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Abstract

The goal of this paper is to develop formal techniques for analyzing the relative in-sample

performance of two competing, misspeci�ed non-nested models in the presence of possible data

instability. The central idea of our methodology is to propose a measure of the models�local rel-

ative performance: the "local Kullback-Leibler Information Criterion" (KLIC), which measures

the relative distance of the two models�(misspeci�ed) likelihoods from the true likelihood at a

particular point in time. We discuss estimation and inference about the local relative KLIC;

in particular, we propose statistical tests to investigate its stability over time. Compared to

previous approaches to model selection, which are based on measures of "global performance",

our focus is on the entire time path of the models�relative performance, which may contain use-

ful information that is lost when looking for a globally best model. The empirical application

provides insights into the time variation in the performance of a representative DSGE model of

the European economy relative to that of VARs.
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1 Introduction

The problem of detecting time-variation in the parameters of econometric models has been widely

investigated for several decades, and empirical applications have documented that structural insta-

bility is widespread.

In this paper, we depart from the literature by investigating instability in the performance of

models, rather than instability in their parameters. The idea is simple: in the presence of structural

change, it is plausible that the performance of a model may itself be changing over time, and this

is not necessarily related to the presence of instability in the model�s parameters. In particular,

when the problem is that of comparing the performance of competing models, it would be useful

to understand which model performed better at which point in time.

The goal of this paper is therefore to develop formal techniques for conducting estimation and

inference about the relative performance of two models over time, and to propose tests that can

be used to understand which model performed better at each point in time. Existing econometric

tools appear inadequate for answering these questions. On the one hand, model selection tests

such as Rivers and Vuong (2002), while allowing the data to have time-varying marginal densities,

work under the assumption that there exists a "globally best" model. On the other hand, existing

analyses of structural instability solely focus on the parameters of the model, whereas - as the

motivating example below will illustrate - it may happen that the relative performance of two

models is constant even though their parameters are time-varying or, on the contrary, that the

parameters are constant but the relative performance of the models changes over time.

The central idea of our method is to propose a measure of the models�local relative performance:

the "local Kullback-Leibler Information Criterion" (KLIC), which measures the relative distance of

the two (mis-speci�ed) likelihoods from the true likelihood at a particular point in time. This stands

in contrast to the approach of, e.g. Rivers and Vuong (2002), who focus on "global" measures of

performance. We then investigate estimation and inference about the local relative KLIC.

Our proposed estimate of the local relative KLIC has a non-parametric �avor. It is obtained

by estimating kernel-weighted relative likelihoods, which, importantly, depend on parameters that

are also estimated by maximizing kernel-weighted likelihoods. A simple and practically appealing

example of such an estimate is obtained by choosing a rectangular kernel, in which case one sim-

ply estimates the two models recursively by maximum likelihood (ML) over rolling windows and

computes the di¤erence of the average likelihood of each model over the estimation window.

Regarding inference about the local relative performance, we reach several conclusions. First,

we show that the dependence of the local performance on unobserved parameters does not a¤ect

the asymptotic distribution of the measure of relative performance, as long as the parameters

are also estimated locally. Second, in deriving asymptotic inference about our local measure of
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performance, we depart from the standard approach in the literature by considering two alternative

asymptotic approximations, which we refer to as "�xed bandwidth" and "shrinking bandwidth".

We investigate the advantages and limitations of the two approaches and compare the quality of

the approximation that they deliver in �nite samples. Our Monte Carlo simulations show that the

"shrinking bandwidth" approach performs worse than the "�xed bandwidth" approach for sample

sizes that are typical for macroeconomists.

In both asymptotic approximations, we show how to estimate the models�relative performance

and test for the hypothesis that the two models perform equally well at each point in time. While

such procedures are appealing because of their �exibility and ease of implementation, they do not

specify an alternative hypothesis, and as a result they may not have optimality properties nor be

appropriate for situations in which the time evolution of the relative performance of the models

is not smooth. We thus further propose testing and estimation procedures that have optimality

properties in the leading and realistic case in which there is a one-time reversal in the relative

performance of the models. The Monte Carlo experiment suggests that these tests performs quite

well in practice. One important limitation of our approach is that our methods are not applicable

when the competing models are nested. This limitation is common in the literature on model

selection testing based on Kullback-Leibler-type of measures. See Rivers and Vuong (2002) for an

in-depth discussion of this issue.

Our research is related to several papers in the literature, in particular Rossi (2005) and, more

distantly, to Muller and Petalas (2009), Elliott and Muller (2005), Andrews and Ploberger (1994)

and Andrews (1993). Rossi (2005) focuses on the di¤erent problem of testing models� relative

performance for nested and correctly speci�ed models in the presence of instabilities in the para-

meters. In her approach, the models�relative performance is equal at each point in time only if the

parameters that are speci�c to the larger model are not time varying and equal to zero. Our paper

instead focuses on both estimation and testing of the relative performance of non-nested and possi-

bly mis-speci�ed models in unstable environments, which may or may not be related to parameter

instabilities. As we will show, the models�relative performance can be stable and equal over time

even if the parameters of the competing models change over time. Similarly, the models�relative

performance can change over time even if the parameters of the competing models are stable. In

a companion paper, Giacomini and Rossi (2010) investigate the related problem of estimating and

testing the time variation in the relative performance of models in an out-of-sample forecasting con-

text. Even though some of the techniques are similar, the additional complication in the in-sample

context considered in this paper is that the measure of relative performance depends on estimated

parameters, which need to be taken into account when performing inference. This is also the rea-

son for the introduction of the two di¤erent asymptotic approximations with �xed and shrinking

bandwidth that we consider in this paper. The dependence on parameter estimates can instead be
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ignored in an out-of-sample context, provided one adopts the asymptotic approximation with �nite

estimation window considered by Giacomini and Rossi (2010). Our approach is also related to,

but fundamentally di¤erent from, existing tests of parameter stability in that once the measure of

local performance is de�ned, its time variation could in principle be investigated by adapting tools

developed in the structural break testing literature to our di¤erent context (e.g., Brown, Durbin

and Evans, 1975; Ploberger and Kramer, 1992; Andrews, 1993; Andrews and Ploberger, 1994; El-

liott and Muller, 2005; Muller and Petalas, 2009). Thus, our tests for the presence of instability

in the models� relative performance can be in principle related to this literature, but only after

acknowledging that we are testing a di¤erent, joint hypothesis that the performance of the models

is stable and equal at each point in time. For example, our interest in estimating the path of time

variation is similar to Muller and Petalas (2009), but we adopt a di¤erent approach, which has a

non-parametric �avor. In deriving inference about our proposed estimator, we build on the ap-

proach of Wu and Zhao (2007) for the standard "shrinking bandwidth" asymptotic approximation,

but we also consider an alternative and novel "�xed-bandwidth" asymptotic approximation which,

as it turns out, delivers more reliable inferences for the sample sizes usually available in practice to

macroeconomists.

The paper is structured as follows. The next section discusses a motivating example that

illustrates the procedures proposed in this paper. Section 3 de�nes the notation used throughout

the paper, and Section 4 describes the two alternative asymptotic approximations. Section 6

evaluates the small sample properties of our proposed procedures in a Monte Carlo experiment,

and Section 6 presents the empirical results. Section 7 concludes. The proofs are collected in the

Appendix.

2 Motivating Example

Consider an i.i.d. variable yt with conditional density ht : N(�txt+
tzt; 1); xt � i:i:d:N(0; var(xt));

zt � i:i:d:N(0; var(zt)); xt and zt are independent and t = 1; :::; T . The researcher wants to

compare two mis-speci�ed models: model 1, which speci�es a density ft : N(�txt; 1) and model

2, with density gt : N(
tzt; 1). To measure the relative distance of ft and gt from ht at time t

we propose using the Kullback-Leibler Information Criterion at time t, �KLICt, (henceforth the

�local relative KLIC�), de�ned as:

Local relative KLIC : �KLICt = E [log ht=gt]� E [log ht=ft] = E [log ft � log gt] ; (1)

where the expectation is taken with respect to the true density ht. If �KLICt > 0; model 1

performs better than model 2 at time t: Simple calculations show that, in our example:

�KLICt =
1

2
(�2t var(xt)� 
2t var(zt)) (2)
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Intuitively, the �KLICt measures the relative degree of mis-speci�cation of the two models at

time t. For model 2, the contribution of its mis-speci�cation is re�ected in the contribution of

the omitted variable xt to the variance of the error term, which equals �2t var(xt). Similarly, the

mis-speci�cation of model 1 is measured by 
2t var(zt). Thus, model 2 performs better than model

1 if the contribution of its mis-speci�cation to the variance of the error is smaller than for model 1.

Importantly, equation (2) shows that the time variation in the relative KLIC re�ects the time

variation in the relative mis-speci�cation of the two models. In particular, the time variation in

the relative KLIC might be due to the fact that the parameters �t; 
t change in ways that a¤ect

�KLICt di¤erently over time. However, time variation in the local relative KLIC might also occur

when the parameters are constant but var(xt) and var(zt) change in di¤erent ways over time.

Finally, note that time variation in the parameters need not necessarily cause time variation in the

relative performance; in fact, �KLICt can be constant if �2t var(xt) and 

2
t var(zt) change in the

same way. This may happen when the variances are constant but the parameters change over time

in the same way, �2t = 
2t , or because changes in the variances o¤set the relative contribution of

the parameter changes to the KLIC.1

As two concrete examples, consider the following scenarios of changes in the relative performance

of the models. In the �rst scenario, �t varies smoothly and 
; var(xt); var(zt) are constant,

t = 1; :::; 100. For example, �t may evolve according to a random walk. Figure 1(a) shows a

possible path for the relative performance. Alternatively, in the second scenario �; 
; var(zt) are

constant but var(xt) has a break at T=2.

To show why existing approaches to model comparison based on comparing global measures

of performance could give misleading conclusions, notice that the test of Rivers and Vuong (2002)

would compute the global relative KLIC (T�1
PT

t=1�KLICt), represented by the large dot in

the �gures, which compares the average performance of the models over the whole sample. It is

clear that in these examples the global relative KLIC is very close to zero, in which case the null

hypothesis that the two models perform equally well cannot be rejected. One can see that this

occurs because there are reversals in the relative performance of the models during the time period

considered. Since model 1 is better than model 2 in the �rst part of the sample, but model 2 is

better than model 1 in the second part of the sample by a similar magnitude, on average over the

full sample the two models have similar performance. However, the �gure shows that the relative

performance did change over time, and that the existing approaches would miss this important

feature of the data. In this paper, we thus advocate focusing on local measures of performance,

which will allow the user to recover the full information about the relative performance of the

1Note that, for the linear models considered in this example, our null hypothesis is related to requiring that the

variances of �txt and of 
tzt are equal at each point in time, which is equivalent to constancy of the sum of squared

residuals, an issue examined in Qu and Perron (2007). Section 3 shows that, however, our procedures are more

generally applicable to non-linear and general likelihood models.
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models over time.

As can be seen from expression (2), the main challenge in estimating the local relative KLIC is

its dependence on unknown parameters �t and 
t: We solve this problem by estimating both the

parameters �t; 
t and the measure of relative performance �KLICt non-parametrically. When

considering inference about the relative performance, we consider two alternative asymptotic ap-

proximations. The �rst is the classical shrinking-bandwidth approximation. A possible concern with

the standard shrinking bandwidth approximation is that it might perform poorly in small samples,

such as those available to macroeconomists. We therefore consider an alternative approximation

where the bandwidth is �xed. In this approximation, consistent estimation of the local relative

performance is not possible, but it is nonetheless possible to estimate consistently a "smoothed"

version of the local relative KLIC.The object of interest thus becomes:

Smoothed local relative KLIC : �KLIC�t = E

24 1

Th

TX
j=1

K

�
t� j
Th

�
(log fj(�

�
t )� log gj (
�t ))

35 ;
(3)

where K (�) is a kernel function, h the bandwidth, and ��t and 
�t are de�ned as

��t = argmax
�

E

24 1

Th

TX
j=1

K

�
t� j
Th

�
log fj(�)

35 ;

�t = argmax



E

24 1

Th

TX
j=1

K

�
t� j
Th

�
log gj(
)

35 :
In particular, when using a rectangular kernel the smoothed �KLIC becomes the local average

of �KLICt over moving windows of size m = Th :

�KLIC�t = E

24 1
m

t+m=2X
j=t�m=2+1

(log fj(�
�
t )� log gj (
�t ))

35 ,
and ��t and 


�
t are the maximum likelihood "pseudo-true" parameters,

��t = argmax
�

E

24 1
m

t+m=2X
j=t�m=2+1

log fj(�)

35

�t = argmax



E

24 1
m

t+m=2X
j=t�m=2+1

log gj(
)

35 :
In the example, the local average is�KLICt = 1

2

h
��2t

1
m

Pt+m=2
j=t�m=2+1 var(xj)� 


�2
t
1
m

Pt+m=2
j=t�m=2+1 var(zj)

i
.

INSERT FIGURE 1 HERE
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An alternative measure of the models�relative performance could be obtained by �rst testing for

equal performance over time and, in case of rejection, approximating the relative KLIC assuming

a speci�c form of time variation under the alternative, such as a one-time reversal. In the example

previously considered, the dotted lines in Figures 1(c,d) depict �KLIC�t for a bandwidth m=T =

1=5. The time-path of the relative KLIC under the one-time reversal scenario of Figure 1(d) would

be the solid line, which extracts more accurate information about the time variation in relative

performance, even though it would provide a poor approximation to the case depicted in Figure

1(c).

Note that, according to the average likelihood ratio test of Rivers and Vuong (2002), represented

by the large dot, researchers that are interested in selecting a model for policy purposes or forecast

evaluation would be indi¤erent between the two models. However, the model that �ts the data

better in the most recent data is model 2, which is the one that should be selected for policy

analysis and forecasting. To uncover such changes in the relative performance, we propose a

number of statistical tests. In particular, we provide boundary lines that would contain the time

path of the models�smoothed local relative KLIC with a pre-speci�ed probability level under the

null hypothesis that the relative performance is equal. We refer to this test as the Fluctuation

test in analogy with the literature on parameter stability testing without assuming an alternative

hypothesis (Brown et al. 1975 and Ploberger and Kramer 1992). Figures 1(d,e) depict such

boundary lines. Clearly, the test rejects the hypothesis that the relative performance is the same.

When this happens, researchers can rely on visual inspection of the local average �KLIC to

ascertain which model performed best at any point in time.

In addition, we also propose tests that are designed to have good power properties against a

speci�c alternative, such as a one-time reversal in the relative performance of the models. Figures

1(g,h) illustrate one of these procedures (the One-time Reversal test2) for the two cases. The pro-

cedure estimates the time of the largest change in the relative performance, and then �ts measures

of average performance separately before and after the reversal. Figure 1(h) shows that when the

true underlying relative performance has a sharp reversal, such as in the second scenario, then

the procedure will accurately estimate its time path. However, when the true underlying relative

performance evolves smoothly over time, then the procedure will approximate it with a sharp re-

versal, as depicted in Figure 1(g). In both cases, the One-time Reversal test strongly rejects the

null hypothesis of equal performance.

2The One-time Reversal test is implemented as a Sup-type test. See Section 4.2 for more details.
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3 Estimation

In this section, we set forth our approach and propose an estimator of the relative performance of

two models over time. We assume that the user has available two possibly mis-speci�ed parametric

models for the variable of interest yt: The models can be multivariate, dynamic and nonlinear. In

line with the literature (e.g., Vuong (1989) and Rivers and Vuong (2002)), an important restriction

is that the models must be non-nested, which loosely speaking means that the models�likelihoods

cannot be obtained from each other by imposing parameter restrictions. We measure the relative

performance of the two models at each point in time by the local relative KLIC, which represents

the relative distance of the two models from the true, unknown, data-generating process at time t :

�KLICt (�t) = E[�Lt(�t)] = E[log ft(�t)� log gt(
t)]; (4)

for t = 1; :::; T;

where ft and gt are the likelihoods for the two models and �t = (�0t; 

0
t)
0, where

�t = argmax
�2B

E[log ft(�)]

where B is a compact parameter space. A similar de�nition holds for 
t:

The challenge in estimating the local relative performance of the models is twofold. First, the

local relative KLIC is not observable and not necessarily consistently estimable because it is de�ned

as an expectation which could be time-varying. Second, the likelihood di¤erence �Lt(�t) is itself

not observable because it depends on �t; which cannot in general be estimated consistently, unless

one is prepared to make assumptions about the nature of its potential time variation.

We overcome these challenges by considering a non-parametric framework for estimating�KLICt (�t).

Speci�cally, we assume

�Lt(�t) = �t + "t; t = 1; :::; T (5)

�t = �(t=T; � (t=T )); (6)

where the zero-mean process "t is such that a strong invariance principle is satis�ed, as discussed

in Assumption SB below. We further assume that �t and �t are generated by smooth functions

�(t=T; � (t=T )) and � (t=T ) de�ned on [0; 1].

We consider the following nonparametric estimator of �t :
3

b�(�) � b��� ;b� (�)� = 1

Th

TX
t=1

K

�
� � t=T

h

�
�Lt

�b� (�)� (7)

3Note that the de�nition is consistent with that in 3 except that we are using the fact that t = [�T ] :
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where K (�) is a kernel with
R
K (u) du = 1, h is the bandwidth and � 2 [0; 1] is such that t = [�T ].

We assume that the parameters of the models are also estimated "locally". E.g., the estimatorb� (�) for the �rst model is the solution to
1

Th

TX
t=1

K

�
� � t=T

h

�
r log ft

�b� (�)� = 0; (8)

where r log ft (:) denotes the �rst derivative of the log-likelihood at time t. Note that, in the case
of the rectangular kernel considered in Corollary 6 below, this in practice amounts to recursively

estimating the parameters of the models by maximum likelihood over rolling windows of length Th:

4 Inference

In this section, we consider the problem of conducting inference about the local relative KLIC.

Our goal is to construct con�dence intervals and statistical tests of the hypothesis that the models

have the same performance at each point in time. Most of this section focuses on the empirically

appealing case of a rectangular kernel.

In considering the problem of inference, we depart from the standard approach in the nonpara-

metric literature and consider two alternative asymptotic approximations. One approximation is

the traditional "shrinking bandwidth" approximation considered in the literature. In this frame-

work, we will derive asymptotic con�dence bands that are simultaneous, and can therefore be used

to test the hypothesis of equal performance of the models at each point in time.

The alternative asymptotic approximation, which is new in the literature, considers a �xed

bandwidth. In this approximation, our proposed estimator (7) is not consistent for the local

relative KLIC, eq. (4), but it consistently estimates a smoothed version of the local relative KLIC,

eq. (3), derived as a kernel-weighted average of �KLICt, which, instead of depending on the local

parameter �t; depend on the pseudo-true parameters for the chosen kernel. One can thus view this

framework as replacing the population object of interest to be the smoothed local relative KLIC

instead of the local relative KLIC.

In both approximations, one issue that complicates our analysis is the fact that the likelihood

di¤erences depend in a non-linear way on the models�parameters, which are possibly time-varying.

As we discuss in more detail below, this fact makes it di¢ cult to obtain valid con�dence bands

without imposing restrictions on the amount of time variation in other aspects of the data. In

our approach, we will impose the assumption that the relative likelihood is globally covariance

stationary. One realistic case in which this assumption is satis�ed is when the parameters are

constant under the null hypothesis; another situation is when parameters change but in ways that

ensure that the necessary relative higher moments of the data are constant. When this assumption

is not satis�ed, one can rely on bootstrap methods such as Cavaliere and Taylor (2005).
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4.1 Fixed-bandwidth Asymptotic Approximation: The Fluctuation Test Ap-

proach

In this approximation, we focus on the empirically appealing rectangular kernel, which yields the

following smoothed local relative KLIC:

�KLIC�t = m�1
t+m=2X

j=t�m=2+1
E[�Lt(�

�
t )]; t = m=2; :::; T �m=2;

where ��t = (�
�0
t ; 


�0
t )
0 and, e.g.,

��t = argmax
�

m�1
t+m=2X

j=t�m=2+1
E[ft(�)];

and where m = Th.

The smoothed local relative KLIC can be consistently estimated by replacing the expectation

with its sample analog and by replacing ��t with the local maximum likelihood estimator (8) com-

puted over rolling windows of size m: Notice that this procedure yields the same estimator of local

relative performance b�t considered in (7).
Deriving a distribution theory for b� under this alternative framework, and constructing con-

�dence bands in particular, is not possible if one wants to remain general about how �KLIC�t

changes over time. It is nonetheless possible to construct statistical tests of the hypothesis that

�KLIC�t equals zero at each point in time. We call this a Fluctuation test.
4

The Fluctuation test is derived under the following assumptions:

Assumption FB: Let � be s.t. t = [�T ] and � 2 [0; 1] : (1)
n
T�1=2

P[�T ]
j=1 [�Lj (�)� E (�Lj (�))]

o
obeys a Functional Central Limit Theorem (FCLT) for all � 2 �;� compact; (2) there exists a O (1)
and positive de�nite matrix V t such that V

�1=2
t

p
m
�b�t � ��t� d! N(0; I); as m ! 1 uniformly

in t (and similarly for b
t), and ��t is interior to � for every t; (3) m�1Pt+m=2
j=t�m=2+1r ln fj (�)

satisfy a Strong Uniform Law of Large Numbers, where r ln fj (�) is a row vector (and similarly
for r ln gj (
)); (4) Under H0 : �KLIC�t = 0 for all t = m=2; :::; T �m=2; �2 =limm!1

E(m�1=2Pt+m=2
j=t�m=2+1�Lj(�

�
t ))

2 > 0; (5) m=T ! h 2 (0;1) as m!1; T !1.

Assumption FB(4) imposes global covariance stationarity for the sequence of likelihood di¤er-

ences under the null hypothesis, and it thus limits the amount of heterogeneity permitted under the

null hypothesis. This assumption is in principle stronger than necessary, but it facilitates the state-

ment of the FCLT (see Wooldridge and White, 1988 for a general FCLT for heterogeneous mixing

sequences). Note that global covariance stationarity allows the variance to change over time, but

4See Brown et al. (1975) and Ploberger and Kramer (1992) for Fluctuation tests in the context of parameter

instability.
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in a way that ensures that, as the sample size grows, the sequence of variances converges to a �nite

and positive limit. For the case considered in Section 2, Assumption FB is satis�ed if, for example,

the parameters �t, 
t and the regressor variances are constant under the null hypothesis, implying

that �2 is also constant under the null hypothesis. Note that this would rule out a situation with

�KLIC�t being constant in the presence of time-varying parameters and variances. Such situation

is easier to accommodate within the shrinking bandwidth approximation, as we discuss in Section

4.3.

The following Proposition provides a justi�cation for the Fluctuation test.

Theorem 1 (Fluctuation Test) Suppose Assumption FB holds. Consider the test statistic

Ft = b��1m�1=2
t+m=2X

j=t�m=2+1
�Lj(b�t); (9)

t = m=2; :::; T �m=2; where b�2 is a HAC estimator of �2; given by, e.g.,
b�2 = q(T )�1X

i=�q(T )+1
(1� ji=q(T )j)T�1

TX
j=1

�Lj

�b�T��Lj�i �b�T� ; (10)

q(T ) is a bandwidth that grows with T (e.g., Newey and West, 1987) and b�T is the maximum

likelihood estimator computed over the full sample. Under the null hypothesis H0 : �KLIC�t = 0

for t = m=2; :::; T �m=2;

Ft =) [B (� + h=2)� B (� � h=2)] =
p
h; (11)

where t = [�T ] and B (�) is a standard univariate Brownian motion. The critical values for a
signi�cance level � are � k�, where k� solves

Pr

�
sup
�

���[B (� + h=2)� B (� � h=2)] =ph��� > k�

�
= �: (12)

The null hypothesis is rejected when maxt jFtj > k�: Simulated values of (�; k�) are reported in

Table 1 for various choices of h.

INSERT TABLE 1 HERE

4.2 Fixed Bandwidth Asymptotic Approximation: Tests Against a One-time

Reversal

This section derives tests that are designed for a speci�c form of time variation in the relative

performance of the models, in particular a one-time reversal. Let us de�ne the time path of the

relative performance under time variation as follows:

E (�Lt (�
�
t ; 


�
t )) = ��1 � 1 (t � [T�]) + ��2 � 1 (t > [T�])
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where t = 1; 2; ::; T , ��t (�) =
�
��0t ; 


�0
t

�0
; where � indexes the time of the reversal as a fraction of the

sample size, ��t = ��1 (�) � 1 (t � [T�]) + ��2 (�) � 1 (t > [T�]), where
��1 (�) = argmax� E

h�
1
[T�]

PT
t=1 ln ft (�) � 1 (t � [T�])

�i
,

��2 (�) = argmax� E
h�

1
[T (1��)]

PT
t=1 ln ft (�) � 1 (t > [T�])

�i
(and similarly for 
�t (�), which de-

pends on gt (
)). Let �� (�) =
�
��1 (�)

0 ; ��2 (�)
0�0, and similarly for 
� (�) ; and �� (�) = ��� (�)0 ; 
� (�)0�0.

Consider the problem of testing:

H0 : �
�
1 = ��2 = 0 8� 2 �;� � (0; 1) (13)

versus the alternative

HA : �
�
1 6= 0 or ��2 6= 0

for some � 2 �, [�] denotes the integer part of �:
For simplicity, and in order to derive �nite sample optimality results, assume

�Lt (�
�
t ; 


�
t ) = �KLIC

�
t + et (14)

where �KLIC�t � E (�Lt (�
�
t ; 


�
t )), et � iidN

�
0; �2

�
, and denote the log-likelihood of �Lt (��t ; 


�
t )

by lt (��; �), where �� � [��1; ��2]
0 : In analogy with the parameter instability testing literature, the

normality assumption is not a fundamental one here, but is only introduced in order to make

statements about the optimality of the test in �nite samples.5 The maximum likelihood estimators

of ��1 and �
�
2 are

b�1 (�) = 1

[T�]

[T�]P
t=1
�Lt

�b�t (�)� ; b�2 (�) = 1

[T (1� �)]
TP

t=[T�]+1

�Lt

�b�t (�)� (15)

and b� (�) � [b�1 (�) ; b�2 (�)]0, b�t (�) = b�1 (�) � 1 (t � [T�]) + b�2 (�) � 1 (t > [T�]), where b�1 (�) =
argmax�

�
1
[T�]

PT
t=1 ln ft (�) � 1 (t � [T�])

�
, b�2 (�) = argmax� � 1

[T (1��)]
PT

t=1 ln ft (�) � 1 (t > [T�])
�
,b�1 (�) � hb�1 (�)0 ; b
1 (�)0i0 (and similarly for b�2 (�)); b� (�) = �b�1 (�)0 ; b�2 (�)0�0 (and similarly forb
 (�)), b� (�) � hb� (�)0 ; b
 (�)0i0 :

Let Q� (:) denote a weight function that, for each �, gives the same weight to ellipses associated

with Wald-type tests of the null hypothesis (13) for the case in which � is �xed and known. Let

J (�) be an integrable weight function on the values of �. The LR statistic for testing the null

hypothesis (13), which implies lt (0; �) ; against a local alternative of the form lt
�
��T�1=2; �

�
for

some �� � [��1; ��2]
0 is:

LRT =

R
�T
�
��T�1=2; �

�
dQ� (�

�) dJ (�)R
�T (0) dQ� (�

�) dJ (�)
; (16)

5Relaxing the normality assumption does not invalidate the test. In particular, these assumptions can be relaxed to

allow for general likelihood forms and non iid distributions at the price of increasing notational complexity (involving

specifying an additional distribution function for �Lt (:) and notation for its score function) using results such as,

e.g., Muller (2010). The main results of this paper would not change by relaxing these assumptions.
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where �T
�
��T�1=2; �

�
= N

�
T�1=2��1 � 1 (j � [T�]) + T�1=2��2 � 1 (j > [T�]) ; �2

�
and �T (0) = N

�
0; �2

�
.

By the Neyman-Pearson Lemma, a test based on LRT is a best test for a given signi�cance level

for testing the simple null hypothesis that �T (0) is the true density versus the simple alternative

that
R
�T
�
��T�1=2; �

�
dQ� (�

�) dJ (�) is true, and has the best weighted average power for testing

the simple null that �T (0) is the true density versus the alternative that �T
�
��T�1=2; �

�
is the true

density for some �� 2 R2; � 2 �:
Theorem 2 shows that the LRT test statistic is asymptotically equivalent to an exponential-

Wald test derived as follows. Let I0;� � �E
h
T�1 @2

@�@�0 lT (0; �)
i
= ��2

 
� 0

0 (1� �)

!
, H � 

1 �1
1 0

!
; and IT;� be a consistent estimator for I0;�, for example:

IT;� = �b��2
 
� 0

0 (1� �)

!
; (17)

where we discuss two estimators for b�2. The �rst is an HAC estimator that is valid even in the
presence of a structural break in the parameters:

b�2� = min�b�21;�; b�22;�	 ; (18)

where

b�21;� =

q(T )�1X
i=�q(T )+1

(1� ji=q(T )j)T�1
[T�]X
j=1

h
�Lj

�b�1 (�)�� b�1 (�)i h�Lj�i �b�1 (�)�� b�1 (�)i ;
b�22;� =

q(T )�1X
i=�q(T )+1

(1� ji=q(T )j)T�1
TX

j=[T�]+1

h
�Lj

�b�2 (�)�� b�2 (�)i h�Lj�i �b�2 (�)�� b�2 (�)i ;
and q(T ) is a bandwidth that grows with T (e.g., Newey and West, 1987). The second is (10). Note

that the former does not require the assumption of global covariance stationarity while the latter

does.

Assumptions OT: 1(a) �Lt (��t ; 

�
t ) = E (�Lt (�

�
t ; 


�
t ))+et, where et � iidN

�
0; �2

�
; and �2 >

0; (1b)
n
T�1=2

P[�T ]
j=1 �Lj (�)

o
obeys a Functional Central Limit Theorem (FCLT) for all � 2 �; �

compact; (2) there exists a O (1) and positive de�nite matrix V� such that V
�1=2
�

p
T
�b� (�)� �� (�)� d!

N(0; I); as T ! 1 uniformly in � (and similarly for b
 (�)), and �� (�) ; 
� (�) are interior to the
parameter space for every � 2 �, where � has closure contained in (0; 1); (3) T�1

P[T�]
t=1 r ln ft (�)

satis�es a Uniform Law of Large Numbers 8� 2 � (and similarly for r ln gt (
)); (4) Under H 0 ,

E (�Lt (�
�
t ; 


�
t )) = 0 and the distribution of �Lt (�

�
t ; 


�
t ) does not depend on � 8��t and �Lt (��t ; 
�t )

13



satisfying the null hypothesis; (5) Q� (:) = N
�
0; cI�10;�

�
for every � 2 � and for some constant

c > 0; (6) sup�2�jjb� (�) jj !
p
0 and sup�2�jjb� (�)� �� (�) jj !

p
0 under H0.6

Assumption OT(1a) speci�es the structure of the analysis. Assumption OT(1b) assumes a FCLT

for partial sum processes. Assumptions OT(2,3) are standard ML assumptions that guarantee that

the estimated parameters in our object of interest as well as the score functions obey regularity

conditions ensuring their convergence. Assumption 4 speci�es the null hypothesis. Assumption 5

speci�es the weight function over the local alternatives. Assumption 6 assumes that the model is

su¢ cient regular so that the estimators are consistent under the null hypothesis uniformly over

� 2 �. Under these Assumptions we derive the following theorem:

Theorem 2 (One-Time Test) De�ne the Exponential Wald test, ExpW �
T , as:

WT (�) = Tb� (�)0 H 0
�
HI�1T;�H

0
��1

Hb� (�)
ExpW �

T = (1 + c)�1=2
Z
exp

�
1

2

c

1 + c
WT (�)

�
dJ (�) (19)

Under Assumption OT: (i) Under H0 described by (13), LRT � ExpW �
T !p 0: (ii) Under the local

alternatives in (16), (19) is the test with the greatest weighted average power for the weight functions

described in Assumption OT(5).

The results of Theorem 2 hold in the presence of serial correlation as well as breaks in the

variance provided a heteroskedasticity and autocorrelation consistent estimator for the variance is

used: cfr. Andrews and Ploberger (1994). The power properties of the test depend on c. Corollary

3 focuses on the limiting case where c = 0 and c =1, and their power properties will be evaluated
in Section 5.

Corollary 3 Suppose Assumption OT holds. Consider the test statistics

ExpW �
1;T = log

1

1� 2�0

Z 1��0

�0

exp

�
1

2
WT (�)

�
d�;

MeanW �
T =

1

1� 2�0

Z 1��0

�0

WT (�) d�, where

WT (�) = Tb� (�)0 H 0
�
HI�1T;�H

��1
Hb� (�) ;

where �0 2 f0:15; :::; 0:85g, b� (�) is de�ned as in (15), IT;� is as in (17). Under the null hypothesis
H0 : �KLIC

�
t = 0 for all t = 1; :::; T;

ExpW �
1;T =) log

1

1� 2�0

Z 1��0

�0

exp

�
1

2

BB (�)0 BB (�)
� (1� �) +

1

2
B (1)0 B (1)

�
d�; (20)

MeanW �
T =) 1

1� 2�0

Z 1��0

�0

�
1

2

BB (�)0 BB (�)
� (1� �) +

1

2
B (1)0 B (1)

�
d�, (21)

6See Andrews (1993, Lemma A-1) for primitive conditions ensuring Assumption OT(6).

14



where t = [�T ] and B (�) is a standard univariate Brownian motion. The null hypothesis is rejected
when ExpW �

1;T > �� and MeanW �
T > ��. Simulated values of (�;��; v�) are: (0:05; 3:13; 5:36)

and (0:10; 2:44; 4:26).

We also provide Sup-type tests for the One-time Reversal in the following proposition:7

Proposition 4 (Sup-type Test) Suppose Assumption OT holds. Let QLR�T = sup�2f0:15;:::0:85g�T (�) ;

�T (�) = LM1 + LM2 (�) ; where

LM1 = �̂�2T�1

24[T�]X
t=1

�Lt

�b�1 (�)�+ TX
t=[T�]+1

�Lt

�b�2 (�)�
352

LM2 (�) = �̂�2
1

� (1� �)T
�1

24(1� �) [T�]X
t=1

�Lt

�b�1 (�)�� � TX
t=[T�]+1

�Lt

�b�2 (�)�
352 ;

b�2 a HAC estimators of the asymptotic variance �2 = var
�
T�1

PT
t=1�Lt (�

�
t )
�
; for example (10).

Consider the null hypothesis

H0 : �KLIC
�
t = 0;

for every t = 1; 2; :::; T; we have: QLR�T =) sup
�2�

h
BB(�)0BB(�)
�(1��) + B (1)0 B (1)

i
; where t = [�T ], and

B (�) and BB (�) are, respectively, a standard univariate Brownian motion and a Brownian bridge.
The null hypothesis is thus rejected when QLR�T > k�: The critical values (�; k�) are: (0:05; 9:8257) ;

(0:10; 8:1379) :

Among the advantages of this approach, we have that: (i) when the null hypothesis is rejected,

it is possible to evaluate whether the rejection is due to instabilities in the relative performance or

to a model being constantly better than its competitor; (ii) if such instability is found, it is possible

to estimate the time of the switch in the relative performance; (iii) the test is optimal against one

time breaks in the relative performance. Here below is a step by step procedure to implement the

approach suggested in Proposition 4 with an overall signi�cance level �:

(i) test the hypothesis of equal performance at each time by using the statistic QLR�T from

Proposition 4 at � signi�cance level;

(ii) if the null is rejected, compare LM1 and sup�2f[0:15];:::[0:85]g LM2 (�) ; with the following

critical values: (3:84; 8:85) for � = 0:05; (2:71; 7:17) for � = 0:10, and (6:63; 12:35) for a = 0:01:

If only LM1 rejects then there is evidence in favor of the hypothesis that one model is constantly

better than its competitor. If only sup� LM2 (�) rejects, then there is evidence that there are

instabilities in the relative performance of the two models but neither is constantly better over the

7Sup-type tests have been used in the parameter instability literature since Andrews (1993).
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full sample. Note that the latter corresponds to Andrews�(1993) Sup-test for structural break. If

both reject then it is not possible to attribute the rejection to a unique source.8

(iii) estimate the time of the reversal by t� = T � arg sup�2f[0:15];:::[0:85]g LM2 (�) and let �� �
[t�=T ].

(iv) to extract information on which model to choose, we suggest to plot the time path of the

underlying relative performance as:8<:
1
t�
Pt�

t=1

�
log ft(b�1 (��))� log gt (b
1 (��))� for t � t�

1
(T�t�)

PT
t=t�+1

�
log ft(b�2 (��))� log gt (b
2 (��))� for t > t�

The Fluctuation and the One-time tests have trade-o¤s. If the researcher is willing to specify

the alternative of interest (in this case, a one-time reversal in the relative performance), then the

latter test can be implemented and it will have optimality properties. Furthermore, it allows the

researcher to estimate the time of the reversal. The Fluctuation test, on the other hand, does not

require the researcher to specify an alternative, and therefore might be preferable for researchers

who do not have one.9

4.3 Shrinking Bandwidth Asymptotic Approximation

In this section we derive results for the local relative KLIC by building on the framework of Wu

and Zhao (2007). We make the following assumption:

Assumption SB: (1) K (�) is a symmetric kernel with support [�w;w] which belongs to the class
H(�) as in De�nition 1 of Wu and Zhao (2007); (2) � 2 C3 [0; 1]; (3) The bandwidth h satis�es the
condition Th!1, h! 0; log(T )

3

h
p
T
+ Th7 log (T )! 0 and

p
Th

ln(T )3
!1; (4) max t�T jSt � �B (t) j =

oAS
�
T 1=4 ln (T )

	
; where St =

Pt
i=1 "i; �

2 =
P1

t=�1E ["0"t] and B (:) is a standard Brownian
motion; (5) 1

Th

PT
t=1K

�
��t=T
h

�
[�st (� (�))� E (�st (� (�)))] = Oas (1) uniformly in � (�) and � ,

where �st (�) � @�Lt (�) =@�; (6) � > 0; (7) there exists a bias-adjusted local maximum likelihood

estimator, e� (�), such that, for every � , pTh�e� (�)� � (�)� = Oas (1) and � 2 �; � compact;.

Assumptions SB(1)-(4) are similar to those in Wu and Zhao (2007). Assumption SB(4), in

particular, deserves further discussion. Even though it is possible to �nd primitive conditions for

8This procedure is justi�ed by the fact that the two components LM1 and LM2 are asymptotically independent

� see Rossi (2005). Performing two separate tests does not result in an optimal test, but it is nevertheless useful

to heuristically disentangle the causes of rejection of equal performance. The critical values for LM1 are from a �21
whereas those for LM2 are from Andrews (1993).

9Note that all the tests could be implemented with a penalty function to penalize overparameterized models in

small samples. Typical BIC-type penalty functions would not a¤ect the limiting distribution under the null, and

hence our results would be una¤ected. One possible advantage of adding the penalty function is that, even when

models are nested, our procedures would select the smallest model by construction, independently however of whether

the smallest model is correctly speci�ed or not.
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this strong invariance principle allowing for the error process "t to be dependent and stationary (as

in Wu and Zhao, 2007), the assumption of stationarity for "t may be problematic in our context

because of the dependence of the likelihood di¤erences �Lt(�t) on �t: it essentially amounts to

assuming that the possible time variation in the parameters only a¤ects the mean of the likelihood

di¤erences but not their higher moments. The assumption is trivially satis�ed under the joint null

hypothesis that the models have equal performance and that the parameters are constant. Primitive

conditions for Assumption SB(5) can be derived by imposing restrictions on the heterogeneity and

dependence of the likelihood scores for the two models. Assumption SB(6) rules out the possibility

that the models are nested (see discussion in Rivers and Vuong, 2002).

We can show that the following result holds:

Proposition 5 Under Assumption SB, asymptotic 100(1��)% simultaneous con�dence bands for

� are given by

b� (�)� h2	b� (�)00 � � b�p
Th

24BK � log
h
log (1� �)�1=2

i
q
2 log

�
1
h

�
35 ; (22)

	 =

Z
K(u)u2du=2; �2 =

Z
K2 (u) du (23)

BK =

s
2 log

�
1

h

�
+

1q
2 log

�
1
h

�
"
2�  
2 

log(log
�
h�1

�
) + log

 
C
1= 
K h 2

1= 

2
p
�

!#
; (24)

CK = DK=2�
2; DK = lim

�!0

�
j�j� 

Z
fK (x+�)�K (x)g2 dx

�
; (25)

where

b�(�) =
1

Th

TX
t=1

K

�
� � t=T

h

�
�Lt

�e� (�)� ; (26)

e� (�) = b� (�)� h2	b� (�)00 ; (27)b� (�) =
hb� (�)0 ; b
 (�)0i0 ; (28)

0 =
1

Th

TX
t=1

K

�
� � t=T

h

�
r log ft

�b� (�)� (and similarly for b
 (�) ), (29)

b� (�)00 is an estimate of the second derivative of � (�) ; b� is a consistent estimator of � (as e.g. eq.
25 of Wu and Zhao, 2009), b� (�)00 is an estimate of the second derivative of � (�) ; 1 �  � 2 and
h is as in Theorem A1 of Bickel and Rosenblatt (1973) (e.g.,  = 1 and h = 1 for the rectangular

kernel and  = 2 and h = ��1=2 for the triangle, quartic, Epanechnikov and Parzen kernels).
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Corollary 6 For the rectangular kernel, let m = Th be an even integer. The estimator of the local

relative KLIC becomes

b� (�) = 1

m

[�T ]+m=2X
j=[�T ]�m=2+1

�Lj(e� (�)); (30)

[�T ] = m=2; :::; T � m=2; where e� (�) is the bias-adjusted maximum likelihood estimator (27) forb� (�) = hb� (�)0 ; b
 (�)0i0 de�ned by
0 =

1

m

[�T ]+m=2X
j=[�T ]�m=2+1

r log fj
�b� (�)� ;

(and similarly for b
 (�)). The asymptotic 100(1 � �)% simultaneous con�dence bands for � are

given by

e�h (�)� b�p1=2p
m

24s2 log�1
h

�
+

1q
2 log

�
1
h

�
"
log
�
log
�
1
h

��
2

+ log
1

2
p
�

#
�
log
h
log (1� �)�1=2

i
q
2 log

�
1
h

�
35 ;

where e�h (�) is a bias-corrected version of b� (�) and b� is a consistent estimator of �. For example,
Wu and Zhao (2007) suggest a jackknife-type bias correction scheme where e�h (�) = 2b� (�) �b�p2h (�) and b�p2h (�) is the estimator (30) using the bandwidth p2h = p2m=T (and similarly for
the parameters �; 
; e.g. e� (�) = 2b� (�) � b�p2h (�)) and the long-run variance b� can be estimated
as

b� = n1=6
�
2n2=3 � 2

��1=20@n2=3�1X
i=1

������n�1=3
n1=3X
j=1

�Lj+in1=3(
e� (�))� n�1=3 n1=3X

j=1

�Lj+(i�1)n1=3(
e� (�))

������
21A1=2 :

A test of the hypothesis that the models have equal performance at each point in time can

be obtained by rejecting the null of equal performance if the horizontal axis is not fully contained

within the con�dence bands obtained above.

5 A Small Monte Carlo Analysis

This section investigates the �nite-sample size and power properties of the tests for equal per-

formance introduced in the previous section. We consider three designs for the Data Generating

Processes (DGPs). These designs are representative of the features discussed in the main example

in Section 1. In particular, as mentioned before, the time variation in the relative KLIC might

be due to the fact that the parameters change in ways that a¤ect �KLICt di¤erently over time;

design 1 focuses on this situation. However, time variation in the parameters need not necessarily

cause time variation in the relative performance; in fact, �KLICt can be constant if the degree
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of mis-speci�cation of the competing models changes over time in the same way. Design 2 �ts this

description. Finally, time variation in the relative KLIC might also occur when the parameters are

constant but some other aspects of the distribution of the data change in di¤erent ways over time,

which will be described by design 3.

More in details, the true DGP is:

yt = �txt + 
tzt + "t; "t � i:i:d:N (0; 1) ;

where xt � N
�
0; �2x;t

�
; zt � N

�
0; �2z;t

�
; t = 1; 2; :::; T; T = 200. The two competing models are:

Model 1: yt = �txt + "1;t and Model 2: yt = 
tzt + "2;t: We consider the following designs:

Design 1. �2x;t = �2z;t = 1, 
t = 1; �t = 1 + �A � 1 (t � 0:5T )� �A � 1 (t > 0:5T ) : In this design,
we let the parameter � change over time, and this a¤ects the relative performance of the models

over time.

Design 2. �2x;t = �2z;t = 1, 
t = 1; �t = 1 + �A �
�e�t � T�1PT

s=1
e�s�, e�t = �A � 0:001ut;

ut = �ut�1+ �t, where �t � N (0; 1) and � = 0:9. In this design, one of the parameters (�) changes

over time, but in such a way that the expected relative performance of the models is equal over

time.

Design 3. �2x;t = 1+�
2
A �1 (t > 0:75T ), �2z;t = 1, �t = 1, 
t = 1: In this design, the parameters in

the conditional mean are constant but one of the variances (�2x;t) changes over time, thus resulting

in a change in the relative performance over time.

Tables 2 to 4 show the empirical rejection frequencies of the various tests for a nominal size of

5%. For the shrinking bandwidth test, we utilize a gaussian kernel with a bandwidth equal to 0.005,

which performs very well in design 1 relative to other bandwidths. Table 2 demonstrates that all

tests have good size properties. It also shows that the tests with highest power against a One-

time Reversal are the ExpW �
1;T and QLR

�
T tests; the MeanW �

T test has slightly lower power than

the former. The Fluctuation test has worse power properties relative to them, and the Shrinking

bandwidth test has considerably less power relative to all the other tests. Note that a standard

full-sample likelihood ratio test would have power equal to size in design 1. Conversely, Table 3

shows that all the tests have fairly good size properties under design 2. Regarding design 3, Table

4 shows that, again, the Shrinking bandwidth test has considerably less power than the other tests.

The ExpW �
1;T and QLR

�
T tests have quite similar performance in terms of power, although the

Sup-type test has slightly better power properties than the other tests, and the Fluctuation test

has slightly worse power properties.

INSERT TABLES 2, 3 AND 4 HERE

Table 5 investigates the robustness of our results for the Fluctuation and One-time Reversal tests

in design 1 in the presence of large breaks and when using a HAC covariance estimator implemented
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with Andrews�(1991) automatic bandwidth procedure. For the ExpW �
1;T and MeanW �

T tests we

show results using either (18) or (10). The table con�rms that our procedures are quite robust,

and that estimator (18) performs the best.

INSERT TABLE 5 HERE

Finally, Table 6 explore the robustness of our results for the shrinking bandwidth test for

di¤erent bandwidth. The Monte Carlo design is the same as design 1 above. We consider a variety

of bandwidths, ranging from very small (h = 0:0005) to quite large (h = 0:7). Note that the

power properties do change signi�cantly depending on the bandwidth, and that the bandwidth

that performs the best is h = 0:005.10

INSERT TABLE 6 HERE

6 Empirical Application: Time-variation in the Performance of

DSGE vs. BVAR Models

In a highly in�uential paper, Smets and Wouters (2003) (henceforth SW) show that a DSGE

model of the European economy - estimated using Bayesian techniques over the period 1970:2-

1999:4 - �ts the data as well as atheoretical Bayesian VARs (BVARs). Furthermore, they �nd

that the parameter estimates from the DSGE model have the expected sign. Perhaps for these

reasons, this new generation of DSGE models has attracted a lot of interest from forecasters and

central banks. SW�s model features include sticky prices and wages, habit formation, adjustment

costs in capital accumulation and variable capacity utilization, and the model is estimated using

seven variables: GDP, consumption, investment, prices, real wages, employment, and the nominal

interest rate. Their conclusion that the DSGE �ts the data as well as BVARs is based on the

fact that the marginal data densities for the two models are of comparable magnitudes over the

full sample. However, given the changes that have characterized the European economy over the

sample analyzed by SW - for example, the creation of the European Union in 1993, changes in

productivity and in the labor market, to name a few - it is plausible that the relative performance

of theoretical and atheoretical models may itself have varied over time. In this section, we apply the

techniques proposed in this paper to assess whether the relative performance of the DSGE model

and of BVARs was stable over time. We extend the sample considered by SW to include data up

to 2004:4, for a total sample of size T = 145:

10Unreported Monte Carlo simulations show that, however, a bandwidth that works well in one design does not

necessarily work well for other designs. For example, h=0.005 is not the best choice for design 3. However, we decided

to keep the bandwidth �xed across Monte Carlo designs, as the researcher does not know the DGP in practice.
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In order to compute the local measure of relative performance, (the local �KLIC); we estimate

both models recursively over a moving window of size m = 70 using Bayesian methods: As in SW,

the �rst 40 data points in each sample are used to initialize the estimates of the DSGE model and as

training samples for the BVAR priors. We consider a BVAR(1) and a BVAR(2), both of which use

a variant of the Minnesota prior, as suggested by Sims (2003).11 We present results for two di¤erent

transformations of the data. The �rst applies the same detrending of the data used by SW, which

is based on a linear trend �tted on the whole sample (we refer to this as �full-sample detrending�).

As cautioned by Sims (2003), this type of pre-processing of the data may unduly favour the DSGE,

and thus we further consider a second transformation of the data, where detrending is performed

on each rolling estimation window (�rolling-sample detrending�).

Figure 2 displays the evolution of the posterior mode of some representative parameters. Figure

2(a) shows parameters that describe the evolution of the persistence of some representative shocks

(productivity, investment, government spending, and labor supply); Figure 2(b) shows the estimates

of the standard deviation of the same shocks; and Figure 2(c) plots monetary policy parameters.

Overall, Figure 2 reveals evidence of parameter variation. In particular, the �gures show some

decrease in the persistence of the productivity shock, whereas both the persistence and the standard

deviation of the investment shock seem to increase over time. The monetary policy parameters

appear to be overall stable over time.

FIGURE 2 HERE

We then apply our in-sample Fluctuation test to test the hypothesis that the DSGE model and

the BVAR have equal performance at every point in time over the historical sample.

Figure 3 shows the implementation of the Fluctuation test for the DSGE vs. a BVAR(1) and

BVAR(2), using full-sample detrending of the data. The estimate of the local relative KLIC is

evaluated at the posterior modes b�t and b
t of the models�parameters, using the fact that b�t and b
t
are consistent estimates of the pseudo-true parameters ��t and 


�
t (see, e.g., Fernandez-Villaverde

and Rubio-Ramirez, 2004).

FIGURE 3 HERE

Figure 3 suggests that the DSGE has comparable performance to both a BVAR(1) and BVAR(2)

up until the early 1990s, at which point the performance of the DSGE dramatically improves relative

to that of the reduced-form models.

To assess whether this result is sensitive to the data �ltering, we implement the Fluctuation

test for the DSGE vs. a BVAR(1) and BVAR(2), this time using rolling-window detrended data.
11The BVAR�s were estimated using software provided by Chris Sims at www.princeton.edu/~sims. As in Sims

(2003), for the Minnesota prior we set the decay parameter to 1 and the overall tightness to .3. We also included

sum-of-coe¢ cients (with weight � = 1) and co-persistence (with weight � = 5) prior components:
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FIGURE 4 HERE

The results con�rm the suspicion expressed by Sims (2003) that the pre-processing of the data

utilized by SW penalizes the reduced-form models in favour of the DSGE. As we see from Figure

4, once the detrending is performed on each rolling window, the advantage of the DSGE at the end

of the sample disappears, and the DSGE performs as well as a BVAR(1) on most of the sample,

whereas it is outperformed by a BVAR(2) for all but the last few dates in the sample (when the

two models perform equally well).

7 Conclusions

This paper developed estimation and statistical testing procedures for evaluating models�relative

performance in unstable environments. Inference and testing are derived in the context of two al-

ternative asymptotic approximations, involving a �xed or a shrinking bandwidth. We also consider

optimal tests against a one-time reversal in the models�relative performance. The small sample

properties of our procedures are investigated in a series of small Monte Carlo experiments that

suggest that the �xed bandwidth approximation is better than the shrinking bandwidth approxi-

mation for the sample sizes usually available in practice to macroeconomists. Finally, an empirical

application to the European economy points to the presence of instabilities in the models�para-

meters, and suggests that a VAR �tted the last two decades of data better than a standard DSGE

model, a conclusion that is however sensitive to the detrending method utilized.
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8 Appendix A - Proofs

Proof of Theorem 1. Let
P

j �
Pt+m=2

j=t�m=2+1 for t = m=2; :::; T � m=2: We �rst show that

��1m�1=2P
j �Lj(

b�t) = ��1m�1=2P
j �Lj(�

�
t ) + op (1) : Applying a mean value expansion, we

have:

��1m�1=2
X
j

�Lj(b�t) (31)

= ��1m�1=2
X
j

�Lj(�
�
t )

+��1
1

2

8<:
8<:m�1

X
j

rfj(
::
�t)� E

24m�1
X
j

rfj(
::
�t)

359=;pm�b�t � ��t�

�

8<:m�1
X
j

rgj(
::

t)� E

24m�1
X
j

rgj(
::

t)

359=;pm (b
t � 
�t )
9=;

+��1
1

2

8<:E
24m�1

X
j

rfj(
::
�t)

35pm�b�t � ��t�

�E

24m�1
X
j

rgj(
::

t)

35pm (b
t � 
�t )
9=;

= ��1m�1=2
X
j

�Lj(�
�
t ) + oas (1) + oas (1) ;

where
::
�t is an intermediate point between b�t and ��t (and similarly for

::

t): By Assumption

FB(3) we have that m�1P
j rfj(

::
�t) � E

h
m�1P

j rfj(
::
�t)
i
is op (1) and, by Assumption FB(2),

p
m
�b�t � ��t� is Op (1) (and similarly for the second model); which proves the �rst oas (1) in equa-

tion (31). The second op (1) follows from the fact that
p
m
�b�t � ��t� is Op (1) by FB(2) and that

E
h
m�1P

j rfj(
::
�t)
i
� E

h
m�1P

j rfj(��t )
i
!
p
0 as m ! 1 by Theorem 2.3 of Domowitz and

White (1982) given Assumptions FB(2) and FB(3), where E
h
m�1P

j rfj(��t )
i
= 0 by de�nition.

Now write

��1m�1=2
X
j

�Lj(�
�
t )

= (m=T )�1=2

0@��1T�1=2 t+m=2X
j=1

�Lj(�
�
t )� ��1T�1=2

t�m=2X
j=1

�Lj(�
�
t )

1A :

By Assumptions FB(1), FB(4) and FB(5), we have

��1m�1=2
X
j

�Lj(�
�
t ) =) [B (� + h=2)� B (� � h=2)] =

p
h;
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where t = [�T ] : The statement in the proposition then follows from the fact that, under H0, b� in
(10) is a consistent estimator of �.

Lemma 7 Let the approximate ML estimators be

�1 (�) � T�1=2
[T�]X
t=1

�Lt (�
�
1 (�) ; 


�
1 (�)) (32)

and

�2 (�) � T�1=2
TX

t=[T�]+1

�Lt (�
�
2 (�) ; 


�
2 (�)) : (33)

Under Assumption OT, sup�2�
hp

Tb�1 (�)� �1 (�)i!p 0 and sup�2�[pTb�2 (�)��2 (�)]!p 0 under
H0:

Proof of Lemma (7). By Assumption OT(1a) and (14), for every � 2 � :

0 =
1
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>From a mean value expansion of (34):
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where
::
�1 (�) is an intermediate point between b�1 (�) and ��1 (�) ; and similarly for ::
1 (�). The last

two term are op (1) by Assumptions OT(3) and OT(4). The �rst two term in the equality are op (1)
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because
�b�1 (�)� ��1 (�)�T 1=2 is Op (1) by Assumption OT(4) and E � @

@��1(�)
�Lt (�

�
1 (�))

�
= 0 (and

similarly for @
@
�1(�)

�Lt (:)). The result follows similarly for (35).

Proof of Theorem 2. De�ne the approximate ExpWT as:

ExpW c;T = (1 + c)�1=2
Z
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�
1
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H 0
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0
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To prove Part (i) in the Theorem, we will show: (a) LRT � LRT !
p
0; (b) LRT = ExpW c;T ;

(c)ExpW c;T � ExpW �
T !p 0:

(a) Follows from Andrews and Ploberger�s (1994) Lemma A2 under Assumptions OT(2), OT(3),

OT(4) and OT(5).
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Let approximate estimators be de�ned as (32) and (33). Lemma 7 shows that the approximate

estimators �1 (�) ; �2 (�) are asymptotically equivalent to b�1 (�) ; b�2 (�).
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>From (37) and Assumption OT(5), which implies Q� (H��) = N
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(c) From Lemma 7 we have sup�2�
hp

Tb�1 (�)� �1 (�)i !p 0. Also, consider estimation of the

variance and, without loss of generality, let � < �. In this case, it is easy to verify that b�22;� !p �2
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8� < �. Also,
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Part (ii) follows from Lemma A4 in Andrews and Ploberger (1994), which guarantees that for the

local alternatives in (16), the density lt
�
��T�1=2; �

�
is contiguous to the density lt (0; �).

Proof of Corollary 3. Follows from Theorem 2, where (20), (21) follow from Assumption

OT(1b).

Proof of Proposition 4. First we show that: (i) LM1 = ��2T�1
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To prove (i), note that
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Consider the �rst summand in (38). By applying a Taylor expansion:
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::
�1 (�))

�
�E (r log ft(��1 (�)))!p 0,

where E (r log ft(��1 (�))) = 0, and that T�1=2
�b�1 (�)� ��1 (�)� = O (1). A similar argument

proves that this results holds for the second summand as well as for (ii).

By Assumption OT(1b), under the null hypothesis:

��1T�1=2
TX
t=1

(log ft(�
�
t )� log gt (
�t )) =) B (1) (39)

��1 ([�T ] =T )�1=2 (1� [�T ] =T )�1=2 [T�1=2
[�T ]X
t=1

(log ft(�
�
t )� log gt (
�t ))

� ([�T ] =T )T�1=2
TX
t=1

(log ft(�
�
t )� log gt (
�t )) ]

=) ��1=2 (1� �)�1=2 [B (�)� �B (1) ] = ��1=2 (1� �)�1=2 BB (�) (40)
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where (39) and (40) are asymptotically independent. Then:

LM1 + LM2 (�) = ��2T�1

"
TX
t=1

(log ft(�
�
t )� log gt (
�t ))

#2

+��2
�
[T�]

T

��1�
1� [T�]

T

��1
[T�1=2

[T�]X
j=1

(log ft(�
�
t )� log gt (
�t ))

�
�
t

T

�
T�1=2

TX
t=1

(log ft(�
�
t )� log gt (
�t )) ]

2 + op (1)

=) B (1)2 + ��1 (1� �)�1 BB (�)2

and the result follows by the Continuous Mapping Theorem.

Proof of Proposition 5. In this proof, let b�(�) in (26) be denoted by b��� ;e� (�)� to
emphasize its dependence on the estimated parameters, e� (�). The con�dence bands in (22) are
obtained by showing that for every u 2 R and for T !1;

Pr

(p
Th

�
sup

�2[wh;1�wh]

hb��� ;e� (�)�� � (� ; � (�))� h2	�00 (� ; � (�))�BKi � up
2 ln (1=h)

)
! exp (�2 exp (�u)) :

(41)

We have

b��� ;e� (�)�� � (� ; � (�))� h2	�00 (� ; � (�))
= b��� ;e� (�)�� E [b� (� ; � (�))]| {z }

A

+ E [b� (� ; � (�))]� �� (� ; � (�))� h2��00 (� ; � (�))�| {z }
B

:

>From Lemma 3 of Wu and Zhao (2007), the term B is O
�
h3 + T�1h�1

�
uniformly over � 2

[!h; 1� !h] by Assumption SB3, which implies that the term is asymptotically negligible, and

thus one need only to focus on term A and show that

Pr

(p
Th

�
sup

�2[wh;1�wh]

hb��� ;e� (�)�� E [b� (� ; � (�))]�BKi � up
2 ln (1=h)

)
! exp (�2 exp (�u)) :

To prove this, de�ne

bUT (�) �
p
Th��1

hb��� ;e� (�)�� �ti (42)

= ��1

(
1p
Th

TX
t=1

K

�
� � t=T

h

�h
�Lt

�e� (�)�� �ti
)

= ��1

(
1p
Th

TX
t=1

K

�
� � t=T

h

�h
�Lt

�e� (�)���Lt (� (�))i)+ UT (�)
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where UT (�) � 1p
Th
��1

nPT
t=1K

�
��t=T
h

�
"t

o
. By a Mean Value expansion of �Lt

�e� (�)� around
�Lt (� (�)), we have:

b��� ;e� (�)� � 1p
Th

TX
t=1

K

�
� � t=T

h

�
�Lt

�e� (�)� = (43)

=
1p
Th

TX
t=1

K

�
� � t=T

h

�
�Lt (� (�))

+

"
1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�

= b� (� ; � (�)) + " 1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
where � (�) lies between e� (�) and � (�) :
By substituting (43) in (42), we have:

bUT (�) = UT (�) +

"
1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
Let WT (�) � 1p

Th

PT
t=1K

�
��t=T
h

�
�B (t). Note that

ln1=2 (T ) jbUT (�)�WT (�) j

� ln1=2 (T ) jUT (�)�WT (�) j+ ln1=2 (T )

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
������

= oas (1) + ln
1=2 (T )

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
������ = oas (1) (44)

where the �rst inequality follows from the triangle inequality, the �rst oas (1) in the second equality

follows from Wu and Zhao (2007, Lemma 2, eq. 29), and the last oas (1) in (44) follows from the

fact that

ln1=2 (T )

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
������

�

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0������ �
���pTh�e� (�)� � (�)���� �r ln (T )

Th

and

����h 1p
Th

PT
t=1K

�
��t=T
h

�
�st

�
� (�)

�i0���� = Op (1) by Assumption SB(5), E [�st (� (�))] = 0 and

consistency of e� (�) for � (�); ���pTh�e� (�)� � (�)���� = Oas (1) by Assumption SB(7); and
q

ln(T )
Th =
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o (1) by Assumption SB(3). In practice, the bias-corrected estimator e� (�) can be obtained with a
jackknife-type bias correction scheme where e� (�) = 2b� (�)�b�p2h (�), where, again, the estimation
uncertainty on e� (�) is irrelevant, as above. The consistency of the proposed estimator b� follows
from the discussion of eq. (25) of Wu and Zhao (2007) and the consistency of the estimated

parameters, e� (�), using arguments similar to the above.
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9 Tables and Figures

Table 1. Critical values for the

Fluctuation test (k�)

�

� 0.05 0.10

0.1 3.393 3.170

0.2 3.179 2.948

0.3 3.012 2.766

0.4 2.890 2.626

0.5 2.779 2.500

0.6 2.634 2.356

0.7 2.560 2.252

0.8 2.433 2.130

0.9 2.248 1.950

Notes to Table 1. The table reports critical values for the Fluctuation test in Proposition 1.

Values of k� in Table 1 are obtained by Monte Carlo simulations (based on 8,000 Monte Carlo

replications and by approximating the Brownian motion with 400 observations)
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Table 2. Monte Carlo: Design 1
�A Shrinking Bandwidth Fluctuation QLR�T Break ExpW�

1;T MeanW�
T

0 0.06 0.04 0.04 0.05 0.04 0.05

0.1 0.05 0.06 0.09 0.10 0.09 0.08

0.2 0.06 0.15 0.20 0.24 0.19 0.16

0.3 0.08 0.32 0.44 0.51 0.42 0.34

0.4 0.11 0.53 0.69 0.75 0.66 0.56

0.5 014 0.72 0.86 0.90 0.84 0.76

0.6 0.19 0.87 0.96 0.97 0.95 0.90

0.7 0.27 0.94 0.99 0.99 0.99 0.96

0.8 0.34 0.98 1 1 1 0.98

0.9 0.42 0.99 1 1 1 1

1.0 0.50 1 1 1 1 1

1.1 0.58 1 1 1 1 1

1.2 0.68 1 1 1 1 1

1.3 0.74 1 1 1 1 1

1.4 0.78 1 1 1 1 1

1.5 0.86 1 1 1 1 1

1.6 0.90 1 1 1 1 1

1.7 0.94 1 1 1 1 1

1.8 0.96 1 1 1 1 1

1.9 0.98 1 1 1 1 1

2 0.99 1 1 1 1 1

Table 3. Monte Carlo: Design 2
�A Shrinking Bandwidth Fluctuation QLR�T Break ExpW�

1;T MeanW�
T

0 0.04 0.04 0.05 0.05 0.05 0.05

0.1 0.05 0.04 0.05 0.05 0.05 0.05

0.2 0.05 0.04 0.05 0.05 0.05 0.05

0.3 0.05 0.05 0.05 0.06 0.05 0.05

0.4 0.05 0.04 0.04 0.06 0.05 0.05

0.5 0.05 0.04 0.05 0.05 0.05 0.05

0.6 0.05 0.04 0.05 0.06 0.04 0.04

0.7 0.05 0.05 0.05 0.05 0.05 0.06

0.8 0.05 0.05 0.05 0.06 0.05 0.05

0.9 0.05 0.05 0.05 0.05 0.05 0.05

1 0.05 0.04 0.05 0.06 0.05 0.05
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Table 4. Monte Carlo: Design 3
�2A Shrinking Bandwidth Fluctuation QLR�T Break ExpW�

1;T MeanW�
T

0 0.05 0.04 0.05 0.05 0.05 0.05

0.1 0.05 0.05 0.06 0.06 0.06 0.06

0.2 0.06 0.06 0.10 0.10 0.10 0.09

0.3 0.08 0.08 0.18 0.16 0.16 0.14

0.4 0.10 0.10 0.27 0.25 0.25 0.22

0.5 0.15 0.18 0.40 0.37 0.38 0.34

0.6 0.21 0.25 0.53 0.49 0.50 0.45

0.7 0.28 0.34 0.69 0.64 0.66 0.60

0.8 0.31 0.46 0.78 0.73 0.76 0.71

0.9 0.41 0.55 0.85 0.81 0.83 0.80

1.0 0.49 0.64 0.90 0.87 0.89 0.86

1.1 0.57 0.74 0.95 0.93 0.94 0.92

1.2 0.65 0.81 0.97 0.96 0.97 0.95

1.3 0.73 0.88 0.98 0.98 0.98 0.97

1.4 0.80 0.92 0.99 0.99 0.99 0.98

1.5 0.86 0.95 1 1 1 0.99

1.6 0.90 0.97 1 1 1 1

1.7 0.93 0.98 1 1 1 1

1.8 0.96 0.99 1 1 1 1

1.9 0.97 0.99 1 1 1 1

2.0 0.99 1 1 1 1 1

Note to Tables 2-4. The tables report empirical rejection probabilities for the Shrinking-bandwidth

("Shrinking Bandwidth"), Fluctuation ("Fluctuation"), One-time Reversal Sup-type ("QLR�T "), theExpW
�
1;T

and MeanW �
T tests. The table also reports empirical rejection probabilities for a standard QLR test for

breaks ("Break"). Table 2 reports results for design 1, Table 3 for design 2 and Table 4 for design 3 �see

Section 5 for details.
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Table 5. Monte Carlo: HAC Variance Estimation

�A Break at [0:25T ] Break at [0:75T ]

Estimator (18) Estimator (10) Estimator (18) Estimator (10)

Fluct. ExpW�
1;T MeanW�

T ExpW�
1;T MeanW�

T Fluct. ExpW�
1;T MeanW�

T ExpW�
1;T MeanW�

T

0 0.04 0.10 0.07 0.05 0.05 0.04 0.09 0.06 0.05 0.05

0.5 0.78 0.84 0.84 0.44 0.50 0.07 0.41 0.34 0.15 0.15

1 0.99 1 1 0.92 0.94 0.19 0.86 0.80 0.43 0.38

1.5 1 1 1 0.99 0.99 0.35 0.98 0.96 0.67 0.60

2 1 1 1 1 1 0.53 0.99 0.99 0.80 0.75

5 1 1 1 1 1 0.92 1 1 0.97 0.96

10 1 1 1 1 1 0.97 1 1 0.97 0.96

20 1 1 1 1 1 0.98 1 1 0.96 0.95

50 1 1 1 1 1 0.98 1 1 0.94 0.91

100 1 1 1 1 1 0.98 1 1 0.92 0.87

Note to Table 5. The table reports empirical rejection probabilities for the ExpW �
1;T and MeanW �

T

tests for design 1 when estimating the variance with either (18) or (10). The table also reports the Fluctuation

test ("Fluct.") implemented with estimator (10). All the tests are implemented with a HAC variance

estimator using Andrews�(1993) automatic bandwidth selection �see Section 5 for details.

36



Table 6. Bandwidth Selection Comparisons
h

�A 0.0005 0.005 0.05 0.1 0.5 0.7

0 0.04 0.04 0.04 0.05 0.05 0.06

0.2 0.06 0.06 0.06 0.06 0.06 0.06

0.4 0.11 0.12 0.08 0.08 0.08 0.06

0.6 0.17 0.19 0.13 0.12 0.07 0.07

0.8 0.31 0.31 0.23 0.19 0.10 0.08

1.0 0.46 0.51 0.35 0.28 0.13 0.10

1.2 0.64 0.66 0.42 0.37 0.15 0.10

1.4 0.75 0.79 0.54 0.43 0.19 0.13

1.6 0.87 0.91 0.64 0.53 0.21 0.14

1.8 0.94 0.96 0.72 0.61 0.22 0.17

2.0 0.97 0.98 0.80 0.69 0.25 0.19

Note to Table 6. The table shows empirical rejection probabilities for the Monte Carlo design 1 discussed

in Section 5 for the Shrinking Bandwidth case and di¤erent bandwidth size (h).
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Figure 1(e) Figure 1(f)
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Figure 2(a). Rolling estimates of DSGE parameters (persistence of the shocks).
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Notes to Figure 2(a). The �gure plots rolling estimates of some parameters in Smets and Wouter�s (2002)

model. See Smets and Wouter�s Table 1, p. 1142 for a description.
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Figure 2(b). Rolling estimates of DSGE parameters ( standard deviation of the shocks).
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Notes to Figure 2(b). The �gure plots rolling estimates of some parameters in Smets and Wouter�s

(2002) model using full-sample detrended data. See Smets and Wouter�s Table 1, p. 1142 for a description.
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Figure 2(c). Rolling estimates of DSGE parameters (monetary policy parameters).
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Notes to Figure 2(c). The �gure plots rolling estimates of the parameters in the monetary policy reaction

function described in Smets and Wouters� (2002) eq. (36), given by: bRt= � bRt�1
+(1� �)

n
�t + r� (b�t�1 � �t) + rY �bYt�1 � bY p

t

�o
+r�� (b�t � b�t�1) +r�Y ��bYt � bY p

t

�
�
�bYt�1 � bY p

t�1

��
+�Rt ; �t = ���t�1 + ��t . The �gure plots: in�ation coe¢ cient (r�), d(in�ation) coe¢ cient (r��), lagged

interest rate coe¢ cient (�), output gap coe¢ cient (rY ), d(output gap) coe¢ cient (r�Y ), and standard

deviation of the interest rate shock (
p
var (��t )).
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Figure 3. Fluctuation test DSGE vs. BVARs. Full-sample detrending
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Notes to Figure 3. The �gure plots the Fluctuation test statistic for testing equal performance of the

DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the central point of

each rolling window): The 10% boundary lines are derived under the hypothesis that the local �KLIC

equals zero at each point in time.The data is detrended by a linear trend computed over the full sample:The

top panel compares the DSGE to a BVAR(1) and the lower panel compares the DSGE to a BVAR(2).
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Figure 4. Fluctuation test DSGE vs. BVARs. Rolling sample detrending
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Notes to Figure 4. The �gure plots the Fluctuation test statistic for testing equal performance of

the DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the central

point of each rolling window): The 10% boundary lines are derived under the hypothesis that the local

�KLIC equals zero at each point in time.The data is detrended by a linear trend computed over each

rolling window:The top panel compares the DSGE to a BVAR(1) and the lower panel compares the DSGE

to a BVAR(2).
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