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Abstract

This paper investigates whether adaptive learning and news shocks, operating in tandem,
can generate business cycle dynamics that match the data. In doing so, this paper adopts
expectational stability (“E-stability”) as a natural criterion for rationality: plausible equilibria
should arise from an adaptive learning formulation where agents form forecasts from a correctly
specified model whose parameters are updated in real time. In examining the model’s stability
properties, I find that the rational expectations equilibrium (REE) is not learnable for calibrated
parameter values capable of generating news-driven recessions. In particular, I uncover a tradeoff
between E-stability, or learnability, and the model’s ability to produce realistic business cycles:
REE associated with parameter values necessary for generating recessions in response to news
shocks are not learnable, and parameter values that imply learnable REE cannot generate
empirically plausible recessions in response to news shocks. This finding thus has implications
on the plausibility of rational expectations solutions in business cycle models driven by news.
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1 Introduction

There has been renewed interest in business cycle models driven by news, partly due to the invest-

ment boom in the late 1990s and a key empirical finding by Beaudry and Portier (2006) that an

identified news shock uncorrelated with current technology can explain approximately 50% of busi-

ness cycle fluctuations.1 The news-driven business cycle literature posits a theory of fluctuations

resurrecting an old idea from Arthur Pigou where booms and busts can arise from agents’ forecast

errors.2 In these models, agents receive news about future productivity which can produce aggre-

gate fluctuations without any concurrent change in fundamentals. Beaudry and Portier (2004),

Jaimovich and Rebelo (2009), and Lorenzoni (2010) are recent examples. Models with news shocks

can generate recessions absent any technological regress, which is both intuitively appealing and

consistent with recent recessionary episodes.

While the existing literature has been somewhat successful in producing empirically plausible

news-driven cycles, these models make a strong assumption about individual rationality. In par-

ticular, these models assume rational expectations where agents know the true structure of the

economy and optimal forecasts are formed using all available information. Under rational expec-

tations, news-driven cycles emerge in part because agents coordinate on equilibria that depend

on news about future productivity. A promising literature has emerged that relaxes the rational

expectations assumption in favor of adaptive learning, where agents behave as econometricians who

formulate forecasting models and update the parameters of their model in real-time.3 Thus a nat-

ural question is whether deviating from rational expectations in the form of learning can still lead
1Using a structural VAR approach, Beaudry and Portier (2006) isolate two disturbances from post-war U.S.

data: one that represents innovations in stock prices orthogonal to innovations in TFP, and one that drives long-
run movements in TFP. These two disturbances are found to be almost perfectly collinear and induce the same
dynamics, thus indicating that stock price movements that are not correlated with current changes in TFP are highly
correlated with long-run changes in TFP. The authors interpret their identified shock as representing news about
future technological opportunities.

2Pigou (1927): “... a rise in prices, however brought about, by creating some actual and some counterfeit prosperity
for business man, is liable to promote an error of optimism, and a fall in prices an error of pessimism, and this mutual
stimulation of errors and price movements may continue in a vicious spiral until it is checked by some interference
from outside.”

3Evans and Honkapohja (2001) provides a comprehensive review and treatment of the adaptive learning approach.
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agents to coordinate on a news-driven equilibrium.

The objective of this paper is to investigate the effect of adaptive learning in a news-driven

economy. In a general business cycle environment, Eusepi and Preston (2011) establish that learning

can improve the model’s internal propagation. Rather than an exogenous news process that affects

the economy, shifts in expectations through the learning process drive the business cycle with

stationary fluctuations around the rational expectations equilibrium (REE). Agents’ shifting beliefs

over time due to learning about the economy’s structure can add additional frictions to the model;

thus it is reasonable to suspect that the interplay between news and learning can yield realistic

business cycle dynamics.

However, intuition presupposes that the equilibrium in the news-driven model is an appropriate

benchmark. This paper follows an extensive literature that judges the REE as plausible if it can be

learned by economic agents, endowed with a correctly specified model whose parameters are updated

in real time.4 Despite the extensive theoretical work on news shock models, there has been little

work done examining the stability of these models under learning.5 To generate additional insight,

this paper focuses on the Jaimovich and Rebelo (2009) business cycle model driven by news about

investment-specific productivity and examines its learnability properties.

In assessing whether an equilibrium is stable under learning, the standard approach in the

literature assumes that agents know the functional form of the model economy but must learn

the true rational expectations equilibrium parametrization. To model adaptive learning, agents

are endowed with an econometric forecasting model and must estimate the parameters of that

model in real-time using a recursive least squares learning algorithm. While attempting to learn

this parametrization, agents’ forecasts of future endogenous variables will necessarily differ from

rational expectations forecasts. Hence, the crucial question is whether the adaptive learning process
4This approach follows Lucas (1986), Bray and Savin (1906), Marcet and Sargent (1989), and Evans and Honkapo-

hja (2001).
5The stability of rational expectations under learning in standard real business cycle models has been studied by

Evans and Honkahohja (2001), Bullard and Duffy (2004), Carceles-Poveda and Giannitsarou (2007), and Eusepi and
Preston (2008).
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leads agents toward, or away from the REE. If the learning process converges to the REE, that

equilibrium is said to be stable under adaptive learning, or “Expectationally Stable” (E-stable).

In this way, stability under learning can provide an important check on the plausibility of rational

expectations equilibria.

The central results of this paper can be concisely summarized. When introducing adaptive

learning to the Jaimovich and Rebelo (2009) news-driven business cycle model, there is a tradeoff

between learnability and the model’s ability to produce realistic business cycles. In particular, REE

associated with parameter values necessary for generating recessions in response to news shocks are

not learnable, and parameter values that imply learnable REE cannot generate empirically plausible

recessions in response to news shocks. This finding thus has implications on the plausibility of

rational expectations solutions in business cycle models driven by news. In turn, this paper ties with

a previous literature that demonstrated that non-convex real business cycle models yield equilibria

that depend on sunspots and are not learnable. In particular, Evans and McGough (2005) and

Duffy and Xiao (2005) showed that the set of parameter values consistent with empirically realistic

business cycles are inconsistent with E-stable equilibria. Like the real business cycle model with non-

convexities, news-driven models depend on strong informational assumptions, and the parameter

values that yield stability will not produce empirically plausible economic dynamics.

The organization of this paper proceeds as follows. Section 2 reviews the Jaimovich and Rebelo

(2009) environment of a one-sector business cycle model augmented with gradual capital adjustment

and news about investment-specific productivity. Section 3 introduces learning and derives stability

conditions for the model. The main numerical results of the paper are presented and discussed in

Section 4. Finally, Section 5 concludes and offers directions for future research.

2 The Environment

The basic environment is the Jaimovich and Rebelo (2009), henceforth JR, business cycle model

augmented with a new class of preferences, variable utilization, and gradual capital adjustment.
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These additions to the standard neoclassical growth model can produce empirically recognizable

business cycles in response to both contemporaneous shocks and news shocks about future produc-

tivity. In this setting, news shocks consist of information that can predict future fundamentals but

has no effect on current fundamentals.

2.1 One-Sector Business Cycle Model

The economy consists of identical agents who maximize their expected lifetime utility (U) over

consumption (Ct) and labor hours (Nt):

U = E0{
∞∑
t=0

βt

1− σ
(Ct − ψN θ

t Xt)1−σ − 1} (1)

where

Xt = Cγt X
1−γ
t−1 (2)

The operator E denotes the expectation conditional on agents’ time t information set. 0 < β < 1

is the discount factor; θ > 1 and ψ > 0 parameterizes the elasticity of the labor supply; and σ > 0

represents the curvature of agents’ utility function.

The JR model introduces a new class of preferences that parameterizes the short-run wealth

effect on the labor supply. These preferences nest two classes of utility functions used in the business

cycle literature: King, Plosser, and Rebelo (1988) preferences when γ = 1 (designed to be consistent

with balanced growth) and Greenwood, Hercowitz, and Huffman (1988) preferences when γ = 0

(designed to shut down the wealth effect on labor).6 The variable Xt makes agents’ preferences

non-separable in consumption and labor hours.

Cobb-Douglas production of output (Yt) depends on total factor productivity (At), capital stock
6Using a Baysian estimation approach, Schmitt-Grohe and Uribe (2007) estimate that γ = 0, that is a near-zero

wealth elasticity of labor supply. These preferences are consistent with steady-state growth so long as 0 < γ ≤ 1.
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(Kt), capital utilization (ut), and labor (Nt):

Yt = At(utKt)1−αNα
t (3)

Output is used for consumption and investment:

Yt = Ct +
It
zt

(4)

Here zt represents the productivity of investment goods. Increases in zt can be interpreted as

investment-specific technological progress.

The evolution of capital is governed by the following:

Kt+1 = It[1− φ(
It
It−1

)] + [1− δ(ut)]Kt (5)

Changing investment from its level in the previous period incurs an adjustment cost φ(.).

There are no adjustment costs in steady state, so that φ(1) = 0 and φ′(1) = 0. Capital depreciation

is represented by the function δ(ut), which is convex in the rate of utilization: δ′(ut) > 0 and

δ′′(ut) ≥ 0.

2.1.1 Key Mechanisms of the Model

In general, the main obstacle in business cycle models driven by news is to produce positive co-

movement among the major macroeconomic variables, such as output, consumption, investment,

and labor hours. Broad-based comovement is a key empirical regularity in the data, so it is im-

portant that any business cycle model have this feature. Crucially however, producing positive

comovement is a difficulty for news-driven models since with only news shocks and no other shocks

to aggregate technology, good news about the future produces recessions rather than booms. This

difficulty is due to the wealth effect on labor where agents work less in response to good news.

Hence when agents learn about future productivity, the key modeling challenge is to get output to
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rise in reaction to good news.7 To get positive comovement with only news shocks, there has to be

additional mechanisms to overwhelm this wealth effect.

The key mechanisms in the JR model that produce empirically plausible business cycles are

(i) preferences that minimize the wealth effect on labor, (ii) variable capital utilization, and (iii)

capital adjustment costs.8 First, the non-standard preferences prevents agents from reducing labor

hours in response to good news since their future expected income has increased. Second, capital

adjustment costs induce agents to increase their labor supply before the actual productivity increase.

Agents build up a large capital stock in anticipation of the productivity increase, and to minimize

adjustment costs, they start as early as possible (with no capital adjustment costs, agents would

reduce investment after learning about good news, and would wait until the increased productivity

actually arrives to increase their investment). Finally, variable capital utilization is introduced to

get labor to rise in response to good news.

2.1.2 First Order Conditions

The competitive equilibrium of the JR model can be found by solving the Social Planner’s prob-

lem: maximize the representative agent’s utility subject to the resource constraint (3), accounting

identity (4), and capital law of motion (5).

The first order conditions with respect to Ct, Xt, Nt, ut, Kt+1, and It are the following, where

µt, λt, and ηt are the Lagrange multipliers associated with the constraints:

(Ct − ψN θ
t Xt)−σ + µtγC

γ−1
t Xγ−1

t−1 = λt (6)

(Ct − ψN θ
t Xt)−σψN θ

t + µt = βEt[µt+1(1− γ)Cγt+1X
−γ
t ] (7)

(Ct − ψN θ
t Xt)−σθψN θ−1

t Xt = λtαAt(utKt)1−αNα−1
t (8)

7Standard real business cycle models predict that when agents learn that future productivity will be high, they
work less and consume more, leading to decreased investment and hence output. This is due to a wealth effect on
labor, since good news makes agents expect higher lifetime income.

8For more detail and discussion, see Jaimovich and Rebelo (2009).
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λt(1− α)Atu−αt K1−α
t Nα

t = ηtδ
′(ut)Kt (9)

ηt = βEt[λt+1(1− α)At+1u
1−α
t+1 K

−α
t+1N

α
t+1 + ηt+1[1− δ(ut+1)]] (10)

λt
zt

= ηt[1− φ(
It
It−1

)− φ′( It
It−1

)
It
It−1

] + Et[βηt+1φ
′(
It+1

It
)(
It+1

It
)2] (11)

When agents expect productivity At or zt to increase in the future, investment will also increase

in the future. With investment adjustment costs, investment will rise immediately, leading to a

decrease in ηt
λt

, the value of capital per consumption unit. This is because agents build up capital

gradually over time due to adjustment costs. As ηt
λt

falls, capital is less valuable, so that agents must

use their existing capital more intensively. This increased utilization raises the marginal product

of labor. So long as the wealth effect on the labor supply is sufficiently low (so that γ → 0), Nt

will also rise. Hence all three model elements working together can generate comovement between

consumption, output, investment, and labor hours in response to good news about the future.

2.1.3 Competitive Equilibrium

Definition. An equilibrium of the JR model will be a collection of sequences for Ct, Xt, Nt, ut,

Kt+1, and It that satisfies the economy’s resource constraint (3), accounting identity (4), capital

law of motion (5), and agents’ transversality condition.

The rational expectations solution to the linearized system, following Blanchard and Kahn

(1980) and described in King, Plosser, and Rebelo (2002), will take the form of a stationary vector

autoregression and can be used for model simulations and computing business cycle moments. For

benchmark parameters presented in Table 1, Jaimovich and Rebelo (2009) show that the one-sector

model can produce positive comovement in response to both contemporaneous shocks to At or zt

and to news about future values of At or zt. Further, when calibrated with these parameters, the

model is able to generate empirically plausible business cycle statistics.
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Table 1: JR Parameter Values
Parameter

Discount factor β = 0.985
Labor share α = 0.64

Curvature in utility σ = 1
Elasticity in labor supply θ = 1.4

Utility parameter γ = 0.001
Adjustment costs φ′′(1) = 1.3

Elasticity of utilization δ′′(u)u
δ′(u) = 0.15

2.2 Plausibility of Rational Expectations Equilibrium

To arrive at a solution to the JR model, it is implicitly assumed that expectations are formed

according to the rational expectations hypothesis. Under this assumption, expectations are pinned

down by the structure of the economy since expectational errors can be solved out as a function of

the structural disturbances and hence eliminated from the system. Economic agents are assumed

to have knowledge about the parameters of the economy, the correct model, and the distributions

of the shocks. Hence by imposing rational expectations, agents are required to know the true data

generating process of the entire economy. While this remains the standard approach in macroeco-

nomics, I take an alternative approach in the rest of this paper by relaxing the rational expectations

assumption.

3 Adaptive Learning

The literature on adaptive learning studies the plausibility of rational expectations equilibria by

insisting on logical consistency between econometricians and private-sector agents. Rather than

rational expectations, this literature assumes that agents behave as econometricians who formulate

forecasting models and update the parameters of their model in real-time.9 Since econometricians

and professional forecasters develop economic models that they estimate based on available data and
9Sargent (1993) describes adaptive learning as “putting the agents and the econometrician on the same footing.”
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update as new data becomes available, it is reasonable to expect that private-sector agents behave

similarly. Therefore in this part of the paper, agents are endowed with the same information set as

the econometrician or professional forecaster.

To model private agent learning, expectations are formed from a near-rational expectations for-

mation mechanism. Agents are endowed with a linear forecasting model, which is their perceived

model of the economy. Although this perceived law of motion (PLM) has a similar structural form

as the rational expectations solution of the system, agents do not know the reduced-form coeffi-

cients. Instead, they learn these coefficients over time by observing historical data and employing a

recursive updating learning algorithm. Agents estimate the parameters of their forecasting model

and then use the estimated model to form expectations. This then leads to the actual law of mo-

tion (ALM) of the economy. Since the ALM is obtained by inserting agents’ expectations into the

reduced form model, it is implicitly assumed that under adaptive learning, the Euler equation is

the basis for economic decisions.10 The parameter values from the resulting ALM will therefore be

the actual parameter values of the economy and will depend on agents’ perceptions.

While attempting to learn about the model economy, agents’ forecasts of future endogenous

variables will necessarily differ from rational expectations forecasts. Thus, the crucial question is

whether the adaptive learning process leads agents toward or away from the rational expectations

equilibrium (REE). If the learning process leads agents to the REE, that equilibrium is said to be

stable under adaptive learning, or “E-stable.” Otherwise, the equilibrium is said to be unstable or

unlearnable. In this way, stability under learning can provide an important robustness check on

the plausibility of rational expectations equilibria.11

10An alternative would combine the Euler equation with the expected lifetime budget constraint, as in Eusepi and
Preston (2010). The actual law of motion would then depend on infinite-step-ahead expectations. Although “infinite
horizon” learning is fully optimal in an anticipated utility framework, this paper adopts the so called “Euler equation”
learning to keep the model’s reduced-form comparable with JR. However, in many models the E-stability properties
are identical under Euler equation and infinite-horizon learning. Evans and Honkapohja (2004) provides a discussion
of this issue in the context of a New Keynesian model.

11In fact, stability under learning can be used as an equilibrium selection device in models with multiple equilibria.
If there are many equilibria, of which only one is E-stable, the E-stable equilibria is argued to be the more likely
equilibrium to be observed in reality.
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3.1 Learning Algorithm

The reduced-form of the JR model can be characterized by the following two equations:

ÊtXt+1 = WXt +RÊtzt+1 +Qzt (12)

zt = zt−1 + εt (13)

where Xt = [xt−1, kt, it−1, µt, λt, ηt]′ represents the vector of endogenous state variables and

shadow prices, zt is an exogenous variable representing investment-specific technological progress,

and Êt are (possibly) non-rational expectaionts. All variables are in logarithms. The matrices W ,

R, and Q are defined in the Appendix. The growth rate of zt is εt ∈ {εl, εh}, which follows a

two-point Markov process with transition matrix π:

π =

 p 1− p

1− q q


Taking expectations and calculating Êtzt+1, the reduced-form system (12) and (13) simplifies

to a single equation:

ÊtXt+1 = WXt + (R+Q)zt +Rr1 +Rr2ŝt (14)

where

ŝt = st − 1, st ∈ {1, 2}

r1 = pεl + (1− p)εh

r2 = ((1− q)εl + qεh)− (pεl + (1− p)εh)

Equation (14) is the reduced-form representation of the model economy. The nature of the

model’s determinacy is governed by the reduced-form parameters in equation (14). A model is

said to be determinate if it has a unique REE, indeterminate if it has multiple REE, and explosive
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otherwise. Determinacy of the JR model requires three eigenvalues to lie outside and three to lie

inside the unit circle, so that the dynamical system is a saddle.12 I find that the model is always

determinate.

Further, the reduced form model (14) is assumed to determine Xt whether or not expectations

are formed rationally, where the operator Êt denotes agents’ potentially non-rational forecasts of

the endogenous variables. Under the standard rational expectations assumption, a REE is any

non-explosive solution to the expectational difference equation (14). The rational expectations

representation of the JR model driven by news will take the following form:

Xt = AXt−1 +Bzt + Czt−1 +D + F ŝt (15)

Under adaptive learning, agents know the functional form of the model economy but are initially

uninformed as to the correct, rational expectations coefficient values.13 Instead, agents’ expecta-

tions are formed using their Perceived Law of Motion (PLM), which follows the same functional

form as the rational expectations equilibrium solution:

Xt = AXt−1 +Bzt + Czt−1 +D + F ŝt (16)

The matrices A,B,C,D, F represent agents’ perceived parameter values and may be different

from the rational expectations matrices A,B,C,D, F at each point in time.14

In lieu of rational expectations, agents form forecasts given their PLM:

ÊtXt = Xt = AXt−1 +Bzt + Czt−1 +D + F ŝt (17)
12In general, checking for determinacy amounts to verifying that ncs eigenvalues of W are greater than one in

absolute value and ns eigenvalues of W are less than one in absolute value, where ncs is the number of costate
variables and ns is the number of state variables.

13This paper follows the Euler-equation learning approach, where the model under adaptive learning is driven
by the same reduced-form equations as under rational expectations. Agents in principle could also be learning the
model’s microfoundations: in fact Preston (2008) and Eusepi and Preston (2010) show that infinite-horizon learning
and subjective expectations can also be modeled to deliver increased business cycle volatility and persistence relative
to rational expectations.

14To simplify notation I have eliminated time subscripts on the learning matrices.
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ÊtXt+1 = A[AXt−1 +Bzt + Czt−1 +D + F ŝt] +B[zt + r1 + r2ŝt] + Czt +D + FEtŝt+1 (18)

Substituting these beliefs into the reduced-form model leads to the Actual Law of Motion

(ALM):

Xt = TAXt−1 + TBzt + TCzt−1 + TD + TF ŝt (19)

The matrices TA, TB, TC , TD, and TF depends on agents’ beliefs (A, B, C, D, F ) and on the

parameters of the model (W , R, Q):

TA = W−1A2 (20)

TB = W−1[(A+ I)B + C − (R+Q)] (21)

TC = W−1AC (22)

TD = W−1[(A+ I)D + (B −R)r1 + F (1− p)] (23)

TF = W−1[AF + (B −R)r2 + F (2q − 1)] (24)

(25)

The mapping from agents’ beliefs to the true data generating process for the economy takes

the following form:

T (A,B,C,D, F ) = (TA, TB, TC , TD, TF )′ (26)

This “T-map” maps the PLM to the ALM, and has a very intuitive interpretation. If agents

perceived the economy follows the law of motion (16), with parameters fixed at (A,B,C,D, F ), then

their forecasts would be given by (17) and (18). Then the economy’s actual law of motion– deter-

mined, in part, by these forecasts– would have the same form, but with parameters T (A,B,C,D, F ).

A REE is simply a fixed point to this “T-map,” as it identifies a situation where agents perceptions

match reality.
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3.2 E-Stability

If agents’ learning process leads to the REE, that equilibrium is said to be stable under adaptive

learning, or expectationally stable (E-stable). Otherwise, the REE is said to be expectationally

unstable or unlearnable. More precisely, the E-stability principle states that if agents use a recursive

least squares learning algorithm, then E-stable rational expectations equilibria are locally stable

under learning. The intuition behind this principle is that agents should update their parameter

estimates in the direction of forecast errors for reasonable learning rules. In this way, stability

under adaptive learning provides a check on the plausibility of rational expectations solutions.

Definition. Let θt denote the vector of coefficients in the PLM and T (θt) denote the vector of

coefficients in the ALM. To be “E-Stable,” the rational expectations solution must be locally asymp-

tomatically stable under the following ordinary differential equation:

dθ

dτ
= T (θt)− θt (27)

Verifying stability under learning amounts to checking if this differential equation, evaluated at

the REE values for θt is locally stable. Conveniently, conditions for local asymptotic stability can

be easily computed by examining the eigenvalues of the Jacobian matrix DT . If all eigenvalues of

DT have real parts less than one, then the rational expectations equilibrium is E-stable. In this

case, adjusting parameters in the direction of the forecast error will lead the parameters toward the

rational expectations equilibrium. Evans and Honkapohja (2001) show that the PLM will converge

to the ALM with probability one if T (θt) − θt is a stable system and with probability zero if it is

unstable.

Following the method from Evans and Honkapohja (2001) results in the following E-stability

conditions for the JR model:

DTA = A
′ ⊗W−1 + I ⊗W−1A (28)
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DTB = A⊗W−1 + I ⊗W−1 (29)

DTC = W−1A (30)

DTD = A⊗W−1 + I ⊗W−1 (31)

DTF = I ⊗W−1A+ (2q − 1)′ ⊗W−1 (32)

Proposition 1. A rational expectations solution A,B,C,D, F is E-unstable if any eigenvalues of

(i) DTA, (ii) DTB, (iii) DTC , (iv) DTD, and (v) DTF have real parts greater than one.

If the rational expectations solution to the JR model is E-stable, then private-sector agents can

learn the equilibrium law of motion for capital, investment, and the economy’s shadow prices. If

instead the solution is E-unstable, then the learning process will not converge to the true rational

expectations equilibrium.

4 Numerical Results

As is standard in the business cycle literature, the multivariable nature of the model precludes

analytic results. This section contains the main numerical results of the paper. I consider the

learnability properties of the JR model by applying the E-stability result derived in Proposition 1.

I find that REE associated with parameter values necessary for generating recessions in response

to news shocks are not learnable, and that parameter values that imply learnable REE cannot

generate recessions in response to news shocks. Hence there is a tradeoff between E-stability and

the model’s ability to produce realistic business cycles.

4.1 Case 1: Benchmark JR

For the benchmark calibration in the JR model,15 I find that the rational expectations solution

violates the E-stability conditions derived in Proposition 1. This means the unique REE for the

15σ = 1, θ = 1.4, β = 0.985, α = 0.64, γ = 0.001, φ′′(1) = 1.3, δ′′(u)u
δ′(u)

= 0.15
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model driven by news about future technology is not learnable, even when agents adopt a forecasting

model that has the same form as the true rational expectations representation. This finding is in

contrast to the standard real business cycle model, which has an E-stable rational expectations

solution, as shown by Evans and Honkapohja (2001). That the unique, stationary REE for the

benchmark JR model is not stable under learning also demonstrates that determinacy need not

imply learnability. Since the JR model can reduce to the standard real business cycle model, there

must exist parameter regions where the rational expectations solution is E-stable. In what follows,

I examine the parameter space outside the benchmark JR calibration.

Table 2 presents the constrained parameter space required for generating comovement in re-

sponse to news about investment-specific productivity as reported in Jaimovich and Rebelo (2009).

The most striking result is that the rational expectations solution is unlearnable for γ < 0.4, which

is a necessary constraint for the JR model to produce empirically plausible business cycles. At the

limit value of γ = 1, which corresponds to the standard utility representation of King, Plosser,

and Rebelo (1988), I find that the rational expectations solution is learnable since the E-stability

conditions in Proposition 1 are satisfied. However in this case, γ = 1 cannot generate positive

comovement between output and labor since the wealth effect makes agents work less in response

to good news about the future.

Table 2: JR Parameter Space
Description Benchmark Constraint

Utility parameter γ = 0.001 γ < 0.4
Adjustment costs φ′′(1) = 1.3 φ′′(1) > 0.4

Elasticity of utilization δ′′(u)u
δ′(u) = 0.15 δ′′(u)u

δ′(u) < 5

Based on Proposition 1, the model’s E-stability is coming from the Jacobian matrix DTA.

Figure 1 depicts the stability region as a function of the preference parameter γ. This E-stability

region is based on the maximum explosive eigenvalue of the Jacobian matrix DTA as a function of

γ. For 0 ≤ γ ≤ 1, the rational expectations solution is learnable when γ > 0.448 and unlearnable
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Figure 1: E-Stability Region– Case 1

otherwise.

To get a better sense of these results, I next separately consider the stability properties of the

three key ingredients of the JR model in more detail: the new class of preferences, variable capital

utilization, and investment adjustment costs. The main results for this exercise are presented in

the following three cases to get a clearer picture of how each of the model’s three key mechanisms

affect E-stability: (a) JR preferences, no variable capital utilization, no investment adjustment

costs; (b) KPR preferences, variable capital utilization, no investment adjustment costs; and (c)

KPR preferences, no variable capital utilization, investment adjustment costs.

4.2 Case 2: JR Preferences, No Capital Utilization, No Adjustment Costs

I first consider the model with JR preferences (γ = 0.001), no variable capital utilization (ut = 1,

δ(ut) = δ, δ′′(u)u/δ′(u)→∞), and no investment adjustment costs (φ(x) = 0 for all x, φ′′(1) = 0)

to investigate the role of the new class of preferences in the JR model. All other parameter values
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follow the benchmark JR specification as reported in Table 1. I find that the determinate rational

expectations solution is E-unstable, violating Proposition 1. Since the equilibrium corresponding

to this calibration is unstable, it cannot be reached by agents following an adaptive learning rule.

This result suggests that the special preferences designed to shut down the wealth effect on labor

and the non-separability of the utility function is an important factor at influencing the instability

result reported in Case 1.

Figure 2 displays the E-stability region of a version of the JR model with no variable utilization

and no capital adjustment costs. As in Figure 1, the E-stability region is based on the maximum

explosive root of the Jacobian matrix DTA as a function of γ. The rational expectations solution

is E-stable for γ > 0.818 and unstable otherwise. Compared to the previous case with baseline JR

specifications, the model with constant utilization and no adjustment costs requires a larger wealth

effect on the labor supply for the E-stability conditions to hold. As γ → 1, the utility function

becomes the standard neoclassical specification and hence reduces to the standard optimal growth

setting. In this case, the rational expectations equilibrium is stable under adaptive learning, as

demonstrated by Evans and Honkapohja (2001).

Table 3: Business Cycle Statistics (Rational Expectations)
Data Case 1 Case 2 Case 3 Case 4

1947–2009 JR Preferences Utilization Adjustment Costs
std(yt) 1.66 0.98 0.87 0.99 0.82
std(ct) 1.39 0.77 0.61 0.74 0.64
std(it) 4.91 3.21 2.93 3.27 2.29
std(nt) 1.62 0.69 0.39 0.68 0.21

corr(yt, yt−1) 0.79 0.87 0.88 0.90 0.87
corr(yt, ct) 0.69 0.85 -0.71 -0.65 -0.24
corr(yt, it) 0.90 0.89 0.67 0.81 0.83
corr(yt, nt) 0.87 1.00 0.14 -0.21 -0.54

Further, the model under this calibration does not produce realistic business cycles. Column 4

of Table 3 reports simulated business cycle moments for the model.16 Volatilities of output, con-
16Table 3 was constructed by generating 5000 model simulations with 300 periods each, for each case. Business
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Figure 2: E-Stability Region– Case 2

sumption, investment, and labor hours are all lower than than both the data and the benchmark

JR specification. Moreover, this version of the model does not generate comovement among the

aggregate macroeconomic variables since the simulated correlations are not all positive. In partic-

ular, output and hours are roughly acyclical, which confirms a feature of the JR model that the

special preferences alone are not enough to produce the strong procyclicality between output and

hours.

Since these results suggest E-stability hinges upon the new class of preferences introduced by

the JR model, I investigate this further by considering separately the two extreme versions of the

model with γ = 0 and γ = 1 respectively, with no capital utilization and no adjustment costs.

Preferences with γ = 0 and γ = 1 correspond to classes of utility function widely used in the

business cycle literature and represent polar cases of constant income effect. The following exercise

cycle statistics are averaged across simulations. All variables are in logarithms and have been detrended using the
Hodrick-Prescott filter with a smoothing parameter of 1600. The data in column 2 corresponds to post-war U.S.
quarterly data from 1947 to 2009.
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can thus clarify the nature of the model’s instability by examining the simplified business cycle

environment with the other two key mechanisms shut down.

4.2.1 JR Preferences with γ = 0 and γ = 1, No Capital Utilization, No Adjustment

Costs

The simplified model for γ = 0 and γ = 1 will reduce to a system of expectational difference

equations in terms of just consumption, capital, and the productivity shock. The reduced-form

model for both these cases will be characterized by the following three equations, whether or not

expectations are formed rationally:

ct + η1kt = ψ2Êtct+1 + ψ1Êtkt+1 + π1at (33)

kt = δ2ct−1 + δ1kt−1 − π2at−1 (34)

at = ρat−1 + υt (35)

This system is the general reduced-form representation of the model economy under JR pref-

erences, no capital utilization, and no investment adjustment costs. All variables are in logarithms

where the particular coefficients will depend on whether γ = 0 or γ = 1. Stacking the model and

eliminating expectations by defining a martingale difference sequence εt = ct − Êt−1ct yields:


1 η1 −π1

δ2 δ1 −π2

0 0 ρ



ct

kt

at

 =


ψ2 ψ1 0

0 1 0

0 0 1

 (


ct+1

kt+1

at+1

−

εt

0

υt

) (36)

In matrix form, the model becomes Htxt = F (xt+1 − φt+1), where xt ≡ [ct, kt+1, at]′ and φt ≡

[εt, 0, υt]′. For some forecast error εt, every REE for xt will satisfy the dynamic system

xt = Mxt−1 + φt (37)
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where M = F−1H.17

In what follows, I present agents’ perceived law of motion under adaptive learning to derive

stability conditions for this simplified environment, written in terms of the reduced-form coefficients.

Under adaptive learning, agents’ PLM will take the same form as the REE. When agents know

the capital accumulation equation kt = δ1kt−1 + δ2ct−1 − π2at−1, the PLM for consumption will

follow:

ct = act−1 + bkt−1 + c+ dat−1 + eat (38)

Note that the constant term c is included in the PLM so that agent must learn whether the

steady-state value is zero. Given their PLM, agents form expectations of future consumption and

capital according to

Êtct+1 = aÊtct + bÊtkt + c+ dat + eρat (39)

Êtkt+1 = δ1Êtkt + δ2Êtct − π2at (40)

Inserting expectations Êtct+1 and Êtkt+1 in the reduced form system yields the actual law of

motion for consumption:

ct = Tact−1 + Tbkt−1 + Tc + Tdat−1 + Teat (41)

The coefficients for the ALM Ta, Tb, Tc, Td, and Te depend on agent’s beliefs and the reduced-

form parameters in the following way:

Ta = ψ1δ2a+ ψ2(a2 + bδ2) (42)

Tb = ψ1(δ21 + δ2b) + ψ2(ab+ bδ1) (43)
17The model’s determinacy properties can be evaluated by computing the eigenvalues of the matrix M = F−1H

and are governed by the reduced form parameters. When the model is determinate so that the REE is unique, there
will be a unique forecast error εt that satisfies xt = Mxt−1 + φt. There will be multiple forecast errors that makes
the system xt = Mxt−1 + φt non-explosive if the model is indeterminate. In this latter case there will be multiple
REEs.
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Tc = c[ψ1δ2 + ψ2(1 + a)] (44)

Td = ψ1(δ2d− δ1π2) + ψ2(ad− bπ2) (45)

Te = π1 + ψ1δ2e+ ψ2[(a+ ρ)e+ d] (46)

As before, the T-map T (a, b, c, d, e) = (Ta, Tb, Tc, Td, Te)′ provides a mapping from agents’ beliefs

(PLM) to reality (ALM):

(a, b, c, d, e)→ T (a, b, c, d, e) (47)

Denoting the vector of coefficients by θ = [a, b, c, d, e]′, a fixed point of the T-map θ∗ is E-

stable if the differential equation dθ
dτ = T (θ) − θ is locally asymptotically stable at θ∗. As in

Section 3 and detailed in Evans and Honkapohja (2001), the E-stability Principle says that E-stable

representations can be learned by agents following a recursive least squares learning algorithm.

Verifying stability under learning requires that eigenvalues of the derivative T (θ)− θ evaluated at

θ∗ have negative real parts. Noting that the subsystems for Ta and Tb decouples, the following

derivatives will determine the model’s stability properties:

DTab =

 ψ1δ2 + 2ψ2a ψ2δ2

ψ2b ψ1δ2 + ψ2(a+ δ1)

 (48)

DTc = ψ1δ2 + ψ2(1 + a) (49)

DTd = ψ1δ2 + ψ2a (50)

DTe = ψ1δ2 + ψ2(a+ ρ) (51)

E-stability requires that the derivatives DTab, DTc, DTd, and DTe have real parts less than

one. Denoting u ≡ trace(DTab) = 2ψ1δ2 + ψ2(3a+ δ1) and v ≡ det(DTab) = (ψ1δ2 + 2ψ2a)(ψ1δ2 +
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ψ2(a+δ1))−ψ2
2δ2b results in the following conditions in terms of the reduced-form parameters that

must hold in order for the simplified model’s REE to be E-stable:

1
2

√
u

2
± u2

4− v
< 1 (52)

ψ1δ2 + ψ2(1 + a) < 1 (53)

ψ1δ2 + ψ2a < 1 (54)

ψ1δ2 + ψ2(a+ ρ) < 1 (55)

I can now apply the E-stability conditions derived above to the two extreme parameterizations

of the simplified model with γ = 0 and γ = 1, respectively. JR preferences with γ = 0 reduces

to a standard business cycle model with no wealth effect on the labor supply. In this case, I find

that the E-stability conditions do not hold. In particular, the roots of the derivative DTab are

greater than one: since the E-stability condition 1
2

√
u
2 ±

u2

4−v < 1 is not satisfied, REE under this

parametrization is not learnable by agents adopting an adaptive learning rule. JR preferences with

γ = 1 results in a version of the standard neoclassical growth model, and in contrast with the

previous case, I find that the REE following this parametrization is E-stable since the stability

conditions all hold.

4.3 Case 3: KPR Preferences, Capital Utilization, No Adjustment Costs

Next I consider the model with standard KPR preferences (γ = 1), variable capital utilization,

and no investment adjustment costs (φ(x) = 0 for all x, φ′′(1) = 0) to investigate the role of

variable capital utilization on the model’s learnability properties. All other parameter values follow

the benchmark JR specification. This environment corresponds to the neoclassical growth model

augmented with variable utilization and news about future productivity. As before, I solve the

model and verify whether the rational expectations solution satisfies Proposition 1. I find that
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the model under this calibration is E-stable, as all eigenvalues for each of the Jacobian matrices

have real parts less than one. Since this system is stable, agents will learn this equilibrium with

probability one.

Table 4: Business Cycle Statistics (Adaptive Learning)
Case 3 Case 4

Utilization Adjustment Costs
std(yt) 1.02 0.83
std(ct) 0.75 0.64
std(it) 3.29 2.33
std(nt) 0.68 0.23

corr(yt, yt−1) 0.92 0.88
corr(yt, ct) -0.65 -0.24
corr(yt, it) 0.80 0.85
corr(yt, nt) -0.21 -0.52

However under this calibration, the model cannot generate empirically plausible business cycles,

as indicated by the simulated moments in column 5 of Table 3. Although the volatilities are similar

to the benchmark JR model due to the role of capital utilization as an amplification mechanism,

the simulated correlations come in with the wrong signs and magnitudes. As in the previous case,

this version of the model does not produce aggregate comovement among the key macroeconomic

variables. This is because γ = 1 cannot generate positive comovement among output and labor

since the wealth effect makes agents work less in response to good news about the future.

Although this version of the model is E-stable, introducing adaptive learning has quantitatively

small effects on improving the empirical fit. Column 2 of Table 4 reports simulated business cycle

moments under a least squares recursive learning rule. Learning only slightly increases business

cycle volatility and persistence.18 Since under this learning scheme only one-period-ahead forecasts

matter, agents learn the rational expectations equilibrium quickly so that the overall effect of

learning is negligible.
18This finding that introducing Euler-equation learning in a business cycle environment does little to enhance

volatility and persistence is in line with Williams (2003).
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4.4 Case 4: KPR Preferences, No Capital Utilization, Adjustment Costs

Finally I consider the model with standard KPR preferences (γ = 1), no variable capital utilization

(ut = 1, δ(ut) = δ, δ′′(u)u/δ′(u)→∞), and investment adjustment costs to investigate the role of

convex adjustment costs on the model’s E-stability properties. As before, all other parameter values

follow the benchmark JR specification. I find that the rational expectations solution is E-stable,

satisfying Proposition 1.

As in the previous case, the model under this specification does not produce realistic business

cycles. Column 6 of Table 3 reports simulated business cycle moments. Again, the correlations are

not all positive, indicating that all three ingredients of the model together are necessary to generate

aggregate comovement. Column 3 of Table 4 reports simulated moments under adaptive learning.

As in the previous case, introducing learning only slightly increases business cycle volatility and

persistence. The effects are quantitatively small because agents learn the rational expectations

quickly. Introducing a different learning scheme, such as infinite-horizon learning as in Preston and

Eusepi (2010), may provide additional propagation.

Taken together, these results show that the JR news-driven business cycle model has an un-

stable rational expectations equilibrium, and that this E-instability result is contingent on the

parametrization of the utility function. When the parametrization is chosen such that preferences

are close to the classical KPR specification (γ = 1), as in the standard real business cycle envi-

ronment, the unique rational expectations solution is E-stable and hence can be learned by private

sector agents through an adaptive learning process. Although E-stable, the equilibrium in both

Case 3 and Case 4 do not yield plausible business cycles in model simulations. I find that neither

case delivers the requisite comovement between the aggregate macroeconomic variables. Table 5

summarizes this stability and comovement tradeoff in the JR model.
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Table 5: E-Stability and Comovement Tradeoff
Case 1 Case 2 Case 3 Case 4

JR Preferences Utilization Adjustment Costs
E-unstable E-unstable E-stable E-stable

Comovement No comovement No comovement No comovement

4.5 Discussion

News-driven business cycle models, such as the JR model considered in this paper, have a similar

flavor as business cycle models with sunspots, where the economy is driven by self-fulfilling shifts in

private sector expectations. Sunspots are solutions that depend on an exogenous stochastic process

that can effectively act as a coordinating device causing agents to change their expectations in

a self-fulfilling manner. Sunspots cause shifts between multiple equilibria, which may thereby

produce economic fluctuations. For example, business cycle models with multiple equilibria such

as Benhabib and Farmer (1994) can have an indeterminate steady state where there exists sunspot

equilibria. However, Evans and McGough (2005) identify a “stability puzzle” with respect to these

models and conjectures why indeterminacy almost always implies instability in sunspot-driven

business cycle models.

In this paper, I obtain an analogous instability result as Evans and McGough (2005), except

that the JR model is always determinate for the parameter region of interest. I conjecture that

news functions as a kind of coordinating device for agents that can lead them away from learning

the rational expectations solution, much like in the sunspot models. With news however, beliefs

are not self-fulfilling. Furthermore, since the JR model exhibits determinacy, the stability results

derived in this paper are not sensitive to representations of the PLM, unlike the case with sunspot

equilibria.

The news process introduced in this paper and in Jaimovich and Rebelo (2009) represent infor-

mation about future technological change and does not represent shifts between multiple equilibria

as in Evans and McGough (2005) or shifts unrelated to fundamentals. Like sunspots however, news
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about future fundamentals may act as a coordinating device that prevents agents from learning the

rational expectations equilibrium. Intuitively, this may be interpreted as optimism or pessimism

about the economy that is based on good or bad news, rather than random shifts in beliefs. Hence

this interpretation differs from the Keynesian “animal spirits” view where fluctuations are driven

by random waves of market sentiment and is closer in spirit to Pigou’s conjecture that errors of

undue optimism or pessimism in market forecasts can generate business cycle dynamics.

5 Conclusion

This paper examines stability under learning of the rational expectations equilibrium in an aug-

mented business cycle model driven by news about future technology. As the main contribution of

this paper, I find that at parameter values necessary for generating recessions in response to bad

news, the rational expectations solution to the one-sector JR model is unstable under learning.

This finding thus casts doubt on the plausibility of the rational expectations equilibrium of the

model. However, this finding does not imply that all models with news shocks have unlearnable

equilibria. In fact, a promising direction for future research is to establish E-stability properties

in a wider class of business cycle models driven by news. A further challenge will be to construct

calibrated versions of news-driven business cycle models that are stable under learning.
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