) = µλ(1 + λβ)− (1− µ)Bλ(z). Removing the poles at λ and β implies the restrictions

A(λ) +
βQ0µ(1 + λβ)

1 + µλβ
= 0, Q0 =

−A(β)(1 + µλβ)

g(β)

This delivers the equilibrium conditions

pt =
1

L− β

(

LA(L)− βA(β)
g(L)

g(β)

)

εt (B.31)

and A(·) must satisfy

A(λ) =
βµA(β)(1 + λβ)

g(β)
(B.32)

The equilibrium conditions (B.31) and (B.32) is the boundedly rational equilibrium assuming first-order higher order beliefs are

removed. To remove the first- and second-order higher-order beliefs requires the informed agents’ expectation to be given by

EI
t pt+1 = β2EI

t (pt+3) +EI
t st+1 + βEI

t (st+2)

= β2L−3[(L− λ)Q(L) + λQ0 − (Q0 − λQ1)L− (Q1 − λQ2)L
2]εt

+ L−1[A(L)− A0]εt + βL−2[A(L)− A0 − A1L]εt (B.33)

This assumes the law of iterated expectations applies to time t+ 1 and t + 2 for the informed agents.

Substituting this expression into equilibrium yields

(z − λ)Q(z) = βµ{β2z−3[(z − λ)Q(z) + λQ0 − (Q0 − λQ1)z − (Q1 − λQ2)z
2]

+ z−1[A(z)−A0] + βz−2[A(z)− A0 − A1z]}

+ β(1− µ)z−1[(z − λ)Q(z)−Q0Bλ(z)] +A(z)
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Some tedious algebra delivers

(z − λ)(z − β)(z2 + µβz + µβ2)Q(z) = µβ3[λQ0 − (Q0 − λQ1)z − (Q1 − λQ2)z
2]

+ µβz2[A(z)−A0] + µβ2z[A(z)−A0 −A1z]

− β(1 − µ)z2[Q0Bλ(z)] + z3A(z)

= (z2 + µβz + µβ2)zA(z) + βJ(z)Q0 + µβ3z(λ− z)Q1

+ µβ3λz2Q2 − z(µβ2 − µβz)A0 − µβ2z2A1

where J(z) = µβ2(λ − z)− z2(1− µ)Bλ(z).

Term hitting Q(z) does not factor but it is easy to show that both zeros are inside unit circle. Write the zeros as (z2+µβz+µβ2) =

(z − ξ1)(z − ξ2).

(z − λ)(z − β)(z − ξ1)(z − ξ2)Q(z) = (z − ξ1)(z − ξ2)zA(z) + βJ(z)Q0 + µβ3z(λ− z)Q1

+ µβ3λz2Q2 − z(µβ2 − µβz)A0 − µβ2z2A1

Using Q2 and Q1 to remove z = {ξ1, ξ2} gives two restrictions and two unknowns.

βJ(ξ1)Q0 + µβ3ξ1(λ− ξ1)Q1 + µβ3λξ21Q2 − ξ1(µβ
2 − µβξ1)A0 − µβ2ξ21A1 = 0

βJ(ξ2)Q0 + µβ3ξ2(λ− ξ2)Q1 + µβ3λξ22Q2 − ξ2(µβ
2 − µβξ2)A0 − µβ2ξ22A1 = 0

Substituting in these values, dividing by (z − ξ1)(z − ξ2) and tedious algebra delivers

(z − λ)(z − β)Q(z) = zA(z) +
β

κ
Q0j(z) (B.34)

where j(z) = µλ(1 + λβ + (λβ)2)− (1− µ)Bλ(z), and κ is a complicated constant of ξ1, ξ2, λ, β and µ. To remove the pole at z = λ,

A(·) must satisfyA(λ) + βQ0µ(1+λβ+(λβ)2)
κ

= 0. To remove the pole at z = β, Q0 must satisfy Q0 = −A(β)κ
j(β)

.

Substituting in Q0 delivers the result

pt =
1

L− β

(

LA(L)− βA(β)
j(L)

j(β)

)

εt (B.35)

where

j(L) = µλ(1 + λβ + (λβ)2)− (1− µ)Bλ(L) (B.36)

and A(·) must satisfy

A(λ) =
βµA(β)(1 + λβ + (λβ)2)

j(β)
(B.37)

By induction, we are converging to

pt =
1

L− β

(

LA(L)− βA(β)
k(L)

k(β)

)

εt (B.38)

where

k(L) = µλ(
n
∑

j=0

(λβ)j )− (1 − µ)Bλ(L) (B.39)
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and A(·) must satisfy

A(λ) =
βµA(β)(

∑n
j=0(λβ)

j)

k(β)
(B.40)

Letting n → ∞ delivers the desired result.

Removing Both HOBs Corollary 2 shows that removing both the informed and uninformed HOBs will lead to an equilibrium in

which each agent only forecasts the sum of future st’s. The boundedly-rational equilibrium in this setup will therefore be a convex

combination of the fully informed equilibrium given by (3.3) and the fully uninformed equilibrium of Theorem 1.

B.4.4 Corollary 4 Given the ARMA(1,1) specification, the roots determining λ for the information equilibrium are given by the

following quadratic,

f(λ) = βµθ(1 − ρβ)λ2 + [βµ(1 + θβ)− θ(1− ρβ)]λ− (1 + βµθ) + ρβ(1 − µ) = 0 (B.41)

If we remove the higher-order beliefs of the informed, the

g(λ̄) = θ(1 − ρβ)λ̄ + 1 + βµθ − ρβ(1 − µ) = 0 (B.42)

which gives

λ̄ =
−(1 + µθβ) + ρβ(1− µ)

θ(1 − ρβ)
(B.43)

Removing both the informed and uniformed’s HOBs gives

h(λ∗) = θ(1− ρβ)λ∗2 + [1− ρβ + βρµ(1 + θβ)]λ∗ − µβ(1 + θβ) = 0 (B.44)

The proof consists of two parts:

We will first show that |λ| > |λ̄| for all λ ∈ (−1, 1).

From Result IE (figure 3), an IE with |λ| < 1 requires θ > 1. Notice also that θ > 0 implies the quadratic (B.41) is convex and

f(λ)
∣

∣

λ=0
= ρβ − 1 − βµ(θ + ρ) < 0. To prove the result we show that evaluating (B.41) at the root of (B.42) delivers a negative

value. Evaluating (B.41) at λ̄ yields

β2µ[1 − ρβ + µβ(ρ + θ)](ρ+ θ)(µ− 1)

θ(1− ρβ)
< 0 (B.45)

which proves |λ| > |λ̄|.

We now prove that |λ̄| > |λ∗|. Removing all HOBs could yield an equilibrium with two roots inside the unit circle. The product

of the two roots of (B.44) is −µβ(1 + θβ)/(θ(1 − ρβ)), which is always less than (B.43) in absolute value when

β{µ[1− θ(1− β)] + (1 − µ)ρ} < 1 (B.46)

which holds given the restrictions on the parameter values.

B.4.5 Proposition 4 The notation of the proof is that of Theorem 1 unless otherwise specified. We begin by noticing that

EitEt+1pt+2 = µEitE
I
t+1pt+2 + (1 − µ)EitE

U
t+1pt+2. (B.47)

From the hierarchical equilibrium case we know that EU
t+1pt+2 = EI

t+1pt+2 − Q0
1−λ2

1−λL
εt+1. We also notice that, because the

information set of an arbitrary agent i is strictly smaller than the information set of an informed agent of the hierarchical equilibrium
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and because the law of iterated expectations holds at the single agent level, we have EitEit+1E
I
t+1pt+2 = Eitpt+2. Because of the

second property we also have that EitE
U
t+1pt+2 = EitEit+1E

U
t+1pt+2. Therefore

EitEt+1pt+2 = µEitpt+2 + (1 − µ)Eitpt+2 − (1 − µ)Q0Eit
1− λ2

1− λL
εt+1. (B.48)

The crucial step in the proof is then to show that the expectation in the last term is non-zero. In order to do so we first notice that

L−λ
1−λL

εt+2 = 1−λ2

1−λL
εt+1 − λεt+2 and so

E

(

1− λ2

1− λL
εt+1|εti, pt

)

= E

(

L− λ

1− λL
εt+2|εti, pt

)

. (B.49)

Then, the crucial step in the proof is to show that

E

(

L− λ

1− λL
εt+2|εti, pt

)

= µλ

(

1− λ2
)

1− λL
εit. (B.50)

where µ ≡ σ2

ε

σ2
ε+σ2

v

. Remember that we defined

ε̃t = B(L)εt. (B.51)

To ease notation, let ε̃ = y, then we look for E
(

yt+2|εti, pt
)

= π1 (L) εit+π2 (L) pt. From Theorem 1 in Rondina (2009) we know that

[

π1 (L) π2 (L)
]

=

[

L−2gy,(ε,p) (L)
(

Γ∗(L−1)T
)−1

]

+

Γ∗(L)−1 (B.52)

where Γ∗(L) and
(

w1
it, w

2
it

)

are defined in (A.10) and gy,(ε,p) (L) is the variance-covariance generating function between the variable

to be predicted and the variables in the information set. In our case we have that

gy,(ε,p) (L) =
[

B (L)σ2
ε B (L)

(

L−1 − λ
)

p
(

L−1
)

σε

]

.

Plugging in the explicit forms and solving out the algebra

L−2gy,(ε,p) (L)
(

Γ∗(L−1)T
)−1

= 1√
σ2
ε+σ2

v

[

L−2 L−λ
1−λL

σ2
ε + L−2

(

L−1 − λ
)

p
(

L−1
) σ2

ε

σv
−L−2 σ2

ε+σ2

v

σv
σε

]

.

Applying the annihilator operator to the RHS we see that the second term of the vector goes to zero. For the first term, the assumption

that p(L) is analytic inside the unit circle ensures that L−2
(

L−1 − λ
)

p
(

L−1
)

does not contain any term in positive power of L. We

are then left with
[

L−2 L− λ

1− λL

]

+

=
λ
(

1− λ2
)

1− λL
, (B.53)

Summarizing we have shown that

[ π1(L) π2(L) ] = 1√
σ2
ε+σ2

v

[ λ(1−λ2)
1−λL

σ2
ε 0 ]Γ∗(L)−1.

Notice that

Γ∗(L)−1[
εit

pt
] =





w1
it

w2
it





so that

E
(

yt+2|εti, pt
)

=
[

π1 (L) π2 (L)
]





εit

pt



 = 1√
σ2
ε+σ2

v

λ
(

1− λ2
)

1− λL
σ2
εw

1
it.

From the proof of Theorem 3 we know that w1
it = 1√

σ2
ε+σ2

v

(εt + vit), which, once substituted in the above expression, completes
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the proof of statement (i). The proof can be generalized to expectations of order higher than 1. For statement (ii) the proof follows

exactly the proof of Proposition 2 since it concerns only aggregate variables, which we know from the proof of Theorem 1 follow the

same patter as those of the hierarchical case.
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