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Abstract

This paper studies imperfectly discriminatory contest with endogenous and stochastic en-
try, and its optimal (e¤ort-maximizing) design. A �xed pool of potential bidders strategically
decide whether to sink an entry cost and then vie for an indivisible prize. Applying Dasgupta
and Maskin (1986), we establish the existence of symmetric equilibrium in this two-dimensional
discontinuous game under a wide class of contest technologies, which includes all-pay auction as
a limiting case. We show that a contest is subject to a ��rst best�, which indicates the maxi-
mal amount of expected overall bid it could possibly elicit, regardless of the prevailing winner
selection mechanism. For the subclass of Tullock contests, we further identify the conditions for
the existence (non-existence) of a symmetric equilibrium with pure-strategy bidding upon entry.
Based on these equilibrium analyses, we establish that a well structured Tullock contest is able
to elicits this �rst best. Furthermore, we �nd that the discriminatory power of a Tullock con-
test non-monotonically a¤ects the expected overall bid. Hence, a noisier contest, which provide
weaker bidding incentives, may turn out to elicit more e¤ort, which contrasts with the conven-
tional wisdom in contest design. Our analysis further reveals that a contest designer should in
general exclude potential bidders to elicit higher bids.
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1 Introduction

Economic agents are often involved in contests. They expend costly e¤ort to compete for a

limited number of prizes, while their investments are usually non-refundable whether they win

or lose. A wide variety of economic activities exemplify such competitions. They include

rent seeking, lobbying, political campaigns, R&D races, competitive procurement, college

admissions, ascents of organizational hierarchies, and movement in internal labor markets.

The literature on contests conventionally assumes that a �xed number (n) of bidders par-

ticipate in the competition and the number is commonly known. Under this �xed-n paradigm,

the majority of existing studies focus on the various aspects of bidders�ex post competitive

activities, but abstract away from their ex ante participation incentives. In this paper, we

complement these studies by examining a setting where a �xed pool of potential bidders are

allowed to strategically decide whether to participate in a contest. They sink their bids only

after entering the contest.

In our setting, participation incurs a nontrivial (�xed) cost. It allows a bidder to merely

participate while it is unrelated to their chances of winning. Each bidder weighs his expected

payo¤ in future competitions against the entry cost, and participates if and only if the former

(at least) o¤sets the latter. As noted by Konrad (2009), entry cost, which can be explicitly sunk

resources or foregone opportunities, is widespread in various competitive activities. To provide

an analogy, while an air ticket enables Venus Williams to arrive at the Australian Open, it does

not help her win the championship. Similarly, to participate in an R&D tournament, a research

company may need to acquire some necessary laboratory equipment to gather project-speci�c

information, or to turn down other pro�table tasks, while its chances of winning depend on

its subsequent creative input. The nontrivial entry cost leads potential bidders to participate

in the contest randomly. The actual number of participants is uncertain. Participants take

into account this uncertainty when placing their bids.

This entry-bidding game exhibits distinctive characteristics, which complement and en-

rich the existing literature in several aspects. First, this entry-bidding game exempli�es a

discontinuous game with two-dimensional action space (Dasgupta and Maskin, 1986). With

strategic and stochastic entry, the strategy of each potential bidder involves two elements: (1)

whether to enter; and (2) how to bid upon entering.1 ;2 The game thus distinguishes itself from

standard contests that are typically identi�ed as uni-dimensional discontinuous games. The

conventional approaches to establishing equilibrium existence in contest models (e.g. Baye,

1The literature on contests recognizes that (Baye, Kovenock and de Vries 1994, and Alcalde and Dahm,

2010), a well-de�ned contest success function (e.g., Tullock contest) can be discontinuous at its origin, i.e.,

when all bidders bid zero.
2We assume that the entrants do not observe the number of entarnts. As will be discussed in the conclusion,

there is no loss of generality for considering the optimal design of contests that do not disclose the actual number

of participants.
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Kovenock and de Vries 1994 and Alcalde and Dahm, 2010) or in auction settings do not en-

compass our settings.3 This novel setting entails the application of Dasgupta and Maskin�s

(1986) general theorem on multi-dimensional discontinuous games. We establish that a sym-

metric mixed-strategy equilibrium always exists for a family of imperfectly discriminatory

contests with general impact functions: each potential bidder enters with the same proba-

bility, and adopts the same (possibly mixed) bidding strategy upon entry.4 This family of

contest technology covers the Tullock contests as a subclass and all pay auction as a limiting

case. To our knowledge, our analysis provides the �rst application of the existence theorem

for multi-dimensional discontinuous games in contest literature.

Second, endogenous and stochastic entry leads to substantially more extensive strategic

interactions in participants�bidding behaviors. The analysis in this novel setting sheds light

on two classical questions in contest literature: (1) to what extent the equilibrium bidding

strategies (conditional on their entry) can be solved for explicitly; and (2) under what con-

ditions equilibria that do (or do not) involve pure-strategy bidding exist.5 A participant, to

place his bid, must form a rational belief on competing bidders�entry patterns and take into

account all the possible contingencies that can be caused by the (endogenously determined)

random entries. With this �avor, the general property of a bidder�s overall expected payo¤

function cannot be readily discerned, and the results from existing studies do not carry over.

For the class of Tullock contests, our analysis reveals the nature of the strategic decision prob-

lem, and identi�es su¢ cient conditions under which participants do (or do not) randomize

their bids upon entry. The results provide a foundation for the optimal design of contests with

endogenous and stochastic entry.

Third, endogenous entry enriches contest design substantially. We �rst establish that for

any entry-bidding game within the family of imperfectly discriminatory contests with general

impact functions, there exists a unique ��rst best�level of total e¤ort that can be induced. It

imposes an upper limit for the amount of overall bid the game can possibly elicit, regardless

of the prevailing winner selection mechanism (i.e. contest success functions). Based on the

results from equilibrium analysis, we demonstrate that the ��rst best� can be implemented

through a properly structured Tullock contest. It should be noted that the applicability of

this "�rst best" level is not restricted to the family of contests we formally model in the paper,

3We elaborate upon this issue in Section 4.
4One should note that our two-dimensional strategy space of (entry, e¤ort) cannot be reduced to a setting

with single dimensional strategy of e¤ort with a positive �xed cost. In our two dimensional setting, if no one

enters the contest, no one wins. If everyone enters but exerts zero e¤ort, every one incurs an entry cost and

has an equal chance at winning. In the single dimensional setting, if everyone exerts zero e¤ort, no one incurs

any costs but has an equal chance of winning.
5It is well-known that a bidder�s payo¤ maximization problem becomes irregular when the contest success

function is excessively elastic to e¤ort, e.g. when the discriminatory parameter r in a Tullock contest exceeds

certain boundaries. Endogenous and stochastic entry compounds the complexity.
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but also extends to any contest technology that induces symmetric entry. This means that

the optimality of a Tullock contest holds even when a larger family of contest technology is

considered. We investigate how various institutional elements of a contest a¤ects its e¢ ciency

in enhancing total e¤ort. The analysis witnesses the extensive strategic trade-o¤s, which are

triggered uniquely by endogenous and stochastic entry. Two main observations are highlighted

as follows.

� We demonstrate that a �noisier�winner selection mechanism, which provides a lower-
power incentive in contests, may paradoxically elicit more e¤ort. In a Tullock contest,

the discriminatory parameter r in the impact function is conventionally interpreted as

a measure of the level of precision in the winner selection mechanism. A greater r

implies that a higher bid can be more e¤ectively translated into a higher likelihood of

winning, thereby increasing the marginal return to the bid and further incentivizing

bidders. In our setting, a greater r gives rise to competing e¤ects at two di¤erent layers.

First, it gives rise to a trade-o¤ between ex post bidding incentives and ex ante entry

incentives. A greater r intensi�es the competition on the one hand; while it leaves lesser

rent to participants and restricts bidders�entry on the other. Second, there is a tension

between the level of entry and the incentive of individual bidding. More active entry

(under a smaller r) allows the contest to engage more bidders and tends to amplify their

overall contributions; while it also leads individual participants to bid more prudently,

as they anticipate lesser chance of winning. Thus, the expected overall bid may not

vary monotonically with the size of r, and implementing the ��rst best�total e¤ort may

require a moderate incentives that balance the various countervailing forces.

� The contest literature states that the overall bid always increases with the number of
bidders when their participation is deterministic. However, we demonstrate in our setting

that the contest designer may prefer to limit competition by inviting only a subset of

them for participation: a contest may elicit lesser e¤ort, when a larger pool of potential

bidders are involved.

The rest of the paper proceeds as follows. In Section 2, we discuss the relation of our

paper to the relevant literature in the rest of this section. In section 3, we set up a generic

entry-bidding game, and derive the ��rst best�level of overall bid that can be possibly elicited

in the game. Section 4 carries out an equilibrium analysis of the entry-bidding game when

a speci�c winner selection mechanism (i.e. Tullock contests) and discusses the possibility of

implementing the ��rst best�through such a mechanism. Section 5 concludes this paper.

4



2 Relation to Literature

Our paper complements the literature on contests and auctions in various aspects.6 ;7 Our paper

primarily belongs to the literature on equilibrium existence in contests. Our paper provides

a comprehensive and formal account of equilibrium existence in the entry-bidding game for

a large family of contests, covers the Tullock contests as a subclass and all pay auction as

a limiting case. Szidarovszky and Okuguchi (1997) establish the existence of pure-strategy

equilibria when contestants have concave production functions. The existence and properties

of the equilibria remain a nagging problem for contests with less well-behaved technologies.

Baye, Kovenock and de Vries (1994) establish the existence of mixed-strategy equilibria in two-

player Tullock contests with r � 2. Alcalde and Dahm (2010) further the literature by showing
that all-pay auction equilibria exist under a wide class of contest success functions.8 Both

studies apply the results of Dasgupta and Maskin (1986) on uni-dimensional discontinuous

games. Our paper contributes to this literature by introducing bidders�entry decisions while

allowing the number of active bidders to be stochastic. These new �avours enrich our analysis

by forming a two-dimensional discontinuous game, and provide a novel application of the

general result of Dasgupta and Maskin (1986) on multi-dimensional discontinuous games in

the contest literature.

The literature on contests with endogenous entry remains scarce. Higgins, Shughart, and

Tollison (1985) in their pioneering work study a tournament model in which each rent seeker

bears a �xed entry cost, and randomly participates in equilibrium. In an all-pay auction model,

Kaplan and Sela (2010) provide a rationale for entry fees in contests. Besides the di¤ering

modeling choice and the diverging focus, Kaplan and Sela (2010) di¤er from the current paper

in a few other aspects. First, they allow players to bear privately-known entry costs, while we

assume that entry cost is uniform and commonly known. Second, they let participants know

who else has entered, while we focus mainly on uninformed participants.9

Two recent experimental studies, Cason, Masters and Sherementa (2010) and Morgan,

Orzen and Sefton (2010), also contribute to this research agenda by studying bidders�entries.

Similar to Morgan, Orzen and Sefton�s (2010) theoretical model, Fu and Lu (2010) also assume

6Our paper can also be related to the literature on standard oligopolistic competition. Our paper echoes the

argument of Dixit and Shapiro (1986) and Shapiro (1989) on �rms�behavior in oligopolistic markets. He shows

that Bertrand competition, which is �ercer, can be more anti-competitive ex post than Cournot competition,

which is ex ante more subdued, as the latter limits the contestability of the market and discourages entries.

We focus on the issue of mechanism design in our particular context. In addition, the level of post-entry

competition is a continuous variable and is considered as a strategic choice of the contest designer.
7Our paper also complements the literature on contests and auctions with entry. Its relation to auction

literature will unfold in Section 4 when we compare the results to those of relevant auction studies.
8Wang (2010) also characterizes the equilibria in two-player asymmetric Tullock contests when r is large.
9We also discuss in the conclusion the rami�cations of disclosure policy as an institutional element of

contests.
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that potential bidders enter sequentially, so neither setting involves stochastic participation.

A handful of papers have examined contests with stochastic participation. The majority

of these studies, however, assume exogenous entry patterns. Myerson and Wärneryd (2006)

examine a contest with an in�nite number of potential entrants, whose entry follows a Poisson

process. Münster (2006), Lim and Matros (2009) and Fu, Jiao and Lu (2011) assume a

�nite pool of potential contestants, with each contestant entering the contest with a �xed and

independent probability.

The current study also contributes to the growing literature on contest design by exploring

the optimal mechanism in a context with endogenous and stochastic entries.

First, our analysis complements the literature on the proper level of precision in evaluating

bidding performance. Conventional wisdom says that a more precise evaluation mechanism

incentivizes bidders. Gershkove, Li and Schweinzer (2009) and Giebe and Schweinzer (2011)

provide two novel applications of this principles, and both espouse the merit of a more precise

contest as incentive devices. A handful of studies, however, espouse low-powered incentives

in contests and demonstrate that a less �discriminatory�contest can improve e¢ ciency. One

salient example is provided by Lazear (1989), who argues that excessive competition leads

to sabotage. A more popular stream in the literature instead stresses the �handicapping�

e¤ect of the imprecise performance evaluation mechanism in (two-player) asymmetric con-

tests. When contestants di¤er in their abilities, a noisier contest balances the play�eld. This

e¤ect encourages weaker contestants to bid more intensely, and deters the stronger ones from

shirking. O�Kee¤e, Viscusi and Zeckhauser (1984) are among the �rst to formalize this logic.

This rationale is further elaborated upon by Che and Gale (1997, 2000), Fang (2002), Nti

(2004), Amegashie (2009), and Wang (2010). In a recent study, Epstein, Mealem and Nitzan

(2011) contend that contest designers still prefer all-pay auctions to Tullock contests if they

can strategically discriminate between bidders. In contrast to these studies, our paper adopts

a M -player symmetric contest, and stresses the trade-o¤ between ex post bidding incentives

and ex ante entry incentives. Our paper is related to Cason, Masters and Sheremeta�s (2010)

experimental study in this aspect, which compares endogenous entries in all-pay auctions and

lottery contests.

Our �nding on e¢ cient exclusion echoes a handful of pioneering studies by Baye, Kovenock

and de Vries (1993), Taylor (1995), Fullerton and McAfee (1999), and Che and Gale (2003).

These studies focus on heterogeneous contestants, and concern themselves with selecting (usu-

ally two) players of the �right types�. Our result, however, obtains in a setting of homogenous

players and concerns itself with creating a contest of the �right size�. Dasgupta (1990) studies

a two-stage procurement tournament. Bidders invest in cost reduction in the �rst stage, and

place their bids in the second. Wider competition may diminish bidders�incentives to engage

in R&D. Limiting the number of competing �rms may or may not bene�t the principal. None

of these studies involves entry cost and endogenous entry. In contrast to these studies, an in-
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vited (potential) bidder in our setting has to decide whether to enter the subsequent contest,

and the entry pattern in the equilibrium remains endogenous and stochastic.

3 Contest with Endogenous Entry

This section proceeds in three steps. First, we set up an entry-bidding game where a family of

imperfectly discriminatory contests with general impact functions is adopted, and a �xed pool

of potential bidders make costly and endogenous entry to a contest and bid for an indivisible

prize. Note that this family of contest technology covers the popularly adopted Tullock contests

as a subclass and all pay auction as a limiting case. Second, we establish that a symmetric

entry-bidding equilibrium always exists in this generic game. Third, we demonstrate that the

overall bid in such a game, regardless of the prevailing winner selection mechanism, is subject

to an upper limit (��rst best�level of e¤ort).

3.1 Setup

A �xed pool of M(� 2) identical risk-neutral potential bidders may compete for a prize of

a common value v > 0. Potential bidders �rst decide simultaneously whether or not to

participate in the competition. Each participant has to sink a �xed cost � > 0 if he enters.

Entry is irreversible, and the cost � cannot be recovered. These contest primaries can thus

be denoted generically by (M;�; v).

Upon their entry, participants simultaneously submit their bids xi; i 2 1; 2; :::; N , to com-
pete for the prize v, where N denotes the number of entrants. We assume the number of

entrants is not observed by the entrants.10 A potential bidder i�s strategy is thus denoted by

an ordered pair (qi; �i(xi)), where qi is the probability he enters the contest, and the probabil-

ity distribution �i(xi) depicts his bidding strategy conditional on his entry. The distribution

�i(xi) reduces to a singleton when the participant does not randomize his bids.

Suppose that N � 2 potential bidders enter the contest. They simultaneously submit their
bids xi; i = 1; 2; :::; N , to compete for the prize v without knowing the number of entrants.

Each participating bidder wins the prize with a probability pi(xi; x�i), where pi(xi; x�i) is

mapping pi : RN+ ! [0; 1]. The probability of a participating bidder i winning the prize is

given by

pN(xi;x�i) =
g(xi)PN
j=1 g(xj)

; if N � 2, and
NX
j=1

g(x) > 0; (1)

where g(�) is a continuous impact function with g(0) = 0 and g0(�) > 0. If all participants

submit zero bids, i.e.
PN

j=1 g(x) = 0, the winner is randomly picked from the participant.

10In this paper, as will be discussed in the conclusion it is optimal for the contest organizer not to reveal

the number of entrants.
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To the extent that only one bidder enters, he receives the prize v automatically, regardless

of his bid. In the event that nobody enters, the designer keeps the prize. The probabilistic

prize allocation mechanism (1) follows the setup of widely adopted ratio-form contest success

function. It is axiomatized by Skaperdas (1996) and Clark and Riis (1998). Clark and Riis

(1996) and Fu and Lu (2011) provide a micro foundation for contest success function (1) from

a noisy ranking perspective. Clearly, this family of contest technology covers the Tullock

contests as a subclass where g(xi) = xri ; r > 0. In particular, when r !1, all pay auction is
obtained as a limiting case.

When bidding xi, a participating bidder i bears a cost c(xi) = x�i with � � 1. When

N � 2 bidders enter the contest, a participant i earns an expected payo¤ �i : RN+ ! R, which
is given by

�i(xi;x�i) =
g(xi)PN
j=1 g(xj)

v � x�i :

As participants do not observe N , the actual number of participants, each participant is

uncertain about the actual level of competition when placing his bid. He bids based on his

rational belief about others�entry and bidding strategies. The solution concept of a subgame

perfect equilibrium does not apply, as participants possess only imperfect information and no

proper subgame is formed after entry. We simply use the concept of Nash equilibrium to solve

the game. An equilibrium is a strategy combination �Mi=1(qi; �i(xi)) of all contestants, which
requires that the pair strategy (qi; �i(xi)) of each potential bidder i maximizes his expected

payo¤ based on his rational belief and others�strategy pro�le �j 6=i(qj; �j(xj)).
Because of the symmetry among bidders, we, throughout the entire analysis, focus on

symmetric equilibria where all potential bidders play the same strategy (q�; ��(x)). The exis-

tence of a symmetric equilibrium for a general impact function g(�) will be established later
in Section 3.3.

It should be noted that though we start with a family of contest technology described by

(1), our analyses of Section 3.4 on maximum total e¤ort inducible and the optimal design of

Section 4 would naturally extend to any family of contest technologies that induce symmetric

entry.

3.2 Some Preliminaries

The following assumption focuses our the analysis on the most relevant case.

Assumption 1 v
M
< � < v.

Assumption 1 requires that the entry cost� be nontrivial but not prohibitively high. First,

no entry is triggered if it costs more than the winner�s purse. Second, the analysis becomes

relatively trivial when entry involves little cost, in which case the institutional elements of
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the contest do not a¤ect bidders� entry incentives signi�cantly. Under the assumption, no

equilibria exist where all potential bidders participate with certainty. They must randomize

on their entry in a symmetric equilibrium.

We de�ne two cuto¤ probabilities, which are used repeatedly throughout the analysis.

De�nition 1 Let �q 2 (0; 1) be the unique solution to (1 � (1 � q)M)v �Mq� = 0, and q0
2 (0; 1) be the unique solution to (1� q)M�1v �� = 0.

Comparing the two cuto¤s leads to the following.

Lemma 1 q0 < �q.

Proof. See Appendix.
Let us discuss the implications of the two cuto¤s brie�y, although their implications unfold

as the analysis proceeds. The entry-bidding game cannot trigger an equilibrium, where all

potential bidders enter with a probability more than �q: they would otherwise end up with

negative expected payo¤ in the game. In contrast, the cuto¤ q0 de�nes a lower bound. To put

it brie�y, if there exists an equilibrium for a Tullock contest where all potential bidders enter

with a probability less than q0, participating bidders must randomize their bids upon entry.

Its implications will be further elaborated upon in Section 4.

3.3 (Symmetric) Equilibrium Existence

The entry-bidding game exhibits two main characteristics. First, The strategy of each player

involves two elements: entry and bidding. Second, a potential bidder�s payo¤ can be discon-

tinuous as the contest success function can be discontinuous. For instance, the payo¤ function

is discontinuous at origin (see Baye, Kovenock and de Vries, 1994, and Alcalde and Dahm,

2010), i.e. when all participants bid zero.

The conventional approach (in auctions with endogenous entry) to establishing the exis-

tence of symmetric equilibria proceeds with two steps, which disentangles the two elements

in each player�s strategy and simpli�es the analysis. In the �rst step, potential bidders are

assumed to enter the competition with given (symmetric) entry probabilities. One establishes

the existence of symmetric bidding equilibrium under each given entry probability q. Bidders�

equilibrium payo¤ function in the auction �(q) is obtained accordingly, which is typically con-

tinuous and monotonic in q. The second step identi�es a (typically unique) entry probability,

which equalizes potential bidder�s expected payo¤ in the auction �(q) and his entry cost.

As will be further illustrated in Section 4.1, this �disentangling�approach has only limited

utility in our setting. The reasons are two-folds. First, existence of bidding equilibrium in

contest conventionally relies on Dasgupta and Maskin�s (1986) theorem on uni-dimensional

games. The theorem, however, does not directly apply to games with an uncertain number
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of players, and the general existence of a symmetric bidding equilibrium under a given entry

probability q thus cannot be readily veri�ed. Second, a contest game with a �xed entry

probability may not be well-behaved and the bidding strategy is not universally solvable (as

will be seen in Section 4.2). It thus remains di¢ cult to characterize the properties (e.g.

continuity and monotonicity) of bidders�expected payo¤s even if an equilibrium exists.

As a result, the entry-bidding game in general should be recognized as a two-dimensional

discontinuous games, and thus it entails the application of Dasgupta and Maskin�s (1986)

equilibrium existence theorem for discontinuous games with multi-dimensional strategy space.

Theorem 1 (a) For any impact function g(�) with g(0) = 0 and g0(�) > 0, a symmetric

equilibrium (q�; ��(x)) always exists. In the equilibrium, each potential bidder enters with a

probability q� 2 (0; �q) and his bid follows a probability distribution ��(x). (b) Each potential
bidder receives an expected payo¤ of zero in the entry-bidding equilibrium.

Proof. See Appendix.
To our knowledge, Theorem 1 and its proof provide the �rst application of Dasgupta and

Maskin�s (1986) equilibrium existence result on two-dimensional discontinuous games in the

literature on contests. Two remarks are in order.

First, the equilibrium existence result applies to broader contexts. We explicitly adopt

ratio-form contest success functions to economize on our presentation and facilitate subse-

quent discussion on contest design. However, the proof of the theorem does not rely on the

speci�c properties of ratio-form contest success functions and the particular form of bidding

cost functions. The analysis can be readily adapted to contests with more broadly de�ned

prize allocation mechanisms, such as those in Alcalde and Dahm (2010), by rede�ning the

discontinuity set slightly.

Second, it should be noted that asymmetric equilibria always exist in the entry-bidding

game, in which a subset of potential bidders stay inactive regardless, while the others enter

either randomly or deterministically. We focus on symmetric equilibria for two reasons: (1)

symmetric equilibria can be arguably viewed as a natural focal point of the game; and (2) the

property of an asymmetric equilibrium where only a subset of M 0(< M) enter with a positive

probability can be learned from the symmetric equilibrium of an entry-bidding game with a

smaller pool of M 0(< M) potential bidders.

3.4 �First-Best�Level of E¤ort

Central to the contest literature is the question of how the institutional elements of the contest

a¤ect bidding e¢ ciency. As Gradstein and Konrad (1999) argued, �. . . contest structures result

from the careful consideration of a variety of objectives, one of which is to maximize the e¤ort

of contenders.�We hereby demonstrate that there exists a ��rst best�level of total e¤ort for
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each given contest primaries (M;�; v), which indicates the maximal amount of overall bids

the contest could possibly elicit, regardless of the governing winner selection mechanism. It

will be apparent that the "�rst best" upper bound for total e¤ort would prevail for any family

of contest technologies that induce symmetric entry across potential bidders.

Suppose that potential bidders enter with a probability q 2 (0; 1) in a symmetric equilib-
rium. The prize v is given away with a probability 1 � (1 � q)M . Hence, bidders receive an
expected overall rent of [1 � (1 � q)M ]v; while they on average incur entry cost Mq�. The
following fundamental equality must hold in a symmetric equilibrium:

[1� (1� q)M ]v �Mq(� + E(x�)); (2)

where E(x�) denotes the equilibrium expected e¤ort costs of an entrant. The equilibrium

expected overall bidding cost can then be identi�ed without explicitly solving for it:

MqE(x�) = [1� (1� q)M ]v �Mq�: (3)

The convexity of cost function (� � 1) further implies that the expected overall bid (MqE(x))
must be bounded from above:

(MqE(x)) =MqE[(x�)
1
� ] �Mq[E(x�)] 1� . (4)

By (3) or (4), we further obtain

(MqE(x)) � [Mq]��1� f[1� (1� q)M ]v �Mq�g 1� : (5)

The inequality (5) yields important implications: regardless of the equilibrium bidding

strategy upon entry, the expected overall bids that a contest with primaries (M;�; v) could

elicit in a symmetric equilibrium with entry probability q would never exceed the upper limit

as given by RHS of (5).

Denote this upper boundary by

xT (q) , (Mq)
��1
�

�
[1� (1� q)M ]v �Mq�

	 1
� ; (6)

with q 2 (0; 1). The function xT (q) exhibits the following important properties.

Theorem 2 (a) There exists a unique cuto¤ q̂ 2 (q0; �q), which uniquely maximizes xT (q);
(b) The function xT (q) strictly increases with q when q 2 (0; q̂), and strictly decreases when

q 2 (q̂; 1).

Proof. See Appendix.
As stated by Theorem 2, the function xT (q) varies non-monotonically with q and is uniquely

maximized by q̂ 2 (q0; �q). This property implies that the overall bid that can be possibly
elicited from the contest will never exceed xT (q̂), regardless of the prevailing contest rules.
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De�nition 2 De�ne x�T � xT (q̂), which indicates the maximum amount of the overall bid a

contest can elicit in a symmetric entry equilibrium.

A few remarks are in order. First and foremost, the upper limit x�T is independent of

the prevailing winner selection mechanism. The overall bid of any entry-bidding game with

primaries (M;�; v) can never exceed this level whenever it leads to symmetric entry. As

a result, a mechanism must be optimal as long it elicits the ��rst best� level of expected

overall bid x�T . Second, as implied by Theorem 2, the ��rst best�can be achieved only if the

mechanism induces a symmetric entry probability of exactly q̂. Third, as implied by (4) and

(5), to achieve the �rst best, the mechanism must lead bidders to play a pure bidding strategy

upon entry, except in the knife-edge case of � = 1.

In light of Theorem 2, the contest design problem boils down to one simple question: Is

there a winner selection mechanism that could implement the �rst best? That is, is there a

winner selection mechanism that could induce an equilibrium with entry probability q̂ and

pure-strategy bidding? We discuss the possibility of implementing the �rst best x�T through

properly structured contest rules subsequently.

4 Implementing �First Best�by Tullock Contests

To address the question we raised above, our analysis has yet to provide a more complete
account of bidders�behaviors in the symmetric equilibria under particular winner selection

mechanisms. It requires us to explore explicitly (1) under what conditions an equilibrium

with pure-strategy bidding would (not) exist; and (2) to what extent the equilibrium of the

entry-bidding game, i.e. equilibrium entry probability and bidding strategy upon entry, can

be characterized explicitly.

For this purpose, we, throughout the rest of the analysis, focus on the most popularly

adopted and relatively tractable Tullock contest success function, with g(x) = xr, r > 0.

When N � 2 bidders enter the contest, the probability of a participating bidder i winning the
prize is given by

pN(xi;x�i) =
xriPN
j=1 x

r
j

; if N � 2, and
NX
j=1

xrj > 0; (7)

In this part, we identify the conditions under which pure-strategy bidding would (or would

not) emerge, and solve for the equilibrium accordingly. We demonstrate that the �rst best x�T
can be implemented by a properly structured Tullock contest.
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4.1 Solving for Equilibrium

Consider an arbitrary potential bidder i who has entered the contest. Suppose that all other

potential bidders play a strategy (q; x) with x > 0.11 He chooses his bid xi to maximize his

expected payo¤

�i(xij q; x) =
MX
N=1

CN�1M�1q
N�1(1� q)M�N [

xri
xri + (N � 1)xr

v � x�i ]: (8)

Evaluating �i(xij q; x) with respect to xi yields

d�i(xij q; x)
dxi

=

MX
N=1

CN�1M�1q
N�1(1� q)M�N (N � 1)rxr�1i xrv

[xri + (N � 1)xr]2
� �x��1i : (9)

Suppose that a symmetric equilibrium with pure-strategy bidding exists. The (pure) bid-

ding strategy in the equilibrium can be solved for by the �rst order condition d�i
dxi
jxi=x = 0

given the equilibrium entry probability q�, and q� can then be characterized by the zero payo¤

condition.12 The following lemma fully characterizes such an equilibrium if it exists.

Lemma 2 Suppose that a symmetric equilibrium (q�; x�) with pure-strategy bidding exists. In
such an equilibrium, entry probability q�must satisfy

MX
N=1

CN�1M�1q
�N�1(1� q�)M�N v

N
(1� N � 1

N

r

�
) = �. (10)

Each participating bidder places a bid x� = [
MX
N=1

CN�1M�1q
�N�1(1�q�)M�N N�1

N2
rv
�
]
1
� . The expected

overall bid of the contest obtains as x�T =Mq
�x� =Mq�[

MX
N=1

CN�1M�1q
�N�1(1� q�)M�N N�1

N2
rv
�
]
1
� :

Proof. See Appendix.
Lemma 2 depicts the main properties of a symmetric equilibrium with pure-strategy bid-

ding, if it exists. We call equation (10) the break-even condition of the entry-bidding game

with pure-strategy bidding, which yields the following.

Lemma 3 (a) For any r > 0, there exists a unique q� 2 (0; q) that satis�es the break-even
condition (10). Hence, x� is also uniquely determined for the given r.

(b) The probability q� strictly decreases with r.

11It is impossible to have all participating bidders bid zero deterministically in an equilibrium. When all

others bid zero, a participating bidder would prefer to place an in�nitely small positive bid, which allows him

to win the prize with probability one.
12Note that this two-step procedure is only valid when the contest induces pure-strategy bidding in the

equilibrium. As will be shown later, such an equilibrium would not exist if r is su¢ ciently high.
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Proof. See Appendix.
Lemma 3 establishes a unique correspondence between r and (q�; x�). The symmetric

equilibrium with pure bidding strategy must be unique for each given r, whenever it exists.

However, the strategy pro�le (q�; x�) of Lemma 2 may not necessarily constitute an equilibrium

for the reasons that will be explained below.

Consider an arbitrary participating bidder i�s payo¤maximization problem, when all others

play the hypothetical symmetric strategy (q�; x�), as given by Lemma 2. De�ne

~�i(xi) = �i(xijq�; x�) =
MX
N=1

CN�1M�1q
�N�1(1� q�)M�N(

xri
xri + (N � 1)x�r

v)� x�i ; (11)

which is a participating bidder i�s expected payo¤ in the contest when all other bidders play

the strategy (q�; x�). The strategy pro�le (q�; x�) constitute an equilibrium if and only if x� is

a global maximizer of ~�i(xi).
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Figure 1

Note that his expected payo¤ ~�i(xi) in the contest is the weighted sum of �Ni (xi) =

xri
xri+(N�1)x�r

v � x�i over all possible N , i.e. ~�i(xi) =
MX
N=1

CN�1M�1q
�N�1(1 � q�)M�N�Ni (xi). Note

that each individual component �Ni (xi) =
xri

xri+(N�1)x�r
v�x�i is simply his expected payo¤when

he enters a contest in which he competes against N � 1 other bidders deterministically and
each of them bids x�.

The equilibrium analysis is straightforward when r � 1. In that case, each component

�Ni (xij q; x) is concave, and so is ~�i(xi). The hypothetical equilibrium bid x�, which is de-

termined by the �rst order condition and the symmetry condition, must maximize ~�i(xi). A

strategy pro�le with all playing (q�; x�) must constitute the unique symmetric equilibrium.

When r exceeds 1, solving the game requires more cautions. It is well known in contest

literature that the function �Ni (xij q; x) is no longer globally concave. Its maximization poses

14



one long-lasting challenge in the equilibrium analysis of imperfectly discriminatory contests.

The irregularity is further compounded in the current context. In addition to the concavity of

�Ni (xi), both the weights
MX
N=1

CN�1M�1q
�N�1(1 � q�)M�N and the component �Ni (xi) depend on

(q�; x�), which is determined endogenously in the equilibrium. The general property of ~�i(xi)

cannot be readily discerned. Figure 1 graphically illustrates the nature of the maximization

problem.

Despite the complexity, we derive the following su¢ cient conditions under which the payo¤

function ~�i(xi) exhibit discernible regularity.

Lemma 4 When r 2 (1; �(1 + 1
M�2)], x

� is the unique inner local maximizer of ~�i(xi) over

(0;1), i.e. ~�i(x�) > ~�i(x);8x 2 (0;1) and x 6= x�. There exists a unique xm 2 (0; x�) such
that ~�i(xi) decreases on [0; xm], increases on [xm; x�], and then decreases on [x�;1).

Proof. See Appendix.
When r remains in the range (1; �(1+ 1

M�2)], the function ~�i(xi) decreases �rst and is locally

minimized at xm. The corresponding curve eventually reaches a single peak at x� 2 (xm;1).
Hence, x� uniquely maximizes ~�i(xi) for x 2 (0;1). Figure 1 in fact exempli�es one of such
cases.

However, to establish x� as the global maximizer, the boundary condition ~�i(x�) � ~�i(0)

has to be satis�ed as well. Recall that symmetric e¤ort x� is uniquely determined by setting

the RHS of (9) equal to zero for q = q�. A participating bidder�s expected payo¤ in the contest

when bidding x�, i.e. ~�i(x�), would amount to exactly �. However, the bidder automatically

receives a reserve payo¤ (1 � q�)M�1v from the contest by bidding zero: with a probability

(1� q�)M�1, all other potential bidders stay out of the contest, and a rent of (1� q�)M�1v will

accrue to him automatically. The bidder has an incentive to bid x� only if (1� q�)M�1v � �.
The implication of this condition is straightforward: bidding x�(> 0) is rational only if it

generates nonnegative additional return (when all others bid x�) in excess of the reservation

payo¤ from bidding zero. The condition essentially requires that the contest leaves su¢ cient

rent to contenders and bidding x� su¢ ciently rewards a bidder.

Recall the cuto¤ q0 2 (0; q) depicted by De�nition 1, which uniquely satis�es (1�q0)M�1v =

�. The unique correspondence between r and (q�; x�), as determined by the break-even

condition (10), allows us to obtain the following cuto¤ of r.

De�nition 3 De�ne r0 2 (�(1 + 1
M�1); 2�] to be the unique solution to

MX
N=1

CN�1M�1q
N�1
0 (1 �

q0)
M�N v

N
(1� N�1

N
r0
�
) = �.

By Lemma 3(b), q� is inversely related to r. The boundary condition (1 � q�)M�1v � �
requires q� � q0, which would hold if and only if r � r0. We then conclude the following.
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Theorem 3 A symmetric equilibrium with pure-strategy bidding does not exist if r > r0.

In the symmetric equilibria of the entry-bidding game, participating bidders must randomize

their bids upon entry.

Similar to contests with deterministic participation, pure-strategy bidding cannot be sus-

tained when r is excessively large. Theorem 3 provides a su¢ cient condition under which

randomized bidding must occur under endogenous entry. When r > r0, bidding x� upon entry

is not a part of the best response of player i to (q�; x�) and the strategy pro�le (q�; x�) would

not constitute an equilibrium. We then conclude the following.

Theorem 4 For each r 2 (0;min(r0; �(1+ 1
M�2))], the strategy pro�le (q

�; x�); as characterized

by Lemma 2, constitutes the unique symmetric equilibrium with pure-strategy bidding of the

entry-bidding game.

When r is bounded from above both r0 and �(1 + 1
M�2), x

� is the global maximizer to

~�i(xi), which establishes the strategy pro�le (q�; x�) as the unique symmetric equilibrium with

pure-strategy bidding.

Theorem 4 imposes a (conservative) upper limit on r for pure-strategy bidding. The

condition r � �(1+ 1
M�2) is su¢ cient but not necessary to establish x

� as the local maximizer

of ~�i(xi) for xi > 0. These concerns however can be dismissed in more speci�c contexts with

small numbers of potential bidders.

Corollary 1 When M is small, i.e. M = 2; 3, a symmetric equilibrium with pure-strategy

bidding exists if and only if r � r0.

In these instances, (�(1 + 1
M�2); r0] is empty, because �(1 +

1
M�2) > r0 regardless of v and

�. Whenever r falls below r0, it automatically satis�es the condition r � �(1 + 1
M�2), which

guarantees that x� maximizes ~�i(xi).

When M is larger, the cuto¤ r0 may exceed �(1 + 1
M�2). It remains less than explicit

how the equilibrium would behave if �(1 + 1
M�2) < r0 and r 2 (�(1 +

1
M�2); r0]. Analytical

di¢ culty prevents us from fully characterizing the property of ~�i(xi) when r exceeds �(1 +
1

M�2). We resort to a numerical exercise to obtain further insights. For expositional e¢ ciency,

we postpone the presentation and discussion of these observations to Section 4.2.2 as they

shed light on the optimal contest design problem explored in that section.

4.2 Optimal Contests

The results of equilibrium analysis allows us to explore the implementation of the �rst best

�x�T by a well structured Tullock contest. We focus on the level of precision of the winner
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selection mechanism, which is conventionally measured by the discriminatory power r in Tul-

lock contests, as the primary instrument for a contest designer. Following the literature (e.g.

Nti, 2004 and Gershkov, Li and Schweinzer, 2009), we let a designer choose the size of r and

announce it to potential bidders as a part of the contest rules. An entry-bidding game ensues

subsequently.

The level of precision in a contest is largely subject to the strategic choice of the contest

designer. For instance, the designer can modify the judging criteria of the contest to suit

her strategic goals, e.g. adjusting the weights of subjective component in contenders�overall

ratings. Alternatively, she can vary the composition of judging committees (experts vs. non-

experts).

A greater r implies that the mechanism better translates an increase in bid into additional

likelihood of one�s win. Hence, winner selection is related more closely to bidders�contribu-

tions, but less to various noisy factors. Hence, a greater r increases the marginal return of

a bid and further incentivizes bidders. It is well known in the contest literature that both

individual bids and overall bids strictly increase with r in a contest with deterministically

M participants, whenever a pure-strategy equilibrium exists, i.e. r 2 [0; �(1 + 1
M�1)]. This

conventional wisdom, however, is no longer straightforward in the current context.

Endogenous and stochastic entry gives rise to competing forces at two layers. First, it

creates a trade-o¤ between ex ante entry incentive and ex post bidding incentives. On the one

hand, a more discriminatory contest compels participants to bid more, while on the other, the

increasing dissipation of rent limits entry.13 Second, it leads to the tension between the size of

the overall contest and the incentive of individual bidding. More extensive participation (i.e.

a higher q�) does not necessarily improve the supply of bids in the contest. A higher q� allows

the contest to engage more bidders, which ampli�es the sources of contribution and tends to

increase the overall bid. It nevertheless limits each individual participant�s incentive to bid,

as one would anticipate more intense competition and therefore lesser return.

The optimum must balance these forces. As revealed by Theorem 2 and (2)-(5), the key

to the optimal design problem is whether r can be set properly to implement the �rst best

x�T . The overall bid amounts to exactly x
�
T if the contest leads to a symmetric equilibrium

with an entry probability of q̂ and participants play a pure bidding strategy upon entry in the

equilibrium, except in the knife-edge case of � = 1.

In subsequent analysis, we focus on the implementation of �rst best in equilibria with pure-

strategy bidding. The existing literature on contest has been limited on bidders�behaviors

in equilibria that involve mixed strategy bidding, e.g. in Tullock contest with large but �nite

r. Due to the lack of handy solutions, it is di¢ cult in the current context either (1) to

explicitly solve an equilibrium when it involves mixed-strategy bidding, or (2) to simply verify

13As revealed by Lemma 3, q� strictly decreases with r.
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the existence of an equilibrium with mixed-strategy bidding under a particular entry pattern.

The analytical di¢ culty thus prevents us from identifying the correspondence between the

prevailing contest structure and the resultant equilibrium behaviors. However, we show that

it is su¢ cient to focus on contests that induce pure-strategy bidding.

Before we proceed, recall the break-even condition v
MX
N=1

CN�1M�1q
�N�1(1 � q�)M�N [ 1

N
�

N�1
N2

r
�
] = �, which de�nes the correspondence between r and q� as given by Lemma 3.

De�nition 4 Let r(q̂) be the unique solution of r to

v
MX
N=1

CN�1M�1q̂
N�1(1� q̂)M�N [

1

N
� N � 1

N2

r

�
] = �: (12)

The fact q̂ > q0 (Theorem 2(a)) and the de�nition of r0 (De�nition 3) lead to the following.

Lemma 5 r(q̂) < r0.

Proof. See Appendix.
We subsequently discuss the implementation of �rst best through choice of r in two cases

according to the ranges of r(q̂).

4.2.1 Optimal Contest When r(q̂) � �(1 + 1
M�2)

When r(q̂) falls below the cuto¤�(1+ 1
M�2), the optimal contest is straightforward. Recall by

Lemma 4 that r � �(1 + 1
M�2) is the su¢ cient condition under which a well-behaved payo¤

function ~�(xi) results. Lemma 5 further guarantees that the boundary condition ~�(0) < ~�(x�)

holds. Hence, a contest with r = r(q̂) must lead to a symmetric equilibrium with entry

probability of exactly q̂ and pure-strategy bidding. The following obtains.

Theorem 5 Whenever r(q̂) � �(1 + 1
M�2), the contest designer can elicit the ��rst best� �x

�
T

by setting r = r(q̂). It induces a symmetric equilibrium with pure-strategy bidding. Potential

bidders enter the contest with a probability q̂ in the symmetric equilibrium.

Proof. See Appendix.
In this case, a contest with r = r(q̂) elicits the ��rst best� �x�T � �xT (q). By Theorem 2,

the expected overall bid must strictly decrease when r deviates from r(q̂). A higher-powered

incentive would not pay o¤.
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Comparison to Benchmark Case Our results run in sharp contrast to the conventional

wisdom in contest literature. In a contest with a �xed numberM of participants or free entry,

a higher r provides stronger incentives to bidders, and elicits strictly higher bids whenever a

pure-strategy equilibrium prevails, i.e. when r � �(1 + 1
M�1). The size of r in our setting,

however, a¤ects the resultant equilibrium bid non-monotonically.

Despite the various trade-o¤s between con�icting forces, a softer ex ante incentive, i.e. a

smaller r, may or may not be optimal. The optimal size of the parameter could either fall below

or remain above the benchmark �(1 + 1
M�1). In the left panel of Figure 2, the observations

demonstrate the incidence of optimal �soft�incentives, with r(q̂) < �(1 + 1
M�1). In the right

panel, the results illustrate the possibility of the opposite, with r(q̂) 2 (�(1+ 1
M�1); �(1+

1
M�2)).
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These observations also contrast the results of related studies in auction literature. A

number of studies have been devoted to the optimal design of auctions with costly entry,

including Menezes and Monteiro (2000), Levin and Smith (1994), Shi (2009), Moreno and

Wooders (2010) and Lu (2009, 2010). They all espouse the optimality of a �softer�incentive:

the optimal reserve price is always lower than in the free-entry benchmark. The insight from

auction literature does not extend to our setting. The observations in Figure 2 demonstrate

that the optimum does not necessarily requires a lower-powered incentive mechanism than the

free-entry benchmark level �(1 + 1
M�1).

14

4.2.2 Optimal Contest when r(q̂) 2 (�(1 + 1
M�2); r0)

Setting r to r(q̂) is optimal when it leads to pure-strategy bidding. The optimum, however, is

less than straightforward when r exceeds the cuto¤ �(1+ 1
M�2). As aforementioned, technical

di¢ culty prevents us from drawing de�nitive conclusion on the property of bidders�expected

14In our setting, if entry does not involve �xed entry cost, all the M potential bidders will participate.

The conventional wisdom in contest literature would apply, such that r = �(1 + 1
M�1 ) would emerge as the

optimum.

19



payo¤ function ~�i(xi) when r exceeds �(1+ 1
M�2). An equilibrium with pure-strategy bidding

is not guaranteed when r is set r(q̂), which thus casts doubt on the robustness of Theorem 5.

This concern can be dismissed only in contests with small pools of potential participants.

Corollary 2 When the contest is small, i.e., M = 2; 3, r(q̂) � �(1 + 1
M�2) must hold, and a

symmetric equilibrium with pure-strategy bidding can always be induced by setting r = r(q̂).

In these cases, �(1 + 1
M�2) > r0, so the condition r(q̂) � �(1 +

1
M�2) is satis�ed automat-

ically. The condition, however, may not hold when M gets large. It thus remains to explore

to what extent the �rst best can be robustly implemented when r(q̂) 2 (�(1 + 1
M�2); r0).

The discussion in the rest of this subsection proceeds in two steps. We �rst present the

observations from our numerical exercises, which shed light on the property of the function

~�i(xi) when r(q̂) 2 (�(1+ 1
M�2); r0). We then consider an alternative mechanism, which, with

additional instruments, can implement the �rst best when r(q̂) 2 (�(1 + 1
M�2); r0).

Numerical Exercises Recall that r � �(1 + 1
M�2) is a su¢ cient but not necessary for

pure-strategy bidding. It should be noted that pure-strategy bidding can still be induced by

r 2 (�(1 + 1
M�2); r0). Our numerical exercises verify this possibility.
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We normalize v to unity. The simulation is run over a large set of the parameters (�;M),

which span the entire space of [1; 2]�f4; 5; : : : ; 100g. For given (�;M), we let r vary over the
entire range of (�(1 + 1

M�2); r0] if �(1 +
1

M�2) < r0, and let � vary over the interval ( 1
M
; 1) as

required by Assumption 1. We observe from our simulation results, with no exception, that

all ~�i(xi) demonstrates the property depicted by Lemma 4, and is uniquely maximized by x�,

despite that r exceeds �(1 + 1
M�2). In all resultant �gures, the curve is regularly shaped as

described by Lemma 4. Figure 3 provides one example of them. The strategy pro�le (q�; x�)
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constitutes the unique symmetric equilibrium with pure-strategy bidding in all the simulated

settings.

Hence, in all the simulated settings, we can elicit the ��rst best� by setting r = r(q̂),

regardless of the value of r(q̂). Based on these observations, we propose the following conjec-

tures.

Conjecture 1 (a) A symmetric equilibrium with pure bidding exists if r � r0.
(b) The �rst best overall bid �x�T can always be induced in a unique symmetric equilibrium

with pure-strategy bidding by setting r to r(q̂).

We are unable to prove it analytically. However, all of our numerical exercises lend support

to the claim. We leave it to future studies due to its technical di¢ culty.

Alternative Implementation of �First Best� The numerical exercises con�rm the ro-

bustness of r(q̂) as the optimum in a wide context. The doubt, however, has not been re-

solved completely. Despite the limitations of the analysis due to the technical di¢ culty, we

demonstrate that the �rst best can be implemented under an alternative mechanism when

r(q̂) 2 (�(1 + 1
M�2); r0) such that simply �ne-tuning r may not be su¢ cient to induce �x

�
T

universally.

In particular, we allow the contest designer to charge an entry fee F to participating bidders

and to commit to a prize schedule v, with v = (v1; : : : ; vM). The winner�s prize is allowed

to be contingent on the actual number N of participating bidders, and vN (the prize when

N entrants show up) can be �nanced by the proceeds of entry fees. The designer is subject

to a budget constraint vN � v + N � F . Apparently, to maximize overall expected bid, the
contest designer is required to exhaust her revenue when topping up the prize purse. The

contest designer thus chooses a combination of (r; F ) to maximize the expected overall bid of

the contest.

We �rst obtain the following.

Lemma 6 Consider a winner-take-all Tullock contest with impact function xr; r 2 (0; �) and
contingent prizes vN = v + N � F; where vN is a winner prize that is contingent on the

actual number of entrants and F (� 0) is a uniform entry fee. This contest induces a unique

symmetric equilibrium. The equilibrium entry probability q�satis�es

MX
N=1

CN�1M�1q
�N�1(1� q�)M�N vN

N
(1� N � 1

N

r

�
) = � + F . (13)

Each participating bidder, upon his entry, places a bid

x� = [
MX
N=1

CN�1M�1q
�N�1(1� q�)M�NN � 1

N2

rvN
�
]
1
� : (14)
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Obviously, with r
�
� 1, the expected payo¤ function of an entrant is concave, which leads

to a unique pure-strategy bidding equilibrium. We further obtain the following.

Lemma 7 The equilibrium entry probability q� strictly decreases with entry fee F , with limF!+1 q
� =

0:

Proof. See Appendix.
Lemmas 6 and 7 allow us to conclude the following.

Theorem 6 When r(q̂) 2 (�(1 + 1
M�2); r0), for each given r 2 (0; �) there exists a unique

entry fee F (> 0) such that contest depicted in lemma 6 induces pure-strategy bidding and an

equilibrium entry probability q̂. The contest elicits an expected overall bid of �x�T .

Proof. See Appendix.
Entry fees F enter prize purses and the revenue is redistributed between entrants. Equa-

tions (2) to (5) of Section 3.4 must continue to hold. A combination of (r; F ) thus must

elicit an expected overall bid of exactly �xT (q) if it induces a symmetric equilibrium with entry

probability of q 2 (0; 1) and also pure-strategy bidding upon entry. Hence, we conclude that
the �rst best can always be implemented in a properly structured Tullock contest of Theorem

6 through an equilibrium with pure-strategy bidding. It should be noted that the optimal

combination (r; F ) is not unique. As enlightened by Lemma 7, a lower r can be complemented

by a higher entry fee F to implement the �rst best e¤ort.

4.3 E¢ cient Exclusion

The equilibrium analysis also allows us to investigate another classical question in the literature

on contest design. We now allow the contest designer to invite only a subset of theM potential

bidders for participation. The invited bidders decide whether to participate in the contest. The

conventional wisdom holds that a contest elicits more e¤ort when it involves a larger number

of contestants. In what follows, we demonstrate that exclusion can improve the e¢ ciency of

the contest in our setting.

The expected overall bid of a contest (M;�; v) is bounded by the �rst best �x�T . It should

be noted that the exact amount of �x�T depends on the number of potential bidders who may

enter the contest. Let M 0 be an arbitrary positive integer and let x�T (M
0) be the �rst best bid

for a contest with M 0 potential bidders. The function x�T (M
0) exhibits the following property.

Lemma 8 x�T (M
0) strictly decreases with M 0 for all M 0 that satis�es v

M 0 < �.

Proof. See Appendix.
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Lemma 8 yields direct implications for the contest design: a contest may have a weaker

potential of eliciting bid if it involves a larger pool of potential bidders. The contest designer,

when she is able to structure the contest properly to implement the �rst x�T , may get better

o¤ by excluding potential bidders. De�ne M0 , min(M 0j v
M 0 < �) and assume M0 < M . We

obtain the following.

Theorem 7 When the contest designer is allowed to exclude potential bidders, the optimal
contest does not invite more than M0 contestants.

Theorem 7 demonstrates that exclusion improves bidding e¢ ciency. By inviting M0 of

them, and adopting the optimal design discussed in Section 4.2, the contest designer elicits an

overall bid x�T (M0), which, by Lemma 8, is unambiguously more than what she can possibly

achieve if she engages anM potential bidders. Our result thus provides an alternative rationale

for shortlisting and exclusion in a setting with homogeneous bidders but endogenous entry.

The logic resembles that on the optimal r. First, when the contest involves more potential

bidders, each of them would enter less often and bid less (if he enters) when anticipating a more

intense competition and expecting a smaller share of the rent. Second, extensive participation

may lead to excessive rent dissipation because of the entry costs incurred, which tends to limit

bidders�e¤ort supply.

Theorem 7 provides only an upper bound for the possible optimum. It, however, does not

pin down exactly how many bidders should be invited in the optimum. When the contest

designer invites less than M0 potential bidders, the overall bid of the contest can elicit would

change inde�nitely, and the e¢ ciency of the contest may either improve or su¤er.15 The

analysis for a contest with less than M0 potential bidders is beyond the scope of the current

paper, as Assumption 1 no longer holds in that setting.

5 Concluding Remarks

In this paper, we provide a thorough account of contests with endogenous and stochastic

entries. We show the existence of a symmetric mixed-strategy equilibrium in which potential

bidders randomly enter. We also provide a su¢ cient condition under which participants engage

in pure bidding actions. Based on these equilibrium results, we identify relevant institutional

elements in contest rules, and we demonstrate that analysis in this setting adds substantially

to existing knowledge on optimal contest design.

While our study is one of the �rst to investigate the subtle and rich strategic interaction that

occurs in contests with endogenous entries, our analysis reveals the enormous possibilities for

15Examples in speci�c settings are available from the authors upon request, which demonstrate that the

overall bid may either decrease or increase.
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future studies. Due to analytical di¢ culties, the open conjectures in Section 4 pose a challenge

for future research on contests. However, the authors will attempt this, despite the technical

di¢ culties.

In our analysis, we assume that the actual number of participants is unobservable to

participating bidders. One natural question is whether the contest designer could improve the

contest designer by disclosing the actual number of participating bidders when she can observe

it. It deserves to be noted that there is no loss of generality in this aspect. The �rst best

�x�T would still hold when the number of entrants is revealed.
16 Hence, whenever a mechanism

can successfully achieve the �rst best, it must (at least weakly) be optimal. Hence, disclosure

would not improve bidding e¢ ciency further when the designer has su¢ cient �exibility to

structure the contest.17

Further, our setting (characterized by common entry cost, simultaneous entry and resultant

stochastic entry) is only one way for modeling contests that involve endogenous entry. Other

examples include the setting of Kaplan and Sela (2010). They consider all-pay auctions with

privately-known entry costs. Fu and Lu (2010) assume that contestants enter sequentially.

Various issues on optimal contest designs in these diverse settings remain open, and they

deserve to be explored seriously in future e¤orts.

Appendix

Proof of Lemma 1

Proof. Let f1(q) = [1� (1� q)M ]v �Mq�; and f2(q) = (1� q)M�1v ��. �q (> 0) is de�ned
as f1(�q) = 0. The �rst order derivative of f1(q) is f 01(q) = Mf2(q) , which is a decreasing

function of q. f 01(q) is positive when q = 0; and it is negative when q = 1.

q0 is de�ned as f2(q0) = 0. Therefore, f1(q) increases on [0; q0], and decreases from [q0; 1).

f1(q) thus has two zero points, i.e. f0; �qg, and q0 < �q.

Proof of Theorem 1

Proof. Part (a) Existence of symmetric equilibria: Consider the following extended
game. There are M contestants who simultaneously choose their two-dimensional actions,

which are denoted by ai = (ai1; ai2) = (qi; xi) 2 A, i = 1; 2; :::;M; where the uniform action

space A = [0; 1]� [0; v1=�] is nonempty, convex and compact.
16The proof is similar to that of Section 3.4. A detailed proof is available from the authors.
17In a previous version of this paper, we showed in wide settings disclosing the actual number of contestants

adversely a¤ect the resultant bidding e¢ ciency. We omit these results in this version of the paper, as the

analysis is not directly related to the current context.
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Let k = (k1; k2; :::; ki; :::; kN) where ki is either 0 or 1. Let K to be the set of all possible

k. Similarly, we can de�ne k�i and K�i, i = 1; 2; :::;M:

Given action pro�le a = fa1; a2; :::; aMg of the M players, the payo¤ of player i is de�ned

as

Ui(a) = qif[
P

k�i2K�i
(
Q
j 6=i
q
kj
j (1� qj)1�kj) Pr(ijk�i;x)]v � x�i ��g; i = 1; 2; :::;M;

where Pr(ijk�i;x) = g(xi)

g(xi)+
P

j 6=i kjg(xj)
if g(xi)+

P
j 6=i kjg(xj) > 0, and Pr(ijk�i;x) = 1

1+
P

j 6=i kj

if g(xi) +
P

j 6=i kjg(xj) = 0. Note that Pr(ijk�i;x) equals to the winning probability of an
entrant i when the entry status of others is denoted by k�i and players�e¤ort is x if they

enter.

Note that this game is a symmetric game as de�ned by Dasgupta and Maskin (1986) in

their De�nition 7. We will apply their Theorem 6* in Appendix to establish the existence of

symmetric equilibrium in mixed strategy.

In what follows, we show that for each i, the discontinuities of Ui are con�ned to a subset

of a continuous manifold of dimension less than M as required by page 7 of Dasgupta and

Maskin (1986). Following the notations on page 22 of Dasguspta and Maskin (1986). Let

Q = f2g; D(i) = 1, and f 1ij to be an identity function. Following their (A1) of page 22, we

de�ne manifold A�(i) = fa 2 Aj9j 6= i;9k 2 Q; 9d; 1 � d � D(i) such that ajk = fdij(aik)g:
Clearly, A�(i) is of dimension less than M . The set of discontinuous points for Ui(a) can be

written as A��(i) = fa 2 Ajqjxj = 0;8j = 1; 2; :::;M ; qi > 0; xi = 0;9j0 6= i; such that qj0 > 0
and xj0 = 0g. Clearly, A��(i) � A�(i), since any element in A��(i) must satisfy the following
conditions: For k = 2 2 Q;9j0 6= i; such that xj0 = f 1ij(xik); i.e. aj02 = f 1ij(ai2). According to
their Theorem 6*, we need to verify the following conditions hold.

First, as constructed above, Ui(a) is continuous except on a subset A��(i) of A�(i), where

A�(i) is de�ned by (A1).

Second, clearly, we have
P

i Ui(a) = v[1�
Q
i(1� qi)]�

P
i qi(x

�
i +�); which is continuous

and thus upper semi-continuous.

Third, Ui(a) clearly is bounded on A = [0; 1]� [0; v1=�].
Fourth, we verify that Property (��) of page 24 is satis�ed. De�ne B2 as the unit circle with

the origin as its center, i.e. B2 = fe = (q; x) j q2 + x2 = 1g. Pick up any continuous density
function v(�) on B2 such that v(e) = 0 i¤ e1 � 0 or e2 � 0: Note that Ui(ai; a�i) is continuous
in ai1 and lower semi-continuous in ai2. 8a = (�ai; a�i) 2 A��(i), clearly we have that for any
e such that v(e) > 0 (i.e. min(e1; e2) > 0), lim inf�!0+ Ui(�ai + �e; a�i) > Ui(�ai; a�i) as � >

0; e2 > 0 and qi > 0; xi = 0 in �ai. This leads to that
R
B2
[lim inf�!0+ Ui(�ai + �e; a�i)v(e)de] >

Ui(�ai; a�i);8�ai 2 A��i (i); a�i 2 A���i(�ai), where A��i (i) is the collection of all �ai of player i that
appear in A��(i), A���i(�ai) is the collection of others�actions a�i such that a = (�ai; a�i) 2 A��(i):
This con�rms that Property (��) holds for the above game.

Thus according to Theorem 6* of Dasgupta and Maskin (1986), there exists a symmetric

25



mixed strategy equilibrium. Without loss of generality, we use �1(q) to denote the equilibrium

probability measure of action q, and use �2(x) to denote the equilibrium probability measure

of action x.

Next we show that for any strategy pro�le of players f(�i1(qi); �i2(xi))g. The players�
payo¤s are same from strategy pro�le of players that is de�ned as f(E�i1qi; �i2(xi))g: The
expected utility of player i from pro�le f(�i1(qi); �i2(xi))g is

EaUi(a) = EqifEq�iEx[qi
P

k�i2K�i
(
Q
j 6=i
q
kj
j (1� qj)1�kj) Pr(ijk�i;x))v � x�i ��]g

= EqifqiExEq�i [
P

k�i2K�i
(
Q
j 6=i
q
kj
j (1� qj)1�kj) Pr(ijk�i;x))v � x�i ��]g

= EqifqiEx[
P

k�i2K�i
(
Q
j 6=i
(Eqj)

kj(1� Eqj)1�kj) Pr(ijk�i;x))v � x�i ��]g

= Eqi � Ex[
P

k�i2K�i
(
Q
j 6=i
(Eqj)

kj(1� Eqj)1�kj) Pr(ijk�i;x))v � x�i ��]g;8i: (15)

The above result means that given others take strategy (E�1q; �2(x)); the same strategy is

also the best strategy for player i. Otherwise, (�1(q); �2(x)) would not be the optimal strategy

for player i when others take the same strategy (�1(q); �2(x)). Therefore, (E�1q; �2(x)) is a

symmetric equilibrium for the above game.

It is easy to see that (q�; ��(x)) = (E�1q; �2(x)) is a symmetric equilibrium for our original

game based on the way the extended game is constructed. Ui(a) equals player i�s expected

payo¤s when he enters with probability qi and exerts e¤ort xi when he enters, given that other

bidder j enters with probability qj and exerts e¤ort xj when he enters. This claim also holds

when they adopt any other entry strategies with measure f�i1(q); i = 1; 2; :::;Mg due to (15).
According to (15), only the expected entry probabilities fE�i1q; i = 1; 2; :::;Mg count.
Note we must have q� = E�1q 2 (0; 1). First, q� = E�1q = 0 cannot be an entry equilibrium

when � < v (Assumption 1). Second, q� = E�1q = 1 cannot be an entry equilibrium when

� > v
M
(Assumption 1). The expected equilibrium payo¤ of players must be nonnegative.

Thus we must have (1 � (1 � E�1q)M)v �M(E�1q)[� + E�2x] � 0. This leads to (1 � (1 �
E�1q)

M)v �M(E�1q)� > 0. Thus q� = E�1q < �q by De�nition 1 and proof of Lemma 1.
Part (b): The equilibrium payo¤ cannot be negative. When q� = E�1q 2 (0; 1); we must

have the equilibrium payo¤s of player to be zero as otherwise it cannot be an equilibrium as

the player would enter with probability 1 and earn a positive payo¤.

Proof of Theorem 2

Proof. De�ne an increasing transformation of �xT (q) :

	(q) = [�xT (q)]
� = (Mq)��1

�
[1� (1� q)M ]v �Mq�
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Note that 	(q)jq=0 = 0; and 	(q)jq=1 = M��1 (v �M�) < 0 since v
M
< � (Assumption

1). We have
d	(q)

dq
= f (q) q��2M��1;

where

f(q) = (�� 1)
�
[1� (1� q)M ]v �Mq�

	| {z }
f1(q)

+Mq[(1� q)M�1v ��]| {z }
f2(q)

:

We have

f 0 (q) =Mv (1� q)M�2 [�� (M + �� 1) q]� �M�:

Note that f 0 (0) = �Mv � �M� > 0; f 0 (1) = ��M� < 0 and f 0 (q) decreases with

q 2 (0; �
M+��1 ]: Clearly, f

0 (q) < 0 when q 2 [ �
M+��1 ; 1]. Then there exists a unique qc 2

(0; �
M+��1); such that f

0 (qc) = 0; which means qc is the maximum point of f (q). Since

f (0) = 0; f (qc) > 0 and f (1) = (�� 1) v � �M� = � (v �M�) � v < 0; then there must
exist a unique q̂ 2 (qc; 1); such that f (q̂) = 0. Note that f 0 (q) < 0 on (qc; 1). Clearly,

f (q) > 0 when 0 < q < q̂; and f (q) < 0 when q̂ < q < 1:

Since d	(q)
dq

shares the same sign with f (q), we have that d	(q)
dq

> 0 when 0 < q < q̂; and
d	(q)
dq

< 0 when q̂ < q < 1: This implies q̂ = argmax
q

	(q), i.e. q̂ = argmax
q

�xT (q).

By the proof of Lemma 1, we know both f1(q) and f2(q) are positive when q 2 [0; q0] and
both are negative when q > �q. Thus the zero point (q̂) of f (q) must fall in [q0; �q].

Proof of Lemma 2

Proof. If a symmetric equilibrium with pure strategy bidding exists, according to the �rst

order condition d�i(xi)
dxi

= 0 and the symmetry condition xi = x; x� must solve

MX
N=1

CN�1M�1q
N�1(1� q)M�N (N � 1)rv

N2x�
� �x���1 = 0;

which yields

x�(q) = [

MX
N=1

CN�1M�1q
N�1(1� q)M�NN � 1

N2

rv

�
]
1
� :

The equilibrium expected payo¤ is

��(x�(q); q) =
MX
N=1

CN�1M�1q
N�1(1� q)M�N v

N

�[
MX
N=1

CN�1M�1q
N�1(1� q)M�NN � 1

N2

rv

�
]

=

MX
N=1

CN�1M�1q
N�1(1� q)M�N v

N
(1� N � 1

N

r

�
):
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By entering the contest and submit the bid x�(q), every potential contestant i ends up

with an expected payo¤

��(x�(q); q)��.

By Theorem 1 (b), each potential bidder receives a zero expected payo¤ for the equilibrium

entry q�, i.e. ��(x�(q�); q�) = �.

The expected overall e¤ort of the contest (x�T ) obtains as

x�T = Mq�x�(q�)

= Mq�[
MX
N=1

CN�1M�1q
�N�1(1� q�)M�NN � 1

N2

rv

�
]
1
� :

Proof of Lemma 3

Proof. By Lemma 2, q� satis�es F (q�; r) =
MX
N=1

CN�1M�1q
�N�1(1�q�)M�N v

N
(1� N�1

N
r
�
)�� = 0.

Apparently, F (q�; r) is continuous in and di¤erentiable with both arguments. We �rst claim

that F (q�; r) strictly decreases with q�. De�ne �N = v
N
(1 � N�1

N
r
�
): Taking its �rst order

derivative yields

F (q�; r)

dq�
=

MX
N=1

CN�1M�1[(N � 1)q�N�2(1� q�)M�N � (M �N)q�N�1(1� q�)M�N�1]�N

=
MX
N=1

CN�1M�1(N � 1)q�N�2(1� q�)M�N�N �
MX
N=1

CN�1M�1(M �N)q�N�1(1� q�)M�N�1�N

= (M � 1)f
MX
N=2

CN�2M�2q
�N�2(1� q�)M�N�N �

M�1X
N=1

CN�1M�2q
�N�1(1� q�)M�N�1�Ng

= (M � 1)
M�1X
N=1

CN�1M�2q
�N�1(1� q�)M�N�1 (�N+1 � �N) ;

which is obviously negative because �N = 1
N

�
1�

�
1� 1

N

�
r
�

�
v � 0 and it monotonically decreases

with N .

When all other potential contestants play q = 0, a potential contestant receives a payo¤

v�� > 0, and he must enter with probability one. When all others play q = q, a participating
contestant receives negative expected payo¤ if he enters by De�nition 1 and Lemma 1 ((1 �
q)M�1v < �), which cannot constitute an equilibrium either. Hence, a unique q� 2 (0; q) must
exist that solves ��(x�; q) = �. Each potential contestant is indi¤erent between entering and

staying inactive when all others play the strategy. This constitutes an equilibrium.

Moreover, F (q�; r) strictly decreases with r. Since it also strictly decreases with q�, the

part (b) of the lemma is then veri�ed.
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Proof of Lemma 4

Proof. Denote ki = x�i , k
� = x��; t = r

�
2 (0; 1 + 1

M�2 ], then ~�i(xi) can be rewritten as

~�i(ki) =
MX
N=1

CN�1M�1q
�N�1(1� q�)M�N kti

kti + (N � 1)k�t
v � ki;

Evaluating ~�i with respect to ki yields

d~�i
dki

=
MX
N=1

CN�1M�1q
�N�1(1� q�)M�N (N � 1)tkt�1i k�tv

[kti + (N � 1)k�t]2
� 1:

Note

k� =
MX
N=1

CN�1M�1q
�N�1(1� q�)M�NN � 1

N2
tv:

To verify that k� is the global maximizer of ~�i(ki) given that all other participants exert the

same e¤ort. De�ne pi(ki;k�i;N) =
kti

kti+(N�1)k�t
: One can verify �N(ki) =

@2pi(ki;k�i;N)
@k2i

���
k�i=k�

=

�(t+1)kti+(t�1)(N�1)k�t
[kti+(N�1)k�t]3

tkt�2i (N�1)k�t. It implies that�N(ki) = @pi(ki;k�i;N)
@ki

���
k�i=k�

is not monotonic:

It is positive if kti <
t�1
t+1
(N � 1)k�t, and negative if kti > t�1

t+1
(N � 1)k�t. Clearly t�1

t+1
(N � 1) � 1

if and only if t � N
N�2 . Because t � 1 +

1
M�2 , we must have

t�1
t+1
(N � 1) < 1 for all N �M .

Let �(ki) =
MX
N=1

CN�1M�1q
�N�1(1� q�)M�N @pi(ki;k�i;N)

@ki
jk�i=k�, and �(ki) =

MX
N=1

CN�1M�1q
�N�1(1�

q�)M�N @2pi(ki;k�i;N)
@k2i

jk�i=k�. The above results imply that kti > t�1
t+1
(N � 1)k�t when ki = k�

for all N � M , which means that �(ki)jki=k� < 0. This leads to that d2~�i(ki)

dk2i

���
ki=k�i=k�

=

v �(ki)jki=k� < 0. Hence, ki = k
� must be at least a local maximizer of when k�i = k�.

Since when ki < [ t�1
t+1
]1=tk�, �N(ki) > 0 for all N � M , we have �(ki) > 0 when ki <

[ t�1
t+1
]1=tk�, which means that �(ki) increases when ki < [ t�1t+1

]1=tk�. Similarly, �(ki) < 0 when

ki > [
t�1
t+1
(M�1)]1=tk�, which means that �(ki) decreases when ki > [ t�1t+1

(M�1)]1=tk�. We next
show that there exists a unique k0 2 ([ t�1

t+1
]1=tk�; [ t�1

t+1
(M � 1)]1=tk�) such that �(ki) increases

(decreases) if and only if ki < (>) k0. For this purpose, it su¢ ces to show that there exists a

unique k0 2 ([ t�1
t+1
]1=tk�; [ t�1

t+1
(M � 1)]1=tk�) , such that �(k0) = 0.

First, such k0 must exist by continuity of �(ki). As have been revealed, �(ki) > 0 when

ki < [
t�1
t+1
]1=tk�; and �(ki) < 0 when ki > [ t�1t+1

(M � 1)]1=tk�.
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Second, the uniqueness of k0 can be veri�ed as below. We have

@3pi(ki;k�i;N)

@k3i

����
k�i=k�

= t(N � 1)k�t
8<: (t� 2)kt�3i

�(t+1)kti+(t�1)(N�1)k�t
[kti+(N�1)k�t]3

+kt�2i
�t(t+1)kt�1i [kti+(N�1)k�t]�3tk

t�1
i [�(t+1)kti+(t�1)(N�1)k�t]

[kti+(N�1)k�t]4

9=;
=

t(N � 1)k�tkt�3i

[kti + (N � 1)k�t]3

(
(t� 2)[�(t+ 1)kti + (t� 1)(N � 1)k�t]

+
�t(t+1)kti [kti+(N�1)k�t]�3tkti [�(t+1)kti+(t�1)(N�1)k�t]

[kti+(N�1)k�t]

)

=
t(N � 1)k�tkt�3i

[kti + (N � 1)k�t]3

(
(t� 2)[�(t+ 1)kti + (t� 1)(N � 1)k�t]

+
2tkti

[kti+(N�1)k�t]
[(t+ 1)kti � (2t� 1)(N � 1)k�t]

)
:

Recall �N(ki) =
�(t+1)kti+(t�1)(N�1)k�t

[kti+(N�1)k�t]3
tkt�2i (N � 1)k�t. We then have

@3pi(ki;k�i;N)

@k3i

����
k�i=k�

= (t� 2)k�1i �N(ki)

+
2t2(N � 1)k�tk2t�3i

[kti + (N � 1)k�t]4
[(t+ 1)kti � (2t� 1)(N � 1)k�t]:

We now claim [(t + 1)kti � (2t � 1)(N � 1)k�t] is negative for all ki � [ t�1
t+1
(M � 1)]1=tk�. A

detailed proof is as follows. From ki � [ t�1t+1
(M�1)]1=tk�; we have (t+1)kti � (t�1)(M�1)k�t.

To show (t+1)kti � (2t� 1)(N � 1)k�t < 0, it su¢ ces to show (t� 1)(M � 1) < (2t� 1)(N � 1)
when N = 2, which requires t < 1 + 1

M�3 . This holds as t � 1 +
1

M�2 .

We thus have at any ki 2 ([ t�1t+1
]1=tk�; [ t�1

t+1
(M�1)]1=tk�) such that �(ki) = 0, �(ki)must be lo-

cally decreasing, because @�(ki)
@ki

= (t�2)k�1i
MX
N=1

CN�1M�1q
�N�1(1�q�)M�N�N(ki)+

MX
N=1

CN�1M�1q
�N�1(1�

q�)M�NAN(ki) = (t � 2)k�1i �(ki) +
MX
N=1

CN�1M�1q
�N�1(1 � q�)M�NAN(ki) =

MX
N=1

CN�1M�1q
�N�1(1 �

q�)M�NAN(ki) < 0 as AN(ki) =
2t2(N�1)k�tk2t�3i

[kti+(N�1)k�t]4
[(t+ 1)kti � (2t� 1)(N � 1)k�t] < 0.

We are ready to show the uniqueness of k0 by contradiction. Suppose that there exists

more than one zero points k0 and k00 with k0 6= k00 for �(ki). Because �(ki) must be locally

decreasing, then there must exist at least another zero point k000 2 (k0; k00) at which �(ki) is
locally increasing. Contradiction thus results. Hence, such a zero point k0 of �(ki) must be

unique.

Recall �(ki) increases (decreases) if and only if ki < (>) k0 and it reaches its maximum

at k0. Note @~�i(ki)
@ki

= v�(ki) � 1 and �(0) = 0. Therefore @~�i(ki)
@ki

jki=0 < 0. Thus @~�i(ki)
@ki

has

exactly two zero points with the smaller one (ks) being the local minimum point of ~�i(ki).

Note ki = k� must be a zero point for
@~�i(ki)
@ki

by de�nition. Since ki = k� is a local maximum
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point of ~�i(ki), it is higher than other zero point (ks) of
@~�i(ki)
@ki

which is a local minimum point

of ~�i(ki).

Note xm = (ks)
1=� is the unique local minimum of ~�i(xi), and note x� = (k�)1=� is the

unique inner local maximum of ~�i(xi). Note xm < x�. The results of Lemma 4 are shown.

Proof of Lemma 5

Proof. Proof of Lemma 3 has shown that F (q; r) =
MX
N=1

CN�1M�1q
N�1(1�q)M�N v

N
(1�N�1

N
r
�
)��

decreases with both q and r. Thus F (q; r) = 0 uniquely de�nes r as a decreasing function of

q. Since F (q0; r0) = 0 and q̂ > q0, we must have r(q̂) < r0.

Proof of Theorem 5

Proof. According to Lemma 5, Theorem 4 thus means that contest r(q̂) would induce entry

equilibrium q̂ and pure-strategy bidding whenever r(q̂) � �(1 + 1
M�2). Since we have a pure-

strategy bidding, an overall e¤ort of �xT (q̂) clearly is induced at the equilibrium.

Consider any other r 6= r(q̂). If r induces equilibrium entry q(r) and pure-strategy bidding,
then the total e¤ort induced is �xT (q(r)). Note that by Lemma 3, equilibrium q(r) decreases

with r. Thus r 6= r(q̂) means q(r) 6= q̂. �xT (q) is single peaked at q̂ according to Theorem 1.

Thus for any r 6= r(q̂); we must have �xT (q(r)) < �xT (q̂). If r induces equilibrium entry q(r) and
mixed-strategy bidding, then the total expected e¤ort induced is strictly lower than �xT (q(r))

when � > 1, based on the arguments deriving this boundary in Section 3.4. Therefore the

total e¤ort induced must be strictly lower than �xT (q̂).

Proof of Lemma 7

Proof. Entry equilibrium q� from (13) is the solution of

�(q) =
M�1X
N=0

CNM�1q
N(1� q)(M�1)�N�N+1 = �, (16)

where �N = v
N
(1 � N�1

N
r
�
) � N�1

N
r
�
� F;8N � 1. Note v

N
(1 � N�1

N
r
�
) = v[ 1

N
(1 � r

�
) + 1

N2
r
�
]

decreases with N and N�1
N

r
�
increases with N . Thus �N strictly decreases with N .

�0(q) = (M � 1)
M�2X
N=0

CNM�2q
N(1� q)(M�2)�N(�N+2 � �N+1)

< 0:

Since �0(q) < 0;8q > 0 and �0(F ) < 0;8F � 0, we must have dq
dF
< 0. When F is big,

only �1 is positive and �N , N � 2 are very negative. Thus �(q) = � means a very small q.
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Proof of Theorem 6

Proof. First, when F = 0; clearly r (< r(q̂)) induces a higher q (> q̂) based on similar

arguments in the proof of Lemma 7. For this r 2 (0; �); Lemma 7 means that there exists a
unique entry fee F (> 0) such that the lemma 6 contest induces equilibrium entry q̂. Note

that for the Lemma 6 contest with impact function xr; r 2 (0; �) and entry fee F , equation
(2) still holds. Since the contest induces entry q̂ and pure-strategy bidding, it must induces

an expected overall bid of �x�T .

Proof of Lemma 8

Proof. By de�nition �x�T
�
M

0�
= �xT (q̂(M

0
);M

0
):

By Envelope Theorem, d�xT (q̂(M
0
);M

0
)

dM 0 = @�xT (q;M
0
)

@M 0 jq=q̂(M 0 ): We have

@�xT (q;M
0
)

@M 0 jq=q̂(M 0 ):

= @

�
(M

0
q̂(M

0
))

��1
�

n
[1� (1� q̂(M 0

))M
0
]v �M 0

q̂(M
0
)�
o 1

�

�
=@M

0

=
�� 1
�

M
0� 1

�

h
q̂(M

0
)
i��1

�
n
[1� (1� q̂(M 0

))M
0
]v �M 0

q̂(M
0
)�
o 1

�

+
1

�
(M

0
q̂(M

0
))

��1
�

n
[1� (1� q̂(M 0

))M
0
]v �M 0

q̂(M
0
)�
o 1

�
�1

�[�(1� q̂(M 0
))M

0
v ln(1� q̂(M 0

))� q̂(M 0
)�];

which has the same sign as

� = (��1)
n
[1� (1� q̂(M 0

))M
0
]v �M 0

q̂(M
0
)�
o
+M

0
[�(1�q̂(M 0

))M
0
v ln(1�q̂(M 0

))�q̂(M 0
)�]:

Because � ln(1�q̂(M 0
)) < q̂(M

0
)

1�q̂(M 0 )
, we haveM

0
[�(1�q̂(M 0

))M
0
v ln(1�q̂(M 0

))�q̂(M 0
)�] <

q̂(M
0
)[M

0
(1�q̂(M 0

))M
0�1v�M 0

�]. Hence, � < (��1)
n
[1� (1� q̂(M 0

))M
0
]v �M 0

q̂(M
0
)�
o
+

q̂(M
0
)[M

0
(1�q̂(M 0

))M
0�1v�M 0

�] = 0 (by the de�nition of q̂(M
0
)). We then have d�xT (q̂(M

0
);M

0
)

dM 0 <

0.
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