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Abstract

Researchers often hold out data from the estimation of econometric models to use

for external validation. However, the use of holdout samples is suboptimal from a

Bayesian perspective, which prescribes using the entire sample to form posterior model

probabilities and predictive distributions for policy effects. In this paper, we develop a

principal-agent framework, in which a first-best Bayesian solution is not implementable

because econometric modelers engage in data-mining and misrepresent the fit of their

models. A policy-maker can use a holdout sample to discourage data mining. Using

a stylized representation of a randomized controlled trial, we set up a simulation ex-

periment to examine under what conditions model weighting based on predictions for

a holdout sample could be justified, how large it should be and how it should mix

observations from treatment and control groups. (JEL C11, C31, C52)
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1 Introduction

The use of Randomized controlled trials (RCTs) to evaluate policies has become a prominent

methodology in applied economics. An important limitation is that one cannot extrapolate

outside of the treatment variation in the particular experiment. Moreover, given their cost,

RCTs cannot be used to perform ex ante policy evaluation over a wide range of policy

alternatives. Thus, extrapolation to new treatments requires developing and estimating

models that embed behavioral and statistical assumptions, what we will refer to as structural

models. It is therefore important to have methods for assessing the relative credibility of

competing structural models.

In practice researchers often hold out data from estimation to use for external validation,

e.g., Wise (1985), Todd and Wolpin (2006), and Duflo, Hanna, and Ryan (2011) in the case

of RCTs. Although having intuitive appeal, the use of holdout samples is puzzling from

a Bayesian perspective, which prescribes using the entire sample to form posteriors. The

contributions of this paper are twofold. First, we provide a formal, albeit stylized, framework

in which data mining poses an impediment to the implementation of the ideal Bayesian

analysis. Data mining, for the purpose of this paper, is a process by which a modeler tries to

improve the fit of a structural model during estimation, e.g., change functional forms, add

latent state variables. Second, we provide a numerical illustration of the potential costs of

data mining and the potential benefits of holdout samples that are designed to discourage

data mining. Losses are measured relative to the ideal Bayesian solution.

Our framework can be viewed as a principal-agent setup. A policy maker is the principal,

who would like to predict the effects of a treatment at varying treatment levels. The policy

maker has access to data from a social experiment, conducted for a single treatment level.

To assess the impact of alternative treatments, the policy maker engages two structural

modelers, the agents, each of whom estimates their structural model and provides measures

of predictive fit. We assume that the modelers get rewarded in terms of the fit of their

model. Two mechanisms are considered. Under the no-holdout mechanism the modelers get

access to the full sample of observations and are evaluated based on the so-called marginal

likelihood functions that they report. In a Bayesian framework, marginal likelihoods are used
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to update model probabilities. Since the modelers have access to the full sample, there exists

an incentive to modify their model specifications and to overstate the marginal likelihood

values. We refer to this behavior as data mining.

Under the holdout mechanism, on the other hand, the modelers have access only to a

subset of observations and are asked by the policy maker to predict features of the sample

that is held out for model evaluation. Building on an old result by Winkler (1969) on log

scoring rules, the hold-out mechanism is designed so that the modelers truthfully reveal their

subjective beliefs about the hold-out sample. However, predictive distributions for the hold-

out sample are not as informative as marginal likelihoods for the entire sample, which is why

the policy maker is unable to implement the full Bayesian analysis with this mechanism.

While we are able to give a qualitative characterization of the behavior of the modelers

under the two mechanisms based on analytical derivations, we use a numerical example to

illustrate how the size and the composition (in terms of observations from the control and

treatment groups) of the holdout sample affects the risk of the policy maker. We find that

the holdout mechanism dominates the no-holdout mechanism and that the lowest level of risk

is attained by holding back 50% of the sample and providing the modelers only with data

either from the control or from the treatment group.

Our paper is related to several branches of the economics literature. We draw on the

literature on scoring rules and the evaluation of probability assessors when setting up the

pay-off scheme for the modelers. Winkler (1969) showed that log predictive densities create

the incentive to truthfully reveal subjective probabilities. Further results on the evaluation

of probability assessors can be found in the textbook by Bernardo and Smith (1994) and in

the literature on testing of experts, e.g. Sandroni (2003). Our setup assumes that the pay-off

to Modeler 1 does not depend on the predictions made by Modeler 2 (and vice versa). Thus,

by assumption we ignore possible strategic interactions among the modelers, which are the

subject of the literature on incentives of macroeconomic forecasters, e.g. Laster, Bennet,

and Geoum (1999) and Lamont (2002).

Leamer (1978) studies the effect of specification searches on inference in non-experimental

settings. Lo and MacKinlay (1990) and White (2000) provide methods of correcting statis-
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tical inference procedures for so-called data snooping. An example of data snooping is to

run many preliminary regressions based on a large set of explanatory variables, but only

reporting results based on a specification in which a regressor appeared to be significant and

able to, say, predict stock returns. This literature has focused on correcting standard error

estimates for data snooping. Our concept of data mining is somewhat different from the

act of searching among a large pool of regressors. We focus on data-based modifications of

structural economic models, e.g. relaxing function form restrictions, that are designed to

improve in-sample fit.

Holdout samples play an important role in cross validation approaches, e.g. Stone (1977).

The cross-validation literature showed that model validation on pseudo-holdout samples can

generate a measure of fit that penalizes model complexity. In our paper, however, the goal

is not to generate a new penalty term for in-sample fit of an econometric model. In fact,

the marginal likelihoods that are used in a Bayesian framework to construct posterior model

probabilities and serve as a benchmark for our analysis, can be interpreted as maximized

likelihood functions that are penalized for the number of free parameters in the model.

The remainder of this paper is organized as follows. For concreteness, in Section 2 we

describe a working example in which a policy maker is trying to determine the optimal level

of a school-attendance subsidy. Using a number of simplifying assumptions, we are able to

represent the structural models for the analysis of the policy question by simple univariate

linear regressions. The Bayesian solution to predicting the effects of a school-attendance

subsidy is presented in Section 3. Section 4 contains the principal-agent setup that is used

to capture the potential benefits of weighting (or selecting) among structural models based

on predictions for holdout samples and Section 5 provides the numerical illustration. Finally,

we conclude in Section 6. A review of the Bayesian analysis of the linear Gaussian regression

model as well as proofs and derivations are provided in the Appendix.
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2 A Working Example

In order to analyze the potential benefits of holdout samples we consider the problem of

evaluating the impact of a monetary subsidy to low-income households based on school

attendance of their children.1 It is assumed that prior to the policy change there is no direct

tuition cost of schooling. The goal is to determine an optimal level of the tuition subsidy that

trades-off the costs of the subsidy program with its effect on the attendance rate. A social

experiment is conducted in which a randomly selected treatment sample is offered a school

subsidy at the level s = s̄, whereas no subsidy is provided to the households in the control

sample, that is, s = 0. Suppose that the outcome variable for household i, i = 1, . . . , n,

is denoted by yi and is continuous, e.g. attendance measured in hours. In addition to the

outcome, two scalar characteristics xi,1 and xi,2 as well as the level of treatment si ∈ {0, s̄}

are observed for each household. Let xi = [xi,1, xi,2].

Because in practice, it is too costly to make the treatment sample sufficiently large such

that the treatment effect could be measured at a variety of subsidy levels, the policy maker

has to rely on structural models that allow the extrapolation of the treatment effect to other

levels of treatment s∗ 6= s̄. We assume that there are two such structural models Mj, j = 1, 2,

which take the following form. Each household i solves the following optimization problem

to determine for how many hours to send their child to school:2

max
c∈R+,h∈[0,1]

Uj(c, h; z, ε, ϑj) s.t. c = inc+ w(1− h) (1)

Here Uj(·) is a model-specific utility function, parameterized in terms of ϑj, c is consumption,

h ∈ [0, 1] is hours spent in school (the total endowment of time has been normalized to one),

z is a vector of observable household characteristics, ε is a random variable that captures

unobservable heterogeneity, and inc is parental income.

We denote the optimal attendance decision by h = ϕj(inc, w; z, ε, ϑj). An attendance

1Tuition cost variation permits the estimation of the effect of introducing a subsidy nonparametrically

for subsidy levels for which net tuition is within the domain of the tuition variation, Ichimura and Taber

(2000).
2This example is taken from Todd and Wolpin (2008).
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subsidy s modifies the households’ budget constraint to

c = inc+ w(1− h) + sh = (inc+ s) + (w − s)(1− h) = ĩnc+ w̃(1− h). (2)

The optimal attendance choice in the presence of a subsidy is

h∗ = ϕj(ĩnc, w̃; z, ε, ϑj). (3)

The modified budget constraint (2) implies that variation in household income and wage w

are sufficient to identify the effect of a school subsidy on attendance. In fact, it is a key

feature of many structural models that the parameters necessary for a counterfactual policy

analysis can be identified even if the sample contains no variation in the policy instrument.

In order to simplify the subsequent exposition, suppose that the decision rule (3) is

linearized and represented in the following stylized form, where hours h is replaced by y:

yi = xi,jβj + siθ + ui ui|(xi, si) ∼ iidN(0, 1). (4)

The j subscripts in (4) capture the different assumption embodied in the two models about

the relevant characteristic x that affects the outcome. The error term ui arises from the

heterogeneity generated by the unobserved characteristics ε in (1). As previously mentioned,

an important feature of structural models is that they contain restrictions that allow the

identification of policy effects without sample variation in the policy instrument. To capture

this aspect in our regression model (4), we impose the restriction θ = βj.
3 Thus, variation

in xi,j is sufficient to obtain a measurement of the subsidy effect. Since we will subsequently

use matrix notation, let Xj be the n× 1 vectors with elements xi,j, X = [X1, X2], and let Y

and S be the n× 1 vectors with elements yi and si, respectively.

3 Bayesian Analysis

Throughout this paper we adopt a Bayesian approach to analyze the problem of determining

an optimal subsidy level, which requires us to specify priors for the parameters of models

3In the example, if there is no income effect on school attendance, e.g., if the utility function is quasi-linear

in consumption and if the utility function is quadratic in hours of school attendance, then x would be the

child wage and θ = −βj .
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M1 and M2 as well as to the models themselves. Both models are equipped with the prior

distribution θ ∼ N
(
0, 1/(nλ2)

)
. The density of this prior is denoted by p(θ|Mj). Overall,

this leads to

Mj : Y = X̃jθ + U, θ ∼ N

(
0,

1

nλ2

)
, j = 1, 2, (5)

where X̃j = Xj +S. We use the scaling of the prior variance by 1/n as a technical device to

ensure that the models do not become perfectly distinguishable as the sample size tends to

infinity (see below for further discussion). We assume that the marginal density of (X,S)

does not depend on θ and is the same for both models. As a consequence, p(X,S) cancels

from most of the formulas presented below and results are presented in terms of densities

that are conditional on (X,S). Given randomization, the selection of the treatment group is

independent of the observable characteristics, that is, p(X,S) = p(X)p(S). The prior model

probabilities assigned to models M1 and M2 are denoted by πj,0 = 1/2, j = 1, 2.

The overall posterior distribution of the treatment effect is given by the mixture

p(θ|Y,X, S) =
∑
j=1,2

πj,np(θ|Y,X, S,Mj), (6)

where

πj,n =
πj,0p(Y |X,S,Mj)

p(Y |X,S)
, p(Y |X,S) =

∑
j=1,2

πj,0p(Y |X,S,Mj).

Here p(θ|Y,X, S,Mj) is the posterior density of θ conditional on model Mj, πj,n is the

posterior probability of model Mj, p(Y |X,S,Mj) is the marginal likelihood of Mj, and

p(Y |X,S) is the marginal likelihood of the mixture of M1 and M2.

We assume that the policy maker’s goal is to predict the outcome y∗ for an individual

that receives a subsidy s∗ and has characteristics x1 = x2 = x∗ under a quadratic loss. The

integrated risk associated with the prediction ŷ is

R(ŷ) =

∫
Y,X,S

[∫
θ

(θ(x∗ + s∗)− ŷ)2p(θ|Y,X, S)dθ

]
p(Y |X,S)p(X,S)d(Y,X, S). (7)

The integrated risk is minimized by minimizing the posterior expected loss (the term in

square brackets in (7)) for each sample (Y,X, S). This leads to the posterior mean predictor

ŷ∗ =

∫
θ(x∗ + s∗)

(∑
j=1,2

πj,np(θ|Y,X, S,Mj)

)
dθ. (8)
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This Bayesian solution is first-best in our environment and serves as a benchmark in the

subsequent analysis.

To calculate the optimal predictor in (8) we need to evaluate p(θ|Y,X, S,Mj) and πj,n.

The model-specific posterior for θ, the treatment effect, is given by

p(θ|Y,X, S,Mj) =
p(Y |X,S, θ,Mj)p(θ|Mj)

p(Y |X,S,Mj)
. (9)

The model specification in (5) implies that this posterior distribution takes the form

θ|(Y,X, S,Mj) ∼ N

(
(X̃ ′jX̃j + λ2)−1X̃ ′jY, (nλ

2 + X̃ ′jX̃j)
−1

)
. (10)

The posterior model probabilities πj,n are a function of the marginal likelihoods

p(Y |X,S,Mj) =

∫
θ∈Θ

p(Y |θ,X, S,Mj)p(θ|Mj)dθ. (11)

For linear Gaussian regressions the marginal likelihoods can be calculated analytically and

take the form

p(Y |X,S,Mj) = (2π)−n/2|1 + X̃ ′jX̃j/(nλ
2)|−1/2 (12)

× exp

{
−1

2
[Y ′(I − X̃j(X̃

′
jX̃j + nλ2)−1X̃ ′j)Y ]

}
.

The exponential term captures the goodness of in-sample fit, whereas the term |1+X̃ ′jX̃j/(nλ
2)|−1/2

can be interpreted as a penalty for model complexity. The larger λ, and thus the less diffuse

and more restrictive is the prior distribution, the less complex is the model. In fact, for

λ = ∞, there is no free parameter to be estimated. On the other hand, a more variable

regressor makes the model appear more complex. It requires a smaller value of θ and thus

the prior is in relative terms more diffuse.

4 A Principal-Agent Problem

The policy analysis described in the previous section involves two stages. In the first stage,

the two models are estimated and posterior distributions are computed. This leads to the

model-conditional posteriors p(θ|Y,X, S,Mj) in (10) and marginal likelihoods p(Y |X,S,Mj)
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in (12). In the second stage, the output from the two models is combined via Bayesian model

averaging, see (6), and the model mixture is used to generate a policy prediction, see (8).

In practice, different individuals might be involved into the two stages of the analysis which

potentially creates incentive problems. These incentive problems, in turn, can provide a

rationale for holdout samples.

In the remainder of this paper, it is assumed that the first stage of the analysis is con-

ducted by two modelers (agents) and the second stage is executed by a policy maker (prin-

cipal). In some applications this assumption might be literally satisfied in the sense that a

government agency conducts the social experiment and hires academic consultants to pro-

vide an analysis of the policy effects. In other instances, the policy maker might correspond

to the economics profession at large as it is investigating the effectiveness of social programs

and the agents correspond to economists who conduct research on the effects of a particular

policy.

We proceed by describing the objective and constraints of the policy maker in Section 4.1.

We then discuss two mechanisms that the policy maker could use to set incentives for the

modelers in Section 4.2. One of the mechanisms involves a holdout sample. In the other

mechanism, the modelers have access to the full data set. In Section 4.3, we characterize

three options that are available to the modelers: (i) Bayesian analysis of model Mj based on

the data provided by the policy maker; (ii) in-sample data mining, which is represented by

a stylized modification of the prior distribution; or (iii) the analysis of a mixture of models

that includes a more flexible reference model. Finally, we discuss how the mechanisms affect

the modelers’ choices in Section 4.4.

4.1 The Policy Maker

We assume that the social experiment described in Section 2 is conducted by a policy maker.

The policy maker has access to all the data from the experiment, but is unable to conduct

an analysis of the structural models M1 and M2. He can only estimate the treatment effect

in the experiment by taking the difference in means between the treatment and the control
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group. The estimator of the treatment effect can be represented as coming from the statistical

model

Mp : Y = Sθ + V, (13)

where V is a n× 1 vector of error terms. The resulting estimator of the treatment effect is

θ̂p = (S ′S)−1S ′Y. (14)

We assume, however, that the policy maker’s statistical model Mp cannot be used to extrap-

olate the treatment effect to other levels of treatment s 6= s̄.

The policy maker engages the two modelers to analyze their structural models M1 and

M2. His objective is to obtain a predictor that minimizes the integrated risk R(ŷ) in (7).

Since the loss function is quadratic, the integrated risk can be expressed as

R(ŷp) = R(ŷ∗) + ∆(ŷ∗, ŷp), (15)

where the discrepancy function is given by

∆(ŷ∗, ŷp) =

∫
(ŷ∗ − ŷp

)2
p(Y |X,S)p(X,S)d(Y,X, S). (16)

Thus, ideally, the policy maker would like to reproduce the Bayesian prediction ŷ∗.

4.2 Mechanisms Available to the Policy Maker

We consider two potential mechanisms that the policy maker can use to obtain the decision-

relevant information from the modelers. Under the first mechanism, the modelers receive the

entire sample (Y,X, S). Under the second mechanism, the policy maker splits the sample

and hands the modelers only a subset of the observations. The policy maker has discretion

about the size of the holdout sample and its composition in terms of observations from the

treatment and control group.

No-Holdout Mechanism. The policy maker gives the modelers access to the entire data

set (Y,X, S). In turn, they are asked to report a marginal data density p̃j(Y |X,S) and a

posterior distribution for the treatment effect p̃j(θ|Y,X, S). We use p̃(·) rather than p(·) to
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allow for the possibility that the modelers do not truthfully reveal these two objects. Only

if the reported densities coincide with the actual densities in (10) and (12) can the policy

maker implement the first-best Bayesian decision. The compensation of the modelers is a

function of how well their models are able to fit the data, adjusting for model complexity.

We assume that the compensation is proportional to the reported log marginal likelihood

ln p̃j(Yp|Yr, X, S). The policy maker updates the model weights according to

π̃j,n =
πj,0p̃j(Y |X,S)

π1,0p̃1(Y |X,S) + π2,0p̃2(Y |X,S)
. (17)

Holdout Mechanism. The modelers receive the full sample of covariates and treatment

levels (X,S), but only a subset of the outcome data Y from the policy maker. The outcome

data are partitioned into Y ′ = [Y ′r , Y
′
p ], where Yr is a regression sample that is given to

the modelers for estimation purposes and Yp is a holdout or prediction sample that can be

used by the policy maker to evaluate predictions.4 The mechanism unfolds in two stages.

First, the policy maker asks the modelers to provide a predictive density p̃j(θ̂p|Yr, X, S)

for his estimate of the treatment effect given by (14). This predictive density is then used

to update the model probabilities. Second, once the model probabilities are updated the

policy maker makes all the outcome data available and asks the modelers to re-estimate

their models and report p̃j(θ|Y,X, S). We assume that the compensation is proportional to

ln p̃j(θ̂p|Yr, X, S). The policy maker updates the model weights according to

π̃j,n =
πj,0p̃j(θ̂p|Yr, X, S)

π1,0p̃1(θ̂p|Yr, X, S) + π2,0p̃2(θ̂p|Yr, X, S)
. (18)

A few remarks about the assumptions on the mechanisms are in order. First, the pay-off

for Modeler 1 is independent of the action taken by Modeler 2, and vice versa. Thus, we

abstract from strategic interactions between the modelers. Second, for the holdout mecha-

nism we assumed that the policy maker updates the model weights based on the predictive

densities p̃j(θ̂p|Yr, X, S) for the reduced-form estimate of the treatment effect instead of the

predictive density p̃j(Yp|Yr, X, S) for the entire holdout sample. In realistic applications the

4For the modelers’ inference it is inconsequential given randomization whether they have access to the

full sample of regressors or just the subsample that corresponds to Yr. We assumed the former because it

simplifies the notation.
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precise evaluation of p(Yp|Yr, X, S,Mj) for one particular sample is often challenging and

time consuming. Computing this density for all possible realizations Yp is a daunting task.

The reduced-form estimate θ̂p, on the other hand, is a univariate statistic in our application

and reporting a predictive density is straightforward. It could easily be graphed or tabu-

lated. In sum, while the use of a density for Yp is theoretically attractive, it is difficult, if

not infeasible to implement. The current practice in the treatment effect literature comes

closest to choosing model weights based on the θ̂-predictive density, as for example in Todd

and Wolpin (2006) and Duflo, Hanna, and Ryan (2011).

Finally, for the holdout mechanism, we assume that the policy maker gives the modelers

access to the entire sample once he has determined the model weights. Allowing the modelers

to re-estimate the parameters on the full sample avoids an unnecessary loss of information

about θ that would put the mechanism at a clear disadvantage. After all, the rationale of

holdout samples is merely to avoid distortions in model weights due to data-mining. We use

p̃j(θ|Y,X, S) to denote the posterior of θ reported by the modelers.

4.3 The Choice Set of the Modelers

We assume that the modelers can choose between the following three options: (i) report

results from the Bayesian analysis of Mj based on the sample provided by the policy maker;

(ii) introduce a reference model Mj0 to account for the possibility of model misspecification

and report the fit from the mixture of Mj and Mj0; (iii) engage in data-mining to improve

the fit of model Mj.

Option 1: Report Results from Bayesian Analysis of Mj. Under the no-holdout

mechanism the modelers have access to the full sample and report the marginal likelihood

for Y , which is given in (12). Under the holdout mechanism the modelers can compute

the predictive likelihood p(Yp|Yr, X, S,Mj), which in turn implies a predictive density for

θ̂p(Yp, Yr), denoted by p(θ̂p|Yr, X, S,Mj). The corresponding full-sample posterior for θ is

given by by p(θ|Y,X, S,Mj).

Option 2: Bayesian Inference with Reference Model. Suppose that the modelers

entertain the possibility that their models Mj are misspecified. While there are several
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options for introducing concern about misspecification in a Bayesian framework, we assume

that the modelers consider a reference model Mj0 that takes the form of an unrestricted

regression with regressors Xj and S

Mj0 : Y = βjXj + θS + U, βj ∼ N(0, nλ2), θ ∼ N(0, nλ2). (19)

Taking the reference model into account, the modeler constructs the model mixture M̄j:

M̄j : π̄j,0p(Y, θ|X,S,Mj) + π̄j0,0p(Y, θ|X,S,Mj0), (20)

from which one can compute either the marginal likelihood function p(Y |X,S, M̄j) or the

predictive density p(θ̂p|Yr, X, S, M̄j). The corresponding full-sample posterior for θ is given

by

p(θ|Y,X, S, M̄j) = π̄j,np(θ|Y,X, S,Mj) + π̄j0,np(θ|Y,X, S,Mj0), (21)

where π̄j,n and π̄j0,n are posterior probabilities for the original model Mj and the reference

model Mj0.

Option 3: In-Sample Data-Mining. We represent in-sample data mining as data-based

modification of the prior distribution associated with model Mj. This modification breaks

the tight link between θ and β and shifts the prior toward an area of the parameter space

in which the likelihood function is relatively high. It is supposed to capture a practice

whereby a researcher inspects the data and, depending on the properties of the data, decides

which features to include in the model and which to leave out, without accounting for this

specification search subsequently.

In our working example, the data-mining prior is constructed as follows. We begin by

breaking the link between θ and β by introducing an additional parameter ψ such that

βj = θ + ψj.

A value ψ̃j is chosen such that at the posterior mean β̂j = θ̂ + ψ̃j. Specifically, using the

generalized relationship between βj and θ, the decision rule in (4) leads to the regression

Y = Xj(θ + ψj) + Sθ + U = X̃jθ +Xjψj + U, (22)
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where X̃j = Xj + S. Define the matrix MX̃j
= I − X̃j(X̃

′
jX̃j)

−1X̃ ′j and let ψ̃j the least

squares estimate of ψj in (22):

ψ̃j = (X ′jMX̃j
Xj)

−1X ′jMX̃j
Y.

Plugging ψ̃j into (22) yields the modified regression

Y = X̃jθ +Xjψ̃j + U. (23)

After having relaxed the restriction θ = βj in a data-driven manner, the prior for θ is

centered at the maximum likelihood estimate derived from (23). Its covariance matrix is

chosen to be proportional to (X̃ ′jX̃j)
−1. Using the definition Ỹj = Y −Xjψ̃j the data-mined

model takes the form

M̃j : Y = X̃jθ +Xjψ̃j + U, θ ∼ N

(
θ̃i, (κX̃

′
jX̃j)

−1

)
(24)

θ̃j = (X̃ ′jX̃j)
−1X̃ ′iỸj.

The parameter κ scales the prior precision of θ. Based on model M̃j it is possible to

compute either the marginal likelihood function p(Y |X,S, M̃j) or the predictive density

p(θ̂p|Yr, X, S, M̃j). The posterior distribution p(θ|Y,X, S, M̃j) under the data-mined model

remains normal, but it has a different mean and variance than the posterior in (10). By

construction, the posterior is centered at θ̃j and takes the form:

θ|Y,X, S, M̃j ∼ N

(
θ̃j,
(
(κ+ 1)X̃ ′jX̃j

)−1
)
. (25)

While models M̃j and Mj0 are very similar in that they both relax the restriction β = θ

in order to improve fit, under in-sample data-mining the stated measure of uncertainty is

severely distorted.

4.4 Optimal Choices of the Modelers

Having described the potential choices of the modelers, we can now discuss their actual

choices in the no-holdout and the holdout mechanisms.
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No-Holdout Mechanism. The modelers could report p(Y |X,S,Mj), p(Y |X,S, M̃j), or

p(Y |X,S, M̄j). The marginal likelihood associated with Mj is given in (12). The marginal

likelihood function of the data-mined model M̃j takes the form

p(Y |X,S, M̃j) = (2π)−n/2|1/κ+ 1|−1/2 (26)

× exp

{
−1

2
[Ỹ ′j (I − X̃j(X̃

′
iX̃j)

−1X̃ ′j)Ỹj]

}
.

Our particular choice of ψ̃j ensured that θ̃j corresponds to the Gaussian maximum likelihood

estimator of θ in the unrestricted regression (22). Thus, compared to (12) data-mining

step has raised the exponential term because the in-sample fit of the model is improved

by eliminating the restriction θ = βj. Moreover, the data-mining procedure replaced the

model-specific penalty term |X̃ ′jX̃j/(nλ
2) + 1|−1/2 in (12) by |1/κ + 1|−1/2. Thus, provided

that

κ ≥ nλ2

X̃ ′jX̃j

, (27)

we obtain

p(Y |X,X, M̃j) ≥ p(Y |X,X,Mj). (28)

Thus, data-mining unambiguously raises the marginal likelihood compared to the original

model Mj. For κ = 1 condition (27) requires that the prior density in model Mj is more

diffuse than the likelihood function, which is a very mild restriction.

The marginal likelihood function of the model mixture M̄j is a convex combination of

p(Y |X,S,Mj) and p(Y |X,S,Mj0). If one defines X̄j = [Xj, S], then the marginal likelihood

of the reference model can be expressed as

p(Y |X,S,Mj0) = (2π)−n/2|I + X̄ ′jX̄j/(nλ
2)|−1/2 (29)

× exp

{
−1

2
[Y ′(I − X̄j(X̄

′
jX̄j + nλ2I)−1X̄ ′j)Y ]

}
.

The goodness-of-fit term in (29) corresponds to a regression of Y on Xj and S. But due to

the influence of the prior distribution p(θ, β|Mj0), it is smaller than the goodness-of-fit term

for the data-mined model in (26). Thus, under some mild restrictions on λ we can deduce

that p(Y |X,X, M̃j) ≥ p(Y |X,X,Mj0) and therefore

p(Y |X,X, M̃j) ≥ p(Y |X,X, M̄j) (30)
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To summarize, among the three available options, the modelers maximize their pay-off

through in-sample data mining and setting p̃j(Y |X,S) = p(Y |X,S, M̃j). Access to the

full sample creates an incentive for data-based modifications of the original model Mj. The

reported posterior for θ is p̃j(θ|Y,X, S) = p(θ|Y,X,X, M̃j) given in (25).

Holdout Mechanism. Here the modeler has no information about the holdout sample Yp.

Suppose that the subjective beliefs of the modelers are described by the specification M̄j

which allows for the possibility that the restriction θ = βj is potentially misspecified. The

expected pay-off of the modeler is given by∫
ln[p̃j(θ̂p|Yr, X, S)]p(θ̂p|Yr, X, S, M̄j)dθ̂p. (31)

According to Jensen’s inequality∫ (
ln

[
p̃j(θ̂p|Yr, X, S)

p(θ̂p|Yr, X, S, M̄j)

]
p(θ̂p|Yr, X, S, M̄j)

)
dθ̂p ≤ 0.

Recall that we introduced the notation p̃j(·) to denote the predictive density that is reported

to the policy maker and p(θ̂p|Yr, X, S, M̄j) refers to the predictive density under model M̄j.

The inequality turns into an equality if p̃j(θ̂p|Yr, X, S) = p(θ̂p|Yr, X, S, M̄j). Thus, we ex-

ploited the fact that a compensation scheme based on the log predictive density induces the

econometrician to reveal his subjective beliefs. This result dates back at least to Winkler

(1969) and has been credited to unpublished work by Bruno DeFinetti and Leonard Savage.

Note, however, that the policy maker would want the modeler to reveal results from Mj

instead of M̄j.

The predictive distribution associated with the model mixture M̄j takes the following

form

p(θ̂p|Yr, X, S, M̄j) = π̄j0,rp(θ̂p|Yr, X, S,Mj0) + π̄j,rp(θ̂p|Yr, X, S,Mj), (32)

where π̄j0,r and π̄j,r are posterior weights based on Yr. If the modelers are provided with

a subsample Yr that contains data from both the treatment and the control group, they

can potentially assess their restrictions θ = βj. If the regression sample Yr provides strong

evidence against the restriction βj = θ, then the posterior probability of Mj0 is close to

one and the mixture is dominated by the reference model. Conversely, if the data provide
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strong evidence in favor of the more parsimonious model Mj the mixture will resemble

p(θ̂p|Yr, X, S,Mj). We assume that the prior probability π̄j is larger than 1/2, such that

if Yr contains no information from the treatment sample, then modelers have no evidence

against θ = βj and reveal Mj. To summarize, under the holdout mechanism the modelers

report p̃j(θ̂p|Yr, X, S) = p(θ̂p|Yr, X, S, M̄j) and p̃j(θ|Y,X, S) = p(θ|Y,X, S, M̄j).

So far, we have provided a qualitative characterization of the behavior of the two model-

ers. The policy maker, in our environment, can now minimize his prediction loss by choosing

between the no-holdout and the holdout mechanism. With regard to the holdout mechanism

he has to determine the optimal size and composition (in terms of observations from the

treatment and control group) of the holdout sample. The next section provides a numerical

illustration.

5 Numerical Illustration

This section provides a numerical illustration in which we analyze the modeler’s choices as

well as the policy maker’s loss for various sample splitting choices. The simulation design

is presented in Section 5.1. Section 5.2 proceeds by examining the behavior of the modelers

under the holdout mechanism. In particular, we study the weight that the reference model

Mj0 receives in the predictions of the modelers. Finally, the main results about the policy

maker’s risk under the no-holdout and the holdout mechanism for various choices of holdout

samples are presented in Section 5.3.

5.1 Policy Experiment, Loss Function, and Parameterization

The policy maker is assumed to have conducted an experiment with n = 1, 000 observations,

500 from a randomly selected treatment group that received the subsidy, s = s̄ = 2, and 500

are from a control group that did not receive the subsidy, s = 0. The exact sample size is

not important because by making the prior variances proportional to 1/n all the statistics
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that we subsequently compute have well-defined limits as n −→ ∞. Each individual i has

two observable characteristics, xi,1 and xi,2. Let xi = [xi,1, xi,2]′. We assume that

xi ∼ iidN(0,Γ), Γ =

 2 0.4

0.4 2

 . (33)

Thus, the correlation between the two characteristics is 0.2. These assumptions complete

the specification of p(X,S) = p(X)p(S).

The policy maker assigns probabilities π1,0 = π2,0 = 1/2 to the two models M1 and M2.

From the policy maker’s perspective the distribution of the data takes the form

p(Y,X, S) =
1

2
p(Y,X, S|M1) +

1

2
p(Y,X, S|M2), (34)

where

p(Y,X, S|Mj) = p(X)p(S)

∫
p(Y |θ,X, S,Mj)p(θ|Mj)dθ.

The policy maker contemplates raising the subsidy from s̄ = 2, the level in the experiment,

to s∗ = 4. To assess that policy, the policy maker considers the prediction of the effect

of subsidy level s∗ on an individual with given characteristics x1 and x2. The prediction is

evaluated under a quadratic loss function and we will evaluate the expected discrepancy (16)

between the Bayes prediction and the prediction that the policy maker is able to implement

based on the information provided by the modelers. Here the expectation is taken with

respect to the marginal density of the observations (Y,X, S).

To make the subsequent exposition more transparent, we take the following short cut.

Throughout the analysis we replace model averaging by model selection, restricting the model

weights to be zero or one. This leads to the following post-model-selection Bayes predictor

ŷ∗ =

 θ̂(M1)(x1 + s∗) if π1,n ≥ π2,n

θ̂(M2)(x2 + s∗) otherwise
, (35)

where θ̂(Mj) denotes the posterior mean of θ under model Mj. Likewise, the policy maker

computes a post-model-selection predictor based on the results elicited from the two model-

ers:

ŷ∗ =

 θ̃1(x1 + s∗) if π̃1,n ≥ π̃2,n

θ̃2(x2 + s∗) otherwise
, (36)
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where θ̃j is the posterior mean associated with the reported density p̃j(θ|Y,X, S).

To complete the specification of the numerical illustration we set the precision of the prior

densities for θ in models M1 and M2 to λ2 = 1. Moreover, we assume that the modelers

assign prior probability π̄j0 = 0.48 to the reference model Mj0. We make the simplifying

assumption that the modelers, like the policy maker, do not average predictions from Mj

and Mj0. Instead, under the holdout mechanism they select the highest posterior probability

model.

The policy maker can choose the size and composition of regression and holdout samples.

We characterize the regression sample Yr in terms of r ∈ (0, 1], the fraction of the outcome

data, and τ , the fraction of observations from the treatment group.5 We restrict our attention

to two choices of τ : τ = 0.5 and τ = τmin(r), where nrτmin is the smallest number of

observations from the treatment group that can be assigned to the regression sample. If

r = 0.2 then the regression sample consists of 200 observations (recall n = 1, 000). Since Y

contains 500 observations from the treatment group τmin(r) = 0. If r = 1 then τmin(r) is

equal to 0.5. Table 1 summarizes the composition of Yr for selected values of r and the two

choices of τ .

In the remainder of this section we analyze expected frequencies of model choices and

risk differentials (16) with respect to r and τ . Expected losses are computed under the

marginal distribution of (Y,X, S) given by (34) as well as under the conditional distribution

(Y,X, S) given that M1 is “true” and θ is equal to a multiple of the prior standard deviation:

θ = 0.2/
√
nλ2 or θ = 5/

√
nλ2, where nλ2 = 1, 000. Given our assumptions about the

covariance matrix Γ of the individual characteristics under the first choice of θ, models M1

and M2 are fairly difficult to distinguish, whereas the second choice of θ leads to decisive

posterior model probabilities. In fact, conditional on θ = 5/
√
nλ2 the probability that the

highest posterior probability model and “true” model coincide is nearly 1.0, because for

large values of θ the misspecification associated with the restriction β2 = θ in model M2 is

easily detectable. The unconditional probability, averaging over θ with respect to the prior

5Given the symmetry of our experimental design, it is immaterial whether τ is defined in terms of the

treatment or control group.
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distribution, of the highest posterior probability model being the “true” model is 0.68.

5.2 Behavior of Modelers under Holdout Mechanism

Under the holdout mechanism the modelers only have access to a fraction of the outcome

data, they determine based on the posterior odds of Mj versus Mj0 whether to report results

from one or the other model. In order to obtain the correct posterior prediction of the

treatment effect, the policy maker would want the modelers to always report results from

Mj. Thus, for brevity, we shall refer to a modeler who does indeed report results from Mj

as “honest.” Suppose that M1 is the highest posterior probability model. The following

outcomes are possible:

(i) Modeler 1 is “honest” and M1 is selected. In this case ŷp = ŷ∗ and the policy maker is

able to recover the Bayes predictor of the treatment effect.

(ii) Modeler 1 is not “honest” and policy maker ends up selecting M10 because the fit of

M10 dominates the fit of the model reported by the second modeler. In this case the

policy maker’s prediction is based on the correct covariate xi,1, but it deviates from ŷ∗

because the restriction θ = βj is not imposed.

(iii) Modeler 2 is not “honest” and policy maker ends up selecting M20 because the marginal

likelihood of M20 exceeds the marginal likelihood of M1. This leads to an inferior

prediction because the policy maker uses the wrong covariate, x2 instead of x1, and

misses the restriction between treatment effect and the coefficient on the covariate.

We now study the probabilities that modelers M1 and M2 are “honest.” Initially, these

probabilities are computed conditional on model M1 being “true” and a particular value

of θ. As explained above, we consider θ being equal to 0.2 prior standard deviations and θ

being equal to 5 prior standard deviations. Figure 1 graphs the Probability that Modeler 1 is

“Honest” Cond. on M1 begin the “true” model as a function of r, the fraction of observations

that the policy maker makes available to the modelers. For θ = 5/
√
nλ2 (right panel) the

sample provides strong evidence that the restriction θ = β1 is satisfied. Thus, the posterior

probability of the original model M1 exceeds the posterior probability of the more flexible

reference model M10 for almost all samples, regardless of r.
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If θ = 0.2/
√
nλ2, most of the variation in the outcome yi is due to the regression error

ui instead of the regressor θ(xi,j + si). Thus, it becomes more difficult do distinguish the

restricted model M1 from the unrestricted model M10. Due to the choice of prior the Mod-

eler 1 chooses M1 in the absence of any information, that is, r = 0. If τ = τmin then for

r ≤ 0.5 the sample contains no data from the treatment group, which makes it impossible

to gather evidence against the restriction θ = β1 and the probability that M1 is selected

remains equal to one. Only for r > 0.5 does the modeler have data from both the control

and treatment group and, in that case, the modeler reports results from M10 for about 25%

of the samples. If τ = 0.5 then the probability that Modeler 1 reports results from M1 drops

more quickly as a function of r and reaches the 75% level for r > 0.3.

Figure 2 depicts the probability that Modeler 2 finds confirmation for the restriction

θ = β2 if data are generated from M1. As in the case of Modeler 1, if r ≤ 0.5 and τ = τmin

the sample contains no information about the restriction θ = β2 and Modeler 2 always

reports results from the restricted model M2. If r > 0.5, for both τ = τmin and τ = 0.5 there

is some probability that Modeler 2 finds his restricted specification rejected against the more

general reference model M20. This probability generally increases with r. For θ = 0.2/
√
nλ2

the probability that Modeler 2 is “honest” drops to 80%, whereas it drops to about 40% if

θ = 5/
√
nλ2 and a much larger fraction of the variation in the outcome variable is due to the

explanatory variables. A comparison of Figures 1 and 2 indicates that for the small value of

θ both modelers find their restrictions rejected with approximately equal probability.

We proceed by averaging over θ with respect to the prior distribution instead of condi-

tioning on particular values of θ. Figure 3 depicts integrated probabilities that Modelers 1

and 2 are honest. The probabilities in the left panel are computed conditional on M1 being

“true”, whereas the probabilities in the right panel are obtained by simulating data from M2.

Given the setup of our simulation experiment the two panels are symmetric and we focus on

the left panel, which essentially averages over the two panels depicted in Figures 1 and 2. If

r ≤ 0.5, then τmin = 0. Thus, both modelers have no information that allows them to test

the restriction of their models. In turn, they are honest with probability 1. If τ = 0.5, then

even for small values of r the modelers find their restrictions rejected with some probability.
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For large values of r the difference between τ = 0.5 and τ = τmin vanishes as τmin −→ 0.5.

Finally, conditional on M1, the probability that M2 finds his model rejected is higher than

that of M1 and vice versa.

5.3 Policy Maker’s Risk

Having examined the behavior of the modelers under the holdout mechanism, we now con-

sider the risk of using holdout samples for the policy maker. Figure 4 plots the probability

that the modelers are honest and that the predictive-density-based selection yields the high-

est posterior probability model as a function of r for τ = τmin and τ = 0.5. First, consider

the case θ = 5/
√
nλ2. Overall, the choice of τ = τmin dominates τ = 0.5. The probability

function has an inverted U-shape. For r ≈ 0.5, the policy maker finds the highest proba-

bility model almost with certainty. We conjecture that for small r the analysis suffers from

imprecise estimates of θ and a diffuse distribution for θ̂p. Large values of r, on the other

hand, yield short holdout samples which makes it more difficult to measure the predictive

performance of M1 versus M2. Second, if θ = 0.2/
√
nλ2 then the policy maker finds the

highest posterior probability model with at most probability 1/2. For τ = 0.5 and r < 0.5

there is a visible effect of predictive data mining, i.e. the modelers report results from their

reference models Mj0 instead of Mj.

We now turn to the risk differential ∆(ŷ∗, ŷp) in (16). The models Mj imply that only

one of the two characteristics of the individuals is relevant for the outcome yi. For our

illustration, we assume that the policy maker’s objective is to predict the effect of a subsidy

si = s∗ for an individual whose relevant characteristic is xi,j =
√

2 and whose irrelevant

characteristic is xi,(−j) = 0.2
√

2. Recall that
√

2 is the variance of the characteristics within

the population and 0.2 their correlation.6 Figure 5 depicts the average values for (ŷp − ŷ∗)2

conditional on data generated from M1 with either θ = 0.2/
√
nλ2 or θ = 5/

√
nλ2. The

results mirror the probability of the policy maker finding the highest posterior probability

6Our setup creates a penalty for making good predictions with the wrong model – because the prediction

will be based on the incorrect regressor value.
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model. For large values of θ the policy maker can with r = 0.5 and τmin = 0 obtain a risk

differential that is essentially zero.

We also plot the risk attained under the no-holdout mechanism, which leads the modelers

to engage in in-sample data mining (see Option 3 in Section 4.3). The risk attained under

no-holdout is large for both small and large values of θ. We deduce that in our numerical

illustration the policy maker is able to achieve a lower risk by using a holdout sample. Finally,

we plot the integrated risk differential ∆(ŷ∗, ŷp) of the policy maker in Figure 6, averaging

over θ with respect to its prior distribution. The preferred strategy from the policy maker’s

perspective is to set τ = 0 and r = 0.5.

6 Conclusion

We developed a principal-agent framework that allows us to characterize potential costs of

data mining and potential benefits of holdout samples designed to discourage data mining.

In our environment the full Bayesian posterior mean prediction is first-best. However, the

tasks of decision making and model estimation is divided among a policy maker and a set

of modelers. The policy maker would like to implement the first-best Bayesian decision. To

that end, it is assumed that the modelers are rewarded based on the fit of the models that

they provide. This compensation scheme creates an incentive for the modelers to engage in

data-mining and to overstate the fit of their models. In our numerical illustration we find

that the policy maker minimizes risk by withholding 50% of the sample from the modelers

and only makes available observations either from the control group or the treatment group.

Holdout samples have not, to our knowledge, been used by actual policy makers as a

tool for model selection. Indeed, in the few examples based on randomized controlled trials

(RCT), the use of a holdout sample has been initiated by the researchers themselves.7 In

those cases, having access to data from both the treatment and control groups, researchers

have chosen holdout samples comprised of observations solely from one or the other group

rather than observations from a mixture of both groups. This choice is consistent with

7In some cases, the RCT is itself conducted by the researcher.
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the findings from our numerical illustration. For our results to apply, however, it must be

assumed that those researchers acted exactly as the modelers in our setting, that is, as if

they did not have access to the holdout sample during the estimation of their models.

Although our results are based on a numerical illustration, it is our speculation that they

would hold more generally, at least in the RCT setting. If that is the case, then we would

also argue that the use of a holdout sample given data from an RCT (a growing empirical

methodology) should be standard practice. We believe that if this practice were established

profession-wide, researchers would maintain the necessary distinction between the estimation

sample and the holdout sample.

In future work we are planning to generalize our numerical results, extend our work to

the analysis of non-random holdout samples, and allow for the possibilities that none of

the structural models are correctly specified. Finally, our current analysis does not cap-

ture an important positive aspect of specification searches: they tend to eliminate model

specifications that are clearly not empirically viable.
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Table 1: Composition of Estimation Sample Yr, n = 1, 000

τ = τmin τ = 0.5

Control Treatment Control Treatment

r = 0.2 200 0 100 100

r = 0.5 500 0 250 250

r = 0.8 500 300 400 400

r = 1.0 500 500 500 500
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Figure 1: Probability that Modeler 1 is “Honest” Cond. on M1

Notes: τ = τmin is blue, τ = 0.5 is red.
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Figure 2: Probability that Modeler 2 is “Honest” Cond. on M1

Notes: τ = τmin is blue, τ = 0.5 is red.
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Figure 3: Integrated Probability that Modelers are “Honest”

Notes: M1 is solid, M2 is dashed, τ = τmin is blue, τ = 0.5 is red.
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Figure 4: Prob. PM Finds Best Model Cond. on M1 and θ

Notes: θ̂-density-based selection, τ = τmin is blue, τ = 0.5 is red.
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Figure 5: Risk Cond. on M1 and θ

Notes: θ̂-density-based selection, τ = τmin is blue, τ = 0.5 is red, Data mining on full sample

is green.
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Figure 6: Integrated Probability that PM Finds Best Model and Risk

Notes: θ̂-density-based selection, τ = τmin is blue, τ = 0.5 is red, Data mining on full sample

is green.
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A Bayesian Analysis of the Linear Regression Model

Consider the linear Gaussian regression model, written in matrix form:

Y = Xθ + U. (A.1)

The dimension of θ is k × 1. Our examples focus on inference about θ, and we assume that

the elements of U are iidN(0, 1). The likelihood function takes the form

p(Y |X, θ) = (2π)−n/2 exp {Y −Xθ)′(Y −Xθ)} . (A.2)

The prior for θ is normal, centered at 0 with covariance matrix V . Thus, the prior density

takes the form

p(θ) = (2π)−k/2|V |−1/2 exp

{
−1

2
θ′V −1θ

}
. (A.3)

According to Bayes Theorem the posterior distribution of θ is proportional to the product

of prior density and likelihood function

p(θ|Y,X) ∝ p(θ)p(Y |X, θ).

The right-hand-side is given by

p(θ)p(Y |X, θ)

∝ (2π)−
n+k
2 |V |−1/2 exp

{
−1

2
[Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ − θ′V −1θ]

}
.

The exponential term can be rewritten as follows

Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ − θ′V −1θ

= Y ′Y − θ′X ′Y − Y ′Xθ + θ′(X ′X + V −1)θ

=

(
θ − (X ′X + V −1)−1X ′Y

)′(
X ′X + V −1)

(
θ − (X ′X + V −1)−1X ′Y

)
+Y ′Y − Y ′X(X ′X + V −1)−1X ′Y.

Thus, the exponential term is a quadratic function of θ. This information suffices to deduce

that the posterior distribution of θ must be a multivariate normal distribution

θ|Y,X ∼ N (θ̄, V̄ ) (A.4)
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with mean and covariance

θ̄ = (X ′X + V −1)−1X ′Y

V̄ = (X ′X + V −1)−1.

In order to obtain the marginal likelihood, note that Bayes Theorem can be rewritten as

follows

p(Y |X) =
p(Y |X, θ)p(θ)
p(θ|Y,X)

.

Since, we previously showed that the posterior p(θ|Y,X) is multivariate normal all the terms

on the right-hand-side are known:

p(Y |X) =
(2π)−n/2(2π)−k/2|V |−1/2 exp

{
−1

2
[(θ − θ̄)′V̄ −1(θ − θ̄)]

}
(2π)−k/2|X ′X + V −1|1/2 exp

{
−1

2
[(θ − θ̄)′V̄ −1(θ − θ̄)]

} (A.5)

× exp

{
−1

2
[Y ′Y − Y ′X(X ′X + V −1)−1X ′Y ]

}
= (2π)−n/2|V |−1/2|X ′X + V −1|−1/2

× exp

{
−1

2
[Y ′Y − Y ′X(X ′X + V −1)−1X ′Y ]

}
.


