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1 Introduction

Multiparty business enterprises take a variety of forms: manufacturing requires comple-

mentary inputs for production; consumer products firms coordinate advertising campaigns

across multiple publishers, in order to ensure that each consumer is exposed to multiple ad-

vertisements1; information technology firms collaborate on joint research ventures; cinema

productions’ actors are concerned with the identities of their costars and directors. In all of

these settings, agents’ preferences exhibit a form of complementarity: the willingness of two

agents to contract with each other may be contingent on those agents’ abilities to contract

with third parties.

A natural equilibrium notion for multiparty contracting settings is matching-theoretic

stability, the requirement that no set of agents can profitably recontract. Unfortunately,

when agents contract over discrete goods or services, stable outcomes do not necessarily

exist in the presence of complementarities across contracts. Consequently, standard matching

theory rules out all forms of contractual complementarity, and thus can not be used to study

multiparty enterprises.

This paper introduces a novel matching model with transferable utility in which sets of

two or more agents may enter into multilateral contracts. Certain forms of complementarity

can be expressed through such contracts; in particular, our model embeds a large class of

economies with production complementarities. Our key insight is that stable multilateral

contracting outcomes do exist when agents contract over continuously divisible quantities,

so long as agents’ valuations over production and consumption are concave.2,3 Furthermore,

when agents’ utilities are concave, stable outcomes directly correspond to competitive equi-

libria. Conversely, competitive equilibria induce outcomes that are strongly group stable

1We thank Preston McAfee for suggesting this example, which is particularly relevant in the sale of
Internet display advertisements.

2The assumption of concavity is natural in settings with decreasing returns to scale and scope. However,
it is violated in settings with fixed costs or increasing returns to scale.

3Conversely, we also show a maximal domain result: If any one agent’s valuation is not concave, then
competitive equilibria can not be guaranteed.
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and in the core.4,5 Analogues of the first and second welfare theorems hold as well, showing

in particular that stable outcomes (and competitive equilibria) are efficient. While our basic

model disallows contractual externalities, competitive equilibria continue to exist even when

such externalities are introduced, although they may not be efficient.

Previous work in matching theory has required (either explicitly or implicitly) that agents

interact via bilateral contractual relationships6; in medical labor markets, medical students

“sell” their services to hospitals (Roth and Peranson (1999)), and in school choice applica-

tions, schools “sell” their services to students (Abdulkadiroǧlu et al. (2005a,b, 2009)). The

restriction to bilateral contracts was material in the previous work as, in order to guarantee

the existence of equilibria, agents were required to view contracts as substitutes (see Hatfield

et al. (2011) and references contained therein). Meanwhile, it is well-known that equilibria

may not exist in discrete matching models with multilateral contracting (see Alkan (1988)

and Chapter 2 of Roth and Sotomayor (1990)); we avoid these difficulties by developing a

matching model in which contract participation may be varied continuously.

The presence of continuously divisible contracts makes our underlying model similar to

models of general equilibrium (Arrow and Debreu (1954); Mas-Colell (1990); Mas-Colell et al.

(1995)). However, unlike in general equilibrium theory, we consider production (and other)

relationships that are agent-specific: in our framework, a set of agents may share a nonpublic

production technology, and that technology may require inputs from specific agents, such as

4Note that the corresponsdence between stable outcomes, core outcomes, and competitive equilibria
justifies our attention to the competitive equilibrium solution concept, despite the presence of personalized
prices in our setting.

5Hatfield et al. (2011) obtain analogous results in a setting distinct from ours, in which agents trade via
discrete, bilateral contracts. It is known that analogous results do not hold in matching settings without
transfers (Echenique and Oviedo (2006); Klaus and Walzl (2009)).

6For example, bilateral structure is imposed on relationships in the models of Gale and Shapley (1962),
Crawford and Knoer (1981), Kelso and Crawford (1982), Roth (1984), Hatfield and Milgrom (2005),
Echenique and Oviedo (2006), Ostrovsky (2008), Hatfield and Kominers (forthcoming), and Hatfield et
al. (2011).
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human capital.7,8 Notwithstanding, we do not strictly extend general equilibrium theory, as

we impose the requirement that agents’ utilities be quasilinear in a numeraire.

The remainder of this paper is organized as follows. In the next section, we illustrate

our model with a simple example (concrete production). In Section 3, we present our model

in generality. We prove welfare theorems and existence results for competitive equilbria in

Section 4; we then analyze the relationship between competitive equilibria, stable outcomes,

and the core in Section 5. In Section 6, we present an application: economies with production

complementarities embed naturally into the multilateral matching framework. We then

extend the multilateral matching framework to include contractual externalities in Section 7.

We conclude in Section 8. All proofs are presented in Appendix C.

2 An Illustrative Example

We illustrate our approach with a concrete example, using multilateral matching to model

ready-mix concrete production.9,10 Ready-mix concrete is produced by mixing three com-

plementary inputs—cement, gravel, and sand—in proportions of approximately 1:2:2.11 All

three of these inputs are expensive to transport because of their weights; thus, each of

these goods is only sold locally through relationship-specific contracts that incorporate the

7For production processes with complementary inputs, it is possible to model a multilateral contract as a
collection of bilateral contracts (and in principle use more classical general equilibrium arguments). However,
for settings with externalities across contractual partners, such as joint research ventures and entertainment
production, multilateral contracting can not be reduced to a model with only bilateral contracting. (To see
why entertainment production requires multilateral contracting, note that actors contract with studios, but
face externalities derived from the studio’s choices of other actors for a given production.)

8Note that our framework is conceptually distinct from the setting of the clubs literature (Ellickson et
al. (1999, 2001)): In our work, we impose no structure on the set of agents, but require that joint venture
participation levels are divisible, while in the clubs literature, participation in a club is a binary decision,
but markets are required to be large (and agents are required to be of distinct types).

9While in principle this example can be studied using only bilateral contracts (as noted in Footnote 7)
using the multilateral matching framework greatly simplifies the analysis. Note also that this example does
not use the full generality of our framework—multilateral matching can be used to study economies with
externalities across contractual parties, which can not be embedded into bilateral contracting models.

10In addition to exemplifying production complementarities which can be studied using multilateral match-
ing, the concrete market has engendered a significant literature in industrial organization; see the work of
Syverson (2004, 2008) and Collard-Wexler (2009).

11We simplify the discussion by omitting other ingredients, such as water and additives.
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Figure 1: The example economy.

transport costs (Syverson (2008)).

The presence of input complementarities renders concrete production outside the scope

of previous matching models. Indeed, previous work has required input substitutability in

order to guarantee equilibrium existence (Gul and Stacchetti (1999), Hatfield et al. (2011)).

As we illustrate, requiring continuous production adjustment (instead of allowing discrete

adjustment as in the previous literature) enables us to relax the substitutability requirement

and study industries, such as concrete production, with input complementarities.

It is natural to model the supply structure of a concrete producer k as requiring bilateral

relationships ωc, ωg, and ωs for the sale of cubic yards of cement, gravel, and sand, respec-

tively, with suppliers c, g, and s. The gravel supplier g also has an outside option, ψ, to sell

to another buyer, b. This economy structure is depicted in Figure 1.

Assuming constant marginal costs of cement and gravel production, and an increasing

marginal cost of sand production, we assume the following supplier valuation functions :

vc(rωc) = −80rωc

vg(rωg , rψ) = −25(rωg + rψ)

vs(rωs) = −5rωs −
1

16
r2
ωs ,

where rχ denotes the number of cubic yards of the good associated with χ delivered.

We assume that concrete is produced with increasing marginal cost by k, and the demand

of b is bounded above. We also make the simplifying assumption that concrete production
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Figure 2: The example economy, reinterpreted as multilateral matching.

requires cement, gravel, and sand in exact 1:2:2 proportions.12 This gives rise to valuations

of the following form:

vk(rωc , rωg , rωs) = 60 min

{
1

5
rωc ,

2

5
rωg ,

2

5
rωs

}
− 7

100

(
min

{
1

5
rωc ,

2

5
rωg ,

2

5
rωs

})2

vb(rψ) = 32 min{rψ, 50}.

The concavity of the valuation function of k with respect to the amount of concrete produced

arises from the fact that k faces an (assumed) downward-sloping demand curve for concrete.13

Given the (fixed) proportionality in concrete production, k will never buy disproportion-

ate amounts of cement, gravel, and sand. Thus, we may study the contracting decision of k

from the perspective of total concrete production. We represent this by a single multilateral

venture ω which denotes the production of one cubic yard of concrete using cement, gravel,

and sand, as pictured in Figure 2. With this reparameterization, agents’ utilities take the

12The assumption of exact proportionality is not necessary but simplifies the mathematical exposition.
13Alternatively, the same fucntional form could arise from increasing marginal costs of production.
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following form:

vc(rω) = −16rω

vg(rω, rψ) = −10rω − 25rψ

vs(rω) = −2rω −
1

100
r2
ω

vk(rω) = 60rω −
7

100
r2
ω

vb(rψ) = 32 min{rψ, 50}.

Since relationships are multilateral, the transfer prices corresponding to a relationship must

define payments among all parties to the venture (instead of a single transfer from buyer to

seller); hence the transfer prices associated with the venture ω are represented by a vector

pω such that

pkω + pcω + pgω + psω = 0.

Similarly, pbψ + pgψ = 0. Agents’ utilities are assumed to be quasilinear in transfers. Given

this formulation of prices and utilities, our definition of competitive equilibrium is natural:

A competitive equilibrium consists of an allocation r = (rω, rψ) and a price matrix p such

that r is utility-maximizing for every agent given p.

We now construct a competitive equilibrium of our economy; generalizations of this

construction show that a competitive equilibrium exists for arbitrary concave valuations

(Theorem 3). Our adaptatation of the first welfare theorem to this environment (Theorem 1)

shows that all competitive equilibria are efficient in our model, and so we begin by identifying

the efficient allocation. Aggregate welfare is given by

vc(rω) + vg(rω, rψ) + vs(rω) + vk(rω) + vb(rψ);

this is maximized at (r̂ω, r̂ψ) = (200, 50). We now construct a price matrix to support

this allocation in competitive equilibrium, demonstrating the second welfare theorem in
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our environment (Theorem 2). Competitive equilibrium pricing must render r̂ individually

optimal for each agent; hence we set transfer prices associated with the multilateral venture

ω equal to the marginal utility of each agent for an additional unit of production at the

efficient allocation; a simple computation shows that (pkω, p
c
ω, p

g
ω, p

s
ω) = (32,−16,−6,−10).

These prices are guaranteed to sum to zero by the fact that r̂ is efficient, from whence

it follows that the social marginal utility of adjusting rω must vanish. Similarly, we have

that (pbψ, p
g
ψ) = (25,−25).14,15 Note that r̂ and p together comprise the unique competitive

equilibrium in this model.16

Furthermore, the competitive equilibrium above is stable in the matching-theoretic sense:

No firm desires to unilaterally drop any venture χ ∈ {ψ, ω} and associated transfer payments,

and no set of firms wish to renegotiate venture participation levels and transfers. This fact

can be shown directly by computation, or as a special case of our Theorem 7.

3 Model

In this section we introduce our general model of multilateral matching. As we demonstrate

in Section 6, a large class of economies with production complementarities may be embedded

into the multilateral matching framework; this class includes the economy discussed in the

previous section.

There is a finite set I of agents, and a finite set Ω of ventures. Each venture ω ∈ Ω

is associated with a set of at least two agents a(ω) ⊆ I; there may be several ventures

associated with the same set of agents.17 For Ψ ⊆ Ω, we denote by a(Ψ) ≡ ∪ψ∈Ψa(ψ) the

set of agents associated with ventures in Ψ, and denote by Ψi ≡ {ψ ∈ Ψ : i ∈ a(ψ)} the set

14Since the valuation function of b is not differentiable, subgradient calculations are needed in the compu-
tation of pψ; for details, see the proof of Theorem 2.

15This price matrix corresponds to prices of 80, 15, and 25 per cubic yard for cement, gravel, and sand,
respectively.

16In our general model, the competitive equilibrium is always unique when all valuation functions are
continuously differentiable and strictly concave.

17Mathematically, the set of agents and the set of ventures define a multi-hypergraph, where each agent is
a node of the graph and each venture is a hyperedge; a hyperedge generalizes the notion of an edge to allow
for an arbitrary number of endpoints, instead of just two.
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of ventures in Ψ associated with agent i.

A venture may represent production (of a good such as concrete, as in Section 2), a joint

research program, or any other multi-agent endeavor for which participation is continuously

adjustable. The possibility of multiple ventures between a given set of agents allows us to

encode production processes that do not require fixed input proportions.

We denote by rω ∈ [0, rmax
ω ] the chosen allocation of investment in venture ω ∈ Ω by

the agents in a(ω); for instance, as in our example in Section 2, if the venture ω is between

a supplier of cement, a supplier of gravel, a supplier of sand, and a producer of concrete,

rω may paramaterize the number of cubic yards of concrete produced. As the notation

suggests, we assume that participation in each venture ω ∈ Ω is bounded by some finite

bound rmax
ω ∈ R≥0.

Each agent i ∈ I has a continuous valuation function vi(r) over ventures, where the

vector r ≡ (rω)ω∈Ω is an allocation which indicates the investment in each venture ω ∈ Ω.

Many of our results rely on the assumption that the valuation functions vi are concave in

venture participation; this assumption is natural when firms face capacity constraints or

when their production technologies exhibit decreasing returns to scale.18 We assume that

vi is unaffected by ventures to which i is not a party, i.e., vi(rω, r−ω) = vi(r̃ω, r−ω) for all ω

such that i /∈ a(ω). We relax this assumption in Section 7 in order to consider contracting

externalities.

As illustrated in Section 2, the definitions presented—multilateral ventures and valuation

functions—allow us to model production processes with fixed proportions. In fact, these

defintions are quite flexible. In addition to proportional production, they can used, for

example, to model a Cobb-Douglas production function: To see this, let I = {i, j, k} and

Ω = {ψ, ω} with a(ψ) = {i, j} and a(ω) = {i, k}. If vi(r) = (rψ)a(rω)b where a, b ∈ [0, 1]

and a + b ≤ 1, then the production technology used by agent i has Cobb-Douglas form.

18Unfortunately, the concavity of agents’ valuations may depend upon the specification of the venture
set Ω. The issue of how contractual language interacts with agents’ preferences arises throughout matching
theory (see Hatfield and Kominers (2010)).
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A venture ω ∈ Ω only represents the nonpecuniary aspects of a transaction between the

members of a(ω). The purely financial aspects of venture ω are represented by a vector

pω, where piω is the transfer price per unit of the venture that agent i pays in order for

the venture ω to transact; this transfer price may be negative if i receives compensation

from the other agents in the venture. For any agent j /∈ a(ω), we use the convention that

pjω ≡ 0. Furthermore, ventures in and of themselves do not create or use the numeraire;

hence
∑

i∈I p
i
ω = 0 for all ω ∈ Ω. We denote by p ≡ (piω)i∈I,ω∈Ω the matrix for which piω is

the per-unit transfer from agent i when he engages in venture ω.

An allocation r along with a price matrix p together define an arrangement [r; p]. The

utilty function ui([r; p]) of an agent i is quasilinear over ventures and transfer prices, hence

it can be expressed in the form

ui([r; p]) ≡ vi(r)− pi · r.

Given prices p, we define the demand correspondence Di(p) for agent i as

Di(p) ≡ arg max
0≤r≤rmax

ui([r; p]).

Since any two allocations which differ only on ventures to which i is not a party provide

the same payoff to i, ui([r; p]) does not depend on the size of rω for any ω ∈ Ω − Ωi.

Hence, the demand correspondence Di(p) has the feature that if (rΩi , rΩ−Ωi) ∈ Di(p), then

(rΩi , řΩ−Ωi) ∈ Di(p) for all řΩ−Ωi such that 0 ≤ řΩ−Ωi ≤ rmax
Ω−Ωi

. We adopt this somewhat

unintuitive convention—which typically makes Di(p) very large—so that we may define the

natural demand correspondence for the entire economy as

D(p) ≡
⋂
i∈I

Di(p),

which exactly characterizes the levels of investment in each of the (joint) ventures at which
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all agents’ demands are satsified given prices p.

A contract x is comprised of a venture ω ∈ Ω, a size of that venture rω ∈ [0, rmax
ω ], and a

transfer vector sω ∈ R|I| (where we set sjω = 0 for all j /∈ a(ω), maintaining the convention

that agents do not receive transfers for ventures to which they are not associated). We study

contracts which specify transfers sω (instead of per-unit prices pω) in order to maintain

consistency with the previous literature (e.g., Hatfield et al. (2011)); transfers are generally

related to per-unit prices by the formula sω = rωpω.

The set of all contracts is

X ≡

{
(ω, rω, sω) ∈ Ω× R≥0 × R|I| : rω ≤ rmax

ω , siω = 0 for i /∈ a(ω), and
∑
i∈I

siω = 0

}
.

For x = (ω, rω, sω) ∈ X, we let τ(x) ≡ ω; for Y ⊆ X we let τ(Y ) ≡ ∪y∈Y {τ(y)}. Analogously

to the notation for ventures, for a contract x ∈ X we let a(x) ≡ a(τ(x)) and for Y ⊆ X we

let a(Y ) ≡ a(τ(Y )). Similarly, Yi ≡ {y ∈ Y : i ∈ a(y)}. We define κ([r; p]) to be the set of

contracts that implement the arrangement [r; p], i.e.

κ([r; p]) ≡ {(ω, řω, šω) ∈ X : řω = rω > 0 and šω = rωpω}.

A set of contracts Y ⊆ X is an outcome if it describes a well-defined participation and

pricing plan, i.e. if for any (ω, rω, sω), (ω′, r̃ω′ , s̃ω′) ∈ Y such that (ω, rω, sω) 6= (ω′, r̃ω′ , s̃ω′),

we have that ω 6= ω′.19 For instance, for any arrangement [r; p], the set of contracts κ([r; p])

is an outcome. For a given outcome Y , we let ρ(Y ), defined by

ρω(Y ) ≡


rω (ω, rω, sω) ∈ Y

0 otherwise,

19Without loss of generality, we also impose the requirement that outcomes not include contracts of the
form (ω, 0, sω).
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denote the associated allocation vector of venture sizes. Similarly, we let π(Y ), where

πjω(Y ) ≡


sjω
rω

(ω, rω, sω) ∈ Y

0 otherwise,

denote the matrix of per-unit transfer prices associated to Y . The utility from an outcome

Y for agent i is then given by

ui(Y ) ≡ vi(ρ(Y ))− πi(Y ) · ρ(Y ).

The choice correspondence of agent i is given by

Ci(Y ) ≡ arg max
outcomes Z⊆Yi

ui(Z).

4 Competitive Equilibria

We first introduce the competitive equilibrium solution concept.

Definition. A competitive equilibrium is an arrangement [r; p] such that r ∈ D(p).

The statement that the arrangement [r; p] is a competitive equilibrium incorporates both

individual optimality and market clearing. Individual optimality holds in competitive equi-

librium, as each agent i demands the allocation r given the prices p. Furthermore, markets

clear in competitive equilibrium, as if an agent i ∈ a(ω) demands rω at competitive equilib-

rium prices p, each other agent j ∈ a(ω) demands rω at those prices.

4.1 Welfare Theorems for Multilateral Matching

In our setting, we obtain results on the relationship between efficient allocations and com-

petitive equilibria that are analogous to the first and second welfare theorems of general
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equilibrium theory. However, because our setting allows for arbitrarily large transfers of the

numeraire, the standard Pareto optimality condition is replaced by (global) efficiency.

An allocation r̂ is efficient if

r̂ ∈ arg max
0≤r≤rmax

∑
i∈I

vi(r),

i.e., if it maximizes social surplus. Our “First Welfare Theorem” indicates that any compet-

itive equilibrium allocation is efficient.

Theorem 1. For any competitive equilibrium [r; p], the allocation r is efficient.

The proof of Theorem 1 uses standard techniques: For any competitive equilibrium [r; p],

suppose that some other allocation r̂ delivers strictly greater social surplus than r does.

Then, since
∑

i∈I p
i
ω = 0 for all ω ∈ Ω,

∑
i∈I

(vi(r)− pi · r) =
∑
i∈I

vi(r) <
∑
i∈I

vi(r̂) =
∑
i∈I

(vi(r̂)− pi · r̂). (1)

However, the inequality (1) can only hold if there exists an agent j such that

vj(r)− pj · r < vj(r̂)− pj · r̂.

But then r /∈ Dj(p).

Our “Second Welfare Theorem” gives a partial converse to Theorem 1.

Theorem 2. Suppose that agents’ valuation functions are concave. Then, for any efficient

allocation r, there exist prices p such that [r; p] is a competitive equilibrium.

While the result of Theorem 2 is familiar, the proof, unlike in general equilibrium settings,

relies on arguments from differential algebra. The logic is especially transparent in the case

that agents’ valuation functions are differentiable: In this case, for an efficient allocation r,

let piω ≡ ∂
∂rω

vi(r). It follows from the linearity of the differential operator and the fact that
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r is globally optimal that, for all ω ∈ Ω,

∑
i∈I

piω =
∑
i∈I

∂

∂rω
vi(r) =

∂

∂rω

∑
i∈I

vi(r) = 0,

hence p is a valid price matrix. Furthermore, as each vi is concave, by the construction of p

we have that

r ∈ Di(p)

for each i ∈ I. It then follows immediately that [r; p] is a competitive equilibrium.

4.2 Existence of Competitive Equilibria

An immediate consequence of Theorem 2 is that a competitive equilibrium exists in our

setting whenever agents’ valuation functions are concave.

Theorem 3. Suppose that agents’ valuation functions are concave. Then there exists a com-

petitive equilibrium. If the agents’ valuation functions are strictly concave and continuously

differentiable, then there exists a unique competitive equilibrium.

Concavity of agents’ valuation functions and the boundedness of the allocation space

imply the existence of an efficient allocation r̂. Theorem 2 then shows that there exist prices

p such that [r̂; p] is a competitive equilibrium. Note that, as preferences are quasilinear

in the numeraire, this argument does not require the fixed-point methods used in general

equilibrium theory. The proofs of Theorems 2 and 3 therefore imply a simple algorithm for

computing competitive equilibria in our setting.

Our next result shows that the conditions of Theorem 3 are tight—the domain of concave

valuations is the maximal domain for which competitive equilibria are guaranteed to exist.

Theorem 4. Suppose that the valuation function vi of some agent i is not concave. Then

there exist concave valuation functions for the other agents such that no competitive equilib-

rium exists.
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To demonstrate the intuition behind this result, consider the case where I = {i, j},

Ω = {ω}, a(ω) = {i, j}, and rmax
ω = 2. Let

vi(rω) = r2
ω.

In this case, vi(rω) is not concave at rω = 1; in fact, vi(rω) is globally convex. Let

vj(rω) =


2011rω rω ≤ 1

2011(2− rω) 1 ≤ rω ≤ rmax
ω ,

which is globally concave. It is clear that the efficient allocation is rω = 1. Hence, any

competitive equilibrium must be of the form [(1); (pω)]. However, for any price piω, we have

that

Di(p) ⊆ {(0), (2)}

because vi is globally convex. Hence, no competitive equilibrium exists.

The intuition of the preceding example generalizes to prove Theorem 4: If there is a point

at which the valuation function of agent i is not concave, then we construct concave valuation

functions for the other agents so that the efficient allocation is at that point. Given that the

utility function of agent i is quasilinear in the numeraire, there does not exist a price vector

such that it is individually optimal for i to demand an allocation at which his valuation

function is not concave. Thus there does not exist a price vector that induces i to demand

the allocation that is efficient in the constructed economy. Hence, since by Theorem 1 all

competitive equilibria are efficient, no competitive equilibrium exists.

4.3 Comparative Statics

We now prove an intuitive comparative static result: as an individual venture ψ becomes

more valuable for the agents in a(ψ), those agents will not choose to participate in ψ less
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than before.20

Theorem 5. Consider a family of valuation functions vi(·; `) parameterized by `. Suppose

that for all i ∈ I, vi is strictly concave in r for all ` ∈ R and is twice continuously differen-

tiable in r and `. Suppose additionally that for all i ∈ I, all ` ∈ R, and some ψ ∈ Ω,

∂2vi(r; `)

∂rψ∂`
≥ 0 and

∂2vi(r; `)

∂rω∂`
= 0 for all ω ∈ Ω such that ω 6= ψ.

Let [r̂(`); p̂(`)] be the unique competitive equilibrium in the economy (for the parameter `)

implied by Theorem 3. Then,

∂r̂ψ(`)

∂`
≥ 0.

Note that under the conditions of Theorem 5, the efficient allocation r̂(`) is unique. As

venture ψ becomes more profitable for the agents in a(ψ), the conditions on rψ in the global

optimization problem slacken. The implicit function theorem then shows that the efficient

level of participation in ψ must increase. Since the competitive equilibrium allocation is

efficient, the value of r̂ψ must therefore also increase.

5 Cooperative Solution Concepts

5.1 Definitions

We now introduce the standard notion of stability from the matching literature.21

Definition. An outcome A is stable if it is:

1. Individually rational : for all i ∈ I, Ai ∈ Ci(A).

20Note that we can not characterize how participation in any other venture ξ changes as ψ becomes more
valuable, as ψ and ξ may act as either complements or substitutes.

21Note that unlike in classical matching theory, we must consider the possibility of indifference between
two sets of contracts, and hence use the definition of Hatfield et al. (2011).
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2. Unblocked : there does not exist a nonempty Z ⊆ X − A such that for all i ∈ a(Z) we

have that Zi ⊆ Y i for all Y i ∈ Ci(Z ∪ A).

Individual rationality of A requires that no agent i prefer to drop some of the contracts

in Ai. Unblockedness of A requires that there not exist a new set of contracts Z such that

all the agents in a(Z) would strictly prefer to sign all the contracts in Z (and possibly drop

some of their existing contracts in A) rather than only sign some (or none) of them.

Closely related to stability is the standard solution concept of cooperative game theory:

the core.

Definition. An outcome A is in the core if it is coalitionally unblocked : there does not exist

a nonempty Z ⊆ X such that ui(Z) > ui(A) for all i ∈ a(Z).

The definition of the core differs from that of stability in two ways. First, coalitional

unblockedness requires that all the agents in a(Z) drop all of their contracts in A− Z; this

is a more stringent restriction than that of stability, which allows agents in a(Z) to retain

previous relationships. Second, coalitional unblockedness does not require that Zi ⊆ Y i for

all Y i ∈ Ci(Z ∪A) (for all i ∈ a(Z)); rather, it requires only that the weaker condition that

ui(Z) > ui(A).

Finally, we introduce strong group stability, first proposed by Hatfield et al. (2011), which

is a stronger solution concept than both the core and stability.

Definition. An outcome A is strongly group stable if it is:

1. Individually rational.

2. Strongly unblocked : There does not exist a nonempty set Z ⊆ X such that for all

i ∈ a(Z) there exists a Y i ⊆ Z ∪ A such that Zi ⊆ Y i and ui(Y i) > ui(A).

Strong group stability is more restrictive than the core—unlike coalitional unblockedness,

strong unblockedness does not require agents to drop previous relationships. Additionally,
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strong group stability is more restrictive than stability, as strong unblockedness does not

require that Zi ⊆ Y i for all Y i ∈ Ci(Z∪A) (for all i ∈ a(Z)), as is required by unblockedness,

but only that there exists a Y i ⊇ Zi such that ui(Y i) > ui(A).22

5.2 The Relationship between Cooperative Solution Concepts

The following result is immediate from the definitions.

Theorem 6. If an outcome Y is strongly group stable, then Y is stable and in the core.

Furthermore, all core allocations are efficient.

In general, there are no relationships between the cooperative solution concepts beyond

those in Theorem 6 without additional assumptions on the valuation functions. In particular,

suppose Ω = {ψ, ω}, a(ω) = a(ψ) = I = {i, j}, and rmax
ψ = rmax

ω = 1. Let the valuation

functions of the two agents be given by

vi(r) = 7 min{rψ, rω}

vj(r) = −6 min{rψ, rω}.

The unique efficient allocation is r = (1, 1). It follows that the core is given by

{{(ψ, rψ, (siψ, s
j
ψ)), (ω, rω, (s

i
ω, s

j
ω))} ⊆ X : rψ = rω = 1, 6 ≤ siψ + siω ≤ 7}.

However, no core outcome is stable. Suppose, without loss of generality, that siψ ≥ siω. Since

siψ+siω ≤ 7 we have that siω ≤ 7
2
. Then agent j will choose to drop the contract (ω, 1, (siω, s

j
ω))

as it costs him 6 (due to the cost of production) but gains him at most 7
2

in transfer.

22This notion is called strong group stability as it is stronger than both strong stability and group stability.
Strong stability (introduced by Hatfield and Kominers (2010)) also required that each Zi be individually
rational. Group stability (introduced by Roth and Sotomayor (1990) and extended to the setting of many-
to-many matching by Konishi and Ünver (2006)) required that if y ∈ Y i for some i ∈ a(Y ), then y ∈ Y j for
all j ∈ a(y), i.e. that the deviating agents agreed on which contracts from the original allocation would be
kept after deviation. See Hatfield et al. (2011) for a further discussion.
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However, the outcome ∅ is stable. Consider a blocking set of the form {(ψ, rψ, (siψ, s
j
ψ))}

or {(ω, rω, (siω, sjω))}; since no agent gains benefits or incurs costs from such a set of con-

tracts, each agent is indifferent between this set of contracts and ∅. For a blocking set of

the form {(ψ, rψ, (siψ, s
j
ψ)), (ω, rω, (s

i
ω, s

j
ω))} we have that siψ + siω > −7 min{rψ, rω} as i must

choose both contracts; this implies that sjψ + sjω < 7 min{rψ, rω}. Suppose without loss of

generality that sjψ ≥ sjω; then sjω <
7
2

min{rψ, rω} < 6 min{rψ, rω}. Hence j strictly prefers

{(ψ, rψ, (siψ, s
j
ψ))} to {(ψ, rψ, (siψ, s

j
ψ)), (ω, rω, (s

i
ω, s

j
ω))} and so {(ψ, rψ, (siψ, s

j
ψ)), (ω, rω, (s

i
ω, s

j
ω))}

is not a blocking set.

This example illustrates that, in general, there is no logical relationship between stable

and core outcomes.23 Appendix A gives an example of an outcome that is both stable and

core, but is not strongly group stable.

5.3 The Relationship between Stable Outcomes and Competitive

Equilibria

We now show that every competitive equilibrium is associated with a stable outcome.

Theorem 7. Suppose that [r; p] is a competitive equilibrium. Then, κ([r; p]) is (strongly

group) stable and in the core.

The proof of Theorem 7 is similar to, but more technical than, the proof of Theorem 1

sketched in Section 4.2. If κ([r; p]) is not individually rational, then κ([r; p])i /∈ Ci(κ([r; p])),

which implies that r /∈ Di(p), so [r; p] is not a competitive equilibrium. If κ([r; p]) is not

strongly unblocked, then there is a set Z such that for all i ∈ a(Z), there exists Y i ⊇

Zi such that ui(Y i) > ui(κ([r; p])). Summing over individuals, and using the fact that

πi(κ([r; p])) · ρ(κ([r; p])) = pi · ρ(κ([r; p])), we obtain

∑
i∈a(Z)

vi(ρ(Y i))− πi(Y i) · ρ(Y i) >
∑
i∈a(Z)

vi(ρ(κ([r; p])))− pi · ρ(κ([r; p])).

23Moreover, since no outcome in this example is both stable and in the core, no strongly stable outcome
exists.
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Since transfers among agents in a(Z) sum to 0, we have that
∑

i∈a(Z) π
i
ω(Y i) = 0 =

∑
i∈a(Z) p

i
ω

for each ω ∈ τ(Z). Hence,

∑
i∈a(Z)

vi(ρ(Y i))− pi · ρ(Y i) >
∑
i∈a(Z)

vi(ρ(κ([r; p])))− pi · ρ(κ([r; p])).

But then there must exist j ∈ a(Z) such that uj(κ([ρ(Y j); p])) > uj(κ([r; p])), and hence

r = ρ(κ([r; p])) /∈ Dj(p),

implying that [r; p] is not a competitive equilibrium.

An immediate corollary of Theorems 3 and 7 is the existence of strongly group stable

outcomes for concave valuation functions.

Corollary 1. Suppose that agents’ valuation functions are concave. Then a (strongly group)

stable outcome exists.

The converse of Theorem 7 is not true: not all (strongly group) stable outcomes corre-

spond to competitive equilibria. Consider the case where there are two agents i and j, and

two ventures ψ and ω. Suppose that

vi(r) = −4 max{rψ, rω}

vj(r) = 3 max{rψ, rω}.

Then ∅ is a (strongly group) stable outcome; however, no competitive equilibrium exists.

As Theorem 1 shows, every competitive equilibrium is efficient, hence any competitive equi-

librium must be of the form [(0, 0); p]. For any price matrix p, we must have that

min{pjψ, p
j
ω} ≥ 3
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as otherwise agent j will demand positive amounts of ψ or ω. This implies that

piψ + piω ≤ −6,

as pjψ = −piψ and pjω = −piω. Then agent i will demand positive amounts of both ψ and ω;

hence no prices will support r = (0, 0) as a competitive equilibrium.

The example above relies on the fact that the valuation function of j is not concave.

Our next two results show that the lack of concavity is essential for the example: when all

agents have concave valuation functions, every stable outcome corresponds to an efficient

allocation, and hence induces a competitive equilibrium.

Theorem 8. Suppose that agents’ valuation functions are concave. Then, for any stable

outcome A, the allocation ρ(A) is efficient.

When all agents’ valuation functions are concave, at any outcome A corresponding to an

inefficient allocation r = ρ(A), either A is not individually rational or there exists a venture

ψ such that the total welfare of the agents in a(ψ) can be increased by adjusting rψ to some

other value r̃ψ. The agents in a(ψ) can then choose transfers s̃ψ so as to share the surplus

from adjusting rψ to r̃ψ. By construction, then, it follows that {(ψ, r̃ψ, s̃ψ)} blocks A. Thus,

if A is stable, then ρ(A) is efficient.

Combining Theorems 2 and 8, we immediately obtain the following corollary.

Corollary 2. Suppose that agents’ valuation functions are concave. Then, for any stable

outcome A, there exists a price matrix p such that the arrangement [ρ(A); p] is a competitive

equilibrium.

An analogous result holds for core outcomes, since those outcomes are efficient by The-

orem 6.

Corollary 3. Suppose that agents’ valuation functions are concave. Then, for any core

outcome A, there exists a price vector p such that the arrangement [ρ(A); p] is a competitive

equilibrium.
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Figure 3: The Relationship Between the Solution Concepts

Note that Corollaries 2 and 3 imply that the underlying allocations of stable and core

outcomes can be supported in competitive equilibrium, but do not imply any relationship

between the supporting prices and the transfers associated with the original outcomes. These

results are analagous to results in general equilibrium theory, where the set of utilities induced

by core outcomes is also, in general, larger than the set of utilities induced by competitive

equilibria.

We summarize the relationship between the various solution concepts in Figure 3. Solid

lines indicate relationships which hold in general; dashed lines represent relationships that

hold in the presence of concave valuations.

6 Application: Production Economies with Comple-

mentary Inputs

We now demonstrate how our model can be applied to economies where production requires

complementary inputs. In Appendix B, we show how the example presented in Section 2

can be described as such an economy.

Consider an economy with a set of agents I in which each agent i ∈ I has an initial

endowment eig ≥ 0 of each good g; the set of all goods is denoted G. Available to the agents

are a set of production processes Ω. Each ω ∈ Ω is represented by a matrix in R|I|×|G|, where

the value ωig indicates that i obtains ωig units of good g per unit of process ω executed. If

ωig > 0, then good g is an output of the process for agent i; if ωig < 0, then good g is an
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input of the process for agent i. Note that these processes need not result in the creation or

destruction of goods: For example, the process

ψig =


−1 i = j and g = x

1 i = k and g = x

0 otherwise

denotes the transfer of one unit of good x from agent j to agent k. In contrast, a linear

production process of the form

χig =



−1 i = j and g = x

−2 i = k and g = y

1 i = h and g = z

0 otherwise

denotes the production of one unit of good z by agent h using one unit of good x from agent j

and two units of good y from agent k.24 We denote by rω ≤ rmax
ω the quantity of engagement

in process ω; for instance, rψ = 2 (where ψ is as defined above) indicates the transfer of two

units of good x from i to j.

The final consumption of agent i is given by a vector ci, where

cig(r) = eig +
∑
ω∈Ω

rωω
i
g.

Each agent i ∈ I has a continuous valuation function over consumption, denoted v̇i(ci).

Note that since the production processes we have specified are linear, all production costs

24Note that while each process specifies the exact amount of each input good to be provided by each agent,
it is possible that two processes χ and ω might have the same net inputs and outputs (i.e.,

∑
i∈I ω

i
g =

∑
i∈I χ

i
g

for all g ∈ G) but differ in the idenities of the providers of the inputs and recipients of the outputs (i.e.,
ωig 6= χig for at least one i ∈ I and g ∈ G). Similarly, mulitple processes may produce the same quantity of
good g for i, but use different mixtures of inputs.
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are implicitly embedded into agents’ valuations.25 Thus, the valuations v̇i are concave when

production exhibits nonincreasing returns to scale and scope, and agents receive diminishing

marginal utility from final consumption.

The economy just described may be reinterpreted as a multilateral matching economy

with agent set I, venture set Ω, and valuation functions

vi(r) = v̇i(ci(r)).

It is clear that vi is concave if v̇i is, as then, for all a ∈ [0, 1],

avi(r) + (1− a)vi(r̃) = av̇i(ci(r)) + (1− a)v̇i(ci(r̃))

≥ v̇i(aci(r) + (1− a)ci(r̃))

= v̇i(ci(ar + (1− a)r̃))

= vi(ar + (1− a)r̃),

where the inequality follows from the concavity of v̇i and the subsequent equality follows

from the linearity of ci. Thus agents’ valuations are concave whenever their underlying

preferences over goods are concave.

The preceding discussion shows that multilateral matching encompasses a large class of

economies with production complementarites. Unlike general equilbrium theory, the mul-

tilateral matching framework allows us to model economies with agent-specific production,

i.e. production that relies on technologies available only to certain agents.26

25For illustration, consider an economy with a single good g, which can be produced by the agent i ∈ I via
process ω (using inputs from other agents). When using process ω, agent i incurs a convex cost of production
c(cig). After production, i receives linear utility from consuming good g. The valuation v̇i then takes the

form v̇i(ci) = cig − c(cig).
Note that this convention also allows us to consider the case where an agent can produce the same product

at two different factories (with appropriate inputs); we specify the set of goods G to include a good for the
product of each factory, so that we may model utility from total consumption alongside convex costs of
production at each factory.

26Agent-specificity may be material, for instance, in economies with intellectual property rights or implicit
knowledge gained from learning-by-doing.
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The class of economies with production complementarities includes standard examples

from manufacturing, such as the assembly of automobiles and computers. Additionally, this

class encompasses economies in which production requires many complementary inputs but

the value of the output is uncertain; real world examples of such economies include the oil

and gas industries.27 By contrast, the formation of joint research ventures between firms is

not adequately modeled in a production economy setting; nonetheless, it is apparent that

research venture formation may be modeled using multilateral matching.28

7 Extension: Markets with Externalities

In this section, we incorporate externalites into our model by relaxing the assumption that

vi(rω, r−ω) = vi(r̃ω, r−ω) for all ω ∈ Ω such that i /∈ a(ω). For clarity, throughout this

section we express the valuation function vi of agent i as vi(rΩi ; rΩ−Ωi), to highlight the fact

that i treats participation in ventures to which he is not a party as exogenous. Abusing

terminology slightly, we will say that vi(rΩi ; rΩ−Ωi) is concave if it is concave in the venture

participation rΩi of agent i for all rΩ−Ωi . Note that we allow for arbitrary externalities so

long as each vi(r) is continuous in r = (rΩi , rΩ−Ωi).

We must now consider demand functions of the form

D̄i(p; r̃) ≡ arg max
0≤r≤rmax

[vi(rΩi ; r̃Ω−Ωi)− pi · r],

where the additional input r̃ highlights the dependence of the demand of agent i on the

venture participation of other agents, r̃Ω−Ωi . As in the case without externalities, the demand

correspondence D̄i(p; r̃) has the feature that if (rΩi , rΩ−Ωi) ∈ D̄i(p; r̃), then (rΩi , řΩ−Ωi) ∈
27To incorporate such economies, it suffices that the valuation functions of agents with uncertain outcomes

incorporate an expectation operator.
28As we remarked in Footnote 7, examples such as joint research ventures show the true strength of our

framework; while economies with production complementarities may be modeled using only bilateral con-
tracting, economic activities which exhibit externalities across contractual partners require the full generality
of multilateral contracting.
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D̄i(p; r̃) for all řΩ−Ωi such that 0 ≤ řΩ−Ωi ≤ rmax
Ω−Ωi

; this allows us to define the demand

correspondence for the entire economy by

D̄(p; r̃) ≡
⋂
i∈I

D̄i(p; r̃).

In this context a competitive equilibrium is an arrangement [r; p] such that r ∈ D̄(p; r).

Our next theorem shows that competitive equilibria exist when agents’ valuation func-

tions are concave—even in the presence of externalities.

Theorem 9. Suppose that agents’ valuation functions vi(rΩi ; rΩ−Ωi) are concave (in rΩi).

Then a competitive equilibrium exists.

Unlike the proof of Theorem 3, the proof of Theorem 9 relies on fixed-point methods. In

particular, we use Kakutani’s fixed point theorem to show that

F (r̃) ≡ arg max
0≤r≤rmax

∑
i∈I

vi(rΩi ; r̃Ω−Ωi)

has a fixed point r̂. Arguments analogous to the the proof of Theorem 2 show that there exist

prices that support r̂ in competitive equilibrium. Note, however, that competitive equilibria

in the presence of externalities are generally not efficient.

While this approach allows us to find competitive equilibria in settings with externalities,

the added generality comes at a cost: we must use Kakutani’s fixed point theorem rather

than the differential (and easily computable) method used to prove Theorem 3.

Stable outcomes correspond to competitive equilibria in the presence of externalities if

agents, when considering whether to choose to contracts in a blocking set Z, assume that

no other contracts will change.29 If, however, agents are able to accurately predict that

contracts in Z − Zi will transact, then competitive equilibria may not correspond to stable

outcomes.30

29 It is clear that if [r; p] is a competitive equilibrium, then κ([r; p])i is individually rational for all i ∈ I.
30This distinction in the stability of competitive equilibrium outcomes is analogous to the distinction
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To see the difference between the two stability notions, suppose that I = {h, i, j, k},Ω =

{ψ, ω} where a(ψ) = {i, j}, a(ω) = {h, k}, and rmax = (1, 1). Let

vi(rψ; rω) = −rψ, vh(rω; rψ) = −rω,

vj(rψ; rω) = 3rψrω, vk(rω; rψ) = 3rωrψ.

These valuations may be interpeted as indicating that i and h sell raw materials to j and

k respectively, and that there is only a market for j’s product if k sells its product and

vice versa. In this setting, there are two competitive equilibrium allocations: (0, 0) and

(1, 1). For the allocation (0, 0), the only supporting price matrix is 0; each pair ({i, j} and

{h, k}) is unwilling to begin production without the other pair doing so as well, so the set

Z = {(ψ, 1, (2,−1, 0, 0)), (ω, 1, (0, 0, 2,−1))} blocks ∅ if and only if every agent expects all

of the other agents to choose their contracts in Z.31

8 Conclusion

Our work shows that matching theory can incorporate certain forms of complementarity so

long as contracts are continuously divisible. In that case, when agents’ valuation functions

are concave, competitive equilibria exist, correspond to (strongly group) stable outcomes,

and yield core outcomes. Analogues of the first and second welfare theorems hold as well.

Even in the presence of externalities, competitive equilibria exist so long as agents’ valuations

are concave. Further work is needed, however, to identify the correct notion of stability for

matching models with externalities and characterize the relationship between that stability

concept and the concept of competitive equilibrium.

Previous matching models have obtained conclusions similar to ours—existence and cor-

respondence results for competitive equilibria and stable outcomes (in the presence of quasi-

between Cournot and consistent conjectures (Bresnahan (1981)) equilibria in oligopoly theory.
31When writing transfer vectors, we list transfers in the alphabetical order of agents.
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linear utility). However, these results have depended crucially on the presence of (full)

preference substitutability, which rules out complementarities of the types encoded in our

model’s multilateral contracts. The key distinction between the prior work and our model

is in the structure of the contractual space: whereas previous models have typically allowed

agents to contract over discrete participation levels, we require instead that agents be al-

lowed to continuously adjust participation. Our work therefore reveals a tradeoff between

modeling assumptions: when contract participation levels are discrete, complementarities

must be assumed away, while when they are continuous, some complementarities can be

incorporated.

Assuming contractual divisibility seems reasonable in a number of industrial settings,

such as chemical synthesis, assembly of durable goods, and automobile manufacturing (Fox

(2008, 2010)). It also seems appropriate in the context of online advertising, where billions

of impressions are sold. Multilateral matching models allow us to understand the market

outcomes in these settings; they may also prove useful for both empirical work and market

design applications in settings with complementarities.

Meanwhile, divisibility may not be a reasonable assumption for markets (such as that for

large-scale construction) where each individual product is unique and of a discretely specified

size. In those markets, other analytical tools are needed: perhaps “large market” effects will

facilitate analysis as they have in the setting of matching with couples (Kojima et al. (2010);

Ashlagi et al. (2011)).
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A Example Omitted from the Main Text

We present an example of an outcome that is in the core and stable, but is not strongly group

stable. Let I = {i, j}, Ω = {χ, ψ, ω}, and a(χ) = a(ψ) = a(ω) = I, rmax
χ = rmax

ψ = rmax
ω = 1

and let

vi(r) = −2rψ − 2rω − 5 min{rψ, rω} − 11 min{rχ, rψ, rω},

vj(r) = 2rχ + rψ + rω + 11 min{rχ, rψ, rω}.

Any outcome of the form A = {(χ, 1, (−q, q))} such that 0 ≤ q ≤ 2 is both stable and in the

core. However, it is not strongly group stable, as it is not strongly unblocked—to see this,

take Z = {(ψ, 1, (−6, 6)), (ω, 1, (−6, 6))}.
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B The Illustrative Example Revisited

In this appendix, we provide the underlying production economy for the example of Section 2,

under the additional assumption that (rmax
ω , rmax

ψ ) = (400, 210). Let I = {c, s, g, k, b}, G =

{c, g, s, k}, and Ω = {ω, ψ} where the production processes are defined by

ωih =



−1
5

i = c and h = c

−2
5

i = g and h = g

−2
5

i = s and h = s

1 i = k and h = k

0 otherwise,

ψih =


−1 i = g and h = g

1 i = b and h = g

0 otherwise,

consumption valuations are given by

v̇c(cc) = 80ccc ,

v̇g(cg) = 25cgg ,

v̇s(cs) = 30css −
1

16
(css )2,

v̇k(ck) = 60ckk −
7

100
(ckk )2,

v̇b(cb) = 32 max{cbg, 50},
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and initial endowments are

ec = (80, 0, 0, 0),

eg = (0, 210, 0, 0),

es = (0, 0, 200, 0),

ek = (0, 0, 0, 0),

eb = (0, 0, 0, 0).

(We use the convention that the elements of vector ei = (eic, eig, eis, eik) are given in the order

cement, gravel, sand, concrete.) It is clear that the production economy thus illustrated

yields the multilateral matching economy presented in Section 2.
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C Proofs of Theorems

Proof of Theorem 1

Consider any competitive equilibrium [r; p]. Theorem 7 shows that κ([r; p]) is strongly group

stable, hence by Theorem 6 it is in the core and efficient.

Proof of Theorem 2

We consider any efficient r̂. By definition, r̂ is a solution to the problem

arg max
0≤r≤rmax

∑
i∈I

vi(r). (2)

For each agent i ∈ I, denote by ∂vi(r) the subgradient of vi at r. Since the vi are all

continuous, ∂vi(r) is nonempty for all r.

If pi ∈ ∂vi(r̂), then r̂ is a solution to

arg max
0≤r≤rmax

(vi(r)− pi · r)

as vi(r) is concave. Thus, to show the result it suffices to show that for each i ∈ I there

exists pi ∈ ∂vi(r̂) such that the matrix p is a valid price matrix (i.e. so that
∑

i∈I p
i
ω = 0 for

all ω ∈ Ω). But this is immediate: Since r̂ maximizes (2), we must have32

0 ∈ ∂
∑
i∈I

vi(r̂) =
∑
i∈I

∂vi(r̂);

it follows that there exist pi ∈ ∂vi(r̂) such that
∑

i∈I p
i = 0.

32Here, for sets A ⊆ R|Ω| and B ⊆ R|Ω|, we denote by A+B the sumset

A+B = {a+ b : a ∈ A, b ∈ B}.
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Proof of Theorem 3

Let r̂ be a solution to (2); such a solution is guaranteed to exist as the vi are all continuous

and the domain of the maximization problem (2) is compact. The allocation r̂ is efficient

and hence, by Theorem 2, there exist prices p such that [r̂; p] is a competitive equilibrium.

The uniqueness of the competitive equilibrium in the case where the vi are strictly con-

cave and continuously differentiable is immediate: Strict concavity implies that there exists

a unique r̂ solving (2). Furthermore, when the valuation functions vi are continuously dif-

ferentiable, the subgradients ∂vi are single-valued, and hence yield a unique price matrix p

in the proof of Theorem 2.

Proof of Theorem 4

We suppose that the function vi(r) is not concave at the point r̃ ∈ ×ω∈Ω[0, rmax
ω ].33 For each

j 6= i, we set

vj(r) = −m‖rΩj − r̃Ωj‖,

where ‖ · ‖ is the Euclidean norm and m ∈ R≥0 is sufficiently large that r̃ is the unique

solution to the global maximization problem (2).

By construction, r̃ is the only efficient allocation. However, there do not exist prices p

for which [r̃; p] is a competitive equilibrium. Indeed, for any choice of pi we have

r̃ 6∈ arg max
0≤r≤rmax

(vi(r)− pi · r),

as vi is not concave at r̃. Hence, r̃ 6∈ Di(p) ⊇ D(p) for any p. It then follows from Theorem 1

that no arrangement can be a competitive equilibrium.

33Note that this implies that there is least one agent in addition to i who shares participation in some
venture in Ωi.
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Proof of Theorem 5

From Theorem 1, we know that

r̂(`) = arg max
0≤r≤rmax

∑
i∈I

vi(r; `). (3)

Taking first-order conditions of the constrained maximization problem (3) with respect to

rω for all ω ∈ Ω, we have ∑
i∈I

∂vi(r̂(`); `)

∂rω
+ λω − µω = 0

along with the constraint conditions

λω(0− rω) = 0,

µω(rω − rmax
ω ) = 0.

From the implicit function theorem, we have

∂r̂(`)

∂`
= −H−1 ∂

∂`



0

...

0∑
j∈I

∂vi(r̂(`);`)
∂rω1

...∑
j∈I

∂vi(r̂(`);`)
∂r
ω|Ω|−1∑

i∈I
∂vi(r̂(`);`)

∂rψ



,
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where H is the bordered Hessian of our constrained maximization problem and we have

denoted Ω = {ω1, . . . , ω|Ω|−1, ψ}. Hence,

∂r̂(`)

∂`
= −H−1



0

...

0∑
i∈I

∂vi(r̂(`);`)
∂rψ



(
0 · · · 0 1

)
∂r̂(`)

∂`
= −

(
0 · · · 0 1

)
H−1



0

...

0∑
i∈I

∂vi(r̂(`);`)
∂rψ


.

It follows immediately that
∂r̂ψ(`)

∂`
≥ 0, as H is negative semidefinite.

Proof of Theorem 7

Since [r; p] is a competitive equilibrium, we have that for all i ∈ I,

r ∈ Di(p) = arg max
0≤r≤rmax

(vi(r)− pi · r),

κ([r; p])i ∈ arg max
Z⊆Yi

(vi(Z)− pi · ρ(Z)),

κ([r; p])i ∈ Ci(κ([r; p])i),

where Y ≡ {(ω, r̃ω, s̃ω) ∈ X : ω ∈ Ω, r̃ω ∈ [0, rmax
ω ], s̃ω = pω · r̃ω}. The last line follows as

κ([r; p]) ⊆ Y . Hence, κ([r; p]) is individually rational.

Now suppose that κ([r; p]) is not strongly unblocked, and let Z be a set such that for all

i ∈ a(Z) there exists a Y i ⊆ Z ∪ κ([r; p]) such that Zi ⊆ Y i and ui(Y i) > ui(κ([r; p])). For

38



each i ∈ a(Z), fix a Y i ∈ Ci(Z ∪ κ([r; p])) such that Zi ⊆ Y i. For all i ∈ a(Z), we have that

ui(Y i) > ui(κ([r; p]))

vi(ρ(Y i))− πi(Y i) · ρ(Y i) > vi(ρ(κ([r; p])))− πi(κ([r; p])) · ρ(κ([r; p])). (4)

Summing (4) over agents i ∈ a(Z), we obtain

∑
i∈a(Z)

(
vi(ρ(Y i))− πi(Y i) · ρ(Y i)

)
>
∑
i∈a(Z)

(
vi(ρ(κ([r; p])))− πi(κ([r; p])) · ρ(κ([r; p]))

)
,

∑
i∈a(Z)

(
vi(ρ(Y i))− pi · ρ(Y i)

)
>
∑
i∈a(Z)

(
vi(ρ(κ([r; p])))− pi · ρ(κ([r; p]))

)
, (5)

where the second inequality follows as

1. πi(κ([r; p])) · ρ(κ([r; p])) = pi · ρ(κ([r; p])),

2. if (ω, r̂ω, ŝω) ∈ Z, then a(ω) ⊆ a(Z); hence
∑

i∈a(Z) π
i
ω(Y i) = 0 =

∑
i∈a(Z) p

i
ω as

(ω, r̂ω, ŝω) ∈ Y i for all i ∈ a(Z), and

3. if (ω, r̂ω, ŝω) ∈ Y i − Z for some i ∈ a(Z), then ŝω = piω · rω.

But the inequality (5) implies that for at least one j ∈ a(Z),

vj(ρ(Y j))− pj · ρ(Y j) > vj(ρ(κ([r; p])))− pj · ρ(κ([r; p]))

vj(ρ(Y j))− pj · ρ(Y j) > vj(r)− pj · r

so that r /∈ Dj(p) and, hence, [r; p] is not a competitive equilibrium.

Thus, κ([r; p]) is strongly unblocked and, hence, is strongly group stable. That κ([r; p])

is stable and in the core follows from Theorem 6.
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Proof of Theorem 8

Consider any stable outcome A. Let r = ρ(A) and p = π(A). Let siω = piω ·rω be the transfer

payment to agent i as part of the contract (ω, rω, sω) ∈ A. Suppose that r is not efficient.

Then as the vi are concave, we know that 0 /∈ ∂
∑

i∈I v
i(r). It follows that there exists ψ ∈ Ω

such that 0 6= r̆ψ for all r̆ ∈ ∂
∑

i∈I v
i(r). Choose some r̊ ∈ ∂

∑
i∈I v

i(r), let

řω =


r̊ψ ω = ψ

0 otherwise,

and let r̃ ≡ r + εř, with ε 6= 0 chosen so that
∑

i∈I v
i(r̃) >

∑
i∈I v

i(r) and 0 ≤ r̃ ≤ rmax.34

Now consider the set {(ψ, r̃ψ, s̃ψ)} where

s̃jψ ≡


sjψ − (vj(r̃)− vj(r)) +

∑
i∈a(ψ)[v

i(r̃)−vi(r)]
|a(ψ)| j ∈ a(ψ)

0 otherwise.

Each agent j ∈ a(ψ) strictly prefers {(ψ, r̃ψ, s̃ψ)} ∪ (A− {(ψ, rψ, sψ)}) to A. It follows that

(ψ, r̃ψ, s̃ψ) ∈ Y for each Y ∈ Cj({(ψ, r̃ψ, s̃ψ)} ∪ A), and so {(ψ, r̃ψ, s̃ψ)} blocks A.

Proof of Corollary 2

Given Theorem 8, the result follows immediately from Theorem 2, as for any efficient allo-

cation r, we can find prices p such that [r; p] is a competitive equilibrium.

Proof of Theorem 9

We let

F (r̃) ≡ arg max
0≤r≤rmax

∑
i∈I

vi(rΩi ; r̃Ω−Ωi).

34Note that since 0 /∈ ∂
∑
i∈I v

i(r), r is not a global maximum, and in particular since 0 /∈ [∂
∑
i∈I v

i(r)]ψ,
there exists some ε such that

∑
i∈I v

i(r) <
∑
i∈I v

i(r̃); it is clear that r̃ψ ∈ [0, rmax
ψ ].
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Note that by the Theorem of the Maximum, F is non-empty, compact-valued, and upper

hemicontinuous. As ×ω∈Ω[0, rmax
ω ] is non-empty, compact, and convex, Kakutani’s fixed point

theorem implies that there exists an r̂ such that F (r̂) = r̂.

An argument exactly analogous to the proof of Theorem 2 then shows that there exists

a price matrix p such that

r̂ ∈ D̄i(p; r̂),

hence [r̂; p] is a competitive equilibrium.
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